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ABSTRACT 

Breast cancer is the most common cancer suffered by Australian women. Early 

detection of cancer provides the best chance of survival to the victims. Microwave 

imaging has shown the potential to be a complimentary imaging modality to the 

existing breast cancer imaging techniques such as mammography, MRI and 

ultrasound. Microwave imaging can overcome the drawbacks of conventional 

imaging techniques such as patient discomfort and ionizing radiation hazard. The 

principle of microwave imaging for breast cancer detection is based on the dielectric 

property contrast between healthy breast tissues and malignant tissues. However, in 

dense breasts that have high amounts of dense fibro-glandular tissue content, the 

dielectric property contrast between tumor and surrounding healthy glandular tissues 

can be quite low. To overcome the problems arising from imaging in low contrast 

scenario, contrast enhancing agents and hybrid imaging modalities have been 

proposed in the literature. But, such complex modalities not only complicate the 

screening process but also add to patients discomfort and cost. Moreover, such 

techniques may still fail to detect multiple tumors unambiguously in highly dense 

breasts. 

In this thesis, we investigate the use of computational time reversal imaging 

techniques for breast cancer detection and localization using anatomically realistic 

numerical breast phantoms. Both radar imaging and tomography imaging techniques 

have been applied for breast cancer detection. Microwave tomography cannot detect 

abrupt change in dielectric properties when contrast is low. On the other hand radar 

imaging can reveal the target location information even under low contrast scenario 

but suffers from clutter and noise in the medium. Time reversal microwave imaging 
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can be considered to be a variant of radar imaging. Time reversal uses medium 

heterogeneity as an advantage and is highly suitable for imaging in heterogeneous 

medium. However, the performance of time reversal can also be affected by low 

dielectric property contrast between target and surrounding tissue clutter. To 

overcome the effects of clutter interference on target detection and localization, in 

this thesis, we propose novel beamforming techniques for time reversal microwave 

imaging. Firstly, we extend beamspace processing for time reversal imaging 

technique with an aim to reduce clutter effects and improve robustness of imaging. 

However, when we use ultra-wideband microwave pulses for imaging, a coherent 

approach is necessary to overcome problems due to random phase variations arising 

in each frequency bin. We propose two different novel coherent beamspace time 

reversal imaging techniques for breast cancer screening. The focusing matrix based 

coherent signal subspace processing is found to be more suitable for subspace and 

maximum likelihood based time reversal imaging techniques whereas the focusing 

matrix based on wavefield modelling method is found more suitable for  time 

reversal minimum variance imaging. We propose to combine coherent focusing with 

beamspace processing (C-B) to obtain superior imaging localization performance. 

We have also derived Cramer Rao Lower Bound (CRLB) for beamspace time 

reversal imaging. We have proposed Coherent beamspace DORT (C-B-DORT), C-

B-TR-MUSIC, C-B-TR-RCB, C-B time reversal maximum likelihood (C-B-TR-ML) 

methods to detect small single and multiple tumors in highly dense breasts where 

conventional techniques are prone to fail.  Our investigations have revealed that     

C-B-TR-ML imaging has superior performance compared to other techniques in 

detecting three small sized tumors embedded in a highly dense breast phantom. 
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Chapter 1 : Introduction 

1.1 Introduction to Time Reversal 

Time reversal simply means going backward in time just like playing a movie 

in the reverse direction. Most of the physical laws of nature are time reversible. The 

weak force governing radioactive decay and laws describing statistical properties 

such as the heat equation are some of the exceptions which are not invariant to time 

reversal [1]. Mathematically time reversal can be interpreted as substituting time, t 

by –t which corresponds to folding operation on a signal in time domain. After 

carrying out such substitution if the equations explaining a physical phenomenon 

remain unchanged, then the physical system or phenomenon is invariant to time 

reversal implying that the physical law is time reversible. Time reversal was 

pioneered [2] as well as experimentally validated [3] by M. Fink and his group for 

acoustics. Time reversal symmetry also holds for electromagnetic waves and has 

been experimentally proven as well [4]. According to time reversal principle the 

scattered field received by an array, can be time reversed and back propagated into 

the medium to localize the target. The array used is referred to as time reversal 

mirror. Time reversal can be interpreted as space-time matched filter. Time reversal 

corresponds to phase conjugation in frequency domain. Hence, the received scattered 

target response can be phase conjugated and retransmitted back into the medium for 

time reversal localization. Time reversal can obtain superior localization 

performance and resolution in heterogeneous medium. Heterogeneous medium can 

effectively increase the array aperture to improve focusing performance [2, 3, 5]. In 

practice the back propagation is not physically implemented rather computed. Hence, 
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it is called computational time reversal. In computational time reversal the time 

reversed received field is synthetically back propagated using the Green’s function 

of the medium. Back propagation can be computed in time domain or frequency 

domain. For time domain back propagation time domain numerical technique such as 

FDTD is used. It is possible to directly obtain an image of the medium in frequency 

domain for frequency domain time reversal. 

 

1.2 Time Reversal Literature Review 

In the literature extensive study about time reversal using simulation and 

experiments for acoustic as well as electromagnetic field has been reported. Time 

reversal can be implemented in frequency domain although it is a time domain 

phenomenon, since it is equivalent to phase conjugation in frequency domain. Phase 

conjugation is generally applied for single frequency monochromatic waves and it 

can also be extended to ultrawideband (UWB) time domain pulses using Fourier 

analysis. Phase conjugation was first used in optics to overcome the effects of 

distortion introduced due to propagation medium [6]. Time reversal was initially 

validated for ultrasonics [3] using iterative back propagation from the time reversal 

mirrors working at frequencies 1MHz and 3.5MHz. Theoretical [7-9], experimental 

[10-17] and computational [18-22] investigations have also been carried out by 

different researchers to explore different aspects of time reversal phenomenon. It has 

been considered in the literature for different applications such as target detection 

[23-29], imaging [5, 30-33], radar [34-36], surveillance[37], biomedical imaging 

[38-44], therapy and monitoring [45-47], non-destructive testing[48, 49], acoustic 

communication[50-54] etc.  
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Time reversal has attracted the attention rather lately in the field of 

electromagnetic [55-58]. Experimental validation of time reversal focusing was also 

reported in [56] using phase conjugation in a multipath indoor environment at 2.45 

GHz. Later on many works have been reported on the electromagnetic time reversal 

using experimentally measured data [4, 25, 28, 59, 60]. Electromagnetic time 

reversal for cluttered [4, 26, 29, 59, 60] and random media [61-63] have also been 

studied to investigate efficiency of time reversal methods in inhomogeneous and 

complex medium. Time reversal adaptive interference cancellation scheme was 

proposed by Moura and Jin [60] for cluttered environment which requires multistatic 

measurement of the medium without the presence of target. A Gaussian target 

detection scheme was also proposed in [29]. Effects of inhomogeneous and 

dispersive medium for electromagnetic time reversal was reported in [61, 63]. 

Statistical stability of time reversal imaging in random medium has been investigated 

[64, 65]. 

Time reversal techniques differ in the way backward propagation computation 

is performed. In iterative time reversal the backscattered response is iteratively back 

propagated from the time reversal mirror [13, 66]. However, when multiple 

scatterers are present, iterative time reversal focuses onto the strongest scatterer. 

Though the iterative time reversal is simple in terms of computation, it is not suitable 

for localization of multiple scatterers. Selective focusing for multiple scatterers was 

proposed using Eigen analysis of the time reversal operator [17]. In time reversal 

subspace based imaging approach, Eigen decomposition of the multistatic matrix is 

carried out to obtain two orthogonal subspaces- signal and noise subspaces. Signal 

subspace is used for decomposition of the time reversal operator (DORT) imaging 

[17, 23, 26, 61, 67-70] while the noise subspace is used for time reversal MUSIC 
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(TR-MUSIC) [5, 33, 37, 71-73] imaging. DORT suffers from poor resolution and 

cannot focus onto two non-well-resolved scatterers. On the other hand, TR-MUSIC 

provides superior resolution than DORT. DORT is a signal subspace technique and 

more robust against noise. TR-MUSIC depends on noise subspace which is 

orthogonal to signal subspace and hence the orthogonality between the two 

subspaces is important for its operation. As a result TR-MUSIC can fail with 

increasing noise, clutter and interference in the medium.  Different variations of 

DORT such as time-domain DORT (TD-DORT) [61], space-frequency DORT (SF-

DORT) [62], frequency-frequency DORT (F-F DORT) [74], weighted least squares 

DORT (WLS-DORT) [75] have been proposed to overcome the limitations of 

conventional DORT imaging. Also electromagnetic time reversal using independent 

component analysis was proposed in [76]. A noise suppression scheme for time 

reversal was given in [77]. However, the challenges of time reversal imaging in 

cluttered medium cannot be eliminated by techniques proposed in [76, 77] as 

interference from clutter can severely limit the imaging performance. A reduced 

complexity time reversal using autocorrelation demodulation was proposed for UWB 

wireless communication in [78]. 

Time reversal can also be used with minimum variance beamforming 

techniques [79] to obtain imaging techniques time reversal standard Capon 

beamformer (TR-SCB) and time reversal robust Capon beamformer (TR-RCB) 

imaging techniques. Time reversal beamforming [60] uses phase conjugated 

multistatic matrix in frequency domain as the beamforming matrix to obtain time 

reversal image. Time reversal maximum likelihood (TR-ML) imaging [80] is based 

on maximum likelihood estimation and provides superior result in terms of accuracy 
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and stability. TR-ML uses appropriate scaling factor to overcome the inherent near-

far problem of traditional time reversal beamforming.  

 

1.3 Motivation for Use of Time Reversal Microwave Breast 

Imaging 

Breast cancer among women has taken a horrendous toll on hundreds of 

thousands of lives all over the world. Breast cancer is the most common cancer 

suffered by Australian women. According to cancer council Australia one in eight 

women will be diagnosed with breast cancer by the age of 85. The abnormal rapid 

growth of cells lining the breast ducts or lobules causes cancer. Sadly, in most of the 

cases cancer is diagnosed when the cancer spreads to lymph nodes in the armpit [81]. 

Thus, early detection of cancer provides the best chance of survival. In the early 

stage, the breast tumor is less than 2cm in diameter. Physicians recommend regular 

screening for breast cancer among high risk group of women. The most commonly 

used non-invasive screening tools are mammography, ultrasound imaging and MRI. 

Currently mammography is the gold standard for breast screening [82]. 

Mammography is essentially the x-ray imaging with a low level of radiation. 

However, mammography is not suitable for radiographically dense breasts. It also 

requires painful breast compression and can be harmful if repeatedly used due to 

ionizing nature of X-ray radiation. Ultrasound imaging is not also sensitive enough 

for dense breasts. MRI is quite expensive and hence not suitable for regular 

screening and has also got problems for imaging dense breasts. These draw backs of 

existing imaging modalities have motivated the researchers to look for an alternative 

or complimentary modality that is effective, accurate and employs non-invasive 
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screening technique [83, 84]. The highest accuracy for combination of clinical and 

non-invasive modalities is about 75% [85]. This means that one in four patients is 

not properly diagnosed. Under these circumstances microwave imaging shown some 

promise to be another alternative or complimentary modality to the existing 

screening techniques. Microwave imaging is non-ionizing, non-invasive, and 

inexpensive and does not require painful breast compression. 

Microwave imaging exploits the contrast in the dielectric properties between 

the cancerous lesion and surrounding healthy breast tissues [86, 87]. Microwave 

imaging techniques for breast cancer screening are broadly classified into two 

groups- tomography, and radar imaging. Microwave tomography seeks to 

reconstruct the dielectric properties of the object under test. Microwave radar 

imaging does not reconstruct the actual profile of the object but aims at localizing the 

target by focusing energy at the target location. Initial studies suggested that there is 

a large contrast in dielectric properties between the tumor and healthy breast tissues 

[88]. However, later investigations [86, 87] revealed that the signature of the tumor 

is significantly reduced for younger women having high fibro-glandular tissue 

content in the breasts. The conclusion was that low contrast exists in the dielectric 

properties between the malignant tumor with respect to the surrounding healthy 

fibroglandular tissues. This posed new challenges for the microwave imaging of 

breast cancer [83]. 

 

1.4 Microwave Imaging for Breast Cancer Detection 

Microwave imaging can be broadly categorized into two types- tomography 

and radar imaging. Tomography images are obtained by reconstructing the tissue d 
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profile of the breast. Radar imaging on the other hand does not seek to represent the 

true breast tissue heterogeneity, but rather provides an estimation of the target 

location. In the literature, both tomography and radar imaging has been used in 

various ways to overcome the challenges faced by of microwave imaging for breast 

cancer detection. Researchers usually rely on numerical simulation using numerical 

breast phantoms in the initial stages for the development of microwave imaging 

algorithms. Initial studies used mostly simplified numerical breast models that do not 

accurately represent real tissue heterogeneity [40, 44, 89-94]. However, later studies 

used more realistic MRI derived breast phantoms for the developments of imaging 

algorithms [39, 42, 43, 95-103]. This was made possible mainly due to the work of 

University of Wisconsin-Madison Cross-Disciplinary Electromagnetics (UWCEM) 

research group who kept true MRI derived breast phantom repository [104] open to 

public. 

 

1.4.1 Microwave Tomography 

Microwave tomography seeks to reconstruct the dielectric property profile of 

an object under investigation by solving inverse scattering problem. Tomographic 

images cannot trace the abrupt change in dielectric properties. As a result use of 

tomography is not suitable for identifying small sized benign tumors that may have 

random shapes. Tomography can be useful for estimation of tissue heterogeneity and 

breast density approximately. The electrically small features of the true profile are 

underestimated and the contribution to the reconstruction from even a scattered 

distribution of fibro-glandular heterogeneity interferes with the ability to distinctly 
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image the tumor using microwave tomography. These challenges are magnified 

when the breast tissues become highly heterogeneous and dense [97]. 

 

1.4.1.1 Development of Algorithms for Microwave Tomography Imaging 

Tomographic images are obtained by solving inverse scattering problems 

which are usually ill-posed, nonlinear and computationally intensive [99, 101, 103, 

105]. The dielectric properties are estimated on discrete mesh composed of 

electrically small elements. This requires huge computational resources particularly 

for 3D image reconstruction [97, 106]. To reduce computational complexity and 

obtain necessary resolution tomography images are often obtained in 2D slices [84, 

97, 106]. When employed for breast cancer detection, the field distribution in a 2D 

slice near the nipple does not conform well to the representative 2D slice used for 

analysis. Some researchers also considered three dimensional tomographic imaging 

using nonlinear optimization [107, 108] and some authors used other approaches 

[97]. Bayesian inverse scattering also has been considered for breast imaging to 

reduce false positives [109]. Use of discrete dipole approach in tomography is 

reported mainly to reduce computational time [106] although employs 2D breast 

slices for modelling. A Fourier approach using spherical harmonics was reported 

[110] for tumor shape reconstruction. However, reconstructed images for all the 

tomographic techniques show that reconstructions of dense areas of tissue are 

smeared and smallest features of the tissue structures are not reconstructed well [98]. 
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1.4.1.2 Development of Prototype Tomographic Imaging Systems  

Microwave tomographic systems for breast tissue imaging mainly designed to 

collect single frequency data repeated at several output frequencies. Hence, use of 

monopole antennas is quite common. The tomography system development was 

mainly led by the Dartmouth College, USA research group [111]. They have built 

several systems. In one of the models they used 16 monopole antennas operating 

between 300-1000 MHz. The system collected data in seven different frequencies at 

seven different coronal planes between the nipple and chest wall. Later the 

Dartmouth College group developed a 3D imaging system using 32 monopole 

antennas that can collect data in various coronal planes and also allows cross-plane 

measurements [106]. Both the systems use a matching liquid to immerse the breast 

and antennas while measurements are carried out. The later system [106] is capable 

of collecting data up to a frequency of 3 GHz. Another prototype 3D breast imaging 

system is described in [112] that too uses 32 monopole antennas between 0.3 GHz 

and 3.0 GHz. However, the monopoles are placed horizontally in [112] where as the 

antenna elements were positioned vertically in [106] A 3D tomographic system 

prototype is described in [113] that uses two dipole antennas which are rotated to 

scan around the breast. Researchers also employed patch antenna [114] for breast 

cancer imaging.  

 

1.4.1.3 Clinical Trials for Microwave Tomography  

Microwave imaging systems also have undergone clinical trials. The 

Dartmouth College group has reported clinical trial results with microwave 

tomographic systems [106, 111]. To simplify the imaging problem, breasts were 
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illuminated in seven coronal slices. Initially, the clinical study reported in [111] used 

five women volunteer without any malignancy. The results obtained using 

microwave tomography showed some correlation with mammographic images. 

However, these images could not reconstruct the heterogeneous breast tissue 

structures. The second clinical trial by the same group demonstrated improved 

results and this trial employed more than 400 volunteers. However, even in the 

second trial not all the tumors were successfully resolved and the results show poor 

resolution as typically found in tomographic images. It was later concluded that the 

tomographic system in [106] will be more useful for therapy monitoring rather than 

screening for tumor in dense breasts.  

 

1.4.2 Microwave Radar Imaging 

In the radar-based imaging approach, the breast is illuminated with microwave 

energy transmitted from an antenna or antenna array, and the received signals that 

may contain reflections from tumors are recorded and processed to obtain an 

intensity image of the breast. The assumption here is that the tumor produces highest 

intensity. However, these images can contain a significant amount of undesired 

clutter energy from fibroglandular tissues present in the breast. The intensity image 

contains bright spots that may not be produced by the tumor. Thus, it becomes 

difficult to detect the tumor. The undesired clutter energy can arise from many 

factors such as heterogeneous structure of breast tissues, reflection from mechanical 

parts of the antenna array, skin layer reflection, and reflection  due to high-

permittivity tissue background [115, 116]. The problem of low resolution for tumor 

detection encountered in highly dense breasts can be overcome using radar signal 
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processing. Radar imaging can be performed using either confocal imaging or time 

reversal imaging [84]. Radar imaging is usually carried out in frequency domain. 

However, time domain imaging approach has also been reported in the literature 

[117]. 

 

1.4.2.1 Confocal Microwave Imaging 

Confocal microwave imaging is a class of radar imaging that uses information 

about relative arrival times and backscattered amplitude to obtain scatterer location 

through synthetic focusing [90, 92, 95, 118]. Confocal microwave imaging for breast 

cancer detection was first proposed by Hagness et.al.  [92, 119] using FDTD analysis 

[88, 90, 94, 95, 100, 118-120]. Researchers considered multistatic [120-122] as well 

as monostatic [116, 123] confocal imaging systems for breast cancer detection. 

Confocal radar imaging requires scattered field responses from the breast for 

multiple microwave illuminations. The received responses then go through filtering, 

time-shifting and weighting in an equivalent known background medium. Dense 

glandular tissues act as strong clutter and prohibits coherent addition of the scattered 

target i.e. tumor response. When breast background is dominated by large amount of 

glandular tissue content, significant backscatter of microwave energy occurs due to 

glandular tissues. This can completely mask the tumor response. As a result imaging 

in highly dense breasts can be quite challenging for confocal imaging and thus 

conventional radar imaging tends to become ineffective for highly dense breasts [83, 

116].    
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1.4.2.2 Time Reversal Imaging 

Time reversal imaging for breast cancer has not been explored as much as 

tomography or confocal imaging. Time reversal has interesting properties for 

imaging in heterogeneous and cluttered medium such as a breast. Time reversal 

focusing in heterogeneous medium can be sharper and stronger in heterogeneous 

medium when compared to homogeneous medium [21]. Clutter and heterogeneity 

increases the effective array aperture and hence time reversal resolution superior in 

heterogeneous medium. However, actual breast heterogeneity is not known. Hence, 

time reversal imaging is carried out in an equivalent homogeneous medium that 

represents an average dielectric property of the cluttered heterogeneous background 

medium.  

For time reversal imaging sharp microwave pulses are used for excitation. 

Initially breast cancer detection using time reversal was employed within FDTD 

simulation using 2D and 3D breast phantoms [38, 39, 43]. In these cases the time 

variable ‘t’ was replaced by ‘−t’ for time reversal backpropagation. However, these 

FDTD based studies assumed a high dielectric contrast between tumor and 

surrounding tissues and fails to detect the tumor when dielectric contrast of the 

tissues diminishes. Time reversal beamforming methods DORT [40, 44, 124] and 

TR-MUSIC[125] were also reported for breast cancer detection. Initially most of the 

studies using DORT and TR-MUSIC employed simplistic breast phantoms and 

hence it is very difficult to assess the performance of these methods from these 

studies. Time reversal adaptive interference cancellation algorithm [60] has also 

been employed in a few studies [126-129]. However, the time reversal adaptive 

interference cancellation may not be applicable for practical application of breast 

cancer detection as it requires tumor free breast measurements as a reference [126-
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128]. A technique to estimate clutter response based on data adaptive filtering was 

also used in [129]. However, the disadvantage of data adaptive filtering is that it 

needs additional training set-up. Further in [129] the breast model was chosen to be 

homogeneous, which is far from reality. It is worth mentioning that conventional 

radar and tomographic imaging techniques yield satisfactory imaging results for 

breasts with dominant fatty adipose tissue content in which the contrast between 

tumor and surrounding breast tissue can be quite high (5:1). Conventional imaging 

modalities such as mammography and ultrasound also perform well for breasts with 

dominant fatty tissues. But all these techniques reach their limits for imaging in 

highly dense breasts. The aim of this thesis is to develop novel time reversal imaging 

techniques that can be used for breast cancer screening even in highly dense breasts. 

 

1.4.2.3 Development of Prototype Imaging Systems for Microwave Radar 

Imaging of Breast 

Experimental prototypes operating in time domain [117] as well as frequency 

domain [116, 120] have been developed for monostatic [116, 123] as well as 

multistatic confocal imaging [120-122]. It has been observed that presence of dense 

glandular-tissue clutter increases ambiguity regarding the location of the tumor and 

hence radar imaging tends to become ineffective for highly dense breasts. Many 

experimental studies using prototypes did not consider low dielectric contrast 

scenario (10%) between tumor and surrounding breast tissues in highly dense 

breasts. The time domain prototype reported in [117] used 16 traveling-wave tapered 

and loaded transmission-line antennas with homogeneous breast phantom over a 

bandwidth of 2-4GHz. The multistatic system reported in [120] used a hemispherical 
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antenna array consisting of 16 Cavity backed aperture stacked patch antennas with 

homogeneous breast phantom over a bandwidth of 4-9 GHz.  Klemm et. al. at 

University of Bristol, developed a sophisticated radar imaging prototype that used 31 

element antenna array with antennas operating over a bandwidth of 3-10 GHz. They 

reported experimental results for homogeneous[122] and inhomogeneous [121] 

breast phantoms with lowest contrast of 1.6:1. However, in highly dense breasts the 

contrast can become as low as 1.1:1. In practical microwave imaging systems, 

antennas play an important role. When microwave pulses are used the system 

requires high bandwidth antennas for distortion less pulse radiation and reception. 

Researchers designed and considered a range of antennas for radar imaging 

including Vivaldi antennas [130], stacked patch antennas [120], horn antennas [131], 

bow-tie antennas [132], dielectric resonator antennas [133] etc. for microwave radar 

imaging. 

 

1.4.2.4 Clinical Trials with Microwave Radar Imaging for Breast Cancer 

Detection 

A limited clinical trial results have been reported in the literature based on 

radar imaging [116, 134]. The Bristol University group used an imaging system 

employing a 60 element array for clinical trial using 95 volunteers with varying 

success rate between 60-80% [134]. Their study found that detection accuracy is 

greatly influenced by how well the breast fit into the ceramic holder employed in 

their system. In another study [116] monostatic radar imaging was clinically tested 

using 8 patients. The imaging system collected data at up to 200 points over a 

frequency range of 50 MHz – 15 GHz. The delay and sum confocal imaging 



Chapter 1: Introduction 

15 
 

algorithm was used for image reconstruction. It was reported that their system could 

not successfully resolve all the tumors  [116]. 

 

1.4.3 Microwave Imaging Techniques for Dense Breast Imaging 

 The presence of the malignant tissues is often obscured in the reconstructed 

images obtained by many microwave breast imaging systems due to the limited 

resolution available from the system and the presence of dense fibro-glandular 

tissues [97]. The unexpected conclusion of low dielectric contrast between malignant 

tumors and surrounding fibro-glandular tissues represented a setback for 

conventional microwave imaging approach of breast cancer [83]. To overcome the 

challenges arising due to dense breast two methods have been reported- hybrid 

imaging modality [135-140] and contrast enhancing agents in the microwave range 

[99, 102, 141-143]. The contrast enhancing agents are selected according to the 

imaging modality[141] and selectively delivered to the suspicious region where the 

malignant tissue is likely to be located [102]. Hence, prior estimation of tumor 

location can be highly helpful when using contrast enhanced imaging systems. This 

technique also requires differential imaging which can limit the efficacy due to 

random alteration of dielectric tissue properties. Further the receiver should be 

capable of sensing rather weak differential signals reflected from the tumor [102]. 

Hence, contrast agents as well as hybrid imaging modalities can further complicate 

the screening process and may add to patient’s discomfort. 
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1.5 Thesis Organization 

The thesis is organized as follows. 

Chapter 2: In chapter 2, we present details on the numerical breast phantoms, 

used numerical experiments and forward problem simulation using FDTD technique 

for breast cancer detection. We also propose algorithm for skin artefact removal. The 

technique for computing an equivalent average Green’s function of the equivalent 

homogeneous breast is described. 

Chapter 3: Chapter 3 includes details of different element space time reversal 

imaging techniques. Imaging results are presented for different types of breast 

phantoms. The results in chapter 3 show how conventional element space time 

reversal imaging techniques can fail to detect breast cancer in highly dense breasts. 

Chapter 4: In chapter 4 we introduce novel beamspace time reversal imaging 

techniques for breast cancer detection. The results show that beamspace time 

reversal imaging performance is superior to element space time reversal imaging and 

can be used for detection in dense breasts. 

Chapter 5: Here, we propose novel beamspace time reversal maximum 

likelihood (B-TR-ML) imaging technique for detection of multiple tumors in highly 

dense breast phantoms. We also derive Cramer Rao Lower Bound (CRLB) for 

beamspace time reversal imaging. The relationship between element space TR-ML 

and B-TR-ML is also derived. 

Chapter 6: We propose coherent time reversal imaging techniques in this 

chapter. We show that coherent focusing technique can be coupled with beamspace 

time reversal imaging to achieve even superior performance for detection in dense 
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breasts. We propose two different types of focusing matrices for time reversal 

imaging. 

Chapter 7: We draw the conclusions of our investigations in chapter 7. We 

also provide guidelines for future work and further developments for time reversal 

based breast imaging techniques. 

 

1.6 Contributions 

The thesis resulted in the following contributions. 

1. We have developed a novel skin artefact removal technique based on 

wavelet and entropy computation. The artefact removal technique can 

be used effectively irrespective of tumor location and breast size and 

shape as well as tissue composition. 

2. We have introduced a technique to estimate the computational 

background medium Green’s function. In breast cancer imaging the 

actual imaging medium is highly heterogeneous with unknown tissue 

distribution. Synthetic time reversal imaging requires known 

background medium. There was previously no such guideline for 

imaging in highly heterogeneous breasts where the actual background 

medium is neither fat nor glandular tissue. 

3. We have used anatomically realistic 3D breast phantoms containing 

high amounts of dense glandular tissues to study the performance of 

element space time reversal imaging techniques for dense breast 

imaging. Previously reported studies mainly used 2D and some 3D 

phantoms which mostly represent fatty breasts.  
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4. We have extended TR-RCB and TR-SCB for the first time for 

microwave breast imaging. 

5. We have derived beamspace processing matrix using a cylindrical array 

for 3D beamspace time reversal imaging. 

6. We have proposed novel beamspace time reversal imaging techniques 

namely beamspace DORT (B-DORT), beamspace TR-MUSIC (B-TR-

MUSIC), beamspace TR-RCB (B-TR-RCB) for 3D microwave breast 

imaging for the first time. These techniques show significant improved 

performance over element space time reversal imaging techniques with 

increasing breast density. 

7. We have proposed novel beamspace TR-ML (B-TR-ML) to overcome 

the limitations of conventional TR-ML for microwave breast imaging. 

We also derive for the first time Cramer Rao Lower Bound (CRLB) for 

beamspace time reversal imaging.  

8. We propose two novel focusing matrices for coherent time reversal 

imaging. Using coherent signal subspace method (CSSM) we formulate 

coherent signal subspace focused TRO (CS-TRO) and using wavefield 

modelling method (WMM) we formulate coherent wavefield focused 

TRO (CW-TRO).  

9. We also propose to couple coherent focusing with beamspace 

processing. Eventually we propose CS-B-DORT, CS-B-TR-MUSIC, 

CS-B-TR-ML, CS-B-TR-RCB, and CW-B-TR-RCB. CW-TRO is more 

suitable for TR-RCB and CS-TRO is more suitable for DORT, TR-

MUSIC and TR-ML imaging techniques. 



Chapter 1: Introduction 

19 
 

10.  We show for the first time that proposed CS-B-TR-ML method can 

detect multiple tumors in highly dense breasts where other techniques 

tend to fail. 

 

1.7 Publications Resulting From Thesis 
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2. M. D. Hossain, and A. S. Mohan, “Coherent Time Reversal Microwave 
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3. M. D. Hossain, and A. S. Mohan, “Coherent Beamspace Time Reversal 
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Chapter 2 : Computational Test Bed for Breast Cancer 

Detection Using Microwave Imaging 

2.1 Introduction 

Microwave imaging for breast cancer screening is carried out basically in two 

steps. In first step, low power microwave signals are transmitted into the breast of a 

patient and then the reflected backscattered fields from the breasts are recorded by 

the receiving antenna placed at different angular position around the breast. In the 

second step the received signals are processed using imaging algorithms to 

reconstruct the microwave image of the breast tissues either for localizing the 

presence of tissue malignancies or develop dielectric constant map of the breast 

tissues. The second step is fully computational whereas the first step requires real life 

microwave instrumentation and measurements and experimentation. In general 

testing of microwave imaging on a real human patient requires a long drawn and 

expensive process. The microwave instrumentation and experimentation can be quite 

complex and expensive. Hence, alternative methods have been developed for 

microwave imaging. 

It has been the practice of the research community working on microwave 

imaging for breast cancer detection to use phantoms both chemical and numerical. 

For experimentation, the chemical phantoms have been developed to mimic the 

dielectric properties of breast tissue and skin. It can be quite complex and expensive 

to build chemical phantom to accurately mimic anatomically realistic highly dense 

breasts.  Hence, before attempting any real experiment, use of accurate numerical 

phantoms can help to test imaging algorithm so that anatomically realistic highly 
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dense breast phantoms can be employed. A number of authors have used numerical 

phantoms [40, 43, 96, 98, 100, 105]. However, UWCEM group have developed a 

number of anatomically realistic numerical breast phantom representing realistic 

measurements to use with finite difference time domain (FDTD) technique [104]. 

These phantoms are close to reality and we employ the data provided in UWCEM 

phantom repository and use dispersive single pole Debye parameters for tissue 

dielectric properties to construct realistic numerical breast phantoms to test 

microwave imaging algorithms used in this thesis. For simulating the transmission, 

reception and signal propagation, we use FDTD technique for solving Maxwell’s 

equations in the breast models. The backscattered field from the numerical breast 

phantom obtained through FDTD computation is used for pre-processing prior to 

reconstruction of the image. The pre-processing mainly involves removal of artefacts 

from the backscattered signal so that we obtain the true backscattered estimation of 

target location and imaging. Artefacts arise in the form of unwanted reflection from 

skin, antennas and other metallic or dielectric structures placed in the close vicinity 

of microwave measurement system [144].  

A tumor is a malignant tissue embedded deep inside breast parenchyma. All 

the tissues including the tumor backscatters microwave energy when an incident 

microwave signal excites the breast tissues. Thus the received signal at the antennas 

contain backscattering from all the tissues, tumor as well as skin. The microwave 

energy backscattering strength is a function of the tissue dielectric constant. As a 

result, the backscattering from the skin is usually stronger due to its high dielectric 

constant. The antennas are placed close to the skin and the skin reflection arrives 

earlier at the antenna than the tumor. The tumor backscattering can be quite weak 

since the tumor is embedded inside the tissue background.  In order to successfully 
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detect and localize a tumor, it is thus very important to accurately and effectively 

remove all the artefacts from the received signal. In this chapter we propose a novel 

artefact removal technique that combines wavelet transform with entropy based 

techniques. Background medium dielectric constant is required for computational 

time reversal microwave imaging to compute the Green’s function for the back 

propagation mode. A wavelet based time of arrival (TOA) estimation technique has 

been developed to obtain an estimation of effective dielectric constant of an 

equivalent homogeneous medium of the breast as required in synthetic time reversal 

imaging process.  

