MEMBRANE HYBRID SYSTEM IN HIGH QUALITY WATER REUSE

SUKANYAH DEVAISY

A Thesis submitted in fulfillment of the requirements for the degree of Doctoral of Philosophy

Faculty of Engineering and Information technology University of Technology, Sydney

June 2015

i

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

Sukanyah Devaisy

15th June 2015

JOUNRALS AND CONFERENCE PAPERS PRODUCED FROM THIS STUDY

Sukanyah Shanmuganathan, Tien Vinh Nguyen, Sanghyun Jeong, Jaya Kandasamy, Saravanamuthu Vigneswaran Submerged membrane – (GAC) adsorption hybrid system in reverse osmosis concentrate treatment. Separation and Purification Technology, 146 (2015) 8–14

Sukanyah Shanmuganathan, Mohammed A.H. Johir, Tien Vinh Nguyen, Jaya Kandasamy, Saravanamuthu Vigneswaran, Experimental evaluation of micro filtrationgranular activated carbon (MF-GAC)/nano filter hybrid system in high quality water reuse. Journal of Membrane Science, 476 (2015) 1-9

Sukanyah Shanmuganathan, Saravanamuthu Vigneswaran, Tien Vinh Nguyen, Paripurnanda Lognathan, Jaya Kandasamy, Use of nanofiltration and reverse osmosis in reclaiming micro-filtered biologically treated sewage effluent for irrigation. Desalination, 364 (2015) 119–125

Sukanyah Shanmuganathan, Tien Vinh Nguyen, W.G.Shim, Jaya Kandasamy, Andrzej Listowski, Saravanamuthu Vigneswaran, Effluent organic matter removal from reverse osmosis feed by granular activated carbon and Purolite A502PS fluidized beds. Journal of Industrial and Engineering Chemistry, 20 (6) (2014) 4499-4508

Sukanyah Shanmuganathan, Tien Vinh Nguyen, W.G. Shim, Jaya Kandasamy, Saravanamuthu Vigneswaran. Performance of submerged membrane-Ion exchange hybrid system with Purolite A502PS in treating reverse osmosis feed. Separation and Purification Technology, 122 (2014) 24-31

Sukanyah Shanmuganathan, Mohammad. A. H. Johir, Tien Vinh Nguyen, Saravanamuthu Vigneswaran, Submerged membrane-ionexchangehybridsystem as a tertiary wastewater treatment. Conference proceedings. 5th Challenges in Environmental Science and Engineering conference, 2012. ISBN: 978-0-646-58149-1

ACKNOWLEDGEMENTS

I take this opportunity to thank the people those who have helped me directly and indirectly to make this endeavor a reality.

First of all, I would like to express my deep appreciation and gratitude to my principle supervisor, Professor. Saravanamuthu Vigneswaran for the valuable patient guidance, kind advice you gave to me all the way from securing the Ph.D program to its completion. I was really fortunate to have you as my supervisor. The entire process would not have been possible without your great support and encouragement.

I also would like to thank my co-supervisor Dr. Tien Vinh Nguyen for his valuable friendly advice, assistance and guidance during my study. I really appreciate Dr. Jaya Kandasamy, for his help throughout my study from the beginning to its completion. My gratitude also goes to Dr. P. Loganathan during the later stage of my study. I also thank Dr W. G. Shim, Dr Christian Kazner, Dr Stuart Khan and Dr James McDonald during my study. I appreciate Andrzej Listowski, Manager, Water treatment plant, Sydney for his assistance for providing water samples for experiments. Thanks for my friends Johir, Danious, Sanjeev, Jeong, Chung, Gayathri for sharing research experience and helping during my study.

I would like to thank CRC CARE, Andrew Beveridge, Program leader, CRC CARE, and University of Technology, Sydney for funding assistance.

My heartfelt thanks to my family without whom none of this work would have been accomplished. Thanks for my parents and parents-in-laws for your great physical and moral support provided during the study period. I am really thankful to my loving parents for giving me the best things in my life and I really appreciate your continuous support, encouragement and dedication since my childhood. I really thank my little prince, my son for your wonderful support; your gorgeous smile, since you were 8 weeks old, keeps me energized throughout the day. You were the only motive for the completion of my study. I can't simply thank my husband who married me during my study and the challenges you faced, hardships you underwent cannot be put it in words. Thanks for being with me as my whole strength and a supportive man behind my accomplishments. I am truly thankful for having you in my life.