The rest of the chapter is organized as follows. We introduce female breast 

anatomy and numerical breast phantom modelling in section 2.2 and section 2.3 

respectively. We explain FDTD simulation with numerical breast phantoms in 

section 2.4. We then discuss in detail the proposed skin artefact removal technique in 

section 2.5 followed by equivalent homogeneous medium dielectric constant 

estimation in section 2.6. At last we also provide a brief discussion in section 2.7. 

 

2.2 Brief Description of Female Breast Anatomy 

Since this thesis is dealing with microwave imaging for breast cancer 

detection, we will first describe the breast anatomy. Cross section of a female breast 

anatomy is illustrated in Figure 2-1 [145]. In anatomical terms breast tissues can be 

classified as parenchyma and stroma. Parenchyma refers to the tissues in milk duct 

as well as milk producing glands. Apart from parenchyma fatty tissue is also present 

in breasts. Stroma refers to the fibro-connective and fatty breast tissues. The milk 

producing part of breast contains up to 20 lobes. Each lobe contains smaller 
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structures called lobules where milk is produced. The milk reaches the nipple 

through a network of tiny tubes called ducts. The spaces around the lobules and 

ducts are filled with fat, ligaments and fibro-connective tissue. Usually the breast 

size is proportional to the amount of fatty tissue present in the breast. The fibro-

connective tissues connect and support various breast tissues. The fibro-glandular 

tissues constitute the breast parenchyma. The skin thickness over breast tissues 

usually varies between 1-2mm. There is also a pectoral muscle layer between the 

chest wall and breast.  

Shape, size and tissue composition of breast changes with age. Percentage of 

women with glandular or dense parenchymal feature decreases as body weight, and 

parity increases. On the other hand, the percentage with glandular of dense features 

increased as height increased, and the percentage decreased with menopause [146]. 

As women age glandular tissues degenerate into fatty tissues. 

 

 

Figure 2-1. Female breast anatomy. 
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2.2.1 Breast Cancer 

Cancer is characterized by abnormal cell growth often in the form of tumor 

that invades surrounding healthy tissue and body parts [147]. Cancer may develop 

from any type of tissue cell. However, breast cancer often begins in the lobular 

region among the lobule or duct structures. Dense breast parenchyma is also 

regarded as a breast cancer risk factor [146]. Cancer cells sometimes do not rapidly 

spread to surrounding tissues and termed as benign tumor. Benign tumors are usually 

not life threatening. But malignant tumor growth affects surrounding tissue and 

organ. Breast cancer is considered at its early stage if the tumor growth is contained 

within the breast area and the lymph nodes are unaffected. Without early diagnosis 

and treatment fatality becomes inevitable. Malignant tumors are usually random 

spiculated shaped while benign tumors are more regular smooth shaped [148]. 

Carcinoma in situ varies in size and type. Cancer stage is usually determined from 

the tumor size, location and growth. At the early stage tumor size can be 20mm or 

smaller.  

 

2.2.2 Breast Categorization Based on Density 

Breast density is an important factor for all the imaging modalities for breast 

cancer screening. Breast tissue composition determines the breast density. American 

College of Radiology has developed Breast Imaging Reporting and Data System 

(BIRADS) which is widely used in mammography, ultrasound imaging and MRI. 

BIRADS classify breasts into four groups depending on density. 

 Class 1 (C1)- The breast is almost entirely fatty (glandular tissue 

content<25%) 
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 Class 2 (C2)- The breast has scattered density (25%<glandular tissue 

content<50%) 

 Class 3 (C3)- The breast is heterogeneously dense (50%<glandular tissue 

content<75%) 

 Class 4 (C4)- The breast is highly dense (glandular tissue content>75%) 

Detection of cancer in breasts with higher percentage of glandular tissue 

content is a challenging issue for mammography, ultrasound as well as for 

microwave imaging. Dense glandular tissues can possibly mask tumor response and 

result in negative alarm. In some cases, it may result in false positives. High breast 

density also has been identified as a risk factor.  

 

2.2.3 Breast Tissue Dielectric Properties 

Breast and other biological tissues exhibit dispersive dielectric properties. It is 

very important to use accurate Debye model in numerical simulations to mimic 

actual microwave and breast tissue interactions. Debye tissue model represents the 

dispersive nature of different tissue. Single pole as well as double pole Cole-Cole 

parameters are reported in the literature that accurately models the dispersive 

characteristics of different breast tissues for frequencies from 0.5GHz to 20GHz [86, 

87]. Computation is simpler with single pole Cole-Cole parameters compared with 

double pole Cole-Cole parameters. Single pole Debye model agrees well with single 

pole Cole-Cole tissue model over the frequency band of 3.1-10.6 GHz [86]. For 

dense breasts penetration is an important issue and hence accurate tissue modelling is 

necessary for frequencies lower than 3.1GHz. Hence, we consider single pole Cole-



Chapter 2: Computational Test Bed for Breast Cancer Detection Using Microwave Imaging  

28 
 

Cole model to compute the dielectric properties of breast tissues [86, 87] as shown 

below 

 1
0

( )
1 t

s
c

jj
 (2.1) 

Here, σs, α, t, ∆ε are the fitting parameters, ω is the angular frequency, and ε0 is the 

free space permittivity. The complex dielectric constant ( )c can be expressed as a 

complex number. 

 ( ) ( ) ( )c c cj  (2.2) 

 The effective conductivity can be computed as 0( ) ( )c . The parameters 

for Single pole Cole-Cole model used in this thesis are provided in Table 2-1. 

The single pole Cole-Cole parameters are plotted for frequency up to 7GHz in 

Figure 2-2. It can be clearly observed that high dielectric property contrast exists 

between malignant tissue and fatty adipose tissues. But the contrast between 

malignant tissue and glandular breast tissues can be as low as 10% [86]. This results 

in very low dielectric contrast between tumor and healthy breast tissues for highly 

dense (C4) breasts as the dense fibroglandular and fibroconnective tissue content is 

more than 75%. Moreover, tumors often start growing in the region of dense 

glandular tissue structures (lobes, lobules, ducts). We have used single pole Cole-

Cole parameters since these parameters are suitable for 500MHz-20GHz frequency 

range. This frequency range fully covers our microwave frequency range of interest. 

We have used the 75th percentile properties to model for malignant tissue. The 

significance of 75th percentile is that the model fits 75% of the cancer samples used 

in measurements. 
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It can be observed from Figure 2-2, as frequency increases dielectric constants 

of malignant as well as muscle and glandular tissues slowly decrease. However, the 

conductivities of these tissues increase rapidly above 3 GHz, showing that losses will 

also increase with increasing frequency for microwave propagation through the 

breast medium. These curves also play important role in the FDTD simulation. The 

dielectric properties of fatty adipose breast tissues change only by a small amount 

over the microwave frequency range under consideration. Another important factor 

is that the dielectric constant of skin tissue is relatively high compared to fatty tissue 

groups. It can be observed from the breast anatomy shown in Figure 2-1, that there is 

a fatty tissue layer right beneath the skin layer. The higher dielectric constant of skin 

tissue contributes to significant reflection of the incident microwave field causing 

early time artefacts in the imaging process. 

 

Table 2-1 Single Pole Cole-Cole parameters of breast tissues 

Tissue Type ε∞ Δε t (ps) α σs(S/m) 

Adipose-low 2.908 1.200 16.88 0.069 0.020 

Adipose-Medium 3.140 1.708 14.65 0.061 0.036 

Adipose-High 4.031 3.654 14.12 0.055 0.083 

Glandular-Low 9.941 26.600 10.90 0.003 0.462 

Glandular-Medium 7.821 41.480 10.66 0.047 0.713 

Glandular-High 6.151 48.260 10.26 0.049 0.809 

Transitional 6.987 15.127 12.51 0.025 0.272 

Skin 15.30 24.800 15.00 0.003 0.740 

Muscle 21.66 33.24 13.00 0.049 0.886 

Tumor 9.058 51.310 10.84 0.022 0.899 
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(a) 

 

(b) 

Figure 2-2. Single pole Cole-Cole dielectric properties of breast tissues (a) 
dielectric constant, and (b) conductivity. 
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2.3 Numerical Breast Phantoms 

To test microwave imaging algorithms, we have employed anatomically 

realistic numerical breast phantoms obtained from UWCEM breast phantom 

repository [97]. The voxel models in these phantoms have been derived from 3D 

MRI images of female breasts with different levels of density and heterogeneity. The 

resolution of the voxel models is 0.5mm×0.5mm×0.5mm. These phantoms also 

represent anatomically realistic breast heterogeneity as well as dielectric properties. 

In order to accurately model variability of breast dielectric properties fatty and 

glandular tissues are divided into three groups- low, medium and high. There are 

also transitional tissues with intermediate dielectric properties between fatty and 

glandular tissues. There is a thin 1.5mm skin layer along with a 5mm thick muscle 

chest wall. In the voxel model each tissue type has a different media number. To 

reconstruct the numerical breast phantom the voxel data is arranged into a 3D matrix 

where each element represent a particular tissue type at a particular location 

corresponding the matrix element. 

 

2.3.1 Breast Phantom Dielectric Map  

The dielectric map across cross sections of a highly dense (C4) breast is 

illustrated in Figure 2-3 and the conductivity map is shown in Figure 2-4 at a 

frequency of 2GHz. Large amounts of dense glandular tissue content is clearly 

visible for C4 breast phantom. Similarly the dielectric and conductivity maps of 

heterogeneously dense (C3) breast phantom are shown in Figure 2-5 and Figure 2-6 

respectively at a frequency of 2GHz. It can be noticed that the C3 phantom has 

slightly less glandular tissue content compared to C4 phantom. These large amounts 



Chapter 2: Computational Test Bed for Breast Cancer Detection Using Microwave Imaging  

32 
 

of dense fibro-glandular and fibro-connective tissues make the detection and 

localization a tumor in dense breasts very challenging. 

 
 (a) 

 
(b) 

Figure 2-3. Dielectric map of highly dense (C4) breast phantom (a) sagittal and 

axial slices, and (b) coronal slices.  
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(a) 

 

 (b) 

Figure 2-4. Conductivity map (S/m) of highly dense (C4) breast phantom (a) 

sagittal and axial slices, and (b) coronal slices. 
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(a) 

 

 (b) 

Figure 2-5. Dielectric map of heterogeneously dense (C3) breast phantom (a) 

sagittal and axial slices, and (b) coronal slices. 
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(a) 

 

 (b) 

Figure 2-6. Conductivity (S/m) map of heterogeneously dense (C3) breast 

phantom (a) sagittal and axial slices, and (b) coronal slices. 
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2.4 Numerical Experiments on Breast Phantoms Using FDTD 

FDTD [149] is a widely used numerical technique for solving electromagnetic 

problems involving complex dielectric structures where analytical solution is 

difficult to obtain. Breast is a heterogeneous mass of different types of tissue. The 

tissue heterogeneity and its structure are completely arbitrary. For such cases FDTD 

can accurately solve for fields and currents useful for microwave imaging. FDTD 

method is based on finite difference approximation of spatial and temporal 

derivatives in Maxwell’s equations. The computation domain is first discretised into 

fine meshes where the solver progresses in time and space. 

 

 

Figure 2-7. Schematic diagram of a patient lying in supine position for microwave 

imaging of breast. 

 

In this thesis, we use FDTD to numerically generate the backscattering from 

breast tissues forming a multistatic matrix which is required for time reversal 

microwave imaging. For this, the 3D breast phantom is illuminated with a narrow 

pulse using a cylindrical array of ultrawideband (UWB) antennas. We employ a 

conformal array that can conform to the breast shape approximately so as to 

illuminate the breast tissues as well as to record the backscattered field from the 

tissues embedded inside the breast. A cylindrical array can be quite suitable for 
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practical application as the patients lying in supine position usually made to hang 

their breast inside a holder that is enclosing the antenna array as schematically 

shown in Figure 2-7. 

We consider that the cylindrical array consists of 5 identical uniform circular 

arrays (UCA) vertically displaced from each other along z-axis. Each UCA has 23 

antenna elements. To reduce the computational load in FDTD simulation, we assume 

that all the array elements to be ideal small dipoles placed along x, y and z axes. We 

consider only the co-polarized components of the scattered field in the imaging 

operation. In order to reduce skin reflection the breast phantom and the antenna array 

is immersed into a coupling liquid for matching. The dielectric constant of the liquid 

is set to be, 2.5r  and its conductivity is set as, 0.04 S/m [130]. 

The simulation set-up with phantoms and cylindrical array is illustrated in 

Figure 2-8. The phantom also includes outer skin layer which is visible in the same 

figure. The skin out layer is visible. The blue “+”-markers indicate the locations of 

antenna elements. Each of the array elements is excited sequentially with an input so 

that the antenna radiates into the breast. The electromagnetic fields backscattered by 

breast tissues and the skin are recorded at all the antenna elements thus forming a 

multistatic matrix of backscattered fields. The scattered field is obtained by 

subtracting the incident field from the total field. The FDTD grid size is set to be 

0.5mm in all directions. A spiculated tumor model as shown in Figure 2-8(c) is also 

created using voxel model and embedded into the breast tissue medium. The 

spiculated tumor size is taken as the maximum distance between any two spicules.  
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(a) 

 
 (b) 

 
(c) 

Figure 2-8. FDTD simulation set-up for (a) C3 phantom, (b) C4 phantom with 
cylindrical antenna array, and (c) a spiculated tumor model. 
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(a) 

 
(b) 

Figure 2-9. Excitation signal (a) time domain, and (b) normalized amplitude 
spectrum. 

 

The input excitation pulse is a differentiated Gaussian pulse that has a 3dB 

bandwidth overing 1.5GHz−5GHz with a centre frequency 3GHz. The excitation 

pulse and its normalized amplitude spectrum are shown in Figure 2-9. The choice of 

excitation pulse is an important issue for microwave imaging applications. The depth 

of field penetration is higher at lower frequencies but obtainable resolution is low. 

On the other hand at higher frequencies the depth of penetration is poor although 



Chapter 2: Computational Test Bed for Breast Cancer Detection Using Microwave Imaging  

40 
 

once can get higher resolution. The excitation pulse is chosen in such a way that it 

provides sufficient depth of penetration inside breast tissues while achieving 

reasonable resolution. Resolution is an important issue for the detection of two 

closely spaced tumors and small sized tumors. However, tumors embedded deep 

inside breast tissues cannot be detected the excitation microwave pulse do not 

sufficiently penetrate into the breast tissues. Differentiated Gaussian pulse provides a 

stronger backscattered response and is suitable for imaging in cluttered medium. 

 

 

Figure 2-10. Schematic definition of 2D slices of a 3D body. 

 

2.4.1 2D Breast Phantom 

In the numerical simulations, the simplest phantom used is a two dimensional 

phantom. A 2D breast phantom can be thought of as a sagittal or coronal slice of an 

actual 3D numerical breast phantom. In the literature 2D breast phantoms as sagittal 
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and coronal slices of 3D breasts have been used by many researchers [40, 44, 95, 

100]. The 2D slicing is schematically illustrated in Figure 2-10.  

 

 
(a) 

 
 (b) 

Figure 2-11. 2D breast phantoms. (a) Sagittal slice of a C3 breast phantom, and (b) 
coronal slice of a C2 breast phantom. 

 

FDTD computation for 2D breast phantom is different from 3D breast 

phantom. In the 2D case, we consider TM-z polarization. Hence only z-component of 
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the electric field exists. Also in the 2D case the antenna elements are infinite line 

sources lying along z-axis. To truncate FDTD computational domain during 

numerical experiments, PML absorbing boundary condition is used 

We also use coupling liquid to immerse antenna elements in 2D case with the 

same dielectric properties as in 3D case in order to minimize skin reflections. The 

FDTD grid size is chosen to be 0.5mm uniformly along x, y axes and terminated 

using perfectly matched layer (PML) absorbing boundary condition (ABC). A 2D 

sagittal slice of a C3 breast phantom and coronal slice of a C2 breast phantom are 

illustrated in Figure 2-11.  

 

2.4.2 Description of Tumor Location 

The Surveillance, Epidemiology, and End Results (SEER) Program of the 

National Cancer Institute, USA has set up guidelines for breast coding rules. The 

tumor location is denoted using o’clock position as per SEER guidelines [150]. The 

description of tumor location using o’clock positions and depth from nipple is 

illustrated in Figure 2-12 where a tumor is located at 2 o’clock position in an enface 

view. 

In this thesis we consider C2, C3 and C4 breast phantoms in which tumors are 

embedded at various locations. We have simulated tumors of different sizes and 

positions in different breast phantoms as summarized in Table 2-2. 
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Figure 2-12. Schematics for describing tumor position in 3D breast phantom. 

 

Table 2-2. Tumor locations in different 3D breast phantoms.  

Phantom type Number of tumor Tumor size Tumor location 

C2 1 8mm 3:30 o’clock, 8cm below nipple 

C3 1 10mm 2:30 o’clock, 7.5cm below nipple 

C4 1 10mm 4 o’clock, 4.5 cm below nipple 

C4 2 10mm 
2 o’clock, 4.5 cm below nipple 

4 o’clock, 4.5 cm below nipple 

C4 2 7mm 
1 o’clock, 2 cm below nipple 

10:30 o’clock, 6.5 cm below nipple 

C4 3 10mm 

6 o’clock, 2 cm below nipple 

10o’clock, 4.5 cm below nipple 

3 o’clock, 6.5 cm below nipple 

C4 1 5mm 1:30 o’clock 3.5 cm below nipple 
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2.5 Skin Artefact Removal 

The input microwave excitation pulse radiated by UWB antennas towards the 

breast take some finite time to travel into the breast tissues. It also takes another 

finite amount of time to get reflected back towards antennas. The skin is the closest 

to the antenna array and the incident pulse reaches skin earlier and the reflection 

from skin also arises earlier than other breast tissues. The backscattered response 

from the breast can be divided into two parts- early time and late time. As explained 

earlier, the early time response is dominated by mainly unwanted reflection of the 

incident microwave pulse from the skin layer. The early time response may also 

contain unwanted reflections from metallic and dielectric structures in addition to 

skin reflection and noise. The late time response contains backscattering from 

different breast tissues as well as the tumor that may be present inside the breast. A 

schematic backscattered field response from a breast phantom is illustrated in Figure 

2-13. 

 

 
Figure 2-13. Schematics of breast phantom backscattered field response. 
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In this thesis, we are considering ideal antenna elements in a noise free 

environment in order to reduce computational load. Hence, the early time 

backscattered received signal mainly contains reflection from skin. Skin has much 

higher dielectric constant compared to the fatty tissue layer underneath the skin 

resulting in strong reflections from the skin. The late time backscattered field arising 

from internal breast tissues is thus quite weak compared to the skin reflection. If a 

malignant tissue is embedded deep inside the breast, its backscattering response will 

also be part of the late time response and is also usually very weak. Thus, the 

received signals at the antennas are mainly dominated by skin reflections. To extract 

the late time response from the breast tissues, the early time skin reflection must be 

carefully removed prior to imaging. To remove those skin artefacts basically two 

approaches have been suggested in the literature. Firstly the breast and antenna array 

need to be immersed into a matching/coupling liquid and then a skin artefact 

removal technique needs to be applied to the received backscattered response from 

the breast. The function of the coupling liquid is to reduce mismatch between 

antenna and skin layer so that antenna can efficiently transfer microwave energy into 

the breast medium [83, 93]. Use of coupling liquid reduces the skin reflection to 

some extent but not completely. Hence, we need separate techniques for skin artefact 

removal which are discussed in the following subsection. 

 

2.5.1 Review of Techniques for Breast Skin Artefact Removal 

Artefact refers to any undesired backscattered response received by the 

antenna array. In our case the early time response due to the skin reflection, is the 
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major artefact that must be removed. Breast Skin artefact removal algorithms that 

have been reported in the literature mainly depend on the type of imaging technique 

used. Also, the accuracy of the artefact removal algorithm often depends on the 

breast model employed. A simple averaging technique was used in [95] where it was 

assumed that the received backscattering from skin is almost identical and uniform at 

all antenna elements of the receiver array. Hence in [95] the average received signal 

was considered as the artefact and subtracted from the received signals at each array 

element to eliminate the skin reflection. However, such assumption can be 

unrealistic for a realistic breast phantom since the tissue heterogeneity and skin 

thickness is not uniform across the breast contour. Hence, the received skin 

reflection at different antenna elements can be different. A slightly different 

approach was used in [144] that required a second set of measurement after 

physically rotating the antenna array relative to the breast. This type of technique 

works well if the breast shape is symmetrical. A real breast is usually not a 

symmetrical structure like a cylinder or sphere and cannot maintain equidistant 

separation between its surface i.e. skin and antenna elements. However, the 

advantage of averaging technique proposed in [95] is that it is the simplest and very 

easy to implement. 

An improved skin reflection technique based on space-time Wiener filtering 

was proposed in [96]. This technique requires prior information about the time 

interval corresponding to the occurrence of skin reflection. Further, it requires 

singular value decomposition (SVD) which can be computationally intensive. A 

similar approach was used in [100] that assumed similar levels of skin reflection 

received at equidistant antenna pairs. This assumption is valid for symmetrical 

breasts or if the all the antenna elements are positioned equidistant from the breast. 
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When 2D phantoms are used, it is easier to position all the array elements at equal 

distance from the breast surface. But in a realistic 3D phantom, it is difficult to 

design a conformal array to maintain equidistance from skin uniformly across all the 

array elements due to unsymmetrical shape of realistic breasts. Further, this approach 

can possibly distort the tumor response when all the raw received responses at 

different antennas are processed. 

An entropy based skin artefact removal technique was proposed in [151]. This 

technique computes time window based on the received signal entropy. Entropy 

beyond a certain threshold level is regarded as the signal due to skin reflection and 

eliminated. Although it is efficient, it is not reliable if tumor is located right beneath 

the skin layer. This algorithm also does not take into consideration varying distances 

between skin and array elements. For a realistic breast imaging scenario, skin 

reflection at some array elements may overlap with tumor response at other array 

elements in time. Hence, an average computed entropy window may partly remove 

tumor response if the tumor is located close to the skin. 

 

2.5.2 Skin Artefact Removal Considerations 

A realistic breast is not perfectly symmetrical and contains various levels 

tissue of heterogeneity. When such a breast is illuminated with a microwave pulse, 

using a multistatic illumination, as shown below, it affects the backscattering 

response from skin, which is the artefact to be removed. Let us consider yz and zx-

views of a C4 phantom as shown in Figure 2-14. It can be clearly observed that 

separation from breast skin surface and antenna elements vary widely. Hence, skin 

artefact occurs at different time instants at different array elements. 
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The importance of time of arrival (TOA) of skin reflection can be readily 

understood by examining Figure 2-15 which shows the coronal slice of a breast 

phantom containing tumor and the antenna array. Let us consider that, antenna 

element r1 of the array is excited. Since skin is closer, the reflection from skin first 

arrives at r1 since the incident microwave pulse need to travel only the shortest 

distance to interact with skin to get reflected back towards the receiver antenna array.  

(a)  (b) 
Figure 2-14. C4 breast phantom (a) sagittal (yz) view, and (b) axial (zx) view. 

 
Figure 2-15. Coronal slice view of a breast phantom. 
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Figure 2-16. Hypothetical entropy windows for a breast phantom. 

 

Skin reflection arrives at r2 and r8 almost at the same time since the emitted 

pulse from r1 need to travel equidistant path to reach r2 and r8 before it reaches 

element r7. Other antenna elements will receive little or no skin reflection due to 

their large separation distance from the antenna at r1. Tumor response arrives at 

antennas r1, r2, and r8 earlier than the skin artefact arrival at r7 because in this case 

the tumor is embedded underneath the skin and close to r1. As a result the tumor 

response travels a shorter path to reach r1, r2, and r8 compared to the path of the skin 

response to reach r7. The incident field, backscattered skin response and tumor 

response are indicated using black, blue and red arrows respectively in Figure 2-15. 

As a result simplistic averaging techniques as well as entropy based techniques that 

do not consider the TOA of skin artefact will eliminate and distort tumor response 

along with skin reflection which can cause inaccuracies in imaging. For this 
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scenario, the entropy windows can be illustrated as in Figure 2-16. This is because in 

realistic breast cancer imaging using microwave measurement set-up, breast surface 

(skin) cannot be made equidistant from all the array elements. Hence a practical skin 

artefact removal technique must take into consideration the TOA of skin reflection 

and examine the backscattered signals carefully so that the unwanted artefact is 

removed only when it occurs.  

 

2.5.3 Proposed Hybrid Technique for Skin Artefact Removal 

In order to overcome the limitations of existing averaging, filtering and simple 

entropy windowing techniques for skin artefact removal, we have proposed a novel 

wavelet-entropy based windowing technique. It is important to ensure that when skin 

artefact and tumor response overlaps in time, tumor response is left undistorted while 

removing skin reflection. However, only TOA information is not sufficient to 

remove skin artefact since it does not indicate duration of occurrence of the artefact 

[152]. We propose to use continuous wavelet transform (CWT) to estimate the 

artefact TOA of skin reflection. Then we group the backscattered field responses 

based on TOA of skin reflection and then compute entropy to remove skin reflection 

in each group. CWT is used to measure the similarity between a signal and the 

analysing signal. The analysing function is called the wavelet. 

 

2.5.3.1 Estimation of Time of Arrival of Skin Reflection 

CWT compares a signal with a time shifted and stretched (or compressed) 

versions of wavelet [153]. CWT is distinguished from the discrete wavelet transform 

(DWT) in terms of the time shift parameter. For CWT the time shift is carried out 
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continuously over a range and a smooth CWT spectrum is observed. Wavelets are 

powerful tools in detecting discontinuity, singularity and abrupt transitions in signal. 

Hence wavelet based techniques are very suitable for detecting TOA of 

backscattered skin response. Since breast tissues are dispersive CWT can yield better 

estimation of TOA than matched filter approach. This is because matched filter 

approach requires prior information about the exact pulse shape. In case of UWB 

imaging in dispersive medium CWT is thus more suitable. When a UWB pulse is 

emitted into a dispersive medium, the pulse width temporally broadens and 

amplitude gets attenuated with increasing travel distance. Such breast tissue medium 

is dispersive and the incident microwave pulse gets stretched. CWT uses time 

scaling as well as time shifting to compute wavelet coefficients. Thus time scaling 

accounts for dispersion while, time shifting accounts for time required for the pulse 

to propagate in a dispersive medium. CWT can be complex or real valued depending 

on whether the wavelet signal is complex or real valued. In either case CWT is a 2D 

function of scales and time. 

In order to find TOA of skin artefact we apply, CWT to the excitation signal as 

well as the backscattered response. We have used differentiated Gaussian pulse as 

the excitation. So, we choose complex Gaussian wavelet function defined as 

 
2

( ) ( )
n

jt t
n n n

dt C e e
dt

 (2.3) 

where, Cn is a normalization constant chosen as 2 1n . CWT is defined for scaling 

parameter α and position parameter τ as 

 * *1( , ) ( ) ( ) ( ) ( )n n
tW a s s t dt  (2.4) 
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Hence, ( , )sW  is obtained as 2D function of various scaling and time delay 

parameters. If the analysed signal, s(t) resembles the wavelet ( )n t  which is time 

scaled by α and time shifted by τ, the wavelet function ( , )sW a  reaches its 

maximum. For these parameter settings, then we can write 

 ( ) ( )m
n

m

ts t  (2.5) 

where, the parameters are selected as 

 
,

( , ) max{| ( , ) |}m m a
W  (2.6) 

 We avoid directly estimating TOA of skin reflection from total backscattered 

response since, application of wavelet to backscattered responses does not take into 

consideration the time instant when the original excitation pulse was applied. To 

generalize the estimation TOA of skin reflection, we propose to apply CWT to both 

excitation and the backscattered response. Then the cross spectrum of CWT of both 

excitation and backscattered response is computed. The wavelet cross spectrum can 

be defined as 

 *( , ) ( , ) ( , )crs exc bsW a W a W a  (2.7) 

where, ( , )excW a  and ( , )bsW a are the CWTs of the excitation pulse and backscattered 

response respectively. The cross spectrum can be complex or real valued depending 

on whether complex or real valued wavelet is used. The cross spectrum ( , )crsW a  is 

maximum when time shifting aligns the maxima of ( , )excW a  and ( , )bsW a  yielding 

the TOA of skin artefact. 

 max ( , )skin crsTOA W a  (2.8) 
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In a multistatic illumination scenario, the skin artefact TOA varies widely. 

Hence, at first the TOA of skin reflection is estimated from the backscattered 

response. Once TOA of skin reflection is estimated, the signals are grouped 

depending on TOA. We then compute entropy for each group to remove the skin 

reflection from the backscattered fields. 

 

2.5.3.2 Entropy Window Computation 

Entropy is a measure of uncertainty of a random event and information 

content. Let us consider a discrete random variable X whose samples are denoted by 

xi, where i=1,2,…..N. The entropy of X is given by 

 
1 1

( ) ( ) ( ) ( ) log ( )
N N

i i i i
i i

H X P x I x P x P x  (2.9) 

where, I(xi) is self-information and P(xi) is the probability of the event xi. H(X) 

becomes maximum when all the events are equi-probable i.e. xi=1/N, i=1,2,…,N. 

This fundamental concept is used in detecting and removing the skin reflections. 

Skin reflections received at different receiving antenna locations are greatly similar 

although they may vary in amplitude and time delays. When the incident microwave 

excitation pulse propagates into breast, it first encounters the breast skin and due to 

impedance mismatch, major part of the incident power is reflected back by the skin 

towards the receiver. The rest of the incident signal travels into the highly 

heterogeneous tissue masses inside the breast and get backscattered. Backscattered 

responses that have with similar TOAs of skin reflection can be interpreted as equi-

probable events. Hence, estimated entropy of groups of received signals with similar 

TOA remains almost at maximum level for the duration of skin reflection. 
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We first normalize a group of M received signals as shown below 

 
2

2

1

( )
( )

( )

m
m M

m
m

y t
p t

y t
 (2.10) 

The normalized energy satisfies the conditions ( ) 0mp t , and 
1

( ) 1M
mm

p t . 

Hence, it can be interpreted as the energy density in the antenna domain[151].We 

use Rényi entropy that has been employed in time frequency plane [154]. Rényi  

entropy generalizes Shanon’s entropy. Rényi entropy possesses useful properties for 

time frequency analysis such as accounting and cross-component and transformation 

invariances [155]. Rényi entropy of order α at time instant t can be defined as 

 
1

1( ) log [ ( )]
1

M

m
m

H t p t  (2.11) 

where, α is real and positive. Rényi entropy reduces to Shanon entropy as shown in 

(2.9) when α→1.  

Skin reflections occur in early time and are similar for similar TOA. This 

results in large entropy in early time response and low entropy in late time response. 

We use entropy as a measure of similarity in early time response in a group of 

signals. We further smooth the computed entropy over time period T as 

 1( ) ( )
t T

s

t

H t H t dt
T

 (2.12) 

After the smoothing operation, we consider ( )sH te  as the theoretical dimension 

for [y1(t),  y2(t), …, yM(t)] which varies between 1 to M. We then normalize ( )sH te . 

Since, we remove the skin reflection in early time, the late time due to breast tissues 
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and tumor response remains unaffected. Finally we design a time window based on 

entropy of the backscattered response as  

 
( )0,( )

1,

sH t
the HW t

otherwise
 (2.13) 

The time-entropy window completely attenuates the backscattered response when 

the entropy is above a threshold level assuming it is the skin reflection. 

 

2.5.3.3 Skin Reflection Removal Using Breast Phantoms 

We use the proposed technique to effectively remove unwanted skin reflection 

from the backscattered field received at the antennas. We consider different breast 

phantoms to demonstrate the efficacy of the proposed hybrid skin removal technique. 

Let us first consider the case of a C2 breast phantom. The received scattered fields 

are first grouped based on TOA. We then compute the entropy as shown in Figure 

2-17. It can be clearly observed that when the transmit-receive antenna pairs are 

closely spaced, the early time received signal mainly contains skin reflection as the 

signals reflected from skin need to travel a short distance. On the other hand, when 

the transmit-receive antenna pairs are not closely spaced, skin reflection is received 

at a later time due to longer propagation path. Now we consider the cases of C3 and 

C4 breast phantoms as shown in Figure 2-18 and Figure 2-19 respectively. In all the 

cases, we observe distinct time delay between early and late entropy windows 

corresponding to closely spaced and distant spaced transmit-receive antenna pairs. 

One can observe some interesting features as evident from entropy windows 

for different breast phantoms. It can be observed that the entropy window width is 

inversely proportional to the cross sectional area of the breast. The dimensions of the 
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C2, C3 and C4 breast phantoms are 79×88×76.75 mm3, 67.25×83×50.5 mm3 and 

53.75×82×53 mm3 respectively. The C2 breast phantom has the largest cross-

sectional area and the C4 breast has the smallest cross-sectional area among the 

breast phantoms considered here.  

 

 
(a) 

 
(b) 

Figure 2-17. Computed entropy of received scattered field of a C2 breast for  

(a) closely spaced, and (b) farther spaced transmit-receive antenna pair. 
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(a) 

 

 

(b) 

Figure 2-18. Computed entropy of received scattered field of a C3 breast for  

(a) closely spaced, and (b) farther spaced transmit-receive antenna pair. 
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(a) 

 

(b) 

Figure 2-19 Computed entropy of received scattered field of a C4 breast for      

(a) closely spaced, and (b) farther spaced transmit-receive antenna pair 

 

It can be observed that the C2 breast phantom yields entropy windows about 

1ns wide while that of the C4 breast phantom is about 0.5 ns wide at an entropy level 

of 0.8. The width of entropy windows for C3 breast phantom is fall in between the 
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widths of entropy windows of C2 and C4 breast phantoms.It is evident that entropy 

windows reveal important information regarding the microwave pulse propagation 

between the transmit-receive antenna pair. The entropy windows demonstrate 

precisely the time when skin reflection occurs as it is received first within the early 

time response. Hence we can choose windows according to (2.13) in order to remove 

the skin artefact.  

 

Table 2-3. PSLR (dB) comparison of skin artefact removal algorithm  

Breast Phantom Ideal Skin Artefact 
Removal 

Proposed Skin Artefact 
Removal 

C2 6.96 6.36 

C3 3.09 2.77 

C4 1.58 1.45 

 

In order to demonstrate the accuracy of the proposed technique, we compare it 

with ideal skin removal method. For this, we compare the peak to side lobe ratio 

(PSLR) of the images obtained using decomposition of the time reversal operator 

(DORT) method for the proposed hybrid technique with ideal skin removal 

technique. In ideal skin removal technique, we consider a fatty homogeneous breast 

covered by skin and subtract this reference response template from the computed 

response from the actual breast phantom to obtain skin artefact free backscattered 

field response. Details of DORT and PSLR are provided in chapter 3 and chapter 7 

of this thesis respectively. The comparison using different breast phantoms was 

carried out with a 10mm sized tumor as provided in Table 2-3. It can be observed 

that ideal skin removal technique has marginally higher PSLR compared than that 
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obtained using proposed hybrid skin removal technique. Interestingly the differences 

in PSLR diminish with increasing breast heterogeneity as glandular tissues have 

higher dielectric constant than skin tissue. Ideal skin removal cannot be used in 

practical applications as the breast heterogeneity is unknown. The proposed skin 

artefact removal technique is suitable for practical applications with unknown breast 

shape and heterogeneity. Further, it provides PSLR similar to ideal skin removal 

technique for microwave imaging.  

 

2.6 Dielectric Constant Estimation of Equivalent Effective Breast 

Medium 

When using time reversal imaging in heterogeneous breast medium, the 

backpropagation step is carried out in an equivalent and homogeneous medium to 

compute the image. Microwave propagation inside a medium is inversely 

proportional to the square root of the dielectric constant of the medium. When 

antenna array is used for transmitting and receiving microwave signals for imaging, 

array elements of the antenna array which are nearly 1800 apart in azimuth angle 

without falling into line of sight (LOS) of each other will receive signal transmitted 

through the breast medium when a transmitter antenna element that is located on the 

other side of the breast is excited. To compute the dielectric constant of the average 

equivalent homogeneous medium for imaging, we first compute the TOA of signals 

transmitted through the breast and reaches the receiver. 

 2 2
0 0

1
avgr

Tx Rx TOAd t
 (14) 

where, dTx-Rx is the distance between transmitter and receiver, tTOA is the TOA, ε0 and 
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μ0 denote the free space permittivity and permeability respectively. The process is 

illustrated in Figure 2-20 where a microwave pulse is emitted from the antenna at r8 

as indicated by the black arrow.  

The incident microwave pulse penetrates different breast tissues as it travels 

through the breast and reaches antennas located at r3, r4, and r5 as indicated by the 

green arrows. By estimating TOA at r4, we can estimate the average dielectric 

constant between the antenna pair located at r4 and r8. This process can be repeated 

for different antenna pairs to obtain an average dielectric constant of the equivalent 

medium representing the breast.  

 

 

Figure 2-20. Schematics for dielectric constant estimation between an antenna pair. 

 

We have utilized the middle 3 circular rings of the cylindrical array to estimate 

average dielectric constant for time reversal imaging as shown in Figure 2-8. When the 

computational medium Green’s function matches the actual (unknown) physical 
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medium Green’s function a strong focus is obtained by time reversal imaging. We 

further fine tune empirically the effective average dielectric constant to obtain much 

focused mage for robust imaging performance. For this, we vary the estimated 

dielectric constant in steps within the range ±10% for different time reversal imaging 

techniques. The value of the dielectric constant that produces highest intensity at the 

focal point will be chosen as the dielectric constant of the homogeneous medium. 

The steps are summarized below 

1) Estimate TOA of transmitted wave fields through the breast. 

2) Estimate the average dielectric constant, 
avgr according to (14). 

3) Vary the dielectric constant as 10%
avg avgr r in small steps (say 2%). 

4) For each dielectric constant in third step, compute the maximum intensity of the 

time reversal image at the focal point. 

5) Choose the dielectric constant that provides the highest peak intensity in the 

image. 

 

2.6.1 Equivalent Dielectric Constant Estimation for Breast Phantoms 

Gradual mismatch between computational medium and actual background 

medium leads towards loss of focus for time reversal image. The focusing will be 

strong if there is no mismatch between the two mediums. The estimated average 

dielectric constant for different breast phantoms used in this thesis is tabulated in 

Table 2-4. 
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Table 2-4. Estimated average dielectric constants of different 3D breast phantoms. 

Phantom Type C2 C3 C4 

Estimated, 
avgr  14 23 31 

 

2.6.2 Testing the Accuracy of Equivalent Dielectric Constant Estimation in 

Known Medium 

Real human breasts contain arbitrary tissue heterogeneity. There is also large 

spatial variation in tissue heterogeneity within the real breasts. As a result 

microwave propagation path between any two antennas placed at opposite sides of 

the breast phantom experiences different levels of tissue heterogeneity. As a result it 

is difficult to compare the actual average dielectric constant for a breast medium 

with the estimated equivalent medium dielectric constant used for time reversal 

imaging.  

 

Table 2-5. Estimated average dielectric constant in known medium. 

Medium Type 
Actual Average Dielectric 

Constant 

Estimated Average 

Dielectric Constant 

Homogeneous 9.18 8.89 

Two layered 13.72 12.81 
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(a) 

 (b) 

Figure 2-21. Dielectric constant estimation in known (a) homogeneous 

medium, and (b) two layered medium. 

 

In order to test the efficacy of the proposed technique we first consider a 

simple propagation media viz. a homogeneous medium and then a two layered 

medium as shown in Figure 2-21. The estimated dielectric constant and the actual 

dielectric constant are provided in Table 2-5. In both cases it can be found that the 

dielectric constant is estimated very accurately which serves as a validation of the 

proposed validation of the proposed technique. 
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2.7 Discussion 

This chapter discussed the details of FDTD simulation technique and the 

numerical breast phantoms used for breast cancer screening. A novel hybrid early 

time skin artefact removal technique combining Wavelet transform and entropy 

methods is proposed and its performance is compared with ideal skin reflection 

removal method. The skin artefact removal algorithm dictates the accuracy with 

which tumors that are located close to the skin can be detected. An estimation 

technique for determining average dielectric constant for time reversal imaging has 

also been described. These techniques given in this chapter are essential elements for 

the demonstration of time reversal imaging which will be discussed in later chapters. 
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Chapter 3 : Element Space Time Reversal Microwave 

Imaging Techniques for Breast Cancer Detection 

3.1 Introduction 

Traditionally time reversal is carried out in element space. In element space 

processing the array output is produced using weighted and summed signals derived 

from each antenna element. The element space methods use spatial statistics of only the 

array elements raw output from sensor (antenna) elements are further processed to 

estimate the target location. Element space time reversal can be cast into two main 

categories- physical time reversal and computational time reversal. In physical time 

reversal, the received fields at the antenna array are time reversed and physically 

backpropagated into the imaging medium so as to optimally focus onto the 

embedded targets [79]. In computational time reversal, the back propagation is made 

into a virtual computational medium to form an image computationally. 

Computational or synthetic time reversal hence requires the knowledge about the 

background medium Green’s function. Computational time reversal can be used for 

homogeneous as well as heterogeneous background medium. For unknown 

heterogeneous background medium, it is necessary to develop a virtual 

homogeneous medium whose effective dielectric properties must be estimated 

considering the propagation of signals in the original medium.  

Computational time reversal can be implemented in element space in a number 

of ways. In iterative time reversal, the energy of the received field is normalized and 

then back propagated after time reversal [2]. Iterative time reversal can focus only on 

the strongest scatterer when multiple scatterers are present [17]. Also its performance 
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tends to deteriorate when medium is highly cluttered. Clutter refers to the unwanted 

backscattered echoes from the surrounding environment other than the target of 

interest [59]. Selective focusing using computational time reversal can be achieved 

through the use of time reversal operator (TRO) which is based on multistatic 

measurement data matrix. The TRO can be interpreted as the covariance matrix of 

array processing techniques [67]. Green’s function vector of the medium is also 

interpreted as the array steering vector when covariance matrix is replaced by TRO. 

As a result we can derive time reversal beamforming techniques such as time 

reversal MUSIC (TR-MUSIC) [156], time reversal robust Capon beamforming (TR-

RCB), time reversal standard Capon beamforming (TR-SCB) [79] etc. TR-MUSIC 

imaging is based on the null subspace of the TRO while decomposition of the time 

reversal operator (DORT) [17]  uses the signal subspace of TRO. 

DORT can selectively focus on well-resolved individual scatterers but cannot 

separately focus on non-well resolved targets. Two scatterers are well-resolved when 

it is possible to focus on each one of them without sending energy to the other [17]. 

This requires that the background medium’s Green’s function vectors for two well 

resolved scatterers are orthogonal [5]. TR-MUSIC cannot selectively focus on 

individual scatterer but has superior resolution compared to DORT. Resolution refers 

to the smallest distance between two targets so that they are unambiguously 

identified. the resolution depends on the frequency, environment, and positions of 

the sources and receivers [68]. DORT has been used in various applications 

including buried object localization, non-destructive testing, underwater 

communication, fault detection [23, 70, 157, 158]. TR-MUSIC has been also used in 

applications including imaging, localization etc. [33, 37, 73]. Time reversal standard 
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Capon beamforming (TR-SCB) and time reversal robust Capon beamforming (TR-

RCB) have also been proposed for acoustic imaging [79].  

Element space time reversal techniques have been used for breast cancer 

imaging as well. DORT has been reported for breast cancer imaging in a number of 

works [44, 124, 159, 160]. TR-MUSIC [125, 161] and time reversal beamforming 

[126, 162] have been also considered in the literature. However, in most of these 

studies simplified breast models which incorporate mostly fatty breast tissues are 

investigated. Here, our aim is to investigate the performance of element space time 

reversal techniques for anatomically realistic and highly dense 3D breast phantoms. 

We also study the performance of element space time reversal minimum variance 

beamformer such as TR-RCB and TR-SCB for 3D breast imaging for the first time. 

Our intention here is to investigate the limitations and advantages of element space 

time reversal techniques for breast cancer. 

This chapter is organized as follows. We first describe TRO for 2D breast 

phantoms and later expand it to 3D breast phantoms for imaging in section 3.2. We 

then provide element space time reversal minimum variance beamforming (TR-

MVB) for microwave breast imaging in section 3.3. Section 3.4 discusses the 

element space subspace based imaging techniques such as DORT and TR-MUSIC. 

The computation and results on 2D and 3D breast phantoms are discussed in section 

3.5 followed by discussion in section 3.6. 

 

3.2  Time Invariance of Maxwell’s Equations 

The relations and interactions between electric and magnetic fields associated 

with an electromagnetic wave are governed by physical laws namely- Faraday’s law, 
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Ampere’s law and Gauss’s law. These laws for electromagnetic fields are presented 

as the Maxwell’s equations which can be written in point form as [163] 

 Faraday’s law: 
dt

E B  (1) 

 Ampere’s law: 
dt
DH J  (2) 

 Gauss’s law: D  (3) 

 Gauss’s law: 0B  (4) 

Here, E = Electric field intensity (V/m) 

 D = Electric flux density (C/m2) 

 H = Magnetic field intensity (A/m) 

 B = Magnetic flux density (Wb/m2) 

 J = Volume current density (A/m2) 

 = Volume charge density (C/m3) 

The relation between electric flux density and the electric field intensity, 

magnetic flux density and magnetic field intensity is given equations (5) and (6)

respectively. 

 D E  (5) 

 B H  (6) 

Here, = Permittivity of the medium (F/m) 

 = Permeability of the medium (H/m) 

The vector wave equations for a source free and loss medium can be obtained as 

 
2

2
2 2

1
c t

EE  (7) 
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2

2
2 2

1
c t

HH  (8) 

The wave equations in (7) and (8) contain second order time derivatives of 

electric and magnetic fields respectively. Hence, the electromagnetic wave remains 

unchanged due to time reversal i.e. when substituting t by –t. Hence, if f(x,y,z,t) is a 

solution of the wave equation f(x,y,z,–t) is also a solution of the same wave equation. 

So, if the wave is made to back propagate in time, i.e. time reversed it will follow the 

same path. Interestingly Maxwell’s equations in spite of containing only first time 

derivative are time reversible. Time reversing Maxwell’s equations results in 

 
( )
( )d t

BE  (9) 

 
1 ( )

( )d t
EB J  (10) 

 D  (11) 

 0B  (12) 

Comparing equations (9) – (12)  with equations (1) – (4), it can be clearly 

observed that Maxwell’s equations remain unaffected as the result of application of 

time reversal. This is due to the fact that although Maxwell’s equation contain only 

first order time derivative, magnetic field, H  and current, J  change sign when time 

reversed. When the time is reversed, the direction of charge flow and consequently 

the current J is reversed. The magnetic field resulting from the flow of charge is thus 

also reversed. But the sign of electric field, E   remains unaltered as it depends on 

the polarity of the charge which is independent of time. Hence, electromagnetic 

fields and waves governed by Maxwell’s equations are invariant to time reversal. 
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3.2.1 Time Reversal of Electromagnetic Waves 

Time reversal symmetry is strictly valid if the medium is reciprocal and 

lossless. But, breast tissues are lossy at microwave frequencies. But if the waves are 

propagating inside human breast tissues which are lossy at microwave frequencies, 

one must be careful in applying time reversal. When time reversal is employed in 

lossy and dispersive media such as breast tissues, one must employ additional 

processing methods to offset the effects of attenuation and dispersion. Breast tissues 

consist of a combination of fatty adipose, dense fibro-glandular and connective 

tissues. The dense glandular tissues are highly lossy compared to the fatty breast 

tissues. However, the losses are moderately low for frequencies up to 3GHz which 

provides sufficient resolution and penetration for breast imaging [83]. Increasing 

losses result in increasing attenuation of focal amplitudes and decrease in resolution 

[63].   

 

 

Figure 3-1. Schematics for time reversal imaging.  
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Let us consider time reversal imaging for the localization of P infinitesimal 

targets in a time invariant non-magnetic background medium. A uniform linear array 

(ULA) on N-elements is employed for time reversal imaging as schematically shown 

in Figure 3-1.  The target locations are denoted by o
pr  where, p=1,2,…,P  and the 

antennas are located at x
nr  where, n=1,2,…,N. A time domain pulse s(t) is applied to 

the l-th element of the array. The incident field at the p-th target location in time 

domain can be expressed as 

 ( , ) ( ) ( , , ) ( ) ( , , )i o o x o x
p p l p lE t s t G t p G t dr r r r r  (13) 

where, G is the background medium Green’s function and  denotes convolution. 

The incident field takes time to reach the target, and after that it will be scattered by 

the target in all directions. A part of the backscattered field will be received by the 

antenna elements of the receiver array. The scattered field is obtained by subtracting 

the incident field from the total field as 

 ( , ) ( , ) ( , )s t iE t E t E tr r r  (14) 

The backscattered field recorded at the k-th element of the array due to p-th 

target can be expressed as [4] 

 

2

2

( , ) ( ) ( , ) ( , , )

( ) ( ) ( , , ) ( , , )

s x o i o x o x
kl k p k p

o o x x o o
p p l k p p

E t B E t G t d

B s t G t G t d

r r r r r r

r r r r r r
 (15) 

where, B(r) represents the function that converts the incident electric field ( , )iE tr  

into equivalent currents that is reradiated as secondary sources. Since there are P-

targets in the medium, the backscattered responses of P-targets considering Born 

approximation can be expressed as 



Chapter 3: Element Space Time Reversal Microwave Imaging Techniques for Breast 
Cancer Detection

73 
 

 
1

( , ) ( ) ( ) ( , , ) ( , , )
P

s x o o x x o
kl k p p l k p

p
E t B s t G t G tr r r r r ro( ) ( )( ) ( )( ) (( ) ( )( ) (( ) ( )( ) (( ) ( )( ) (  (16) 

We can express (16) in frequency domain as 

 
1

( , ) ( ) ( ) ( , , ) ( , , )
P

s x o o x x o
kl k p p l k p

p
E B S G Gr r r r r ro( ) ( )( ) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )  (17) 

where, 2
0( ) ( ) ( )o o

p p b pB r r r2( o 2)B 2)) 2 , 0 is the background medium permeability, 

b  is the background medium permittivity and p  is the p-th target permittivity. 

 

3.2.2 Time Reversal Imaging 

Time reversal image is obtained by back propagating the backscattered response 

after time reversal. Now accounting for propagation from the source to the target and 

the target to the receiver, the time reversal space time signal can be obtained as 

 ( , ) ( , ) ( , , ) ( , , )s x x x
kl kl k k lI t E t G t G tr r r r r r  (18) 

Time reversal is equivalent to phase conjugation in frequency domain. Hence, we 

can express (18) as 

 
1

( , ) ( ) ( ) ( , , ) ( , , ) ( , , ) ( , , )
P

o o x x o x x j t
kl p p l k p k l

p
I t B S G G G G e dr r r r r r r r r roo( ) ( )( o ) ( )( ) ( )( ) () ( ))) (19) 

Since, the medium is reciprocal assuming perfectly matched physical medium 

and computational medium we obtain ( , ) ( , )o x x o
l lG Gr r r r and ( , ) ( , )o x x o

k kG Gr r r r . 

Therefore, constructive interference will occur when or r . 

Time reversal image is obtained by retransmitting the received fields from each 

element of the array after time reversal. Hence, the cumulative time reversal image 
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can be obtained by superimposing the time reversal image for each antenna element 

of the receiving antenna array as 

 
1

( , ) ( , )
rN

l kl
k

I t I tr r  (20) 

where, Nr is number of receiving antenna array elements. We can use (20) repeatedly 

for each transmitting antenna when multiple transmitters are present to superimpose 

the time reversed fields. The time t=0 corresponds to the initial scattering from a 

target scattering centre [4]. Hence, the target can be detected from the image I(r,t=0) 

as 

 
1 1 1

( , 0) ( , 0) ( , 0)
t t rN N N

l kl
l l k

I t I t I tr r r  (21) 

where, Nt is the number of transmitting antenna array elements. 

Time reversal can be carried out in frequency domain as well. In frequency 

domain the time reversal of the received scattered field is equivalent to phase 

conjugation. Hence, the received fields of each antenna element are phase 

conjugated and backpropagated. If the signal has a very wide bandwidth, then the 

entire bandwidth is divided into Q number of narrow frequency bins and imaging is 

carried out at the centre frequency of each bin. Time reversal image is then obtained 

as 

 
1

( , ) ( ) ( ) ( , ) ( , ) ( , ) ( , )
rN

o o x x o x x
l q l k k l

k
I B S G G G Gr r r r r r r r r r  (22) 

where, q is the centre frequency of the q-th frequency bin. We can repeat (22) for 

each transmitting antenna to obtain 

 
1 1 1

( , ) ( , ) ( , )
t t rN N N

q q l q kl q
l l k

I I Ir r r  (23) 
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For the case of co-incident transceiver array Nr=Nt=N. The individual frequency bin 

images are combined to obtain wideband image as 

 
1

( , ) ( , )
Q

q q
q

I Ir r  (24) 

The time reversal image shows the distribution of energy around the points of 

focus. At the location of the scatterer high intensity would be expected. The image 

intensity shows the presence or absence of a target but does not represent the actual 

scattering strength or dielectric properties of the target and background medium. 

Time reversal imaging can be considered to belong to a class of radar imaging and 

the high intensity pixels or voxels indicate the presence and location of targets. 

Details of Green’s function are provided in Appendix A. 

 

3.3 Time Reversal Operator  

Time reversal operator can be interpreted as a covariance matrix. In the field of 

source detection, sophisticated array signal processing techniques have been 

developed to estimate the number, direction, and signal intensity of sources [67]. 

These techniques require estimation of the array correlation matrix. Array correlation 

matrix contains vital information about sources or scatterers. In time reversal method 

time reversal operator (TRO) matrix is used instead of array correlation matrix to 

localize the source. Time reversal is equivalent to phase conjugation in frequency 

domain. Back propagation can be implemented using transpose operator. Hence, 

TRO is defined as 

 HT K K  (25) 



Chapter 3: Element Space Time Reversal Microwave Imaging Techniques for Breast 
Cancer Detection 

76 
 

where, K is the multistatic data matrix. Thus, for computational time reversal TRO 

can model all the three steps involved viz. forward propagation, time reversal and 

back propagation. The equivalent expression for TRO in time domain is given as 

 ( ) ( ) ( )t t tT K K  (26) 

A comparison of (25) and (26) reveals that TRO can be easily computed in 

frequency domain. However, the TRO computation in time domain requires time 

domain convolution. This can be computationally expensive when larger arrays are 

used to receive the backscattered response from targets over long period of time. The 

TRO in frequency domain also avoids intermediate processing when coupled with 

array processing techniques. In view of these advantages, in this thesis we always 

employ frequency domain TRO. 

The localization of any target using time reversal uses TRO. Thus, it is very 

important to obtain TRO accordingly for the problem under investigation. The 

mathematical analysis to obtain TRO for simplified 2D scenario as well as 3D 

scenario will be described below. 

 

3.3.1 Time Reversal Operator for 2D Scenario 

Let us consider a bounded 2D homogeneous dielectric space where P dielectric 

line targets located at o
pr , p=1,2,…,P. A line 2D target is an infinitesimal scatterer 

whose size is much smaller than the wavelength. Let us consider a transceiver array 

of N elements. For the sake simplification, the array elements are considered to be 

ideal antenna elements (line sources). The location of n-th antenna is denoted by x
nr , 

where n=1, 2, …, N. For simplicity we consider TM-z polarization. Hence, only z-
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component of the electric field exists. In this scenario the sources are infinite line 

sources along z-axis. The multistatic matrix is generated using the N-elements 

transceiver array i.e. transmitting and receiving arrays are co-located. Each of the N 

elements of the array transmits a short microwave pulse into the bounded medium, 

which is the incident field. The incident field after reaching the target is scattered by 

the dielectric targets in all directions and the backscattered field response is recorded 

by each element of the array. This process is repeated for all the N elements and thus 

a multistatic matrix is formed. The process is illustrated in Figure 3-2. For an N-

elements transceiver array N×N multistatic matrix is obtained for ideally at each 

frequency within the band. 

 

 

Figure 3-2. Multistatic illumination of a target for time reversal localization. 

 

The scattered field is obtained by subtracting the incident field from the total 

field. The incident field at the p-th target location when j-th antenna element is 

excited can be expressed as 

 0( ) , ,z in o z o x
j p j p lE i e Gr r r  (27) 
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The scattered field received at l-th antenna element due to illumination from   

j-th antenna can be expressed as 

 
0

1
, , , ,

z s z t z in
lj lj lj

P
z o x x o
j p l p j p

p

E E E

i e G Gr r r r
 (28) 

where, G is the background medium Green’s function and p is the backscattering 

strength of the p-th point target, z
je is the applied excitation. In this scenario the 

Green’s function can be expressed as 

 (1)
0( , )

4
iG H kr r r r  (29) 

where, (1)
0H is the zeroth order Hankel function of first kind and the wave number, 

k=2π/λ. Hence, using (28) the multistatic response matrix, K can obtained as 

 T
r tK τ T
r tτ  (30) 

where,  

 1 2{ , , , }Pdiagτ , }P,  (31) 

 1 2( , ) ( , ) ( , )o o o
r r r r Pg r g r g ro(r P(r P(((((((((((r (r (r ((r (  (32) 

 1 2( ) ( , ) ( , ) ( , )
To x o x o x o

r p p p N pG G Gg r r r r r r rx( N( N( ,((( ,  (33) 

Hence, rr is an N×P matrix for receiving mode given by 

 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ... ( , )
( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

x o x o x o
P

x o x o x o
P

r

x o x o x o
N N N P

G G G
G G G

G G G

r r r r r r
r r r r r r

r r r r r r

r
2( 2G( 22  (34) 

Similarly for transmit mode tt  is given by 
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1 1 2 1 1

1 2 2 2 2

1 2

1 2

( , ) ( , ) ... ( , )
( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , , )

[ ( , ) ( , ) ... ( , )]

o x o x o x
P

o x o x o x
P

t

o x o x o x
N N P N

o o o
t t t P

G G G
G G G

G G G

r r r r r r
r r r r r r

r r r r r r

g r g r g r

t
1( 1G( 11

 (35) 

For well-resolved scatterers when no multiple scattering takes place  is a 

diagonal matrix. Using singular value decomposition (SVD), N×N matrix K can be 

expressed in frequency domain as 

 ( ) ( ) ( ) ( )HK U Σ V  (36) 

Substituting K from (36) into (25) the TRO, T can be expressed as 

 
2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

H H H

H

T V Σ U U Σ V

V Σ V
 (37) 

Hence, one can observe that eigen values are square of singular values and 

singular vectors are equivalent to eigen vectors. In order to estimate signal and noise 

subspaces, we can use SVD of K matrix instead of resorting to computation of EVD 

of TRO matrix which is less efficient. The singular values indicate scattering 

strength of the scatterers. 

 

3.3.2 Time Reversal Operator for 3D Scenario 

In this thesis, we are interested in time reversal of electromagnetic fields. 

Hence, we need to use dyadic notations for modelling time reversal process in 3D to 

represent interactions with the electric and magnetic field vectors. Let us consider a 

3D bounded and non-magnetic dielectric inside which P dielectric targets located at

o
pr , p=1,2,…,P. The permittivity tensor of the dielectric targets can be expressed as 
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 1 1 1 2 2{ , , , , ,..., }
o x y z x y z

pdiagε  (38) 

For the case of isotropic dielectric targets, x y z
p p p p . We consider a 

transceiver array of N antenna elements, each radiating an unmodulated microwave 

pulse in transmit mode into the bounded lossless dielectric region. The location of   

n-th antenna is denoted by x
nr , where n=1, 2, …, N. Each antenna element of the 

array is assumed to consist of three electrically small orthogonal dipoles of lengths 

dx, dy, and dz each with excitation current densities Jx, Jy, and Jz oriented along x, y 

and z axes with lengths. Here we assume that x y zd d d d and x y zJ J J J . 

The incident field at a location within the medium due excitation at the n-th element 

of the array can be expressed as 

 ( , ) ( , )in x x
n o n n njE r r G r r L J  (39) 

where, { , , }n diag d d dL , [ ]T
n J J JJ . The dyadic green’s function of the 

homogeneous lossless background medium, G  is given by 

 | |/4 | |
2( , ) exp jk

k
r r r rG r r I  (40) 

The incident field is scattered by the targets due to difference in dielectric constant 

with the background medium. The backscattered field received at j-th receiver 

antenna element due to radiation at l-th transmitter antenna element can be 

represented as 

 2 2( , ) ( , ) ( , ) ( )s x x x t x
jl j l j jl l b dE r r G r r E r r k r k r  (41) 

Here, sE and tE denote scattered field and total field respectively, bk is the 

wave number of the background, 2 2( ) bk r k  when p where, p is the volume of 
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the p-th dielectric target. Hence, the induced voltage at m-th receiving antenna 

element due to excitation of the l-th transmitting antenna element can be expressed 

as 

 ( , ) ( , )s x x s x x
jl j l j jl j lV r r L E r r  (42) 

Now the multistatic matrix can be formed as [164] 

 
T

r tK χ
T

r tχ  (43) 

where, χ  represents the polarization tensors of the targets, and   is the Green’s 

function vector matrix for the targets and array. The subscripts r, and t denotes 

receive mode and transmit mode respectively. In transmit mode Green’s function 

models the propagation of applied excitation from antenna elements into the 

bounded region and in receive mode Green’s function models backscattered field 

propagation from the bounded medium to the antenna array. Now, rr can be 

expressed as 

 

1 1 1 2 1

2 1 2 2 2

1

1 2

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

( ) ( ) ... ( )

x o x o x o
P

x o x o x o
P

r

x o x o x o
N N P N P

o o o
r r r P

G r r G r r G r r

G r r G r r G r r

G r r G r r G r r

g r g r g r

r
((((

 (44) 

Also, tt can be expressed as 

 

1 1 1 2 1

2 1 2 2 2

1 2

1 2

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

( ) ( ) ... ( )

To x o x o x
N

o x o x o x
N

t

o x o x o x
P P P N

TT o T o T o
t t t P

G r r G r r G r r

G r r G r r G r r

G r r G r r G r r

g r g r g r

t
((((

 (45) 
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We assume that the targets are small spherical isotropic dielectric spheres with 

dielectric tensor x y z
p p p p . Hence, the scattering tensor of the spherical 

dielectric targets are expressed as 

 1, 2,{ ..., }Pdiagχ x x x  (46) 

 3

0

4 , ,
2 2 2

x y z
p b p b p bb

p x y z
p b p b p b

i ka diagx  (47) 

where, b  is the homogeneous background medium dielectric constant. Assuming 

co-located transceiver array we obtain 3N×3P matrix 
T

r t
T

r tt  after multistatic 

illumination and χ is a 3P×3P matrix which results in 3N×3N multistatic matrix K . 

The TRO in frequency domain is then obtained as 

 ( ) ( ) ( )
H

T K K  (48) 

We can express TRO using eigen values and eigen vectors as 

 
2

( ) ( ) ( ) ( )
H

T V Σ V  (49) 

In order to successfully localize all the scatterers, it is required that 

 3Rank NT  (50) 

 

3.4 Element Space Time Reversal Minimum Variance 

Beamforming 

The interpretation of TRO as the covariance matrix [67] enables 

implementation of time reversal minimum variance beamforming (TR-MVB) such 

as time reversal SCB (TR-SCB) and time reversal RCB (TR-RCB). In this case the 



Chapter 3: Element Space Time Reversal Microwave Imaging Techniques for Breast 
Cancer Detection 

83 
 

Green’s function vector is used instead of the array steering vector. The role of the 

Green’s function vector in TRO formulation is the same as the role of the array 

steering vector in covariance matrix computation for the beamformer. TRO is 

obtained from a single snapshot whereas the covariance matrix is computed from 

multiple snapshots.   

We consider minimum variance beamforming (MVB) techniques such as 

standard Capon beamformer (SCB) [165] and robust Capon beamformer (RCB) 

[166]  for time reversal imaging. SCB and RCB seek to estimate the array weight 

vector by minimizing the noise variance. Capon's beamformer is referred to as the 

Minimum Variance Distortionless Response (MVDR) filter in the acoustics literature 

and attempts to minimize the power contributed by noise and any signals coming 

from directions other than "look direction" [167]. SCB can accurately estimate with 

high resolution if the array steering vector is perfectly known. SCB is found to be 

very sensitive to the steering vector errors. RCB was proposed to  overcome the bias 

of SCB due to imprecise knowledge about array steering vector or noise covariance 

matrix which seems to overcome the steering vector bias and obtains a robust 

estimation of the noise variance without an intermediate estimation of the array 

weight vector [166]. The robustness of RCB can be further improved through 

diagonal loading [168].  

Time reversal SCB (TR-SCB) and time reversal RCB (TR-RCB) was first used 

for 2D narrow band acoustic imaging using linear array [79]. A different type of time 

reversal minimum variance beamformer with environment perturbation constraints 

(TR-MV-EPC) was proposed in [24]. TR-MV-PEC is applicable for non-stationary 

or changing medium where multiple samples are used to obtain ensemble of Green’s 

functions. The unknown Green’s function is constrained to reside in a subspace 
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spanned by the Green’s function ensemble. We are dealing with breast cancer 

detection and in our case the tissue medium do not change over a short period of 

time required to carry out microwave measurements and thus TR-MV-PEC is not 

appropriate for breast cancer imaging. Hence, we investigate and extend TR-SCB 

and TR-RCB for 2D as well as 3D ultrawideband (UWB) microwave imaging 

scenarios.  

We consider ellipsoidal uncertainty set about the Green’s function of the 

background medium for TR-RCB. TR-RCB is robust against Green’s function 

mismatch compared to TR-SCB. However, the tissue dielectric property contrast 

between healthy and malignant breast tissue in a breast medium vary widely from 

5:1 for fatty tissue to 1.1:1 for glandular tissue [86, 87] due to widely different breast 

tissue dielectric properties. In dense breasts, the glandular tissue content dominates 

and dense tissue heterogeneity content of breast medium may increase uncertainty of 

the medium Green’s function. This may result in loss of focusing at the correct 

location. As a result the constructive interference of back propagated time reversed 

fields will tend to spread and move away from the location of the target tissue.  

 

3.4.1 Standard Capon Beamformer 

SCB [165] can be used with sufficient accuracy and resolution if exact array 

steering vector is known. Array steering vector mismatch arising from various 

factors such as array calibration error, imprecise knowledge of array response and 

position, pointing error etc. using [79]. SCB is defined for known array covariance 

matrix, R and steering vector, a as follows 

 subject to ( ) 1min H H

a
a Ra w a  (51) 



Chapter 3: Element Space Time Reversal Microwave Imaging Techniques for Breast 
Cancer Detection

85 
 

where, w is the array weight vector. SCB is also referred to as the MVB and the 

analytical solution [165] for the array weight vector  is obtained as 

 ( )
( ) ( )SCB H

-1

-1

R aw
a R aSCB Hw  (52) 

The array correlation matrix is derived from received signal samples. Usually a 

large number of snapshots are used to obtain R as 

 
1

1 M
H

m m
mM

R y y  (53) 

where, M is the number of snapshots and ym is the n-th array snapshot. 

 

3.4.2 Time Reversal Standard Capon Beamforming 

Our interest is to investigate microwave imaging using 2D as well as 3D breast 

phantoms for breast cancer detection using TR-SCB. TR-SCB can be derived from 

SCB using the TRO as an estimation of the array covariance matrix [67]. TR-SCB 

for microwave imaging in 3D breast phantom can be derived using 3D multistatic 

measurement data matrix K . We consider P small spherical dielectric targets are 

located in a known homogeneous 3D bounded region. We employ an antenna array 

consisting of ideal N-elements to probe the bounded region.  Hence, the multistatic 

matrix K  can be obtained as shown in Section 3.3.2. We can account for the effect 

of additive white Gaussian noise (AWGN) on K  as 

 2T
K χ I2T

χ I2  (54) 

where, I is a unit dyad of dimension 3N×3N and σ2 is the noise variance. The 

array weight vector for TR-SCB can be estimated as 
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 subject to ( ) 1min
H H

w
w Tw w g r  (55) 

where, 

 1 2( ) ( , ) ( , ) ( , )
Tx x x

Ng r G r r G r r G r rx( N((( N(((  (56) 

Using 
H

w Tw  as an estimation of 2 , we obtain 

 ( )

( ) ( )
H

-1

-1
T g rw

g r T g r
H

-1
Tw  (57) 

Consequently 2 can be estimated as 

 
2 1

( ) ( )
H -1

g r T g r
 (58) 

TR-SCB imaging function is given by 

 
2

( ) ( ) ( )
H

TR SCBI
-1

r w r T w r
2

( ) ( )
H -1

( ) (( ) (  (59) 

The array weight vector for TR-SCB imaging in 2D [79] is given as 

 ( )
( ) ( )H

-1

-1

T g rw
g r T g rH

1T-1

w  (60) 

The TR-SCB 2D imaging function is thus obtained as 

 
22 ( ) ( ) ( )D H

TR SCBI -1r w r T w r
2

( ) ( )H 1( ) (( ) (  (61) 

It is observed from (58) that TR-SCB estimates 2 from the TRO using 

Green’s function vector of the medium. Hence, mismatch between actual medium’s 

Green’s function and computational medium’s Green’s function will lead to 

deterioration of focusing performance of TR-SCB. In practice the breast is a 

heterogeneous medium with unknown tissue heterogeneity. Hence, it can be 

expected that TR-SCB imaging performance will get worse with increasing breast 
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tissue heterogeneity. Breast tissue heterogeneity increases as the dense fibro-

glandular and fibro-connective tissue content increases in the breast [86, 87]. 

 

3.4.3 Robust Capon Beamforming 

RCB was introduced to reduce the sensitivity of the SCB to array steering 

vector mismatch [166]. Robustness is achieved by considering the uncertainty about 

steering vector and cannot be expressed in closed form. Such errors may arise from 

mismatch between actual steering vector and presumed steering vector, local 

scattering around the source, heterogeneous propagation medium, arrays undergoing 

deformities etc. [169].The extension of SCB to uncertain steering vector belongs to 

diagonal loading approach. The robust estimation of noise variance, σ2 without any 

intermediate estimation of array weight vector can be obtained [166, 168] which 

helps to remove the sensitivity towards array steering vector mismatch given by 

 
2

2 2

,

2

0max Hsubject to
a

R aa

a aa
 (62) 

The robust estimation of array steering vector is given by 

 
11

1( )Ra I a a I R a
1

a ( )a a I R a( )(  (63) 

where, is the Lagrange multiplier. Hence, the array weight vector for RCB is given 

by 

 ( )
( ) ( )RCB H

-1

-1

R aw
a R a

( ))a
RCBw ( )

( ) ( )H ) ( )) (1

R a
a (H )

( )a
H  (64) 
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3.4.4 Time Reversal Robust Capon Beamformer 

Time reversal RCB (TR-RCB) was first proposed in [79] for 2D acoustic 

imaging. We investigate use of TR-RCB for microwave imaging for breast cancer 

detection in 2D as well as 3D breast phantoms. TR-RCB considers ellipsoidal 

uncertainty about the Green’s function vector and provides superior imaging 

performance than TR-RCB. We consider imaging of P small spherical dielectric 

targets embedded in a known homogeneous 3D bounded region. In this case the 

TRO operator modelling in 3D as derived as given in Section 3.3 can be used. 

Considering AWGN we can write for robust estimator for 2  can be written as 

 
2

2 2

,

2

0max
H

subject to
g

T gg

g gg
 (65) 

It is assumed that 
2

gg  in order to avoid the trivial solution g 0 where, 0

is an N×3 matrix of zeros where, φ is the parameter describing uncertain of the 

Green’s function vector. This optimization problem can be reduced to 

 
21

subject tomin
H

g
g T g g gg  (66) 

The quadratic constraint leads towards diagonal loading to improve robustness 

of the Green’s function vector against mismatch problem. The diagonal loading 

parameter enables to balance between fully adaptive beamformer and non-adaptive 

beamformer[169]. The diagonal loading is based on ellipsoidal uncertainty set [168]. 

This is particularly important for microwave breast imaging since, the actual Green’s 

function vector of the breast medium is unknown. We consider the co-polarized 

fields only in electromagnetically modelling the scattered fields for breast. A co-

polarized field component  Exx is obtained when the excitation is applied in x-
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directed dipole and the backscattered response is received by the x-directed dipoles. 

To find  g  we use Lagrange multiplier methodology as 

 
11

1( )Tg I g g I T g
1

g g g I T g( )(  (67) 

The Lagrange multiplier 0  can be obtained as [79] 

 
21( ) 0I T g 0 (68) 

The langrage multiplier is obtained as the solution of  

 
21( ) ( )f I T g(  (69) 

TRO, T can be expressed in terms of eigen values and eigen vectors as shown in 

(49). We consider y  such that 

 
H

y V g  (70) 

We can write (70) as 

 
23

221
( )

1

N
s

s s

z
f  (71) 

where, zs is the s-th element of z defined as 

 ( )
T

vecDz y  (72) 

 ( )vecdΓ Σ  (73) 

Here, vecd(.) forms a vector from the diagonal elements of a matrix and (.)vecD  

forms a vector from diagonal elements of each dyad of a dyadic vector. We solve 

(69) using Newton’s iterative method. In order to eliminate any scaling ambiguity 

we write 
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 ˆ
g g

g
g

gg g

g

g

g

g g

g
 (74) 

Hence, TR-RCB array weight vector is finally obtained as 

 
ˆ

ˆ ˆH

-1

-1
T gw

g T g

ˆ
H

-1

1
T ĝw  (75) 

The imaging function is represented as 

 
2

( ) ( ) ( )
H

TR RCBI r w r Tw r
2

( ) ( )
H

( ) (( ) (  (76) 

Similarly in the case of 2D medium, TR-RCB Lagrange multiplier 0   [79] 

can be obtained as 

 
21( ) 0I T g 0 (77) 

In order to eliminate any scaling ambiguity we write 

 ˆ
g g

g
g

gg g

g

g

g

g g

g

g
 (78) 

Hence, TR-RCB array weight vector is finally obtained as 

 
ˆ

ˆ ˆH

-1

-1

T gw
g T g

ˆ
H

1

1

T ĝ-1

w  (79) 

where, 

 ˆ
g g

g
g

gg g

g

g

g

g g

g

g
 (80) 

The TR-RCB imaging function in 2D is represented as 

 
22 ( ) ( ) ( )D H

TR RCBI r w r Tw r
2

( ) ( )H ( ) (( ) (  (81) 
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3.4.5 Imaging Results for Element Space Time Reversal Minimum Variance 

Beamforming 

Now we consider the imaging results for different types of numerical breast 

phantoms using element space TR-MVB. We provide results for both element space 

TR-SCB and TR-RCB for C2, C3 and C4 type breast phantoms. Details about 

different types of breast phantoms and simulation setup are provided in chapter 2. 

Tumor locations and sizes for different cases have been provided in Table 2-2. The 

dielectric constant used for synthetic time reversal imaging using different types of 

breasts phantom is provided in Table 2-3. The images are obtained over frequency 

band of 0.7-3.0GHz and the signal to noise ratio (SNR) of 40 dB. We generate 

AWGN noise and then add it to the scattered fields obtained from FDTD simulation. 

The SNR is defined for 3N×3N multistatic matrix, K as 

 2 220log
9

SNR
N

K
 (82)  

3.4.5.1 Results Obtained Using TR-SCB Imaging 

The microwave imaging result of TR-SCB for a C2 type 2D phantom is 

illustrated in Figure 3-3. The 2D phantom represents a coronal slice of the breast. 

The location of tumor is indicated using the white circle. It is observed that the high 

intensity region of the image is on the fringe of the tumor location. Next we consider 

TR-SCB imaging for sagittal slice of a C3 phantom in Figure 3-4. It is observed that 

there are two high intensity regions in the image. Although one high intensity region 

is close to the actual tumor location, the other high intensity region is far away from 

the true tumor location. This may be mistakenly identified as a tumor. The TR-SCB 

requires precise knowledge of the Green’s function of the medium. In reality breast 
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tissue medium is a heterogeneous lossy dielectric medium and its exact Green’s 

function is difficult to derive. Hence, TR-SCB may lead to inaccurate estimation of 

tumor location. Microwave image of the breast is computed through synthetic time 

reversal using equivalent homogeneous imaging medium. Increasing breast density 

increases mismatch between equivalent homogeneous Green’s function and the 

Green’s function of the actual tissue medium of human breast. Hence, TR-SCB is 

may be more suitable for imaging breasts that significantly contain fatty tissue 

content. 

 

 
Figure 3-3. TR-SCB imaging for 2D C2 breast phantom. 

 
Figure 3-4. TR-SCB imaging for 2D C3 breast phantom. 
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We next consider 3D TR-SCB imaging results as shown in Figure 3-5 and 

Figure 3-6 for C2 and C3 breast phantoms respectively. We observe similar trends of 

TR-SCB imaging performance for dense breasts. In C2 phantom tumor location is 

estimated within an error of a few millimeters. The sagittal and coronal slices clearly 

show that the brightest focusing spot is in close vicinity of the actual tumor location 

indicated using the red spherical inclusion. Whereas, in case of C3 phantom tumor 

response seems to be masked by scattering from glandular tissues which forms the 

background clutter. The large bright region shown in Figure 3-6 shows some dense 

glandular tissue region within the breast. In this case the imaging intensity at tumor 

location is about 70% of the peak imaging intensity. Hence, it is difficult to exactly 

detect and localize it in C3 breast phantom using TR-SCB. These results once again 

confirm the findings in 2D phantoms to re-iterate that that TR-SCB performance can 

be quite poor in heterogeneous and dense breast tissue medium. 

Finally we consider TR-SCB imaging for C4 phantom which is highly dense. 

A 10mm tumor is located at 4 o’clock in an enface view and 4.5cm below the nipple. 

It can be observed from Figure 3-7 that TR-SCB cannot localize the tumor. The 

image shows high side lobes as well. Side lobes occur as a result of energy leakage 

from the bright spot to darker spot. Side lobes increases with increasing clutter in the 

background medium [170]. TR-SCB imaging performance deteriorates with 

increasing tissue heterogeneity as mismatch between homogeneous computational 

Green’s function and heterogeneous breast Green’s function increases. Hence, TR-

SCB is suitable only for fatty type breasts which are less heterogeneous due to less 

amount of dense glandular tissue compared to highly and heterogeneously dense 

breasts. 
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(a) 

 
(b) 

 
(c) 

Figure 3-5. TR-SCB imaging in 3D C2 breast phantom (a) 3D view, (b) 
sagittal view, and (c) coronal view. 
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Figure 3-6. TR-SCB imaging in 3D C3 breast phantom (a) 3D view, (b) sagittal 
view, and (c) coronal view. 

 
(a) 

 
(b) 

 
 (c) 
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(a) 

 
(b) 

 
(c) 

Figure 3-7. TR-SCB imaging in 3D C4 breast phantom (a) 3D view, (b) coronal 
view, and (c) sagittal view. 
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3.4.5.2 Results Obtained Using Time Reversal Robust Capon Beamforming 

We use C2 and C3 breast phantoms to investigate the performance of TR-RCB 

microwave imaging for breast cancer screening. At first we consider the imaging 

results for 2D C2 and C3 phantoms as shown in Figure 3-8 and Figure 3-9 

respectively. In both the cases the tumor is quite accurately localized. TR-RCB 

accuracy is superior to TR-SCB as a result of robustness to Green’s function 

mismatching problem. C2 phantom image since C3 phantom has higher glandular 

tissue content than C2 phantom. 

 
Figure 3-8. TR-RCB imaging in 2D C2 phantom. 

 

 
Figure 3-9. TR-RCB imaging for 2D C3 phantom. 
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Now we consider TR-RCB imaging in 3D phantoms. First we consider C2 

phantom in which small amounts of dense tissue heterogeneity is present. It can be 

observed from Figure 3-10 that for C2 phantom the tumor location can be accurately 

estimated although there is presence of strong side lobe in sagittal slice view. 

However, coronal view shows less intense side lobe and axial view shows very 

strong tumor response and no side lobe. Hence, it can be understood that the actual 

performance of breast imaging technique needs to be evaluated from 3D phantom 

imaging.  

We also consider C3 phantom for 3D TR-RCB imaging. The results are shown 

in Figure 3-11. The tumor location can be estimated from the view of sagittal slice. 

However, very strong side lobes are observed in coronal view. This result reveals 

that TR-RCB may not the most suitable as a potential imaging technique in dense 

breasts. 
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(a) 

 
(b) 

 
 (c) 

Figure 3-10. TR-RCB imaging in 3D C2 breast phantom (a) 3D view, (b) sagittal 
view, and (c) coronal view. 
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Figure 3-11. TR-RCB imaging in 3D C3 breast phantom (a) 3D view, (b) sagittal 

view, and (c) coronal view.

 
(a) 

 
(b) 

 
 (c) 
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(a) 

 
(b) 

Figure 3-12. TR-RCB imaging result for C4 phantom (a) 3D view, and         
(b) coronal view. 

 

Now we consider a highly dense C4 breast phantom in which a 10mm sized 

tumor is inserted. The image intensity in the vicinity of tumor location is less intense 

which is about 80% of the peak intensity. This causes confusion as the region of 

peak intensity indicates wrong tumor location. This is due to the presence of high 

amounts of dense glandular tissue in the C4 breast phantom. This result indicates 

that TR-RCB may not be suitable for breast cancer detection in highly dense breasts 
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where the mismatch between actual Green’s function of the breast tissue medium 

and estimated Green’s function of the equivalent homogeneous medium can be high. 

 

3.5 Subspace Based Element Space Time Reversal Imaging 

In computational time reversal imaging, the received backscattered target 

response at the receiver is time reversed and back propagated into an equivalent 

virtual medium representing the original one where the target response was recorded. 

We have seen earlier that TRO can be interpreted as covariance matrix and hence, 

we can decompose the TRO into orthogonal subspaces to obtain additional results 

for time reversal focusing. Time reversal minimum variance beamforming (TR-

MVB) seeks to minimize the noise variance although it does not require estimation 

of the noise subspace separately. But this is achieved in subspace based time reversal 

techniques by exploiting the relation between the relationship between Green’s 

function vector of the medium and the subspaces of the TRO. Time reversal 

subspace based imaging techniques DORT and TR-MUSIC are based on the eigen 

decomposition of the TRO or equivalently singular value decomposition (SVD) of 

the multistatic matrix. SVD can be used to obtain two orthogonal subspaces for 

subspace based time reversal imaging. As TRO can be interpreted as covariance 

matrix, TR-MUSIC can be obtained from conventional subspace based MUSIC 

algorithm. It is well known that MUSIC algorithm uses the noise subspace of the 

covariance matrix and uses the array steering vector to find direction of arrival 

(DOA). The time reversal counter part of signal subspace is known as DORT 

(decomposition of the time reversal operator) extensively used in time reversal 

imaging applications. In general array covariance matrix for MUSIC algorithm is 
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obtained from a large number of snapshots whereas, for time reversal TRO is 

obtained from a single snapshot. 

From (48) and (49) we know that 

 
2

( ) ( ) ( )
H H

K K V Σ V  (83) 

We can also obtain 

 
2

( ) ( ) ( )
H H

KK U Σ U  (84) 

Hence, 
H

U V . The singular values or the eigen values for well resolved point 

scatterers embedded in homogeneous medium can then be related to the number of 

scatterers present on a one-to-one basis. The rank of TRO will then be equal to the 

dimension of the vector space, NC spanned by the orthonormal singular vectors nu  

and nv . Hence, it is required that number of transmitter and receiver antenna array 

elements to be greater than the number of targets to be detected. The vector space, 

NC  can be expressed as  

 NC S N  (85) 

where, S is the signal subspace and N is the noise subspace and  denotes the 

direct sum. As a result C S N  and 0N S = . The noise subspace will be then 

orthogonal to the signal subspace i.e. N = S [156]. The signal subspace is spanned 

by the eigen vectors corresponding to significant eigen values 2 2
n  while the 

noise subspace is spanned by the eigen vectors corresponding to insignificant eigen 

values 2 2 0n . Hence, the orthogonal relationship between the two subspaces 

can be used to obtain the location of the scatterer. 
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DORT makes use of signal subspace for target localization, whereas the TR-

MUSIC utilizes noise subspace and its orthogonal relation with the signal subspace. 

DORT is capable of selective focusing at individual target location. TR-MVB and 

TR-MUSIC cannot selectively focus on individual scatter. But, TR-MUSIC has the 

advantage of having higher resolution compared with other element space time 

reversal imaging techniques. 

 

3.5.1 Effects of Clutter and Finite Sized (Non-Point) Targets 

For well resolved point targets, the singular values and singular vectors are 

related in a one-to-one manner [156]. However, the presence of clutter and/or non-

point targets will produce multiple significant eigen values  for each target [57]. To 

demonstrate this we will consider a 2D homogeneous medium in which circular 

cylindrical targets are present as shown in Figure 3-13. The blue dots indicate the 

elements locations of a 21 elements uniform circular array (UCA). The radius of the 

UCA is 55mm. All the elements are essentially electrical line sources that are infinite 

along z-axis. The background medium is assumed to be free space. The red circle is 

the top view of a dielectric cylinder of radius 10mm. Each element of the antenna 

array transmits a differentiated Gaussian pulse with 3dB bandwidth 1.5−5 GHz with 

centre frequency 3GHz.  

Let us first consider a cylinder with finite radius in the presence of clutters. We 

consider a 1mm diameter dielectric cylinder with two other dielectric cylindrical 

clutters in the bounded region of the UCA. The backscattered fields are obtained 

using FDTD simulation to form the multistatic matrix as explain in section 3.3. 

Using SVD we obtain the singular values. The first seven singular values are shown 
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in Figure 3-14. We can observe that there are two significant singular values which 

have higher magnitude. The third singular value has magnitude that is about 50% of 

the most significant singular value. The singular values that have smaller magnitudes 

could be due to the presence of the clutter sources in the medium. Next we model 

problem with 20mm dielectric cylinder as the target and the first seven singular 

values of the multistatic matrix is plotted in Figure 3-15. We can also observe that 

there are three significant singular values. The fourth and fifth singular values are 

approximately 20% or less compared to the magnitude of the most significant 

singular value. The singular values for 40mm diameter cylinder as plotted in Figure 

3-16 mainly to compare with the singular values obtained from the multistatic matrix 

for 20mm diameter cylinder as given in Figure 3-15 to investigate the effect of the 

scatterer size on singular values. It is observed that around 3GHz frequency the 

magnitude of the fifth singular value is about 30% compared to the most significant 

singular value. The sixth and seventh singular values are lower than 10% to 20% 

compared to the maximum singular value. Hence, this clearly demonstrates that 

increasing the size of the scatterer will lead to more redundancy that is producing 

more significant singular values i.e. larger signal subspace dimension. Also there is 

no one-to-one correspondence between eigen vectors and number of targets. This 

may lead to ambiguities in the localization of the scatterers. When using subspace 

based techniques, also leads to problems in appropriately identifying the orthogonal 

subspaces for non-point targets to accurately localize them. 
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Figure 3-13. Simulation set up for investigating effect target size on singular values 

of TRO. 

 

 

Figure 3-14. First seven singular values of the multistatic matrix due to scattering 

from a 1mm diameter dielectric cylinder embedded in homogeneous medium with 

two cylindrical dielectric clutters. 
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Figure 3-15. First seven singular values of the multistatic matrix for a 20mm 

diameter dielectric cylinder in homogeneous medium. 

 

 

Figure 3-16. First seven singular values for a 40mm diameter dielectric 

cylinder in homogeneous medium. 
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Figure 3-17. First seven singular values for a 7mm diameter tumor in 2D C3 

phantom. 

 

Now we consider the effects of clutter on the eigen structure of the multistatic 

matrix. The first seven singular values computed when a 7mm sized tumor is 

inserted inside a 2D C3 breast phantom are plotted in Figure 3-17. It can be observed 

that the magnitude of seventh singular value is smaller approximately by 30% of the 

first and most significant singular value. It is known (see chapter 2) that a C3 

phantom has up to 80% glandular tissue content, which acts as a source of strong 

clutter. This glandular tissue clutter contributes to significant singular values. It can 

be further clarified by considering Figure 3-18 which shows the magnitudes of first 

ten singular values computed from the multistatic matrix of a 3D C4 breast phantom 

containing a 10mm sized embedded tumor. The singular values are computed for co-

polar fields only. SVxx indicates the co-polar singular values for the scattered field 

received by the x-directed dipoles when x-directed dipoles were excited. It can be 
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observed that the co-polar field singular values have almost identical distribution 

across frequency.   

 

 
Figure 3-18. First ten co-polar field singular values for 10mm tumor in 3D C4 

phantom. 

 

We have embedded only a single tumor for all the cases considered for 2D and 

3D breast phantoms. However, our results demonstrate multiple significant singular 

values after SVD of the multistatic matrix. Thus, the generation of multiple singular 

values for a single target pose challenges of target localization in highly 
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heterogeneous medium as a breast. The challenges are from difficulties in estimation 

of the orthogonal subspaces viz. signal subspace and noise subspace. The singular 

values distribution indicates some of the challenges of target localization in highly 

heterogeneous medium. It becomes difficult to estimate the signal and noise 

subspaces. Subspace selection is very important in target detection and localization 

in order to avoid false alarms as well as false negatives.  

 

3.5.2 Akaike Information Theoretic Criterion for Subspace Estimation  

It becomes difficult to estimate the two orthogonal subspaces for non-point 

targets embedded in a medium with clutter. Information theoretic criterion such as 

Akaike information criterion (AIC) or minimum description length (MDL) [102, 

171] can be used to estimate the subspaces. AIC is more suitable when the 

magnitude spread between eigen values are small [172]. AIC also exhibits lower 

error than MDL for tumor localization in biological tissues [102]. Hence, we employ 

AIC in this thesis. We can represent multistatic matrix in terms of signal subspace 

and noise subspace as 

 K UΣV U Σ V U Σ VS NS S N N  (86) 

where,  
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here, ,U V and Σ  denotes left and right singular vectors and the singular values of 

the multistatic matrix respectively. The subscripts S and N  indicate the signal 

subspace and noise subspaces respectively. 

The sufficient statistic to estimate the signal subspace [173] is obtained as  the 

likelihood function of P is given by 

 

3

3( 1)

1
3 3 3

3( 1)

1
3 3(3 3 )

N
nn P

N N P
nn P

P
N PL N P lnP  (89) 

Hence, LP(P) is proportional to the logarithm of the arithmetic mean of (N−P) 

smallest eigen values to the geometric mean of (N−P) smallest eigen values. This 

function is minimized when the (N−P) smallest eigen values are equal and thus 

corresponding noise subspace and signal subspace can be obtained. 

Akaike Information Criterion (AIC) considers a parameterized family of 

models with probability densities . We consider the received scattered 

response from the breast is contaminated by AWGN. Considering the number of 

freely adjusted parameters in  i.e. the degrees of freedom Akaike proposed to 

choose the model that has the minimum AIC score as following 

 2 2ˆ|x pAIC lnp kxθ  (90) 

where  is the maximum likelihood estimation of  and  is the degrees of 

freedom in . Now we can write AIC test as 

 ( ) ( )PAIC P P k PL  (91) 

where, 
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k(P) can be obtained as [174] 

 (2 ) 1k P NP P  (93) 

So, we get 

 ( ) (2 )P PAIC P P N PLPLLL  (94) 

We need to select the model with minimum AIC score. Hence, 

 ˆ arg min
PAICP AIC P  (95) 

 

3.5.3 Time Reversal using Signal Subspace- DORT Imaging  

Decomposition of the time reversal operator (DORT) uses the eigen vectors 

spanning the signal subspace to localize the scatterers. When targets are well 

resolved, they can be individually localized using DORT [17]. Also DORT is more 

robust against noise and clutter than TR-MUSIC and TR-MVB imaging techniques. 

For well resolved point targets, each significant nonzero eigen value of TRO 

corresponds to the presence of a target in the background and they are related to the 

Green’s function of the medium, g(r) as given below [175]  

 
o
p

p o
p

g r
v

g r
 (96) 

As a result the targets can be localized using the signal subspace eigen vectors as 

illustrated in Figure 3-19. The back propagation is carried out using the Green’s 

function vector of the medium. However, when finite sized non-point targets are 
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present, multiple eigen vectors will be associated with a single target. Hence, it is 

difficult to uniquely localize such targets. 

 

 

Figure 3-19. Selective focusing using signal subspace eigen vectors for DORT 

imaging. 

 

3.5.3.1 DORT Imaging Function 

DORT image is obtained by back propagating eigen vectors corresponding to 

the signal subspace of the TRO using appropriate Green’s function of the medium. 

The Green’s function vector for the region in which the target is embedded is 

multiplied by the signal subspace eigen vectors in frequency domain. The eigen 

vectors are orthogonal for well resolved scatterers. Hence, at the original target 

locations bright focus can be observed. Image refers to the spatial distribution of 

pseudo energy due to time reversal back propagation of scattered target response. 

Time reversal is applicable for homogeneous as well as heterogeneous medium. In 

breast cancer imaging applications the breast heterogeneity is unknown. Hence, we 
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use as equivalent homogeneous medium whose dielectric properties closely 

approximate the original medium. 

For 2D models, we consider TM-z polarization. The DORT imaging function 

is given by 

 
ˆ

2

1
( ) ( )

AICP
H

DORT n
n

I r v g r  (97) 

This is frequency domain imaging approach and sometimes referred to as centre 

frequency DORT (CF-DORT) as the centre frequency of each bin is used in imaging 

operation. Ultra wideband image is obtained by combining images obtained by 

individual narrow band frequency bins. 

For DORT imaging in 3D models we need to use dyadic Green’s function of 

an equivalent homogeneous medium to back propagate the signal subspace eigen 

vectors. We consider eigen vectors for the co-polar fields only. The DORT imaging 

function for 3D models can be expressed as 

 
2

1

ˆ

( ) ( )
AIC H

nDO T

P

R
n

I r v g r  (98) 

where, ˆ
AICP  is obtained as ceil(PAIC/3). PAIC is obtained using AIC on TRO, T . 

 

3.5.4 Time Reversal using Noise Subspace- TR-MUSIC Imaging 

The noise subspace can also be used for time reversal imaging. The signal 

subspace is fully orthogonal to the noise subspace in ideal case. The eigen vectors 

form the orthonormal bases of the Green’s function vector. As a result at an actual 

target location, ro the inner product ( )H o
nv g r  is zero for eigen vector vn spanning 
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the noise subspace. MUSIC algorithm is used for imaging targets from the noise 

subspace of the multistatic matrix. In practical scenarios the pseudo energy has a 

peak at the target location can be observed from the TR-MUSIC pseudo-spectrum. 

However, the focusing performance of TR-MUSIC is susceptible noise and 

scattering from clutter in the medium and can thus result in spurious peaks at 

arbitrary locations depending on the density and strength of clutter as well as the 

level of noise. As a result TR-MUSIC at a single frequency may not be reliable for 

target localization. However, use of wideband for time reversal would lead to a self-

averaging process [176] and hence stable. In case of UWB imaging the whole 

bandwidth is divided into a large number of narrow band frequency bins and time 

reversal imaging is performed at the centre frequency of each bin. Averaging over 

wide bandwidth where the imaging results over separate frequency bins become 

uncorrelated in turn results in stable images.  Thus when multiple frequency bins 

over wide bandwidth are used, time reversal image becomes statistically stable and 

in addition to the averaging effects it minimizes the dispersion of focussed energy 

into surrounding areas forming side lobes.  

When strong clutter is present in the background medium in addition to target 

the singular values of multistatic matrix roll of gradually. The singular values 

obtained from multistatic matrix of a 2D C3 breast phantom computed at 2GHz is 

shown in Figure 3-20 mainly to illustrate the effects of strong clutter. Hence, it is 

difficult to make any distinction between the two orthogonal subspaces. The 

presence of strong clutter sources do partially contribute to the signal subspace. As a 

result when imaging is carried out using the noise subspace, the clutter peaks are 

difficult to separate from the target peaks in the resulting TR-MUSIC pseudo-

spectrum. It is worth mentioning that there is no linear relationship between a peak 
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of pseudo energy and corresponding scatterer scattering strength of a target of 

clutter. 

 

 

Figure 3-20. Normalized singular values of multistatic matrix obtained when a 2-D 

C3 breast phantom was employed at a frequency of 2GHz. 

 

Unlike DORT, TR-MUSIC cannot selectively focus onto individual target 

locations. However, TR-MUSIC has superior resolution and is able to distinguish 

between two targets located within sub wavelength distances.  

 

3.5.4.1 Time Reversal MUSIC Imaging  

The Green’s function vectors resulting from well resolved targets are mutually 

orthogonal. For non-well resolved target the background medium Green’s function 

vectors are non-orthogonal but still are contained within the signal subspace [156]. 

As a result the inner product of noise subspace eigen vector and medium Green’s 
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function vector is still zero irrespective of whether the targets are well resolved or 

non-well resolved. 

 
0

( ) 0
n

H o
nv g r  (99) 

 where, vn is the n-th eigen vector of the TRO which spans the noise subspace. 

The TR-MUSIC pseudo spectrum is thus given by 

 
2

1ˆ

1( )
( )

AIC

TR MUSIC N
H

n
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 (100) 

TR-MUSIC can produce very sharp peaks at target location and suitable for imaging 

with high resolution closely spaced targets. TR-MUSIC imaging function for 3D 

medium imaging is given by 

 
2

1ˆ

1( )
( )

AIC

TR MUSIC N H
n

Pn

I r
v g r

 (101) 

where, ˆ
AICP  is obtained as ceil(PAIC/3), and ceil(.) represents round-up to the nearest 

integer. PAIC is obtained using AIC on TRO, T . 

 

3.5.5 Simulation Results for Element Space Time Reversal Subspace Based 

Imaging 

We use element space subspace based time reversal techniques for imaging 

anatomically realistic 2D as well as 3D breast phantoms. The details about the 

different types of phantoms used in this chapter as well as simulation setup are 

provided in chapter 2. Tumor locations and sizes for different cases have been 
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provided in Table 2-2. The dielectric constant used for synthetic time reversal 

imaging using different types of breasts phantom is provided in Table 2-3.  

 

3.5.5.1 Simulation Results using Decomposition of the Time Reversal Operator 

Imaging 

We first consider DORT imaging using 2D numerical breast phantoms. The 

actual tumor location in 2D phantom is indicated using a small white circle. DORT 

imaging for C2 breast phantom is shown in Figure 3-21. It can be observed that the 

tumor location is accurately estimated as highest image intensity coincides with the 

actual tumor location. DORT imaging result for 2D C3 phantom is shown in Figure 

3-22. The results on C3 phantom shows that the time reversal focus occurs over 

larger area surrounding the target as compared to focus for C2  phantom image. As 

the area of focus becomes larger, the uncertainty of the location of the target (in this 

case tumor) increases. In the case of C2 phantom, the fatty tissues dominate and 

hence the dielectric property constant is larger between target tissue (tumor) and 

surrounding fatty tissues. For C3 phantom the glandular tissue content is quite high 

and hence, the scattering for clutter increases the uncertainty of localization. Also C3 

phantom image shows stronger clutter effect compared to C2 breast phantom. Hence, 

challenges for DORT imaging will increase with increasing clutter and 

heterogeneity. 
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Figure 3-21. DORT imaging for 2D C2 breast phantom. 

 

 
Figure 3-22. DORT imaging for 2D C3 breast phantom. 
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(a) 

 
(b) 

 
 (c) 

Figure 3-23. DORT imaging for 3D C2 phantom (a) 3D view, (b) sagittal view, 
and (c) coronal view. 
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Figure 3-24. DORT imaging for 3D C3 phantom (a) 3D view, (b) sagittal view,      
and (c) coronal view. 

 
(a) 

 
(b) 

 
(c) 
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Now we consider DORT imaging for 3D breast phantoms. The imaging result 

for 3D C2 and C3 phantoms are shown in Figure 3-23 and Figure 3-24 respectively. 

The actual location of the artificially introduced dielectric tumor is indicated using 

the small spherical inclusion. The imaging results show that the 8mm sized tumor 

location is accurately estimated in C2 phantom as time reversal focusing is achieved 

close to the tumor location. In the case of C3 phantom containing 10mm sized 

tumor, we can observe that the time reversal focusing occurs in the close vicinity of 

the actual tumor location. However, in the case of C3 phantom high intensity energy 

can be seen in other area due to effects of presence of glandular tissue clutter. Since 

C2 phantom contains mostly fatty tissue background, the image has less interference 

from glandular tissues. 

Finally we now consider the worst case a highly dense i.e. the C4 breast 

phantom which contains 80% or more glandular tissue background. The DORT 

imaging results for 10mm sized tumor detection in C4 phantom is shown in Figure 

3-25. It can be seen that DORT image contain very strong side lobe. The side lobe 

for C4 phantom is considerably higher than C3 phantom due to the presence of 

higher amounts of dense glandular tissues in the breast. However, DORT 

performance is superior for C4 breast compared with TR-RCB. In case of DORT 

although the side lobe is very high, tumor is located within the high intensity region 

and false peaks are not present. 
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 (a) 

 
(b) 

 
(c) 

Figure 3-25. DORT imaging for C4 phantom (a) 3D view, (b) sagittal view, 
and (c) coronal view. 
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3.5.5.2 Simulation Results using Time Reversal MUSIC Imaging 

First we consider TR-MUSIC imaging in 2D breast phantoms. TR-MUSIC 

imaging for 2D C2 and C3 phantoms are shown in Figure 3-26 and Figure 3-27 

respectively. For C2 phantom we observe very sharp focusing at the tumor location. 

There are also a few minor peaks resulting from sparsely located glandular tissues 

that form the clutter. In the case of C3 breast phantom, highest intensity of the image 

representing peak of TR-MUSIC pseudo-spectrum is observed very close to the 

actual tumor location. However, we also observe a few strong and few weak 

intensity regions because of the presence of higher amount of glandular tissue 

distributed randomly in C3 breast phantom. These results indicate that TR-MUSIC 

can provide highly accurate estimation of tumor location in breasts that have high 

fatty tissue background. In dense breasts glandular tissue scattering leads to location 

and detection ambiguities about the presence or absence of tumor in the breast. 

Further these techniques may fail to detect multiple tumors inside dense breasts. 

 

 

Figure 3-26. TR-MUSIC imaging for 2D C2 phantom. 



Chapter 3: Element Space Time Reversal Microwave Imaging Techniques for Breast 
Cancer Detection 

125 
 

 
Figure 3-27. TR-MUSIC imaging for 2D C3 phantom. 

 

We also consider TR-MUSIC imaging in 3D C2 and C3 breast phantoms are 

shown in Figure 3-28 and Figure 3-29. It can be observed from Figure 3-28 that for 

3D C2 breast phantom the tumor location is unambiguously identified similar to 2D 

C2 phantom imaging result by TR-MUSIC. In case of the C3 phantom there are 

significant side lobes present in the TR-MUSIC image. The highest intensity of TR-

MUSIC image has focused around the actual tumor location. However, some minor 

peaks with reasonable intensity can be observed from the image. These minor peaks 

create localization ambiguities. These results once again confirm the deterioration of 

TR-MUSIC imaging performance for highly heterogeneous and dense breasts. 

Finally we consider TR-MUSIC imaging in Figure 3-30 for a 3D C4 breast 

phantom in which a 10mm sized single tumor is inserted. TR-MUSIC image for C4 

phantom shows a weaker response at the tumor location when compared to C3 

phantom TR-MUSIC image. Although the highest intensity occurs in the area 

surrounding the true tumor location, spurious peaks are also observed across the 

image. The spurious peaks can cause false positives as well as ambiguity regarding 

the presence of tumors. 
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(a) 

 
(b) 

 
 (d)  

Figure 3-28. TR-MUSIC imaging for 3D C2 phantom (a) 3D view, (b) sagittal 
view, (c) coronal view. 
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Figure 3-29. TR-MUSIC imaging for 3D C3 phantom (a) 3D view, (b) sagittal 
view, (c) coronal view. 

 
(a) 

 
(b) 

 
 (c) 
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(a) 

 
(b) 

 
 (c) 

Figure 3-30. TR-MUSIC imaging for C4 phantom (a) 3D view, (b) coronal 
view, and (c) sagittal view. 
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3.5.5.3 Simulation Results for Verification of AIC Performance 

We have used AIC to resolve the two orthogonal subspaces. In order to 

investigate the accuracy of AIC for subspace selection, we carry out DORT imaging 

with signal subspaces smaller and larger than that obtained from AIC. First we 

consider the case of 3D C2 breast phantom as shown in Figure 3-31 and Figure 3-32 

respectively. We use 2 singular vectors more or less to increase or decrease the 

signal subspace dimension obtained using AIC. In both cases it is clearly observed 

that there is loss of focus at the tumor location and also clutter effects increase with 

increasing signal subspace dimension. However, the actual tumor location was very 

accurately estimated in C2 phantom using AIC for DORT imaging as shown in 

Figure 3-23. The fact is evident that the eigen vectors are no longer related in one to 

one manner with the scatters in a highly clutter scenario rather a single scatterer is 

associated with multiple eigen vectors. When the signal subspace eigen vectors are 

correctly used the tumor location can be accurately estimated. But when we use 

inappropriate signal subspace for DORT imaging there is loss of focus and increase 

in sidelobes.  

In order to further illustrate the advantage of AIC criterion for subspace based 

imaging we also consider the 3D C3 breast phantom for DORT imaging. We also 

compare the DORT images for signal subspace dimension smaller and larger than 

that obtained using AIC in this case. The imaging results are shown in Figure 3-33 

and Figure 3-34 respectively. In both cases for C2 and C3 phantoms there is loss of 

focus and increase in clutter effects as we use smaller or larger number of eigen 

vectors than that obtained from AIC for DORT imaging.  
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(a) 

 
(b) 

 
(c) 

Figure 3-31. DORT imaging in C2 breast phantom for signal subspace smaller than 
that obtained using AIC (a) 3D view, (b) sagittal view, and (c) coronal view. 
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(a) 

 
(b) 

 
(c) 

Figure 3-32. DORT imaging in C2 breast phantom for signal subspace larger than 
that obtained using AIC (a) 3D view, (b) sagittal view, and (c) coronal view. 
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(a) 

 
(b) 

 
 (c) 

Figure 3-33. DORT imaging in C3 breast phantom for signal subspace smaller than 
that obtained using AIC (a) 3D view, (b) sagittal view, and (c) coronal view. 
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(a) 

 
(b) 

 
 (c) 

Figure 3-34. DORT imaging in C3 breast phantom for signal subspace larger than 
that obtained using AIC (a) 3D view, (b) sagittal view, and (c) coronal view. 
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3.6 Performance Comparison of Element Space Time Reversal 

Imaging Technique 

We compute peak to side lobe ratio (PSLR) in 3D breast phantoms for all the 

techniques to compare their performance as shown in Table 3-1. PSLR is defined as 

 maxPSLR 20log
smx

I
I

 (102)  

where, Imax is the maximum image intensity corresponding to tumor and Ismx is the 

most significant side lobe amplitude. It is observed that element space time reversal 

technique leads towards poor performance with increasing breast tissue density and 

heterogeneity. For C2 breast phantom PSLR is positive for all the imaging 

techniques. PSLR for C4 phantom imaging is negative for all the techniques. Hence, 

element space time reversal imaging is suitable for C2 type fatty breasts. TR-RCB 

imaging PSRL is higher than TR-SCB imaging. DORT imaging also shows higher 

PSLR  for all the phantoms compared with TR-MUSIC imaging. 

 

Table 3-1. PSLR (dB) of element space time reversal imaging techniques for 3D 

breast phantoms. 

Imaging Technique C4 Phantom C3 Phantom C2 Phantom 

TR-SCB -4.29 -1.83 1.21 

TR-RCB -1.93 -1.47 1.62 

DORT -2.15 0.915 8.40 

TR-MUSIC -3.34 -0.72 1.01 
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3.7 Discussion 

In this chapter we extend TR-MVB techniques such as TR-SCB and TR-RCB 

for 3D microwave imaging and evaluate their performance for breast cancer 

detection in anatomically realistic different types of breast phantoms for the first 

time. Both TR-SCB and TR-RCB performs quite well for C2 phantom. However, 

TR-SCB performance rapidly declines with increasing clutter, dense glandular 

tissues in C3 and C4 breasts. TR-RCB shows superior imaging results compared to 

TR-SCB as it is less sensitive to Green’s function vector mismatch. We also use 

subspace based techniques TR-MUSIC and DORT for breast cancer detection in 

various types of numerical breast phantoms. We demonstrate the effects of clutter 

and non-point targets on the singular value structure of multistatic matrix or 

equivalently eigen value structure of the TRO using simulation results for finite sized 

dielectric cylindrical targets and clutter. Subspace based techniques requires precise 

estimation of the mutually orthogonal signal subspace and noise subspace. We 

propose use of AIC to obtain the two orthogonal subspaces. When we do not 

synthesize the subspaces using AIC loss of focus and increased clutter effects are 

observed. DORT shows some robustness against increasing clutter i.e. breast 

density. However, DORT resolution decreases as a result of increasing side lobes 

with increasing breast density. TR-MUSIC performance has similar performance 

trend as DORT. But TR-MUSIC has high resolution. TR-MUSIC also produces 

spurious peaks, creating confusion and ambiguity regarding presence and location of 

tumor. Hence, element space time reversal imaging techniques are suitable for breast 

imaging only up to C3 phantom. Further processing is required to unambiguously 

detect tumor in C4 phantom.  
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Chapter 4 : Beamspace Time Reversal Microwave Imaging 

for Breast Cancer Detection 

4.1 Introduction 

Beamspace processing can enhance the time reversal microwave imaging. In 

beamspace processing, the output of a beamformer is used to transform element 

space data into beamspace [174, 177-180]. Beamspace processing can be used for 

wideband signal processing [181, 182] with many advantages over element space 

techniques. Element space techniques directly use the output from sensor elements 

for processing and hence lack the ability for beamforming. Beamforming is generally 

referred to as a signal processing technique to control the directionality of signal 

reception as well as transmission. Beamspace techniques outperform element space 

techniques at low signal to noise ratio (SNR) levels due to the processing gain 

offered by beamforming which can be achieved as a result of beamspace processing 

[178, 183]. When the number of elements of an antenna array is large, it can be 

useful to generate a set of beams which can be treated as a preliminary step for 

further processing [174]. Beamspace processing can be performed using a number of 

beams created by an array and hence has the advantage of using reduced dimensions 

compared to element space. The advantage of reduced dimensional beamspace 

processing is the reduction of computational load required for processing due to 

reduced degrees of freedom when compared with the element space processing. 

Beamspace techniques are also suitable when small number of independent data 

samples is available [184]. Beamspace processing has been used in many 

applications including DOA estimation [178, 185, 186], radar tracking [179, 187, 
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188], source localization [184, 189, 190], imaging[183, 191] etc. The beamspace 

transformation is particularly well suited for radar based microwave imaging in 

which the interferences originate from the region focused by the transmitted beam 

[183]. For time reversal imaging beamspace processing exploits the beamforming 

ability of the receiver array and offers a reduced dimensional processing of the time 

reversal operator (TRO). This makes it possible to perform the TR imaging using the 

received data collected by antennas positioned at any arbitrary locations around the 

target. The element space methods use spatial statistics of only the array elements 

and hence lack the beamforming ability to differentiate between signals and 

interferences [174, 183]. 

In this chapter, we propose novel beamspace time reversal algorithms to be 

used in conjunction with DORT (B-DORT), TR-MUSIC (B-TR-MUSIC) and TR-

RCB (B-TR-RCB) techniques for microwave imaging for breast cancer detection. 

We will demonstrate the superior ability of these proposed techniques for the 

detection of malignant tumor in breast phantoms that contain high amount of dense 

fibro-glandular tissue clutter and inhomogeneity and compare the performance with 

their element space counterparts. Beamspace processing helps to reduce interference 

originating for dense glandular tissue clutter. Conventional element space imaging 

techniques fail to detect a tumor in highly dense breasts due to the presence of large 

portion of dense fibro-glandular and fibro-connective tissues. Extension of 

beamspace techniques for time reversal imaging was initially proposed by M. J. 

Abedin and A. S. Mohan [192] for subspace based time reversal imaging for use 

with simplified 2D deterministic breast models. In this chapter, we extend the use of 

beamspace time reversal process for realistic and highly dense breast phantoms. We 
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derive 3D beamspace transformation useful for 3D beamspace time reversal imaging 

and carry out error analysis.  

The rest of the chapter is organized as follows. In sections 4.2 and 4.3 we 

derive beamspace processing formulation time reversal imaging in 2D and 3D 

scenarios respectively. In section 4.4, we derive beamspace time reversal techniques 

for both subspace based time reversal imaging as well as minimum variance time 

reversal imaging. Simulation results obtained on breast phantoms using the 

beamspace time reversal imaging are presented in section 4.5. Section 4.6 provides 

discussion on the key outcomes of the chapter. 

 

4.2 Beamspace Processing for 3D Time Reversal Microwave 

Imaging 

Our goal in this chapter is to use beamspace processing with time reversal for 

microwave imaging using 3D breast phantoms. Beamspace processing is carried out 

using a beamspace beamformer that combines the outputs of multiple beamformers. 

Assuming there are N-antenna elements arbitrarily placed in a 3D bounded region. 

The resulting 3N×3N multistatic matrix, K  can be beamspace transformed using a 

beamspace processing matrix, B  as  

 
H

BK B K  (1) 

We assume that B  has a dimension of 3N×3M where it is required that for 

imaging P-targets N>M>P. We then need to find the array weight vectors in the form 

of beamspace processing matrix B which in turn depends on array geometry. IN this 

thesis, we employ 3D cylindrical array formed by many vertically stacked uniform 



Chapter 4: Beamspace Time Reversal Microwave Imaging for Breast Cancer Detection 

139 
 

circular arrays (UCA) for imaging and hence we derive beamspace processor for 3D 

cylindrical array. A cylindrical array is suitable for breast cancer imaging as it 

facilitates the patient lying in supine position can insert the breast into the array 

structure for imaging as discussed in chapter 2. 

 Let us consider a cylindrical antenna array consisting of C concentric circular 

arrays which are stacked along z-axis parallel to each other. Each of the circular 

arrays consists of D antenna elements where the elements are uniformly distributed 

over the circumference of each circular ring. The vertical separation between two 

consecutive circular rings is / 2L . So the total number of elements in the array is 

N=CD. The locations of the antenna elements are denoted by t
nr  where n = 1,2,…,N. 

The elevation angle is measured from positive-z axis while the azimuth is measured 

counter clock-wise from the positive x-axis. The antenna elements of the array are all 

considered to be ideal elements with constant phase and gain response and 

impedance characteristics over the band of interest. Antennas located in each of the 

different rings produce different elevation angles θc where, c = 1,2,…,C as a result of 

displacement along z-axis. The antenna array elements are deployed to radiate the 

microwave pulse towards the whole volume enclosing the target. 
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Figure 4-1. Cylindrical antenna array. 

 

Now we can express the radiation from the array using spherical harmonics.  

We consider a continuous circular aperture for each circular ring. The total 

field is obtained by summing the contribution for each ring. The far field pattern can 

be expressed as 

 ( , , ) 4 ( ) ( , )cn l
m l lh

l h
f r i j kr Y  (2) 

where, m=-M,…,-1,0,1,...,l(l+1)+h,…M, l=0,1,…, h=-l,…,l, jl denotes spherical 

Bessel function of first kind and Ylh denotes spherical harmonics [193]. Here, the 

superscript cn indicates continuous aperture and sub script m indicates the m-th 

phase mode. The continuous wave field is sampled at discrete points corresponding 

to the cylindrical array elements locations. The sampled wave field is thus expressed 

as  

 ( , , ) 4 ( ) ( , )x x x l x x x
m n n n l n lh n nnm

l h l h
f r i j kr YF  (3) 
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where, n=1,2,…,N and m=-M,…0,…,M and n-th antenna location is given by 

( , , )x x x x
n n n nrr . 

 

4.2.1 Beamspace Processing for 3D Cylindrical Array 

We consider pattern multiplication to synthesize the cylindrical array. A 

conformal cylindrical array such as the one shown in Figure 4-1 is neither a uniform 

circular array (UCA) nor a uniform linear array (ULA). However, since the 

cylindrical array is formed of many stacked UCAs in xy-plane that are parallel to 

each other, the vertical arrangement forms a linear array in the z-axis direction. 

Using array synthesis, we can synthesize array factor as  

 cyl lin cirF F F  (4) 

where, Flin is the array factor for the vertical linear array formed of stacked UCAs 

along z-axis, Fcir is the array factor for circular array in xy-plane and Fcyl is the array 

factor of the combined 3D cylindrical array. Since the linear array is formed of 

elements of ULA’s stacked along z-axis, we can express array factor for the ULA as 

 H
lin lin linF w a  (5) 

where, 1 2[ , , ..., ]lin lin lin H
lin Cw w ww  is the complex array weight vector and 

1 2[ , , ..., ]lin lin lin T
lin Ca a aa is the array steering vector for the linear array. Each of 

the C UCAs consists of D elements on the xy-plane. Now, the array factor for UCAs, 

Fcir can be obtained as 

 H
cir cir cirF w a  (6) 
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where, 1 2[ , , ..., ]cir cir cir H
cir Dw w ww  is the complex array weigh vector for the UCA 

and the array steering vector is given by, 1 2[ , , ..., ]cir cir cir T
cir Da a aa . The UCA 

and ULA array weight vectors can be obtained as 

 2 / 2 ( 1)/1 [1, , ..., ]m j m D j m D D H
cir e e

D
w  (7) 

 2 / 2 ( 1)/1 [1, , ..., ]m j m C j m C C H
lin e e

C
w  (8) 

where, m [-M, M] is m-th mode of the array. The array steering vectors for the UCA 

and ULA is given by 

 1 2 1sin cos( ) sin cos( ) sin cos( )[1, e , e , ..., e ]Djkr jkr jkr T
cira  (9) 

 cos 2 cos ( 1) cos[1, e , e , ..., e ]jkL j kL j C kL T
lina  (10) 

where, 2 ( 1) /d d D , r is the radius of UCA, and L is the spacing between the 

elements of the ULA. The array factor for 3D cylindrical array is finally obtained by 

substituting (5) and (6) into (4) as  

 ( )( )H H H
cyl lin cir lin cir cyl cylF w w a a w a  (11) 

where, the array weight vector for the cylindrical array, wcyl is formed as H H
lin cirw w , 

the steering vector, acyl is given by lin cira a , and  denotes Kronecker product. 

Thus, wcyl and acyl are vectors of length CD. 

 1 1 1 2 1[ , ,..., , ]H lin cir lin cir lin cir lin cir
cyl C D C Dw w w w w w w ww  (12) 

We can express acyl as follows 
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1

2

2

1

sin cos( )

sin cos( )

{ sin cos( ) ( 1) cos }

{ sin cos( ) ( 1) cos }

1
e
e

e
e

D

D

jkr

jkr
cyl

jk r C L

jk r C L

a  (13) 

We consider a cylindrical array with C=5, D=23, L=14mm and r=70mm. The 

resulting array beam pattern is illustrated in Figure 4-2. 

The weight vectors for the cylindrical array can be expressed in terms of 

modes [ , ]m M M  as 

 2 /

2 / 2 /

2 ( 1)/ 2 ( 1)/

2 /

2 / 2 / 2 / 2 /

2 ( 1)/ 2 ( 1)/ 2 ( 1)/ 2 ( 1)/

1 1 1
1

1
1

1
1

1

j M C

j M D j M D

j M D D j M D D

j M C

j M D j M C j M D j M C

j M D D j M C C j M D D j M C C

e

e e

eDC

e e

e e

e e

W

1
11 e111

22222je11 22

111
j2e11 j21 22

2 (2 (2 (2 ((2 (2 (j (e11 2 (2 (2 (

 (14) 

Here, W is a matrix of size N×(2M+1) that can be used to map element space data 

into beamspace. We consider only co-polarized backscattered response for the breast 

tissues. Details about the 3D breast phantoms and resulting backscattering response 

are provided in chapter 2 and chapter 3 respectively. Hence, the beamspace 

processing matrix of dimension 3N×3(2M+1) can be obtained as 

 , , ,,
{ , , }n m n m n mn m

diag W W WB  (15) 
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Figure 4-2. Cylindrical array beam pattern 

 

4.2.2 Truncation Error for 3D Beamspace Processing 

Truncation error also occurs in 3D for cylindrical array as a result of using a 

finite number of terms in the spherical mode expansion. For ideal isotropic antenna 

elements without mutual coupling the sampled field in 3D can be expressed using 

spherical harmonics as shown in (3). Let us consider the array sampling matrix for 

an array of N-elements located at x
nr , where n=1, 2, …, N. The array sampling matrix 

can be obtained as 

 
,

4 ( ) ( , )l x x x
l n lh n nn m

n l h
i j kr YF  (16) 

where, n=1,2,…,N, m=-M,…,-1,0,1,..., l(l+1)+h,…M, l=0,1,…,h=-l,…,l, sensor 

location for spherical coordinate system is ( , , )x x x x
n n n nrr , jl denotes spherical 

Bessel function of first kind and Ylm denotes spherical harmonics. The truncation 

error arises as we consider a finite number of modes in (16) as shown in (14). 

However, it is possible to safely truncate (16) without significant truncation error to 
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minimize its impact on beamspace processing. Using spherical harmonic sum rule 

[193] we obtain 

 2 1( , )
4

l

lh
h l

lY  (17) 

Hence, as a result of truncation the dominant residue term is ( )x
l nj kr corresponding 

to m>M. The mean square error (MSE) can be expressed as 

 
2 2 2

1
( ) (2 1) ( )

cut

x
l n

l l
l j krrE  (18) 

where, M=lcut(lcut+1)+lcut. Instead of using infinite series, the truncation error can be 

expressed using finite terms only by normalizing the array sampling matrix. 

 
2 2

0
( ) 1 (2 1) ( )

cutl
x

l n
l

l j krrE  (19) 

We compute the dominant error term for different modes of the cylindrical 

array under consideration as shown in Table 4-1. It is observed that considering 

sufficient number of spherical modes for the array, the truncation error can be 

negligible as shown in Table 4-1. Hence, we can safely truncate mode terms without 

sacrificing accuracy. 
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Table 4-1. Dominant truncation error term for different modes of the 

cylindrical array. 

M Dominant Truncation Error Term 

2 0.1304917 

3 0.0163729 

4 0.0027221 

5 0.0002262 

6 1.6143826e-05 

7 1.0090516e-06 

8 5.6101129e-08 

 

 

4.2.3 Beamspace Gain in 3D 

In order to refocus the time reversed retransmitted field to the desired target 

location o
pr , we are proposing to use beamforming in the back propagation stage. So 

the beamformer weight matrix, bpB of size 3N×3M for back propagation can be 

computed by minimizing the functional
2

,( )
T

bp m Mg B e . Here, g  is the dyadic 

Green's function vector, ,m Me is a 3M×3 dyadic vector in which m-th element is unit 

dyad and the rest (M−1) dyads are equal to zero. As we do not know the target 

location o
pr , this process is repeated at every point in the search volume by dividing 

the volume into a number of voxels. This process ensures that the time reversed 
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energy is focussed mainly on to a selected region resulting in lower side lobes 

outside that region. Estimation of bpB can be obtained as 

 
1

1,
ˆ , , ,H

bp MB g r g r g r e  (20) 

The beamforming gain achieved due to the beamspace processing at a location r is 

computed as 

 
ˆ ˆ, ,

, ,

H
H

bp bp

H

g r B B g r
β r

g r g r
 (21) 

The projection operator for beamspace imaging is thus given by 

 2

ˆ ˆ

ˆ

H

bp bp

bp

B BΓ
B

 (22) 

4.2.4 3D Beamspace Time Reversal Operator 

Following the procedure to obtain multistatic matrix and TRO given in in 

chapter 3, we obtain beamspace transformation beamspace TRO (B-TRO) as 

 
H

B B B

H H H

T K K

B KK B B TB
 (23) 

We can substitute the expression for multistatic matrix 
T

K χ
T

χ from chapter 3 

into (23) to obtain 

 
*

2

2

HH T T
B

H T H H

H H

H
B B

T B χ χ B

B χ χ B

B χ B

χ

HT T
χ χ B

*T H H*
χ χ B

2 H2
χ B

2 H
B Bχ

 (24) 
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The dimension of B-TRO, BT  is 3M×3M compared to the 3N×3N element 

space TRO. Beamspace processing projects 3N×3N element space TRO into a 

reduced dimensional beamspace using 3N×3M beamspace processing matrix B . 

Reduced dimensional processing (N>M) leads to reduced computational burden and 

complexity. 

 

4.3 Beamspace Processing for 2D Time Reversal Microwave 

Imaging 

Let us consider an antenna array with its’ N elements arbitrarily placed in a 

two dimensional (2D) bounded region on the x-y plane. We assume that there are P 

well resolved dielectric point targets embedded in the background medium. The 

target locations are denoted by o
pr , p=1,2,…,P and the array elements locations are 

denoted by x
nr , where n=1, 2, …, N. The signal vector x(ωf) observed at the array at 

f-th frequency bin can be transformed into beamspace using orthogonal Butler matrix 

[194] beamformer, B as 

 H
Bx B x  (25) 

where, 

 2 /
,

1[ ] j mn N
n m e

N
B  (26) 

here, - , ,0, ,m M M  and 0,  1,  ,  -1n N . The Butler matrix acts as a 

beamforming network for multi beam antenna array. Hence, B is an N×M matrix 

(P<M<N)where each column represents essentially steering vector for the orthogonal 

beams. The Butler matrix is equal to the normalized N-point DFT matrix. The 
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element space signal and weight vectors can be multiplied by the Butler matrix to 

compute their beamspace counterpart. This process is referred to as beamspace 

transformation [191]. FFT algorithm can be used to implement beamspace 

transformation since the Butler matrix has the form of a DFT [179]. Beamspace 

transformation preserves the Vandermonde structure of the array steering vector and 

maps the array steering vector of a circular array into a virtual linear array steering 

vector manifold.  

We apply beamspace transformation in the receiving mode of the element 

space multistatic matrix. Hence, the beamspace multistatic matrix can be obtained as 

 H
BK B K  (27) 

Hence, the beamspace TRO in 2D is given by 

 H H H H
B B BT K K B KK B B TB  (28) 

We can further expand (28) by substituting TK T  

 
2

HH T T
B

H
B B

T B B
HT T BT TTT

2 H
B BB

 (29) 

here, the background medium Green’s function vector in beamspace is given by 

H
B BH
B B . 

The multiplication of the DFT matrix, B with the Green’s function vector 

g(r,ω) of the medium makes the received wave fields appear as though they were 

due to the incoming beams from the background. In order to refocus the time 

reversed retransmitted field to a desired location r, we need to compute the back 

propagation beamformer weights, Bbp of size N×M by minimizing the functional

2

,( )T
bp m Mg B e . Here, em,M is a vector of size M in which m-th element is unity and 
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the rest (M−1) elements are equal to zero. As we do not know the target location o
pr , 

this process is repeated at every point in the search space. This process ensures that 

the time reversed energy is focussed mainly on to a selected region. This leads to 

reduced side lobes outside the region of focus. Estimation of Bbp can be obtained as 

 
1

1,
ˆ , , ,H

bp MB g r g r g r e  (30) 

The beamforming gain achieved due to the beamspace processing at a location r is 

computed as 

 
ˆ ˆ, ,

, ,

H H
bp bp

H

g r B B g r
r

g r g r
 (31) 

The projection operator for beamspace imaging is thus given by 

 2

ˆ ˆ

ˆ

H
bp bp

bp

B B
Γ

B
 (32) 

 

4.3.1 Phase Mode Excitation Principle 

The dimension of the beamspace beamformer matrix can be estimated from 

phase mode excitation principle. For simplicity we first consider a continuous 

circular aperture of radius, r. The excitation used for this array can be expressed 

using Fourier series representation with the excitation period 2π as 

( ) jm
m

m
w u e , where jm

mw e is the m-th phase mode and um is the 

corresponding Fourier series coefficient [180]. The resulting far field pattern with 

this excitation can be represented as 

 , ) ( )( m jm
m

cn
m

m m
j ef J  (33) 
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where, the super-script cn stands for continuous, and mJ is the Bessel function 

of first kind of order m and sinkr . We need to select the mode m such that the 

beam pattern for that mode undergoes little or no attenuation.  

The normalized array weight vector for N-elements UCA is represented as 

 2 / 2 ( 1)/1 [1, , . ,( ) .. ]cir H j m N j m N N
m N

e ew  (34) 

where, phase mode m [-M, M]. The beam pattern of a UCA as a result of 

sampling continuous circular aperture at uniformly spaced discrete point is thus 

obtained as 

 
1

cos( )

0

1, nn

N
jm js cir

m m cir
n

f e e
N

w a  (35) 

 

4.3.2 Truncation Error for 2D Beamspace Processing 

The highest order mode M is to be selected as the smallest integer that is close or 

equal to kr [195].For mode orders |m|<D we can write [196] 

 
1

m jm g jg h jh
m m g h

q

sf j e J j J e j e J  (36) 

where, ,g Nq m h Nq m . Comparing (36) with (33) it is evident that the 

second term on the right hand side of (36) is arising due to the sampling effect and is 

negligible with respect to the first term if the condition |m|<N is satisfied. The 

residual contribution is maximum for mode M and its amplitude follows JN-M(ξ). 

Hence, sufficient number of array elements can be used to keep the residual error 

negligible for beamspace processing. Using Parseval’s theorem the mean square 

error (MSE) can be expressed as 
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2 2

1
( ) 2 ( )m

m M
J krrE  (37) 

MSE can be expressed as sum of finite terms as[193] 

 
2 2

1
( ) 1 2 ( )

M

n
m

J krrE  (38) 

Hence, it is evident that for a UCA the number of elements should be two times 

more than the highest order mode to be excited, i.e. N>2M so that the principal term 

remains dominant in (36) [180]. We compute the upper bound of residue error terms, 

JN-M(ξ) for UCA with r=70mm and εr=9 as a function of number of elements (N)  

and modes (M) as shown in Table 4-2. 

 

Table 4-2. Maximum residual error term contribution for UCA with different 

number of array elements and modes. 

N 
 

M 
19 21 23 25 27 29 

4 0.000971 8.01E-05 5.09E-06 2.58E-07 1.06E-08 3.66E-10 

5 0.003021 0.000289 2.08E-05 1.18E-06 5.36E-08 2.02E-09 

6 0.008646 0.000971 8.01E-05 5.09E-06 2.58E-07 1.06E-08 

7 0.022535 0.003021 0.000289 2.08E-05 1.18E-06 5.36E-08 

8 0.052837 0.008646 0.000971 8.01E-05 5.09E-06 2.58E-07 

9 0.109611 0.022535 0.003021 0.000289 2.08E-05 1.18E-06 

10 0.196379 0.052837 0.008646 0.000971 8.01E-05 5.09E-06 

11 0.292235 0.109611 0.022535 0.003021 0.000289 2.08E-05 

12 0.335171 0.196379 0.052837 0.008646 0.000971 8.01E-05 
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It can be observed from Table 4-2 that as the maximum residual error term 

contribution monotonically increases as the difference between number of array 

elements and highest mode increases. Hence, it is possible to keep the residue error 

negligible by using sufficient number of array elements. The number of array 

elements needs to be increased when higher modes are excited. 

 

4.4 Beamspace Time Reversal Imaging Techniques 

We apply beamspace processing in the receiving mode. The TRO in 

beamspace can be expressed as 

 
2 H

B B BT χ
2 H

B Bχ  (39) 

Since, the beamspace processing matrix, B  is orthogonal i.e. 
H

B B I  we can 

explore the Eigen structure of BT  instead of T  to exploit the advantages of 

beamspace processing. We can express BT as 

 
2 2H H

B B B B BT V Σ V V Σ VS S S N N N  (40) 

where,  S denotes signal subspace and N  denotes noise subspace. We have, 

 ( ) ( ) ( )
H

B BB VSR R R( ) ( ) ( )
H

B( ) () () SRRR RRR  (41) 

here, R indicates range of a matrix. Hence, we can use the range of BT as the signal 

subspace and is referred to as the beamspace signal subspace. The beamspace and 

element space subspaces are related as 

 
H

BV B V  (42) 

Hence, beamspace processing projects element space signal subspace into 

beamspace signal subspace. The beamspace Green’s function vector is thus given by 
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H

Bg B g  (43) 

 

4.4.1 Beamspace Subspace Based Time Reversal Imaging 

Here we will derive beamspace-DORT (B-DORT) and beamspace-TR-MUSIC 

(B-TR-MUSIC). As the beamspace processing preserves the subspace orthogonality 

the beamspace noise subspace BVN  is orthogonal to the beamspace signal subspace,  

BVS . Hence, we can use the beamspace subspaces along with beamspace projection 

of the green’s function vector for target localization. The vector space, 3MC  of the 

beamspace TRO (B-TRO), BT  can be expressed as 

 3M
B B BC S N  (44) 

where,  denotes direct sum of the beamspace signal subspace and beamspace noise 

subspace. Hence, we have B BN = S and 0B BN S . However, BT  has reduced 

dimension of 3M×3M. Hence, in order to ensure that all the P-targets are localized, 

we need to ensure that N>M>P. 

 

4.4.1.1 Beamspace DORT Imaging 

Beamspace DORT (B-DORT) image can be obtained by projecting signal 

subspace and the dyadic Green’s function vector into the beamspace. For well 

resolved scatterers the following relation still holds in beamspace. 

 
*

pB
B p

pB

g x
v

g x
 (45) 
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where, B pv is the p-th eigen vector of B-TRO. Hence, the targets can be localized by 

back propagating Eigen vectors in beamspace. The B-DORT imaging function can 

be expressed as  

 
ˆ 2

1
( ) ( )

A

n

IC H
BB DO T B

P

R
n

I r v g r  (46) 

where, ˆ
AICP  is obtained from BT  using AIC as explained in chapter 3. B-DORT 

image can be computed with reduced computational burden. It also has superior 

clutter suppression capability compared with element space DORT. DORT is 

generally poor in resolution. In case of 2D the B-DORT imaging function is given by 

 
2

1
( ) ( )

A

n

IC
H

B DORT B B
n

P

I r v g r  (47) 

 

4.4.1.2 Beamspace Time Reversal MUSIC Imaging 

Beamspace TR-MUSIC (B-TR-MUSIC) imaging technique can be employed 

using beamspace noise subspace. B-TR-MUSIC also provides high resolution image 

like element space TR-MUSIC. The noise subspace in beamspace is still orthogonal 

to the signal subspace [197]. For imaging in beamspace domain imaging we have to 

use the noise subspace projection obtained from the beamspace TRO. The 

beamspace eigen vectors form orthonormal basis for the beamspace projection of the 

dyadic Green’s function vector. B-TR-MUSIC imaging function can be expressed as 

 
2

1ˆ

1( )
( )n

AIC

B TR MUSIC M H
B B

Pn

I r
v g r

 (48) 

Similarly the B-TR-MUSIC imaging function for 2D scenario is given by 
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2

1

1( )
( )

n
AIC

B TR MUSIC M
H

B
n P

B

I r
v g r

 (49) 

 

4.4.2 Beamspace Time Reversal Robust Capon Beamforming 

Here we derive the expressions for beamspace TR-RCB (B-TR-RCB). For B-

TR-RCB imaging we need to use B-TRO and beamspace projection of dyadic 

Green’s function vector. We can write for robust estimation of 2  in beamspace as 

 
2

2 2

,

2

0max
B

H
B B B

B B

subject to
g

T g g

g g
B

g
 (50) 

It is assumed that 
2

B
g

B
g  in order to avoid the trivial solution Bg 0 where, 

0 is an M×3 matrix of zeros. This optimization problem can be reduced to 

 
21

subject tomin
H

BB B B Bg
g T g g g

B
g  (51) 

We consider the co-polarized fields only. Using Lagrange multiplier 

methodology we can write 

 
11

1( )B
BB B B B

Tg I g g I T g
B B

g I T g( )
B

( )(  (52) 

The langrage multiplier 0   [79] is obtained as the solution of  

 
2

1( ) ( )B
B

f I T g((
BB

 (53) 

B-TRO, BT as given by (24) can be expressed in terms of eigen values and eigen 

vectors as shown in (40). We consider By  such that 
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H
BB By V g  (54) 

We can write (70) as 

 
23

221
( )

1

M
s

s s

z
f  (55) 

where, zs is the s-th element of z defined as 

 ( )BvecDz y  (56) 

 ( { })vecd diagΓ Σ  (57) 

where, vecd(.) forms a vector from the diagonal elements of a matrix and (.)vecD  

forms a vector from diagonal elements of each dyad of a dyadic vector. We solve 

(69) using Newton’s iterative method. In order to eliminate any scaling ambiguity 

we write 

 ˆ BB
B

B

g g
g

g
BB

g g
B

g
 (58) 

Hence, B-TR-RCB array weight vector is finally obtained as 

 
1

1

ˆ

ˆ ˆ
B B

B H
BB B

T gw
g T g

1

B H
TBw  (59) 

The imaging function for B-TR-RCB represented as 

 
2

( ) ( ) ( )
H

BB BB TR RCBI r w r T w r
2

( ) ( )
H

( ) (( ) (( )( ))  (60) 
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4.5 Simulation Results on Breast Phantom Using Beamspace Time 

Reversal Imaging 

Beamspace time reversal provides superior imaging performance than element 

space time reversal imaging. In order to illustrate the advantages of beamspace time 

reversal imaging we consider different types of phantoms with different tumor 

locations and sizes as described in chapter 2. Details about different types of breast 

phantoms and simulation setup are also provided in chapter 2. Tumor locations and 

sizes for different cases have been provided in Table 2-2. The dielectric constant 

used for synthetic time reversal imaging using different types of breasts phantom is 

provided in Table 2-3. 

 

4.5.1 Beamspace Time Reversal Imaging in Heterogeneously Dense 3D Breast 

Phantom  

First we consider beamspace time reversal imaging in heterogeneously dense 

(C3) 3D phantom. For 3D C3 phantom containing single 10mm sized tumor, we first 

show the results for B-DORT and B-TR-MUSIC followed by B-TR-RCB. The 

imaging results B-DORT and B-TR-MUSIC are shown in Figure 4-3 and Figure 4-4 

respectively. Our results demonstrate that with both B-DORT and B-TR-MUSIC 

imaging techniques the high intensity focus occurs near the actual tumor location 

indicated using the spherical inclusion. However, B-TR-MUSIC has superior 

resolution and accuracy compared to B-DORT for 3D C3 phantom. 
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(a) 

 

 (b) 

Figure 4-3. B-DORT imaging results for 3D C3 phantom (a) 3D view, and    

(b) sagittal view. 
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(a) 

 
 (b) 

Figure 4-4. B-TR-MUSIC imaging results for 3D C3 phantom (a) 3D view, 

and (b) sagittal view. 

  

We now consider results obtained using B-TR-RCB imaging for the same 3D 

C3 breast phantom as shown in Figure 4-5. In this case significant improvement is 

observed as side lobes reduces significantly compared to element space TR-RCB as 

shown in Chapter 3. However, estimated tumor location appears to be not very 
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accurate for B-TR-RCB. In all the cases it is found that B-DORT, B-TR-MUSIC and 

B-TR-RCB have improved imaging performance compared to their element space 

counterparts. 

 

 
(a) 

 
 (b) 

Figure 4-5. B-TR-RCB imaging results for 3D C3 phantom (a) 3D view, and 

(b) coronal view. 
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4.5.2 Beamspace Time Reversal Imaging in Highly Dense 3D Breast Phantom 

We next consider beamspace time reversal imaging in highly dense (C4) breast 

phantom for a number of cases. We consider detection when single tumor as well as 

two tumors embedded inside the C4 breast phantom. 

 

4.5.2.1 Beamspace Time Reversal Imaging for Single Tumor in C4 Phantom 

We consider a 10mm sized tumor embedded in a C4 breast phantom. The 

imaging results for B-DORT and B-TR-MUSIC are provided in Figure 4-6 and 

Figure 4-7 respectively. While B-DORT performs quite well, the B-TR-MUSIC 

image shows high intensity peaks at regions close to tumor location as well as away 

from the actual tumor location. This illustrates the fact that B-DORT is more robust 

against clutter and noise than B-TR-MUSIC.  
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(a) 

 

 (b) 

Figure 4-6. B-DORT imaging results for 3D C4 phantom (a) 3D view, and    

(b) axial view. 
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(c) 

 

(d) 

Figure 4-7. ) B-TR-MUSIC imaging results for 3D C4 phantom (a) 3D view, 

and (b) coronal view. 

 

We now consider B-TR-RCB for breast cancer detection in 3D C4 breast 

phantom. The phantom and other parameters are the same as that for B-TR-DORT 

and B-TR-MUSIC. B-TR-RCB imaging results for single tumor in C4 phantom is 



Chapter 4: Beamspace Time Reversal Microwave Imaging for Breast Cancer Detection 

165 
 

shown in Figure 4-8. In this case there are two bright spots in the image. One of 

them is close to the tumor and the other is far away from the tumor as can be clearly 

seen from the coronal view. 

 

 
(a) 

 
 (b) 

Figure 4-8. B-TR-RCB imaging results for 3D C4 phantom (a) 3D view, and 

(b) coronal view. 
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 It can be observed by comparing element space results from chapter 4 that for 

all the cases element space time reversal techniques show high side lobes in the 

images which create ambiguity regarding tumor location estimation. Apart from this 

element space time reversal also produces higher number of false peaks that does not 

represent the presence of a tumor. 

 

4.5.2.2 Detection of Two Tumors in Highly Dense Breast Phantom Using 

Beamspace Time Reversal Imaging 

We also consider beamspace time reversal imaging for detecting two tumors 

embedded in C4 breast phantom. From the results of element space time reversal 

imaging, it is evident that element space time reversal do not perform well for 

imaging highly dense breast. Beamspace time reversal imaging results show 

promising improvements over element space time reversal imaging techniques for 

highly dense breast imaging. However, previously we considered only single tumor. 

But in reality, detection of multiple tumors is a challenge for breast cancer detection. 

Hence, we extend beamspace time reversal imaging for highly dense breast 

containing two tumors. We consider B-DORT and B-TR-MUSIC for detecting two 

tumor case as the C4 breast phantom imaging result obtained using B-TR-RCB was 

not encouraging even for single tumor. 

We consider two different cases for localization of two tumors in C4 phantom. 

In the first case we choose two 10mm sized tumors embedded at 2 o’clock and 4:30 

o’clock positions 4.5 cm below the nipple. The lateral distance between the two 

tumors is 22mm. For B-DORT imaging as shown in Figure 4-9, it can be observed 

that one of the two tumors can be very clearly localized in terms of high image 
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intensity. The corresponding imaging intensity to the second tumor location (4 

o’clock position) is not as strong as that of the first tumor (2 o’clock position). 

Hence, it is possible that B-DORT may not detect all the tumors in a highly dense 

breast phantom. 

 
(a) 

 
(b) 

Figure 4-9. B-DORT imaging results for the detection of two 10mm sized tumors in 

C4 phantom (a) 3D view, and (b) coronal view. 
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 The results on detection of two tumors in a C4 breast phantom using the B-

TR-MUSIC imaging are shown in Figure 4-10. There is a high intensity region near 

the tumor at 2 o’clock position in B-TR-MUSIC image. But the image response at 

the location of 4 o’clock tumor appears to be weak for both B-DORT and B-TR-

MUSIC imaging. Hence, there is ambiguity regarding the presence of 4 o’clock 

position tumor. These results suggest that further improvements are necessary for 

unambiguous multiple tumor detection in highly dense and heterogeneous breast 

phantoms  
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(a) 

 
(b) 

 
Figure 4-10. B-TR-MUSIC imaging results for the detection of two 10mm 

sized tumors in C4 phantom (a) 3D view, (b) sagittal view for 2 o’clock tumor, and 
(c) sagittal view for 4 o’clock tumor. 
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Now we consider the case of two 7mm sized tumors embedded in C4 breast 

phantom. One of the tumors is located 2cm below the nipple around 1 o’clock 

position. The other tumor is located at 10:30 o’clock at a distance of 6.5 cm below 

the nipple. Hence, one of the tumors is close to the nipple and the other tumor is 

deeply embedded close to the chest wall. 

 
(a) 

 
 (b) 

Figure 4-11. B-DORT imaging for the detection of two 7mm sized tumors in 
C4 phantom (a) 3D view, and (b) sagittal view. 
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 The B-DORT imaging result is shown in Figure 4-11 for the detection of two 

7mm sized tumors in C4 phantom. It is observed that the tumor near nipple 

completely missed. The tumor close to the chest wall shows very strong response. 

 
(a) 

 
 (b) 

Figure 4-12. B-TR-MUSIC imaging for the detection of two 7mm sized tumors 

in C4 phantom (a) 3D view, and (b) sagittal view 
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Now we use B-TR-MUSIC imaging algorithm for the detection of two 7mm 

tumors and the results are shown in Figure 4-12. The bottom tumor close to the chest 

wall can be unambiguously detected. There is also a faint, weak peak near tumor 

located close to the nipple. However, there are some minor peaks in the image that 

may create confusion regarding the presence and location of the top tumor near 

nipple. 

 

4.5.3 Beamspace Time Reversal Imaging in Highly Dense 2D Breast Phantom 

We now consider breast cancer localization in a 2D slice of highly dense C4 

phantom using B-DORT and B-TR-MUSIC as shown in Figure 4-13 and Figure 

4-14 respectively. The actual tumor location is indicated using a small white circle. 

The tumor has a maximum dimension of 10mm. It is observed that B-DORT and B-

TR-MUSIC accurately estimate the tumor location while DORT and TR-MUSIC 

produce high intensity image peaks away from the true tumor location. It is found 

that beamspace time reversal imaging outperforms element space time reversal 

imaging for C4 breast phantom. 
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(a) 

 

(b) 

Figure 4-13. Breast cancer detection in 2D C4 phantom using (a) DORT, and 

(b) B-DORT. 
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(a) 

 
(b)  

Figure 4-14. Breast cancer detection in 2D C4  phantom using (a) TR-MUSIC, 

and (b) B-TR-MUSIC 

 

4.6 Discussion 

From the imaging results we can clearly observe the improvement in imaging 

performance of element space time reversal imaging through the application of 

beamspace processing. Also we note the limitations of the proposed techniques for 

imaging in highly dense 3D breast phantom. B-DORT is more robust against clutter 
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and noise while B-TR-MUSIC has better resolution. B-TR-MUSIC imaging may 

produce spurious peaks in case of highly dense breast phantoms. B-TR-RCB 

performs very well when limited clutter is present in the medium as is the case in C2 

breast phantom. As glandular tissue clutter increases, mismatch grows between 

actual and estimated Green’s function vector of the equivalent homogeneous 

computational medium. For breast imaging actual heterogeneous Green’s function 

vector is difficult to derive. In the case of B-TR-RCB, this mismatch greatly reduces 

the performance. Hence, B-TR-RCB is useful mostly for fatty type breast imaging. 

B-DORT and B-TR-MUSIC performs well for C3 breast. But C4 breast is a 

challenging issue for all the imaging techniques. It can be observed that when more 

than one tumor is present, B-DORT and B-TR-MUSIC cannot unambiguously 

localize all the tumors. Comparison of results of two 7mm tumors versus two 10mm 

tumors it can be concluded that decreasing tumor size also increases the challenges 

for microwave imaging as the surrounding clutter starts dominating the 

backscattering response. 
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Chapter 5 : Time Reversal Maximum Likelihood Imaging 

5.1 Introduction 

Time reversal maximum likelihood (TR-ML) imaging uses the physical model 

to estimate the noise subspace while physical measurement data is used for 

estimation of signal subspace [198]. In subspace based time reversal imaging 

techniques signal subspace comes from the Green’s function vector and the noise 

subspace is estimated from the measured data. Subspace and minimum variance 

based time reversal techniques do not exploit the physical model of the multistatic 

matrix. In highly cluttered medium such as breast tissue medium, it is difficult to 

exactly define the subspaces due to interference due to scattering from strong 

glandular tissue clutter and other tissues. TR-ML can yield statistically stable image 

that overcomes the near far problem through appropriate scaling factor [80]. Near far 

problem can arise when a target is close to the antenna array while another target is 

far away from the array. In view of all these advantageous features, we investigate 

the use of TR-ML for microwave imaging of highly dense breast medium. 

TR-ML was originally proposed by Shi and Nehorai [80, 198] for 2D 

scatterers. In this chapter we extend the TR-ML to 3D dense breast phantoms. The 

computational load of TR-ML is higher than other time reversal imaging techniques, 

and particularly for 3D imaging, the computational load becomes excessive. In order 

to keep the computational load manageable, we propose to extend beamspace 

processing for TR-ML. However, the beamspace processing proposed for TR-ML 

differs from the beamspace processing for subspace based or minimum variance 

based time reversal imaging. We apply beamspace processing only in the receiving 
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mode of the multistatic matrix for subspace based and time reversal minimum 

variance beamforming imaging techniques. But for beamspace TR-ML (B-TR-ML) 

the beamspace processing is applied for multistatic matrix corresponding to both 

transmitting and receiving modes. Further, beamspace back propagation weight 

vectors are required to be estimated for the back propagation using Green’s function 

vector in case of subspace based and minimum variance based time reversal 

imaging. B-TR-ML does not require such beamspace back propagation weight 

vectors. B-TR-ML obtains an estimation of the scatterer location using physical 

model and measured data. However, in highly dense breasts that contain highly 

dense glandular tissue medium the singular values gradually decay to the level of 

noise. Such problems become ill-posed[199] and may require regularized solution. 

Since, time reversal imaging is based on only a single snapshot it can be readily 

affected by correlated signals in a highly cluttered medium. Beamspace ML provides 

reduced computational complexity and robustness against multipath interference 

[179, 194]. The ML estimation can be useful when subspace based techniques fail in 

a highly cluttered medium [200, 201]. Our proposed B-TR-ML imaging is 

computationally less demanding while maintaining the accuracy as well as stability 

for imaging in highly cluttered heterogeneous medium such as highly dense breasts. 

We also derive Cramer Rao Lower Bound (CRLB) for the proposed beamspace time 

reversal imaging technique. Using CRLB we investigate the imaging performance of 

reduced dimensional beamspace time reversal imaging under different scenario. 

The rest of the chapter is organized as follows. We first explain TR-ML 

estimation in section 5.2 followed by derivation and imaging results of proposed B-

TR-ML in section 5.3. CRLB derivation for B-TR-ML imaging is presented in 

section 5.4. We derive and explain the relationship between B-TR-ML and 
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beamspace time reversal in section 5.5. The key features of our proposed imaging 

method are discussed in section 5.6. 

  

5.2 Element Space Time Reversal Maximum Likelihood Estimation 

TR-ML imaging technique in element space was first proposed for imaging 

point scatterers embedded in 2D homogeneous background medium by Shi and 

Nehorai [80, 198]. TR-ML can reveal multiple target locations and overcomes near 

far problem. Let us consider a transceiver array of N-antenna elements in a 3D 

bounded region. The location of the antenna elements are denoted by x
nr  where n = 

1,2,…,N. There are P targets located at o
pr  where p = 1,2,…,P. A schematic of the 

targets location in the medium enclosed by an antenna array is illustrated in Figure 

5-1. 

 

Figure 5-1. Schematic diagram of scatterer and antenna array. 
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As explained in section 3.3 of chapter 3, the multistatic matrix can be 

expressed as 

 
T

r tK χ
T

r tχ  (1) 

where, K  is the multistatic matrix, rr is the dyadic Green’s function matrix in 

receiving mode, 
T
t
T
t is the dyadic Green’s function matrix in transmit mode and χ is 

a matrix of scattering tensors for the targets.  We are using co-incident transmit and 

receive arrays. Also we employ the backscattered signals received at each element of 

the array. Hence, we denote the imaging as element space TR-ML imaging. We 

assume the received signal is the backscattered response of the target for incident 

microwave pulse plus additive white Gaussian noise (AWGN). Hence, in the 

presence of AWGN (1) can be the expressed as 

 
2

2

T
r tK χ I

Iκ
2T

rr χ I2
tt  (2) 

where σ2 denotes the noise variance. We can express noise free version of multistatic 

measurement in (1) as 

 
1

, ,
P To o

p p pr t
p

g r g rκ x  (3) 

where,  

 1, 2,{ ..., }Pdiagχ x x x  (4) 

We assume that the targets are small spherical isotropic dielectric spheres with 

dielectric tensor x y z
p p p p . Hence, the tensor scattering fields due to the 

spherical dielectric targets can be expressed as[202] 
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 (5)                        

where, εb is the dielectric constant of background medium, k is the wave number in 

background medium, and a is the radius of the spherical targets. We consider the co-

polarized fields only hence off-diagonal elements of χ  are zero. 

The likelihood function for estimation of scatterer location and scattering 

tensor in the presence of AWGN noise can be expressed as 

 2

2

2
292

( , )1( , , ; ) exp
N

l
Κ r

r Κ
κ x

x  (6) 

The ML estimation of target parameters ( ,r χ ) and noise variance, σ2 can be 

estimated by maximizing the likelihood function in (6) as 

 

2

2
2

2 2

, ,

2

292, ,

, , arg max ( , , ; )

( , )1arg max exp
N

l
r

r

r r Κ

Κ rκ
x

x

x x

x  (7) 

First we estimate noise variance, σ2 and then use it to find target location, r and 

scattering tensor χ . In order to maximize the likelihood function for σ2, we take the 

first derivative of the likelihood function with respect to σ2 and equate it to zero. 

 
2

2

( , , ; ) 0l r Κx
 (8) 
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ML estimation of 2 can be thus obtained as 

 
22

2

1ˆ ( , )
9N

Κ rκ x  (9) 

Substituting (9) into (7) we can estimate target location, r and scattering tensor χ .  

 2

2

2
9 2

2
2

2

( , )1( , , ; ) exp 11 ( , )( , ) 99

N
l

NN

Κ r
r Κ

Κ rΚ r

κ

κκ

x
x

xx

 (10) 

The likelihood function in (10) can be simplified as 

 

2

2

92
2 2

92

9
( , , ; ) exp 9

( , )

N

N

N
l Nr Κ

Κ rκ
x

x
 (11) 

Fixing the number of antenna elements, N the likelihood function for r and χ can be 

maximized by minimizing the denominator in (11) as 

 
2

,
, arg min ( , )

r
r Κ rκ

x
x x,r mimiargarg  (12) 

We can represent (12) as [198] 

 
2

,
, arg min ( ) ( )t rvec vecd

r
r Κ χ

x
x,r mimiargarg ((r d  (13) 

where,  denotes the Khatri-Rao product [203], vec(.) forms a vector from a matrix 

by stacking the columns sequentially. We can obtain the least square solution of (13) 

as 

 
1

( ) ( ) ( ) ( ) ( )
H H

vecχ r r r r ΚG G G ( ) () (( ) ( )) (( ) ( )) (( ) ( )) (  (14) 

where, ( ) ( ) ( )t rr r rG ( )) ( )( )( )( ) ( )( . We can substitute (14) into (13) to express the cost 

function as 
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 where, P
G

represents the projection of ( )rG ( ) . We can use the orthogonal 

projection operator 
1

( ) ( ) ( ) ( )
H H

P I P I r r r r
G G

G G G G
G

G ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) (( ) ( )( ) ( )( ) ( )( ) ( )) (( ) ( )( ) ( )( ) ( )( ) ( )) (( ) ( )  to 

represent(15) as 

 
2

1( , ; ) ( )l vecr Κ P Κ
G

x  (16) 

 

5.2.1 Element Space Time Reversal Maximum Likelihood Imaging Function 

in 3D 

As the target location is unknown, we discretise the volume in which the target 

is located into small voxels and compute the scattering tensor given by (19) at each 

voxel to obtain an image of the background medium. Considering there are P targets, 

for co-located transmitter and receiver the expression for 
T

r t
T

r tt  is given by 
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The imaging operation is carried out for voxel by voxel without prior knowledge 

about the location and number of targets. In this process we consider each voxel 

within the bounded volume as a possible target location. Hence, imaging at a voxel 

located at r  (17) is carried out using the Green’s function vector given by  

 

1

2

( , )

( , ) ( )

( , )

x

x

x
N

G r r

G r r g r

G r r

g(( 22( 2( 2( 2  (18) 

Hence, for imaging voxel by voxel the solution of (14) for scattering strength can be 

represented as  
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here,  indicates Kronecker product,  [203] and ( ) ( ) ( )t rg r g r g r . Substituting 

(19) into (13) we obtain 
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 (20) 

Here, the projection of ( )g r  is given as 
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1
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Finally, TR-ML imaging metric is defined as 

 
2

2
1( ) ( )
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 (22) 

 

5.2.2 Time Reversal Maximum Likelihood Imaging in 2D 

For 2D medium we consider TM-z polarisation for TR-ML imaging. The TR-

ML for 2D has been derived by Shi and Nehorai [198]. Here, we repeat some key 

expression for the sake of completeness and clarity. For 2D imaging case the 

multistatic matrix in the presence of AWGN is given by 

 
2

2

T
r tK I

Iκ
2T

r tr I2TT
t  (23) 

where, K contains only the z-components of the scattered field. The likelihood 

function in this case can be obtained as 

 2

2
2

2
2

( , )1( , , ; ) exp
N

l
K r

r K
κ  (24) 

The ML estimation of noise variance, 2 is given by 

 22
2

1ˆ ( , )
N

Κ rκ  (25) 

Scattering parameters r and τ can thus be estimated as 
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We obtain least square solution for τ in (26)  as 

 
1

( ) ( ) ( ) ( )H H vecr r r Κτ G G G ( ) (( ) ( )( ) ( ) () ( )) (  (27) 

where, ( ) t rrG ( )G t r . As the target location is unknown, we discretise the 

region of interest into a grid of pixels and compute the 2D scattering tensor at each 

pixel to obtain an image of the background medium. Hence, we use ( )T
r t g r( )T
r t g r(

for imaging pixel by pixel. We can represent the estimation of scattering strength at 

each pixel as  

 
1

( ) ( ) ( ) ( ) ( )
H H

vecr g r g r g r Κ  (28) 

For 2D case, the projection matrix can be defined as 

 1( )[ ( ) ( )] ( )H H
g g

P I P I g r g r g r g r  (29) 

Consequently the imaging function can be written as follows 
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 (30) 

We can refer to the above TR-ML imaging technique as element space TR-ML 

imaging since we use the outputs at each element of the antenna array for imaging.  

 

5.2.3 Results on Element Space Time Reversal Maximum Likelihood Imaging  

We first consider detection and localization of a single 7mm sized tumor 

insertion within a 3D C4 phantom as shown in Figure 5-2. The tumor is located 

around 10:30 o’clock position and 2.5cm below the nipple. Detail information about 

all the parameters used for phantoms and notations for tumor location are provided 

in chapter 2. It is observed that the tumor location is accurately estimated using 
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element space TR-ML imaging. But TR-ML imaging results in excessive 

computational load for a cylindrical antenna array of 23×5 elements. It requires days 

of computation to image over UWB frequency range. We have also used large voxel 

size of 5mm×5mm×5mm to reduce computational time for element space TR-ML 

imaging. Any reduction in the size of the voxel would lead to much excessive 

computational time for element space TR-ML imaging. The size of the pixel or voxel 

determines the smallest size of the target that can be detected. To overcome some of 

the problems of element space TR-ML we propose novel B-TR-ML imaging which 

will be described in the next section. 

For further comparison we have also considered TR-ML imaging for 2D C3 

and C4 breast phantoms as shown in Figure 5-3 and Figure 5-4 respectively. The 

results show that the tumor is accurately localized from C3 2D phantom TR-ML 

image. In case of 2D C4 phantom peak intensity is observed around the true tumor 

location. However, the focused region showing high image intensity is quite large in 

case of C4 2D phantom. In both the cases tumor is quite accurately detected as the 

location is indicated using the small white circle. However, C4 phantom TR-ML 

image shows possible challenges for imaging with highly dense breast containing 

dense glandular tissue clutter.   
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(a) 

 
 (b) 

Figure 5-2. Element space TR-ML imaging for single 7mm sized tumor in C4 

phantom (a) 3D view, and (b) sagittal view. 
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Figure 5-3. Element space TR-ML imaging for 2D C3 phantom. 

 

 

Figure 5-4. Element space TR-ML imaging for 2D C4 phantom. 
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5.3 Beamspace Time Reversal Maximum Likelihood Imaging 

Element space TR-ML requires exhaustive computation as it requires inversion 

of N2 ×N2 sized matrix inversion at each pixel in 2D case and inversion of 9N2 ×9N2 

sized matrix at each voxel in 3D case for each frequency bin over the whole imaging 

bandwidth. For 3D microwave imaging a large number of antenna elements are 

required to probe and receive energy from all angles and all parts of the breast. Also 

the image is computed at large number of voxels to estimate tumor location. To 

overcome this we propose beamspace transformation for TR-ML to project the 

element space data into a reduced dimensional beamspace. The advantage is that it 

dramatically reduces the computational load such as demand on memory and 

computational time required for TR-ML imaging in 3D breast phantoms. However, 

beamspace domain imaging for TR-ML is different from B-TR-MUSIC, B-DORT or 

B-TR-RCB. For B-TR-MUSIC, B-DORT and B-TR-RCB the beamspace processing 

applied only in the receiving mode of the multistatic matrix as shown in (31). 

 
r

r

H H T
B r t

T
B t

K B K B χ

χ

T
r tχ

r

T
B tr
χ

 (31) 

This equation shows that the beamspace weight vectors are applied only at the 

receiver side for B-TR-MUSIC, B-DORT or B-TR-RCB imaging. In the case of 

proposed B-TR-ML, we use beamspace processing for both transmit mode as well as 

receive modes. Hence, we may refer to B-TR-ML as dual beamspace domain 

imaging. The beamspace multistatic matrix for B-TR-ML imaging can be expressed 

as 
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where, BI  is a 3(2M+1)×3(2M+1) unit dyad. The noise in beamspace domain 

remains zero mean and Gaussian distributed. Considering the fact that, N>(2M+1), 

BΚ  has a reduced dimension of 3(2M+1)×3(2M+1) compared to 3(2M+1)×3N 

matrix rBK  when beamspace processing is applied only in the receiving mode. The 

detail derivation for the beamspace processing matrix, B  can be found in section 4.2 

of chapter 4 of this thesis.  

Also in case of B-TR-MUSIC, B-DORT and B-TR-RCB, we have to compute 

the beamspace weight vectors for the back propagation stage of time reversal 

imaging. In B-TR-ML imaging we need not estimate such weight vectors for back 

propagation using Green’s function vector. In B-TR-ML imaging we actually apply 

beamspace processing in both transmit mode and receive mode prior to the 

estimation of scattering strength of the scatterers.  

The likelihood function for scatters locations and strengths can be expressed as

  2

2

2
29(2 1)2

( , )1( , , ; ) exp
B B

BB M
l

Κ r
r Κ

κ x
x  (33) 

We can estimate the noise variance by equating the first derivative of lB to zero as 

 
22

2

1ˆ ( , )
9(2 1)

B BB M
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Now we can substitute (34) into (33) to obtain 
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We can simplify (35) as 
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We consider only the co-polar scattered field components. Maximum 

likelihood estimation of x  can be obtained as 
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Least square solution of (37) can be obtained as 

 
1

( )
H H

BB B B vecχ Κ
1

(
H1H

(B Κ(B vecB  (38) 

where 
t rB B BtB BtB rBr

. Substituting (38) into (37) we obtain the cost function in 

beamspace as 

 
2

( , ; ) ( )
B

B BBl P vecr K Κx
B

 (39) 

where, 
1

B B

H H
B B B BP PI I

B
PP IPP

B

1 H1

B
H
B B BB BB BB BB B . 

For B-TR-ML imaging we divide the whole region under investigation into 3D 

voxels and the dielectric tensor can be estimated at each voxel as 
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where, ( ) ( ) ( ) ( ) ( )
t r

T H

B B B t rg r g r g r B g r B g r . The 3D B-TR-ML imaging 

function is finally obtained as 
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 (41) 

 

5.3.1 Beamspace Maximum Likelihood Imaging in 2D 

We also derive the B-TR-ML for 2D imaging. In this case, we carry out 

beamspace processing in both transmit mode and receive mode of the 2D multistatic 

matrix to obtain 2D beamspace domain multistatic matrix as shown below 
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 (42) 

Here, Bκ has a reduced dimension of (2M+1)×(2M+1) where, N>(2M+1). The 

details about 2D beamspace processing matrix B can be found in section 4.3 of 

chapter 4. The likelihood function for scatters locations and strengths can be 

expressed for the 2D scenario as  

 2

2
2

2(2 1)2

( , )1( , , ; ) exp B B
B B M

l
Κ r

r Κ
κ  (43) 

Consequently B-TR-ML imaging function for 2D scenario is obtained as follows 
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where, ( ) ( ) ( ) ( ) ( )
t r

T H
B B B t rg r g r g r B g r B g r . 

 

5.3.2 Beamspace Time Reversal Maximum Likelihood Imaging Results 

Details about different types of breast phantoms and simulation setup are 

provided in chapter 2. Tumor locations and sizes for different cases have been 

provided in Table 2-2. The dielectric constant used for synthetic time reversal 

imaging using different types of breasts phantom is provided in Table 2-3.  

 

5.3.2.1 Single Tumor Detection Using Beamspace Time Reversal Maximum 

Likelihood Imaging 

At first we consider the case of single 7mm sized tumor inserted in a 3D C4 

breast phantom as shown in Figure 5-5. The tumor is located around 10:30 o’clock 

position and 2.5cm below the nipple. The highest image intensity indicates the true 

tumor location and the 7mm tumor has been localized unambiguously. In this case 

the computation burden was reduced from processing 445×445 multistatic matrix to 

39×39 beamspace multistatic matrix. This resulted in significantly reduced 

computational load and time. The efficiency and reduced computational burden 

achieved by proposed B-TR-ML tempts us to attempt detection of multiple tumors in 

highly dense C4 breast phantoms. 

We also consider B-TR-ML imaging for 2D C3 and C4 phantom as shown in 

Figure 5-6 and Figure 5-7 respectively. In both the cases the tumor has been 
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accurately localized within the accuracy of a few millimetres. Comparing B-TR-ML 

images with TR-ML images it can be observed that there is significant reduction in 

side lobes resulting from beamspace processing.  

 

 
(a) 

 
 (b) 

Figure 5-5. B-TR-ML imaging for 7mm tumor in C4 breast (a) 3D view, and 

(b) sagittal view. 
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Figure 5-6. B-TR-ML imaging for 2D C3 phantom. 

 

 

Figure 5-7. B-TR-ML imaging for 2D C4 phantom. 
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5.3.2.2 Two Tumor Detection in Highly Dense Breast Phantom Using 

Beamspace Time Reversal Maximum Likelihood Imaging 

We insert two 10mm sized tumors and two 7mm sized tumors and investigate 

the efficacy of the B-TR-ML in localizing both the tumors in 3D phantoms. The 

tumor location details can be found in Table 2-2 of chapter 2. This further illustrates 

the superiority of B-TR-ML imaging over B-DORT and B-TR-MUSIC imaging. The 

B-TR-ML imaging result for 10mm double tumor is shown in Figure 5-8. It is 

observed that both the tumors are quite accurately localized. Although both the 

tumors are located on a same coronal plane, both the high energy focused regions 

indicating the presence two tumors are vertically displaced by a few millimetres. 

Compared with B-DORT and B-TR-MUSIC results provided in chapter 4, it is 

clearly observed that the both the tumors are clearly detected from B-TR-ML image. 

 

 

Figure 5-8. B-TR-ML imaging for two 10mm tumors in C4 phantom. 
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(a) 

 
(b) 

Figure 5-9. B-TR-ML imaging for two 7mm tumors in C4 phantom (a) 3D view, and 

(b) sagittal view. 

 

The B-TR-ML imaging results for two 7mm sized tumors in C4 breast 

phantom is provided in Figure 5-9. In this case the tumor close to chest wall is 

clearly identified. However, the tumor close to nipple shows waker response. Still 

this is an improved result over B-DORT and B-TR-MUSIC image results as in latter 
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techniques cannot unambiguously localize top tumor. These results indicate the 

superior performance of B-TR-ML over B-DORT and B-TR-MUSIC. However, B-

TR-ML imaging technique needs further improvements for localization of small 

multiple tumors in a dense C4 breast phantom which will be described in chapter 6. 

   

5.4 Cramer Rao Lower Bound for Beamspace Time Reversal 

Imaging 

Cramer Rao Lower Bound (CRLB) is known to provide fundamental limit on 

estimation accuracy. For point scatterers the CRLB for multistatic estimation in 2D 

cases was originally formulated in [204]. It has been shown that results of maximum 

likelihood estimation is more accurate and follows CRLB more closely compared to 

MUSIC and others for direction of arrival (DOA) estimation applications [205, 206]. 

In our study we perform imaging and localization in beamspace. Hence, we derive 

CRLB for location estimation using beamspace multistatic matrix in 3D. Our 

intended application is microwave breast imaging. Breast is a highly heterogeneous 

medium with unknown tissue heterogeneity. We are using numerical breast 

phantoms with varied levels of tissue heterogeneity and densities. In real breasts 

heterogeneous tissue distribution is unknown. Hence, the derivation of Green’s 

function for such an irregular and randomly heterogeneous medium is a daunting 

task. Further, for CRLB estimation we need to compute derivatives of the Green’s 

function. The heterogeneous breast Green’s function may contain singularities which 

may affect the CRLB computation. On the other hand, for synthetic time reversal 

imaging we use an equivalent homogeneous medium that represent the equivalent 

and average dielectric property of the homogeneous breast.  
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First, we derive CRLB for point scatterers in infinite homogeneous 

background medium with an aim to investigate the performance of proposed B-TR-

ML imaging. We also derive CRLB for different number of modes of beamspace 

transformation. The modes determine the dimension of the beamspace processing 

matrix which results in reduced dimensional computations. We also investigate 

CRLB for low and high dielectric property contrast scenarios so that the effect of 

low dielectric contrast in highly dense breasts can be understood. Hence, we derive 

CRLB for different scenario using equivalent homogeneous medium representing the 

breast medium for back propagation operation of time reversal.  

For CRLB, we first derive the Fisher Information Matrix (FIM) considering 

the uncertainties of the scattering tensor and location of targets.  The log likelihood 

function for estimation of scattering tensor and scatterer location is provided in (6). 

We define [ , ]
TTθ rx ,T , ]
T

 to find the FIM as 
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Here, {.}E denotes expectation and {.}indicates real part. We can represent (45) 

as 

 2

2( ) ( ) ( )Hθ S θ S θI  (46) 

where, 
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Here, BΚ is a 3(2M+1)×3(2M+1) matrix and ( )Bvec Κ produces a 9(2M+1)2×1 vector 

YB by sequentially stacking the columns of . For the case of P isotropic targets  

 1 2, , ,
T

Px = 111x =
T

P, P,  (50) 

 1 2[ , , , ]T
Pr r r r1 2[ , ,1 2[r [ ,1 2 , ]T
P,  (51) 

Here, scattering tensor of p-th target is given by x y z
p p p px x x  and rp is the 

location of the p-th target. 

The derivatives in (48) and (49) can be evaluated as 
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Substituting (52) and (53) into (47) and then (46), the FIM can be expressed as 

 ( )
T
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I I
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I I
 (54) 

Thus CRLB is obtained as 
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Eventually we obtain the CRLB for location estimation as 

 1CRLBrr rr r rx xx xI I I I  (56) 

We can expand (48) as to compute the Jacobian matrix as 
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where, vecd(.) forms a vector from the diagonal elements of a matrix.  We can 

expand (57) as 
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Similarly we can expand (49) as 
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Here, 
tBtBt
and 

rBrB are both functions of target locations. From (59) we obtain 
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The derivatives t
TrTr
t  and r

TrTr
r  can be computed as follows 
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Since, we have used equivalent homogeneous 3D medium, we obtain 

2

( / 4 ) ( 1)
4

jk jkG e e jkr rr r
r r r

 in (61) and (62) for FIM evaluation. 

In order to investigate CRLB of proposed B-TR-ML technique we employ a 

cylindrical array of the same geometry and characteristics used for breast phantom 

imaging. It is assumed that the antenna array is located within an infinite lossless 

dielectric homogeneous medium. A isotropic point target is located at 
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1 ( 25mm, 20mm, 65mm)o x y zr  with dielectric constant εr=50. The 

schematics for CRLB computation is illustrated in Figure 5-10. 

We consider different phase modes of the cylindrical array beamspace 

transformation and obtain CRLB for each case as shown in Figure 5-11. These 

modes for beamspace matrix are discussed in section 4.2 of chapter 4. We find that 

for M>4 where phase modes are m=[-M,…..,M] the CRLB remains almost 

unchanged. It was also confirmed from the beamspace residual error computation in 

chapter 4 that dominant truncation error term is negligible for M>4. It reflects the 

fact that increasing modes of beamspace processing will not produce a lower CRLB. 

Hence, reduced dimensional beamspace can be used to accurately estimate the target 

location. We also compute beamspace CRLB for different dielectric contrasts 

between the target and background. It can be observed from Figure 5-12 that 

increasing contrast from 1.1 to 2 lowers the CRLB. Hence, tumor localization in 

dense breasts where the contrast can be as low as 10% will have lower accuracy 

compared to fatty type breast.  
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Figure 5-10. Antenna array and target schematics for CRLB computation.  

 

 

Figure 5-11. CRLB for different modes of beamspace processing. 
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Figure 5-12. CRLB for different contrast between target and background. 

 

The CRLB for beamspace time reversal for different cases are computed based 

on an infinite homogeneous lossless and non-dispersive background medium 

whereas, the breast represents a finite highly heterogeneous medium. Hence, the 

computed CRLB does not represent the true CRLB for breast models. However, the 

beamspace CRLB represents the advantages of beamspace imaging in homogeneous 

medium and we contemplate the advantages of beamspace imaging for 

heterogeneous breast phantoms. 

 

5.5 Relationship between Conventional Time Reversal and Time 

Reversal Maximum Likelihood Estimation 

Conventional time reversal imaging technique as explained in subsection 3.2.2 

of chapter 3 is also simply referred to as time reversal beamforming. Using the 
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multistatic matrix, K we can obtain an alternative expression of (19) in chapter 2 for 

time reversal beamforming as 

 
22 ( ) ( ) ( , ) ( )D T

TR r tI r g r K r g r  (63) 

Shi and Nehorai [80] derived the relationship between time reversal 

beamforming and TR-ML for 2D scenario. For the sake of completeness we first 

derive the same in element space and then in beamspace considering a 3D scenario. 

 

5.5.1  Element Space Time Reversal Beamforming and Time Reversal 

Maximum Likelihood Estimation in 3D Scenario 

Time reversal is equivalent to phase conjugation in frequency domain. Hence, 

time reversal image can be obtained using a beamformer where the beamformer 

weights are obtained from the complex conjugate of the multistatic matrix. Time 

reversal beamforming is simple to implement. But its performance degrades with 

increasing clutter and noise levels in the medium. The basic time reversal imaging 

function for time reversal beamforming in 3D can be obtained as 
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For TR-ML estimation we obtain from (19) as 
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Here, denotes the Kronecker product. The algebra of Kronecker product for 

vector and matrix is provided in Appendix B. We can further simplify (65) as 
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We use 
2

( )rx
2

( )x as the imaging metric. Hence, the TR-ML image is obtained as 
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Comparing (67) and (64) we can write 
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Hence, images due to TR-ML and conventional element space time reversal 

beamforming are complex conjugates of each other and their amplitude differ only 
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by a scaling factor. The scaling factor depends on the location in the imaging 

domain. Location dependent scaling factor helps to correctly project the image of 

distant scatterers and overcome near-far problem.  

 

5.5.2 Beamspace Time Reversal Beamforming and Time Reversal Maximum 

Likelihood Multistatic Estimation in 3D Scenario 

Beamspace processing projects element space data and estimation into the 

beamspace. To derive the relation between B-TR-ML and beamspace time reversal 

beamforming, we compare their beamspace projections. In accordance with B-TR-

ML imaging technique, we use beamspace processing in both transmit mode and 

receiving mode for beamspace time reversal beamforming. Beamspace time reversal 

imaging can be defined as 
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For B-TR-ML estimation, we obtain from (40) 
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We can further simplify expression in (71) as follows 
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Hence, B-TR-ML imaging we can write 
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Comparing B-TR-ML with beamspace time reversal imaging form (72) and 

(70) we obtain the following relationship. 
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Hence, the scaling factor for B-TR-ML imaging is a function of the Green’s 

function vector as well as beamspace processing matrix. It can be explained using 
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the CRLB for B-TR-ML imaging for different modes of the beamspace processing 

matrix. For modes above a threshold, CRLB remains unchanged. Hence, the scaling 

factor will then depend on the Green’s function vector. This is because above a 

certain mode threshold, the residue error for beamspace transformation is negligible. 

Equivalently we can say that the scaling factor depends on the beamspace projection 

of the Green’s function vector. 

 

5.6 Discussion 

We have proposed beamspace time reversal maximum likelihood (B-TR-ML) 

imaging for localization of single tumor as well as two tumors embedded inside a C4 

breast phantom. The imaging results demonstrate superior performance of B-TR-ML 

imaging over other beamspace time reversal methods viz. B-DORT, B-TR-MUSIC 

and B-TR-RCB imaging techniques. We have also derived and computed CRLB for 

beamspace time reversal imaging. The beamspace CRLB although derived for 

homogeneous medium illustrates the advantages resulting from beamspace 

processing and possible challenges of tumor detection in highly dense breasts where 

the dielectric contrast can be quite low. However, B-TR-ML imaging can be further 

improved for the detection of small sized and multiple tumors in dense breasts. 

Using beamspace processing we retain the advantages of TR-ML imaging while 

computational burden is significantly reduced.  
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Chapter 6 : Coherent Focusing Techniques for Time 

Reversal Imaging 

6.1 Introduction 

When ultrawideband (UWB) microwave signals are used for imaging, images 

can be obtained either in time domain or in the frequency domain. When frequency 

domain is used, the complete UWB received signal is divided into many small 

frequency bins and the time reversal images obtained at individual frequency bins 

are combined to get the final image. Such imaging approach is called non-coherent 

approach as individual images are obtained independently at each frequency bin. 

This can lead to poor time reversal focusing and create problems for target detection 

in a cluttered medium, where backscattering from the clutter can dominate the target 

response. When the targets are embedded in a cluttered medium, the received 

backscattered response from targets obtained at the receiver array contains multiple 

strong responses from clutter, thus resulting in location ambiguity. The problem is 

further intensified with increasing medium heterogeneity which increases the 

background clutter. When time domain time reversal imaging approach is used, this 

problem can lead to appearance of ghost target images or false positives [62]. The 

problem can get much worse for low signal to noise ratio (SNR) scenarios as the 

threshold effect causes the in-coherent UWB image to be ineffective [207].  One way 

to overcome this problem for UWB time reversal imaging in cluttered medium is to 

coherently focus the individual frequency bins before obtaining the time reversal 

image. Coherent processing can eliminate spurious peaks resulting from random 

phase variation in different frequency bins. Coherent processing techniques have 
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been used in field of direction of arrival (DOA) estimation [208-211] as well as for 

2D ultrasound imaging [79]. Originally, the coherent processing was implemented 

using focusing matrices in which the focusing matrices coherently processes 

individual narrow band frequency bins and combine them to form a coherent 

frequency bin. Such focusing helps to establish a uniform signal subspace across the 

bandwidth to obtain a statistically stable estimation of the target location. Focusing 

matrix also reduces computational burden by eliminating the requirement of imaging 

in each frequency bin. This results in faster computation compared to non-coherent 

imaging approach as well as time domain imaging technique. 

In view of all the above advantages, we investigate the use of focusing 

matrices for coherently processing time reversal imaging for detection of cancer in 

highly dense breasts phantoms. For this, we propose two types of focusing matrices 

to obtain novel coherent time reversal imaging techniques. Focusing matrices can be 

classified into two categories- unitary and non-unitary. Unitary focusing matrix is 

suitable for DORT, TR-MUSIC and TR-ML imaging techniques where as non-

unitary focusing matrix is more suitable for TR-RCB imaging technique. Focusing 

matrix can be used independent of beamspace processing. To gain further advantage 

and improvement for time reversal imaging, we combine both coherent focusing and 

beamspace processing to obtain novel coherent beamspace time reversal imaging 

techniques. Our investigations have revealed that the coherent beamspace TR-ML 

has superior performance than other time reversal imaging techniques in terms of 

localizing multiple and small size malignant tumors in highly cluttered dense 

heterogeneous breast phantom.    
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6.2 Perturbation of Multistatic Matrix in Cluttered Environment 

For targets embedded in a cluttered medium with other strong scatterers, the 

received backscattered response is a combination of the target and clutter responses 

as opposed to targets embedded in a homogeneous background medium. For 

microwave imaging of highly dense breasts, the dense fibro-glandular and 

connective tissue content dominate the breast medium. The scattering from dense 

glandular tissues dominate the backscattering from malignant tissues because the 

contrast in the dielectric properties between glandular to malignant tissues is very 

low [86, 87]. Hence, the received scattered field is a combination of actual target 

response plus target response scattered by various glandular tissues. This scattering 

resembles random multipath effects in a rich scattering medium. Hence, multistatic 

matrix for such scenario can be expressed as 

 1 2 ...br YK K K K K  (1) 

where, brK is the multistatic response matrix for dense breast and yK

represents scattering by y-th clutter source, y=1,2….,Y. We can express yK in its 

general form as 

 y yK KA  (2) 

where, yA is a 3N×3N matrix that represents random attenuation and phase change 

caused by the y-th clutter. This will result in random phase change in the frequency 

bins of the multistatic matrix[61]. As a result non-coherent imaging in each 

frequency bin cannot obtain a stable image focusing on target location. We can 

express (1) as 

 brK K K  (3) 
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where, K is the perturbation of actual the multistatic matrix, K . Consequently the 

estimated target response is perturbed randomly in different frequency bins. In such 

a scenario the time reversal operator (TRO) can be expressed as 

 

H
br br br

H

H H H H H

T K K

K K K K

K K K K K K K K

 (4) 

The second and subsequent terms on the right hand side of (4) causes random phase 

variation and perturbation of the original TRO, 
H

T K K . Thus the desired 

perturbation free TRO, 
H H

br br brT K K K K can be obtained by minimizing

K K . But in a practical application, both K , and K  are unknown as the 

neither the target location nor the clutter distribution is known prior to imaging. 

Hence, focusing matrix is used to coherently process each frequency bin such that 

the perturbation is minimized in the resulting coherent focussed frequency bin. 

Perturbation of multistatic matrix may cause it to be rank deficient arising from 

random phase cancellation in different multipath. For uncorrelated signal, the 

composite signal subspace dimension is the sum of individual signal subspaces for 

each signal. But when the signals are correlated as in multipath, the signal subspace 

dimension is reduced. For rank deficient multistatic matrix, a simple eigen vector 

may be associated with multiple targets. Hence, it is also difficult to unambiguously 

detect multiple targets in highly heterogeneous and cluttered medium using 

incoherent imaging techniques. Also this is a problem for small sized targets where 

random phase cancellation may completely mask a target response into the 

background clutter. 
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6.3 Coherent Focusing for Time Reversal Imaging 

Coherent processing is a wideband technique as opposed to incoherent 

processing technique[212]. In case of incoherent processing the required target 

parameters are estimated individually in each narrowband frequency bin and later 

combined to obtain the UWB result. Incoherent processing technique of individual 

frequency bins is generally suitable for imaging in clutter free medium. Incoherent 

techniques fail for completely correlated signals even at very high SNR[208]. 

Coherent focusing is carried out so that the signal subspace in the coherently 

focussed frequency bin is uniform. We consider coherent signal subspace method 

(CSSM) [79] and wavefield modelling method (WMM) [213] to obtain two different 

types of focusing matrices. 

  

6.3.1 Coherent Signal Subspace Method for Time Reversal Imaging 

As the multistatic matrix is perturbed in different frequency bins, the signal 

subspace is affected over the same bandwidth. Coherent signal subspace method 

(CSSM) obtains a coherently focused frequency bin by aligning the signal subspace. 

CSSM was proposed by Wang and Kaveh for DOA estimation [208] and was 

adopted for 2D time reversal acoustic imaging by Wang et. al. [79]. in this thesis we 

extend CSSM for 3D time reversal microwave imaging. In a highly cluttered 

medium the multipath scattering can cause random variations of signal phases. This 

results in random phase variation in different frequency bins. For stable UWB 

imaging the phase variations of eigen vectors should be continuous so that signal 

subspaces across the frequency bins remain aligned. Alignment of the signal 

subspace leads towards a uniform signal subspace over frequency bands such that the 
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signal subspace eigen vectors are related to the actual targets across the frequency 

band. Hence, the resulting coherently focused UWB image can be used as an 

unambiguous estimation of target location.  

We use focusing matrices to coherently process each frequency bin and 

combine them into a coherently focussed frequency bin. The focusing matrix is 

derived in such a way that focusing error is minimized. Using CSSM [209, 214], the 

focusing matrix for multistatic matrix can be obtained as   

 
2

( )
min ( ) ( ) ( )
C f

H
C C Co f f subject to

Z
K Z K Z Z I  (5) 

In (5) the ωf-th frequency bin is coherently focussed into ω0 using the CSSM 

focusing matrix ( )C fZ . The unitary focusing matrix ( )C fZ  rotates the signal 

subspace of the ωf-th frequency bin such that the focusing error is minimized by 

aligning the signal subspace of ωf-th frequency bin with the focused frequency bin 

ω0. We can expand (5) as 

 

2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2Re ( ) ( ) ( )

Co f f

H

C Co f f o f f

H H

o o f f

H H
Co f f

tr

tr tr

tr

K Z K

K Z K K Z K

K K K K

K K Z

 (6) 

 Hence, solution of the minimization problem in (5) is obtained when 

Re ( ) ( ) ( )
H H

Co f ftr K K Z is maximized. We define a matrix, H as 

H H
CH U Z V where ( ) ( )

H H

f oK K UΣV . From (6) we obtain 
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 Re ( ) ( ) ( )
H H

Co f ftr trK K Z ΣH  (7) 

where, Σ contains the singular values of ( ) ( )
H

f oK K . The solution of (5) is 

obtained when H
CZ VU leading to H I . We obtain coherent TRO using CSSM 

(CS-TRO) as 

 
1

( ) ( ) ( ) ( )
F H

C C Co f f f
f

T Z T Z  (8) 

It can be observed from (8) that 

 

2

2

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
H H H

C C C Cnc ncf f f f f f f f

H H H
nc nc

H
C C

Z T Z Z V Φ V Z

VU V Φ V UV

V Φ V

 (9) 

Here, subscript nc indicates non-coherent. We now obtain a set of coherent eigen 

vectors CV as a result of coherent focusing using coherently focusing matrix Z .   

For 2D microwave imaging we need to use 2D multistatic matrix. In our case, 

we use   TM-z polarization and consider only the z-component of the electric field. 

The focusing matrix can thus be obtained as 

 
2

( )
min ( ) ( ) ( )

f

H
o C f f C Csubject to

Z
K Z K Z Z I  (10) 

The solution can be obtained as H
CZ VU  where, ( ) ( )H H

f oK K UΣV . 

 

6.3.2 Wavefield Modelling Method for Coherent Focusing 

According to wavefield modelling method (WMM) [193] the output of any 

arbitrary array can be expressed as the product of array sampling matrix and 



Chapter 6: Coherent Focusing Techniques for Time Reversal Imaging 

218 
 

incoming wavefield vectors. We propose to obtain the focusing matrix to minimize 

the focusing error given by   

 
2

0( )
min ( ) ( ) ( )o

f

H
W f fE

rZ
Z

2H
( ) ( )( ) () () (( ))0( ) ( ) ( )

H

0 f f0( ) ( ) ( )0 f f) () () () (0 ) (  (11) 

where, {.}oE
r

 is the expectation about target location, ro, 
H
WZ  is the WMM focusing 

matrix and ω0 is the focused frequency bin. Let us assume that the targets are 

statistically independent. Therefore, the target locations can be considered to be 

statistically independent random variables. Considering that P-target locations are 

uniformly distributed discrete random variables, we can write
1

( ) 1
P

p
p

r , where 

( ) 1/p Pr  and the probability density function (pdf) can be expressed as 

 2

1
( ) ( ) 1

P

p
p

r r  (12) 

The expected value for a discrete random variable X with pdf f(x) is obtained as  

 [ ] ( )
x

E X xf x  (13) 

For P-targets using the details given in section 3.3 of chapter 3 we obtain 

 1 2( ) [ ( , ) ( , ) ... ( , )]o o o
Pg r g r g r( ) [ () [g((  (14) 

Consequently (11) can be expressed as 

 

2

( )

2

1 1 1 0
1

2

0

min ( ) ( ) ( )

... ( )... ( ) ( , ) ( ) ( , )

( ) ( , ) ( ) ( , )

o
f

H
Wo f f

P Ho o o o o o
WP P P p f p f

pV

H
W f f

V

E

d d

d

rZ
Z

r r r r g r Z g r

r r g r Z g r

2H
( ) ( )( ) () (( ) () (( )))( ) ( ) ( )

H

o f f( ) ( ) ( )o f f) ( ) () ( ) () ( ) () ( ) (

 (15) 
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Focusing matrix that minimizes the L2 norm of the focusing error can be 

estimated as [213] 

 
222

0
1 1( ) ( ) ( ) ( )

H
Wf f f

V

e d e
N Nrr F Z F2 1e d2 1 d
N

d  (16) 

 where, F is the array sampling matrix. Using least square solution, we get 

 
†

0( ) ( ) ( )
H
W f fZ F F  (17) 

where, 
1† H H

F F F F . Assuming N is odd, the array sampling matrix F  [193] as 

explained in chapter 4 can be obtained as  

 4 ( ) ( , )
nq

a l x x x
l n lm n n

l m
F i j kr Y  (18) 

where, q=0,1,... l(l+1)+m, … N-1, l=0,1,…, m=-l,….l, a=x,y,z, jl denotes spherical 

Bessel function of first kind and Ylm denotes spherical harmonics. The array 

sampling matrix is obtained by sampling the incident plane waves at individual array 

elements location. We use spherical harmonic expansion for the plane waves since 

we are considering imaging in 3D. Now, the proposed coherent TRO using WMM 

(CW-TRO) can be obtained as 

 
1

( ) ( ) ( ) ( )
F H

W W Wo f f f
f

T Z T Z  (19) 

Now we can use CW-TRO over a number of focussed frequency bins for 

imaging instead of using all the frequency bins. 

The array sampling matrix for the case of 2D imaging can be obtained as 

 2 ( ) niqz q
nq q n

n q
F i J kr e  (20) 
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where, the array elements are located at rn=(rr,θn), n=0, 1, 2 , .., N and                      

q= −∞…,−1,0,1,…∞. Here, q can be safely truncated. Wavefield modelling in (18) 

and (20) requires that the sensors are uncoupled, omnidirectional and ideal. WMM of 

coherent focusing is different way of implementing beamspace processing. Since, 

wave fields are expanded in terms of spherical harmonics and Bessel functions, it is 

very similar to beamspace processing. However, beamspace processing as explained 

in Chapter 4, was applied for individual frequency bins which is a non-coherent 

process. For coherent focusing the sampled wavefield is coherently focussed in 

beamspace so that the focusing error is minimized.  

 

6.4 Focusing Loss 

Focusing loss can be used as a metric to measure the performance of focusing 

matrices [209]. Focusing loss is defined as the ratio array signal to noise ratio (SNR) 

before focusing and array SNR after focusing. The loss in SNR indicates the quality 

of the focusing matrix. The multistatic matrix at ωf-th frequency can be expressed in 

terms of signal subspace, S  and noise subspace, N  as explained in section 3.5 of 

chapter 3. 

 
2 2

B

H H

K K K

U Σ V U Σ V

S N

S NS S N N

 (21) 

The focusing loss is thus defined as 

 

1

1

1

f f

F T H
C Cn r t

f

F T
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f

tr
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Z K Z

K

S

S

K
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fffff

T
r t

T
r t

 (22) 
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where, nK is the effective noise covariance after focusing normalized to the noise 

variance before focusing defined as[209] 

 

2

1

2

1

( ) ( ) ( )

( )

F H
C Cn f f f

f
n F

n f
f

Z Z
K  (23) 

For the case of unitary focusing matrix CZ  we obtain, 

 

2

1

2

1

2

1
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1
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F H
C Cn f f f

f
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f
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 (24) 

Substituting  (24) into (22) we obtain 
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 (25) 

We can use the cyclic property tr(ABCDE)=tr(BCDEA) in (25) to obtain 
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tr
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 (26) 

Thus it is shown that there is no focusing loss for unitary focusing matrix. 

 

6.5 Coherent Time Reversal Imaging 

Coherently focussed TRO can be used for time reversal imaging instead of 

using non-coherent TRO at each frequency bin. We can express coherently focussed 

TRO, CT as 

 
2 2H H

C C C C CT V Σ V V Σ VS S S N N N  (27) 

where, S  denotes signal subspace and N denotes noise subspace. Using (40) in 

conjunction with either DORT or TR-MUSIC or TR-RCB or TR-ML imaging 

functions we can obtain CS-DORT, CS-TR-MUSIC, CS-TR-RCB and CS-TR-ML 

imaging functions respectively. We can use both focusing matrices viz. CS-TRO, 

CT  and CW-TRO, WT  to obtain coherent time reversal images. However, CS-TRO 

is found to be more suitable for DORT, TR-MUSIC and TR-ML imaging while CW-

TRO can be useful for TR-RCB.  
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6.5.1 Coherent Time Reversal Imaging Functions 

Here we describe the imaging functions for coherently focused TRO. 

 

6.5.1.1 Coherent Time Reversal Subspace Based Imaging 

The signal subspace of CT is spanned by the eigen vectors with significant 

eigen values. Accordingly, the noise subspace is spanned by the eigen vectors with 

insignificant eigen values. Consequently the CS-DORT and CS-TR-MUSIC imaging 

functions are obtained as follows 

 
1

ˆ 2

( ) ( )
A

n

IC H
cCS DORT

n

P

I r v g r  (28) 

 2

ˆ 1

1( )
( )

AIC

n

CS TR MUSIC N H
c

Pn

I r
v g r

 (29) 

where, ncv  is the n-th eigen vector of CT . Imaging is carried out at the centre 

frequency, c of the coherently focussed TRO, CT . Similarly we can also use WT

for DORT and TR-MUSIC imaging to obtain CW-DORT and CW-TR-MUSIC. 

Details of DORT and TR-MUSIC imaging can be found in chapter 3. We have also 

used using Akaike information criterion (AIC) for estimation of the signal subspace 

as described in chapter 2. 
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6.5.1.2 Coherent Time Reversal Robust Capon Beamforming 

Following the details of TR-RCB imaging given in chapter 3 and subsection 

3.4.4 we obtain CS-TR-RCB by employing the CS-TRO obtained using CSSM. The 

weight vector for CS-TR-RCB is derived as 

 
1

1
C

CS H
C

T gw
g T g

 (30) 

where, 

 1 1H
C C C C CT T Z Z T I  (31) 

CSSM for TRO focusing leads towards diagonal loading as the focusing matrix ZC is 

unitary. Similarly using wavefield modelling method (WMM), the weight vector for 

CW-TRO is obtained as 

 
1

1
W

CW H
W

T gw
g T g

 (32) 

where, 

 1 1H
W W W W WT T Z Z T Q  (33) 

When WZ is non-unitary, Q is a non-diagonal matrix resulting in non-diagonal 

loading. 

 

6.5.2 Coherent Beamspace Time Reversal Imaging 

We can also couple beamspace processing with coherent focusing to take the 

advantages of both techniques. However, we have two options- beamspace 

processing before coherent focusing or coherent focusing before beamspace 



Chapter 6: Coherent Focusing Techniques for Time Reversal Imaging 

225 
 

processing. Coherent focusing before beamspace has a number of advantages. Firstly 

computational burden is reduced by a factor equal to the number of frequency bins 

focussed into a coherently focused bin. Secondly, coherent focusing is more 

effective in element space since TRO perturbation occurs in element space. 

Beamspace represents beamspace sampling of element space data. Hence, we 

propose coherent signal subspace focusing for beamspace (CS-B) processing to 

obtain superior time reversal imaging superior performance. The coherent signal 

subspace method (CSSM) focusing matrix, CZ  and beamspace processing matrix 

are both unitary. Hence, CS-B processing preserves the subspace orthogonality. 

Hence we can obtain CS-B-TRO as write, 

 
1

f f

F H
C C f C

f
T Z T Z  (34) 
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 (35) 

For coherent signal subspace beamspace processing we have, 

 ( ) ( )
H

CCB CBZ B VSR R R( ) ( )CB

H

( SSSSRRR RRR  (36) 

here, R indicates range of a matrix. Hence, we can use the signal subspace of CBT

for DORT imaging and is referred to as the coherent beamspace DORT (CS-B-

DORT). The noise subspace of CS-B-TRO is used for CS-B-TR-MUSIC imaging.  



Chapter 6: Coherent Focusing Techniques for Time Reversal Imaging 

226 
 

 

6.5.3 Results Using Coherent Time Reversal Imaging  

Now we consider coherent processing for time reversal imaging. We use CS-

TRO as well as CW-TRO for different types of breast phantoms. Details about 

different types of breast phantoms and simulation setup are provided in chapter 2. 

Tumor locations and sizes for different cases have been provided in Table 2-2. The 

dielectric constant used for synthetic time reversal imaging using different types of 

breasts phantom is provided in Table 2-3. 

 

6.5.3.1 Simulation Results for Coherent Time Reversal Robust Capon 

Beamforming 

At first we consider coherent focusing for time reversal minimum variance 

imaging technique viz. TR-RCB. To compare the performance of coherent signal 

subspace method (CSSM) and wavefield modelling method (WMM) for TR-RCB 

imaging, we use CS-TR-RCB and CW-TR-RCB for a 3D C3 breast phantom 

imaging and the results are shown in Figure 6-1 and Figure 6-2 respectively. A 

10mm sized single tumor is located at 2:30 o’clock position and 7.5cm below nipple as 

indicated by the spherical inclusion. The images obtained using CS-TR-RCB and CW-TR-

RCB image show the estimated tumor location is close to the actual tumor location as shown 

in Figure 6-1and Figure 6-2 respectively. However, we observe significant side lobe in 

CS-TR-RCB image while side lobe effect is very well suppressed in CW-TR-RCB image. 

Coherent processing provides improved imaging results for TR-RCB by reducing 

side lobe and estimation error compared to non-coherent TR-RCB imaging for C3 

breast as shown in chapter 3. However, for both CS-TR-RCB and CW-TR-RCB 
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imaging results the actual tumor location does not coincide with the high image 

intensity peaks. This results from the fact that, the actual breast medium is 

heterogeneous and a homogenous medium is used for time reversal imaging.  

 

(a) 

 

(b) 

Figure 6-1. CS-TR-RCB imaging for C3 phantom (a) 3D view, and (b) sagittal view. 
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(a) 

 
 (b) 

Figure 6-2. CW-TR-RCB imaging for C3 phantom (a) 3D view, and           

(b) sagittal view. 

6.5.3.2 Simulation Results for Coherent Subspace Based Time Reversal Imaging 

We now consider CS-DORT and CS-TR-MUSIC for detection when two 

10mm sized tumors are inserted inside 3D C4 breast phantoms. The tumors are 
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located at 4.5cm below the nipple at 2 o’clock and 4 o’clock positions. The imaging 

results for CS-DORT and CS-TR-MUSIC is provided in Figure 6-3and Figure 6-4 

respectively. For both the imaging techniques, the tumor located at 2 o’clock 

position is clearly identified while the other tumor located at 4 o’clock shows very 

weak response. Thus it is evident that even CS-DORT and CS-TR-MUSIC cannot 

unambiguously resolve both the tumors. 

 
(a) 

 
 (b) 

Figure 6-3. CS-DORT imaging for the detection of two 10mm sized tumors in C4 
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phantom (a) 3D view, and (b) coronal view. 

 
(a) 

 
 (b) 

Figure 6-4. CS-TR-MUSIC imaging result for the detection of two 10mm sized 

tumors in C4 phantom (a) 3D view, and (b) coronal view. 

 

6.5.4 Coherent Beamspace Time Reversal Imaging Results 

Coherent time reversal technique improves the imaging performance of 

element space time reversal imaging techniques. But it still cannot unambiguously 
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detect and localize two 10mm sized tumors embedded in a C4 breast phantom as 

shown in previous results. Beamspace processing although improved element space 

time reversal imaging performance but it alone still cannot unambiguously detect 

multiple tumors embedded in a highly dense C4 breast phantom. We propose to 

combine coherent focusing with beamspace processing to further improve time 

reversal imaging for breast cancer detection in highly dense breasts. This can be 

done in two ways viz. by using CS-B-TRO or B-CS-TRO. We propose to first 

coherently focus TRO to obtain CS-TRO and then use beamspace processing for CS-

TRO to obtain CS-B-TRO. We also consider the alternate approach in which we 

carry out beamspace processing first, and then use coherent signal subspace focusing 

to obtain B-CS-TRO.  

 

6.5.4.1 Simulation Results Obtained using Coherent Beamspace Processing for 

Subspace Based Time Reversal Imaging 

Now we use both CS-B-TRO as well as B-CS-TRO for two 10mm sized 

tumors detection in C4 breast phantom. Let us first consider the results for CS-B-

DORT and CS-B-TR-MUSIC imaging as shown in Figure 6-5 and Figure 6-6 

respectively. It is observed from both imaging results that the high image intensity 

regions are in the close vicinity of the actual tumor locations. Then we consider the 

alternate approach in which we carry out beamspace processing first, and then use 

coherent signal subspace focusing to obtain B-CS-TRO for B-CS-DORT and B-CS-

TR-MUSIC imaging. The imaging results are shown in Figure 6-7 and Figure 6-8. It 

can be observed that in both the cases the 4 o’clock tumor is readily identified while 

the 2 o’clock tumor is obscured. This is because when beamspace processing is 
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carried out first, coherent focusing has to work on reduced dimensional beamspace 

TRO. The coherent focusing is originally derived for element space TRO. This 

demonstrates that the coherent focusing can be more effective in element space than 

beamspace. 

 

(a) 

 

 (b) 

Figure 6-5. CS-B-DORT imaging result for the detection of two 10mm sized tumors 
in C4 phantom (a) 3D view, and (b) coronal view 
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(a) 

 
(b) 

 
(c) 

Figure 6-6. CS-B-TR-MUSIC imaging for the detection of two 10mm sized tumors 
in C4 phantom (a) 3D view, (b) sagittal view for tumor at 2 o’clock position,         

(c) sagittal view for tumor at 4 o’clock position. 
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(a) 

 

(b) 

Figure 6-7. B-CS-DORT imaging result the detection of two 10mm sized 

tumors in C4 phantom (a) 3D view, and (b) coronal view. 
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(a) 

 

 (b) 

Figure 6-8. B-CS-TR-MUSIC imaging result for the detection of two 10mm sized 

tumors in C4 phantom (a) 3D view, and (b) coronal view. 

 

Let us now consider the results for two 7mm sized tumor detection in C4 

breast phantom using CS-B-DORT and CS-B-TR-MUSIC imaging as shown in 
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Figure 6-9 and Figure 6-10 respectively. It can observed that CS-B-DORT and CS-

B-TR-MUSIC can localize even two 7mm sized tumor unambiguously where 

beamspace time reversal as well as coherent time reversal imaging techniques fail to 

localize the tumors unambiguously.   

 

 
(a) 

 
 (b) 

Figure 6-9. CS-B-DORT imaging result for the detection of two 7mm sized tumors 
in C4 phantom (a) 3D view, and (b) sagittal view. 
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(a) 

 
(b) 

 
 (c) 

Figure 6-10. CS-B-TR-MUSIC imaging result for the detection of two 7mm sized 
tumors in C4 phantom (a) 3D view, (b) coronal view, and (c) sagittal view. 
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6.5.4.2 Coherent Beamspace Time Reversal Maximum Likelihood Imaging 

Results 

Superior imaging performance is achieved when coherent processing is applied 

to the beamspace TR-ML (B-TR-ML) imaging technique to obtain coherent B-TR-

ML (CS-B-TR-ML). It is found that CS-B-TR-ML has superior resolution and 

accuracy in detecting multiple tumors that are embedded even in highly dense C4 

breasts. The case of two 7mm sized tumor detection in C4 breast phantom using CS-

B-TR-ML is considered first. It is observed from Figure 6-11 that CS-B-TR-ML 

imaging performance is even better than CS-B-DORT and CS-B-TR-MUSIC in 

terms of resolution and accuracy. We also show that CS-B-TR-ML can detect three 

10mm tumors in a highly dense C4 breast as shown in Figure 6-12. The results in 

Figure 6-13 indicate that CS-B-DORT and CS-B-TR-MUSIC cannot successfully 

detect all the three tumors in C4 breast phantom. 
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(a) 

 

 (b) 

Figure 6-11. CS-B-TR-ML imaging result for the detection of two 7mm sized 

tumors in C4 phantom (a) 3D view, and (b) sagittal view. 
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(b) 

 
(c) 

 
 (d) 

Figure 6-12. CS-B-TR-ML imaging for the detection of three 10mm sized tumors in 
C4 phantom (a) axial view for tumor at 3 o’clock position, (b) axial view for tumor 

at 6 o’clock position, and (c) axial view for tumor at 10:30 o’clock position. 
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Figure 6-13. Imaging results for the detection of three 10mm sized tumors in C4 
breast phantom showing 3D view for (a) CS-B-TR-ML, (b) CS-B-DORT, and        

(c) CS-B-TR-MUSIC. 

 
(a) 

 
(b) 

 
 (c) 
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(a) 

 
(b) 

Figure 6-14. CS-B-TR-ML imaging result for 5mm tumor detection in C4 phantom 
(a) 3D view, and (b) coronal view. 

 

To further illustrate the superior performance and advantages to be gained by 

CS-B-TR-ML we consider detection very small sized tumor in a C4 breast phantom. 

It can be observed from Figure 6-14 that the 5mm tumor is unambiguously 

identified. This offers further hope to confidently employ the proposed CS-B-TR-
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ML imaging technique for breast cancer detection in highly dense breasts for 

detecting small sized single and multiple tumors. CS-B-TR-ML performance is 

superior to CS-B-DORT and CS-B-TR-MUSIC imaging since TR-ML uses 

measured data for signal subspace. For DORT and TR-MUSIC imaging the signal 

subspace comes from the Green’s function vector. In highly dense heterogeneous 

breasts medium the actual Green’s function is unknown. As a result CS-B-TR-ML 

outperforms CS-B-DORT and CS-B-TR-MUSIC for breast cancer detection in 

highly dense C4 breasts. 

 

6.5.4.3 Performance Comparison for Breast Cancer Detection in Highly Dense 

Breast 

To envisage the efficacy of proposed time reversal imaging techniques we 

compute the error for different techniques for tumor localization in highly dense C4 

phantom. The error is computed as the distance between actual tumor location and 

estimated tumor location. We consider the cases for two 10mm sized tumors and two 

7mm sized tumors embedded in C4 breast phantom as shown in Table 6-1and Table 

6-2 respectively. However, the improvement in imaging performance cannot be 

solely understood from localization error. We also need to consider peak to side lobe 

ratio (PSLR) computed using (100) of chapter 3, subsection 3.6 to investigate the 

suitability of the proposed techniques in cluttered medium as provided in Table 6-3 

and Table 6-4. 
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Table 6-1. Localization error for two 10mm sized tumors in C4 breast phantom. 

Imaging Technique 
2 o’clock tumor (25,5,50)mm 4 o’clock tumor (25,-15,50)mm 

Estimated Location 
(x,y,z)mm 

Error 
(mm) 

Estimated Location 
(x,y,z)mm 

Error 
(mm) 

DORT 17,-2,56 12.21 - - 

B-DORT 5,8,54 20.62 11,-15,62 18.44 

B-CS-DORT 1,20,56 28.93 25,-6,58 12.04 

CS-B-DORT 5,8,52 20.32 17,-10,56 11.18 

TR-MUSIC 11,5,24 29.52 19,-15,64 15.23 

B-TR-MUSIC 25,2,44 6.71 22,-6,36 16.91 

B-CS-TR-MUSIC 41,11,48 17.20 7,-16,52 18.13 

CS-B-TR-MUSIC 23,5,36 14.14 3,-14,48 22.11 

B-TR-ML 25,12,60 12.20 21,-20,48 6.71 

CS-B-TR-ML 22,9,58 9.43 19,-17,52 6.63 

 

 

Table 6-2. Localization error for two 10mm sized tumors in C4 breast phantom. 

Imaging Technique 
1 o’clock tumor (15,15,75)mm 11 o’clock tumor (-10,10,30)mm 

Estimated Location 
(x,y,z)mm 

Error 
(mm) 

Estimated Location 
(x,y,z)mm 

Error 
(mm) 

DORT - - 19,2,48 21.66 

B-DORT - - -3,15,38 11.75 

CS-B-DORT  13,5,78 10.63 -3,5,23 11.09 

TR-MUSIC 13,4,75 11.80 - - 

B-TR-MUSIC 7,10,64 14.49 -15,10,16 14.86 

CS-B-TR-MUSIC 17,20,75 5.39 -3,10,34 8.06 

B-TR-ML 18,16,79 5.09 -10,15,26 6.40 

CS-B-TR-ML 21,10,75 7.81 -9,10,34 4.12 
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Table 6-3. PSLR (dB) for two 10mm sized tumor embedded in C4 phantom. 

Imaging Technique 2 o’clock Tumor PSLR (dB) 4 o’clock Tumor PSLR (dB) 

DORT 0.97 - 

B-DORT 1.08 0.32 

B-CS-DORT 0.52 0.96 

CS-B-DORT  0.56 0.66 

TR-MUSIC -0.86 -1.43 

B-TR-MUSIC -0.46 -1.67 

B-CS-TR-MUSIC -2.22 -1.25 

CS-B-TR-MUSIC 0.47 0.56 

B-TR-ML 2.59 1.62 

CS-B-TR-ML 3.22 2.04 

 

Table 6-4. PSLR (dB) for two 7mm tumor embedded in C4 phantom. 

Imaging Technique 1 o’clock Tumor PSLR (dB) 11 o’clock Tumor PSLR (dB) 

DORT -1.27 1.24 

B-DORT -0.75 0.79 

CS-B-DORT  0.90 1.08 

TR-MUSIC -1.43 -2.07 

B-TR-MUSIC -1.21 2.07 

CS-B-TR-MUSIC 0.36 0.36 

B-TR-ML 1.84 -0.11 

CS-B-TR-ML 1.19 1.10 

 

From the estimated localization errors for two sizes of tumors embedded in C4 

breast phantom, it appears that TR-MUSIC, B-TR-MUSIC, B-CS-TRMUSIC have 

smaller error in some cases compared to DORT, B-DORT or B-CS-DORT. 

However, it can be observed from the PSLR results in Table 6-3 and Table 6-4 that 

DORT techniques consistently demonstrate superior PSLR compared to that of the 

TR-MUSIC techniques even though estimated location error is higher for DORT 
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techniques compared to TR-MUSIC techniques in some cases. By “DORT 

techniques” we refer to DORT and all its variations such as B-DORT, B-CS-DORT 

and CS-B-DORT. Similarly “TR-MUSIC techniques” refer to all variations of TR-

MUSIC technique discussed in this chapter. 

 

6.6 Discussion 

It is now well established in the literature that high breast density is the biggest 

setback for microwave imaging for breast cancer detection. It is evident that time 

reversal microwave imaging performance also gets affected by heterogeneity and 

high density of breast tissues. Conventional time reversal imaging uses a non-

coherent approach for UWB imaging. We show that coherent processing prior to 

time reversal imaging can be greatly useful to overcome the effects of clutter in the 

medium in the form of dense glandular tissues. Further, coherent processing can be 

used in conjunction with beamspace processing to further improve the imaging 

performance. We propose two different focusing schemes for time reversal imaging. 

Our proposed method based on wavefield modelling (WMM) was found to be more 

useful for TR-RCB while the method based on coherent signal subspace (CSSM) 

was found more effective for sub-space based as well as maximum likelihood time 

reversal imaging. Comparing performances of different techniques, we found that 

CS-B-TR-ML imaging is superior in detection of small sized and multiple tumors in 

highly dense breasts. This is due to the fact that coherent focusing causes coherent 

addition of target energy so that destructive interference and clutter effects cannot 

completely mask the target in reconstructed image. Hence, we can conclude that 
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coherent processing can be used to overcome the problem of tumor detection in 

highly heterogeneous and dense breast medium. 
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Chapter 7 : Conclusion and Further Research 

7.1 Introduction 

The initial hope for microwave breast imaging has been greatly impaired by 

later discovery of the fact that contrast between malignant lesion and dense fibro-

glandular tissue can be as low as 10% at microwave frequency [87]. Also young 

female breast cancer patients usually have denser breasts. To overcome the problems 

of microwave imaging for dense breasts, hybrid imaging modalities and contrast 

enhancing agents are suggested in the literature [83]. For this problem, we are 

proposing coherent focusing and beamspace processing of time reversal microwave 

imaging as a diagnostic tool for early stage non-invasive breast cancer screening. 

The proposed imaging technique is capable of detecting multiple tumors and single 

tumor as small as 5mm. Chapter wise conclusions and further research scopes are 

described next. 

 

7.2 Thesis Chapter Conclusions 

We now provide conclusions based on the contributions from different 

chapters of this thesis. 

7.2.1 Chapter 2 

In chapter 2 of this thesis, we have provided details about the breast phantoms 

and numerical experimentation. We have developed a novel skin artefact removal 

technique based on entropy and wavelet transform. The skin artefact removal 

technique works satisfactorily as demonstrated and we also find in later chapters that 
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embedded tumor can be localized whether they are underneath the skin or deep 

inside the breast. We have also developed a technique to estimate the average 

dielectric constant of the heterogeneous imaging medium. The computational 

medium is synthesized as an equivalent homogeneous medium based on the 

estimated average dielectric constant. Gradual decorrelation between physical 

medium from which scattered field is collected and the computational medium 

where synthetic time reversal is carried out, leads towards loss of focus at the target 

location. From the imaging results we can see that tumor can be accurately localized 

in C2, C3 and C4 breasts. Hence, we can conclude that the used simulation technique 

and proposed skin artefact removal as well as average dielectric constant estimation 

techniques can be used for microwave breast imaging. 

7.2.2 Chapter 3 

We introduced conventional element space time reversal imaging techniques 

for breast cancer imaging. We carried out element space time reversal imaging for 

C2, C3 and C4 breast phantoms. Chapter 3 presents a comprehensive study of 

element space time reversal microwave imaging techniques for breast cancer 

detection. Most studies reported in the literature avoided using anatomically realistic 

highly dense C4 type phantom unless hybrid imaging modalities or contrast 

enhancing agents considered. It is found that DORT is more robust against clutter 

and noise than TR-MUSIC. However, weakness of DORT is poor resolution. DORT 

resolution gets worse with increasing breast density and tissue heterogeneity. TR-

MUSIC produces many false peaks with increasing clutter in the medium. Time 

reversal standard Capon beamforming (TR-SCB) suffers badly from inhomogeneous 

nature of dense breasts. Time reversal robust Capon beamforming (TR-RCB) 
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although more robust than TR-SCB, shows significant side lobes even for C3 type 

phantom and possible false peaks in case of C4 phantom. The distinction between 

signal and noise subspaces of the time reversal operator (TRO) deteriorates with 

increasing density and heterogeneity of the imaging medium. Information theoretic 

criterion such as Akaike information criterion (AIC) is proposed as a systematic way 

to estimate the two orthogonal subspaces in this thesis. 

7.2.3 Chapter 4 

We proposed beamspace processing for time reversal microwave imaging in 

this chapter. We propose novel beamspace DORT (B-DORT), beamspace time 

reversal MUSIC (B-TR-MUSIC), beamspace TR-RCB (B-TR-RCB) imaging 

techniques for breast cancer localization. Beamspace time reversal techniques 

provide superior performance over element space time reversal techniques. 

Beamspace processing provides a reduced dimensional processing of TRO and 

reduces computational burden. We showed through truncation error analysis than a 

reduced dimensional beamspace processing can be used in 2D as well as 3D for 

without any significant error. The beamforming capability of beamspace processing 

helps to reduce clutter signature. The simulation results indicate that B-DORT and 

B-TR-MUSIC can detect 10mm sized single tumor in C4 breast phantom. B-TR-

RCB imaging performance is satisfactory for C3 breast phantom but false positives 

are pronounced in C4 breast phantom. It is also found that B-DORT and B-TR-

MUSIC have limited performance for multiple tumor detection in C4 phantom. 

7.2.4 Chapter 5 

In chapter 5, we introduced novel time reversal maximum likelihood imaging 

in beamspace (B-TR-ML). For B-TR-ML imaging we used beamspace processing in 
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both transmit mode and receive mode. For other beamspace techniques such as       

B-DORT, B-TR-MUSIC and B-TR-RCB the beamspace processing is applied only 

in the receiving mode. B-TR-ML imaging overcomes near-far problem and provides 

superior imaging performance than B-DORT, B-TR-MUSIC and B-TR-RCB in C4 

breast phantom. We extended the element space TR-ML and derived B-TR-ML with 

an aim to overcome the problem of huge computational burden that is associated 

with maximum likelihood technique. We also computed the Cramer Rao Lower 

Bound (CRLB) for beamspace time reversal imaging. We have considered infinite 

homogeneous medium to compute CRLB for the sake of simplifying calculation and 

to avoid possible problems arising from singularity of multilayer Green’s functions. 

The computed CRLB indicates that we can use reduced dimensional beamspace 

transformation without sacrificing localization accuracy. 

7.2.5 Chapter 6 

We have introduced coherent processing for ultra-wideband (UWB) time 

reversal microwave imaging in this chapter. Conventional UWB frequency domain 

imaging is carried out non-coherently. Such non-coherent imaging results in 

ambiguity regarding presence and location of target as the signal subspace may vary 

widely in each frequency bin when the imaging medium is highly cluttered. In a 

highly cluttered medium the measured multistatic matrix is perturbed and may 

become rank deficient due to random phase cancellation in different multipath. To 

overcome this problem we propose coherent focusing of TRO prior to time reversal 

imaging. We have proposed two types of coherent focusing matrices based on 

coherent signal subspace method (CSSM) and wavefield modelling method (WMM) 

which result in CS-TRO and CW-TRO. CSSM provides a unitary focusing matrix 
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which produces CSSM TRO (CS-TRO) whereas WMM provides a non-unitary 

focusing matrix which produces Coherent-WMM-TRO (CW-TRO). CS-TRO is 

more effective for DORT, TR-MUSIC and TR-ML imaging techniques. CW-TRO is 

more suitable for TR-RCB imaging technique. We can also combine coherent 

focusing with beamspace processing to further improve the imaging performance of 

time reversal imaging techniques. In this way we obtain novel CS-B-DORT, CS-B-

TR-MUSIC and CS-B-TR-ML imaging techniques. It is found that CS-B-TR-ML 

can detect three 10mm sized tumors as well as small 5mm sized single tumor in C4 

breast phantom. TR-RCB can accommodate limited Green’s function vector 

variation between actual imaging medium and computational medium. For imaging 

we use an equivalent homogeneous medium as the computational imaging medium. 

Hence, high levels of tissue heterogeneity make TR-RCB and even all its improved 

versions to put up a poor imaging performance in C4 breast phantom.   

 

7.3 Root Mean Square Error Comparison 

Breast cancer detection and localization in highly dense C4 phantom is a 

challenging issue. We have computed the root mean square error (RMSE) of 

estimated tumor location in a C4 phantom having 20 different realizations. The 

resulting RMSE for different time reversal techniques is provided in Figure 7-1. 

Since, our earlier results indicated that TR-RCB does not perform well for a C4 

breast phantom, we did not include TR-RCB results in this comparison. It is found 

that application of beamspace processing results in lower RMSE compared to 

element space time reversal imaging techniques. RMSE is further improved when 

coherent focusing is combined with beamspace processing. It can be observed from 
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Figure 7-1 that, CS-B-TR-ML has the lowest RMSE. The proposed techniques in 

this thesis are also compared for their abilities for clutter suppression in terms of 

computed peak to side lobe ratio (PSLR) for different cases as tabulated in Table 6-3 

and Table 6-4 of chapter 6. 

 

 

Figure 7-1. RMSE of different time reversal imaging techniques for C4 breast 

phantom. 

 

7.4 Further Research Scopes 

We identify possible scope for further research on the topics discussed in this 

thesis as provided below.  

 We have always used an infinite homogeneous medium for synthetic time 

reversal imaging. For fatty tissue filled breast such as a C2 breast, this 

assumption can be quite satisfactory. However, when C3 and C4 breasts are 

involved, their tissue heterogeneities make estimating such an infinite 

equivalent homogeneous medium very difficult. Also, breast tissue 
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heterogeneity of real breasts is unknown. As a result element space time 

reversal techniques demonstrate very poor performance. The homogeneous 

computational time reversal imaging can be replaced by a spherically or 

elliptically or cylindrically multilayered medium where different layer 

represents different medium such as coupling liquid, skin, fatty tissue, fibro-

glandular tissue. However, 3D imaging in such multilayered medium is 

complex and requires further detailed investigations. 

 We have considered ideal antenna elements. The cylindrical array consists 

of 5×23 UWB antenna elements. For practical measurements and clinical 

trials, the antenna array needs to be physically built. Building such a 

microwave measurement system such that the examination time is only a 

few minutes can be expensive and challenging. It is necessary to further 

investigate building of practical prototypes. 

 The coherent focusing matrices considered in this thesis are based on dirac-

delta probability distribution and uniform probability distribution of target 

locations. It can be extended to cases of other distributions if tumor location 

probability density function (pdf) can be derived from a large database of 

cancer patients. 

 In this thesis, we did not consider classification between malignant 

spiculated tumor and benign smooth tumor. Classification of malignant and 

benign tumor is a challenging issue for highly dense breasts.  

 We have derived CRLB using infinite homogeneous medium. Derivation of 

CRLB of heterogeneous breast models can be interesting as well as 

challenging.  
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 Breast density estimation is of interest among researchers since it is 

regarded as a risk factor and mammographic breast density can be at times 

inaccurate. It would be interesting to use extend the concepts developed in 

this thesis for microwave estimation of breast density. 

 

7.5 Summary 

The aim of this thesis is to develop novel time reversal microwave imaging 

techniques for early stage breast cancer screening in highly dense breasts. We have 

used numerical experiments using anatomically realistic breast phantoms filled with 

varying amounts of dense fibro-glandular tissue to investigate the efficacy of the 

proposed imaging techniques. We have showed that time reversal imaging 

performance can be improved in highly cluttered medium using beamspace 

processing. We have demonstrated that beamspace processing can be safely used in 

reduced dimension to reduce computational burden while keeping the truncation 

error negligible. We also proposed coherent focusing scheme for UWB time reversal 

microwave imaging. It is evident from the imaging results that the proposed coherent 

processing techniques provide much improved performance over non-coherent 

imaging approach. We ultimately combine beamspace and coherent processing for 

even superior performance of time reversal imaging. It is found that coherent 

focusing prior to beamspace processing provides the lowest localization error and 

highest PSLR. Among the techniques discussed in this thesis CS-B-TR-ML appears 

to be the most promising. We have also proposed a novel skin artefact removal 

technique to effectively remove the skin reflection artefact from the backscattered 

response to improve the accuracy of tumor detection. It is hoped that the research 



Chapter 7: Conclusion and Further Research 

256 
 

reported in this thesis will help to further improve breast cancer detection rates and 

help to improve survival rates among cancer patients.  
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Appendix A: Green’s Function 

A1. Dyadic Green’s Function in 3D 

Green’s function of a medium represents the spatial impulse response of a 

medium. The dyadic Green’s function, G  is a solution of [215] 

 2( , ) ( , ) ( )kG r r G r r I r r  (37) 

where, I is the unit dyad and  2 /k  is the wave number. The dyadic Green’s 

function, ( , )G r r provides the Hertzian potential at a point r due to an elemental 

current source at r [216]. Hence, the electric field observed at r due to the current 

density ( ) ( )J r I r r can be expressed as 

 ( ) ( , ) ( )
V

j dE r G r r J r r  (38) 

where, 

 ( , )
xx xy xz

yx yy yz

zx zy zz

G G G
G G G
G G G

G r r  (39) 

here, uvG represents the electric field response along u-direction when unit current 

source is excited along v-direction. We can also represent (39) as 

 ( , ) ( , ) ( , ) ( , )x x y y z za a aG r r G r r G r r G r r  (40) 

where, 

 ( , ) ( , ) ( , ) ( , )x x xx y yx z zxa G a G a GG r r r r r r r r  (41) 

 ( , ) ( , ) ( , ) ( , )y x xy y yy z zya G a G a GG r r r r r r r r  (42) 



Appendix A: Green’s Function 

258 
 

 ( , ) ( , ) ( , ) ( , )z x xz y yz z zza G a G a GG r r r r r r r r  (43) 

here, ua is a unit vector along u-axis. We can expand (38) as 

 
1 0 0
0 1 0
0 0 1

xx xy xz xx xy xz

yx yy yz yx yy yz

zx zy zz zx zy zz

E E E G G G
E E E j G G G
E E E G G G

 (44) 

The dyadic electric field can be represented from (44) as 

 
0 0

0 0
0 0

xx

yy

zz

E
E

E
E  (45) 

In this case the electric field vector contains only the co-polarized terms as the off-

diagonal cross-polarized field components are zero. 

The solution of dyadic Green’s function for an infinite homogeneous medium 

in frequency domain can be expressed as 

 2( , ) ( , )G
k

G r r I r r  (46) 

 
| |exp( , )

4 | |

jk

G
r r

r r
r r

 (47) 

here, ( , )G r r  is the scalar Green’s function. In time domain the dyadic Green’s 

function can be expressed as 

 2

| |

( , )
4 | |

t
c

k

r r

G r r I
r r

 (48) 
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A2. Green’s Function in 2D 

We consider 2D TM-z polarization in this thesis. In case of 2D TM-z 

polarization the excitation is an infinite line source along z-axis. Hence, we can write 

from (44) for the 2D TM-z case as 

 
0 0 0
0 0 0
0 0 1

xx xy xz xx xy xz

yx yy yz yx yy yz

zx zy zz zx zy zz

E E E G G G
E E E j G G G
E E E G G G

 (49) 

We can simplify (49) as 

 
2

0 0 0
0 0 0
0 0

D
z

zzE
E  (50) 

Hence, 
2D
zE reduces to the scalar field Ezz for 2D TM-z case. The scalar Green’s 

function is thus given by 

 
| |

2 1
0

exp( , ) ( | |)
4 | | 4

jk
D

zz
jG dz H k

r r

r r r r
r r

 (51) 

where, 1
0H  is the zero-th order Hankel function of first kind.   
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Appendix B: Vector and Matrix Products  

B1. Kronecker Product 

The Kronecker product [203] between A of size p×q and B of size m×n is 

defined to be A B  of size pm×qn as  

 

11 12 1

21 22 2

1 2

q

q

p p pq

a a a
a a a

a a a

B B B
B B B

A B

B B B

1q1q1q1a

2qa2aa
q

q

pqpqaa

 (52) 

B1.1 Kronecker Product Algebra 

 ( ) ( )A B C A B C  

 ( )H H HA B A B  

 ( )( )A B C D AC BD  

 ( ) ( ) ( )Tvec vecABC C A B  

 ( )
b b b

A C A CC A  

 

B2. Khatri-Rao Product 

The Khatri-Rao product for two matrices F (size m×n ) and G (size p×n) with 

equal number of columns is defined as 

 :,1 :,1 :,2 :,2 :, :,[ ]n nF G F G F G F G:,1 :,1 :,2 :,2 :, :,[ ]: 1 : 1 : 2 : 2 : : n:,:G [[ : 1 : 1 : 2 : 2 ::  (53) 

Here, F GG is a matrix of size mp×n and F:,q is the q-th column of F. Hence, when 

F and G are both column vectors F G F GG F . 
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B2.1 Khatri-Rao Product Algebra 

 ( ) ( ) ( )Tvec vecdABC C A B))))  

 ( )H H HA B A B)H H HA B)H HH  
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