ABSTRACT

Although membrane filtration treatment for water reclamation is becoming more widespread, the challenges such as membrane fouling, high cost, management of concentrate, and incomplete removal of organic micro pollutants still prevail. This study presents technical alterations to minimize such issues via the development of pre-treatments techniques where fluidized bed contactors and membrane hybrid systems were used. Granular activated carbon (GAC) and an ion exchange resin (Purolite A502PS) were used as adsorbents for the above mentioned pre-treatments respectively. Biologically treated sewage effluent (BTSE) collected from a water reclamation plant, Sydney was used as a feed water for these experiments. The operational conditions such as fluidization velocity and adsorbent dosage of fluidized bed columns strongly influenced the removal of dissolved organics (DOC). GAC was found to be more effective in removing organics compared to Purolite A502PS. This could be due to the competition provided by other inorganic anions present in BTSE for Purolite exchange sites. Plug flow model was successfully used to predict the impact of the amount of adsorbent and of the flow rate on the removal of organic matter.

A similar trend was observed when another pre-treatment technology of membrane hybrid system was used. Micro filtration (MF) – GAC hybrid system effectively removed hydrophobic organics, hydrophilic organics and organic micro pollutants, whilst, the removal of inorganic ions was minimum. Comparatively, the performance of MF-Purolite hybrid system was less efficient in DOC removal; however the removal of sulfate and nitrate ions was good. In both membrane hybrid systems, the addition of adsorbents directly into the membrane reactor reduced membrane fouling by membrane surface scouring and adsorption. Overall, the performance of membrane-GAC adsorption hybrid system was more effective than membrane-ion exchange hybrid

system. Based on this, MF-GAC was suggested to combine with nano filtration (NF) system. Here second membrane filtration of NF was to further polish pre-treated BTSE in terms of dissolved organics, organic micro pollutants and for some divalent ions removal. This treatment system is referred as 'dual membrane hybrid system' i.e., the combination of MF-GAC adsorption hybrid system followed by NF. Traditionally RO is used as a polishing step in dual membrane systems in waste water reclamation plants. The use of NF instead of RO is found to be cost effective in terms of energy requirements. This dual membrane hybrid system is suggested to produce high quality water reuse where the removal of monovalent ions is not necessary; however the selection of treatment system depends on the requirements of recycled water for end purposes. For example, the recycled water used for irrigation requires sodium adsorption ratio of 3-9 for wide range of salt tolerant crops. Therefore, a study was conducted to determine whether the BTSE can be treated using nanofiltration (NF) and reverse osmosis (RO) to bring these risk parameters within safety limits, because the NF treated BTSE could bring SAR levels only up to 14. As per the results, it was suggested to blend NF and RO permeate in equal proportions to produce a product quality suitable for irrigation with SAR value below 10. Utilizing NF prior to RO reduced the RO membrane fouling and both NF and RO removed most of the organic micro pollutants from BTSE and this may subsequently protect soil and ground water from potential hazards.

TABLE OF CONTENTS

Chapter 1

1.1 Research background	1	
1.2 Rationale of the research	4	
1.3 Aim and Objectives	5	
1.4 Overview of the thesis	6	

2.1. Water treatment and Reuse	9
2.2. Membrane technology in water reuse	11
2.3. Classification of membranes	12
a. Micro filtration and Ultra filtration	12
b. Nano filtration and Reverse Osmosis	12
2.4. The equipment and system design configuration	16
2.5. Challenges pertaining to membrane technology	18
2.5.1. Membrane fouling	19
2.5.1.1. Organic fouling on membrane surface	20
2.5.1.2. Membrane Scaling	22
2.5.2. Incomplete removal of organic micro pollutants	23
2.5.3. Concentrate disposal	26
2.5.4. High cost and energy	27
2.6. Characteristics of BTSE	28
2.7. Operation and configurations of Membranes	32
2.7.1. Stand-alone membrane processes	32
2.7.2. Integrated/membrane Hybrid processes	33
2.7.2.1. Pre-treatment: Conventional treatments	33
a. Conventional treatment technologies	33
i. Coagulation and flocculation	36
ii. (Activated carbon) adsorption	37
iii. Ion exchange resin	39
iv. Pre-oxidation	40
b. Conventional treatment coupled with Membranes	41
i. Pre-treatment to Membrane	44
ii. Integrated membrane hybrid systems (IMS)	46
a. Membrane-adsorption (GAC) hybrid system	49
b. Membrane-Ion exchange (PuroliteA502PS)	
Hybrid System	52
2.7.2.2. Advantage of MF/UF membranes as pre-treatment	55
2.8. High quality water reuse	56
2.8.1. Concept of Dual Membrane system	57

2.8.2. Worldwide use of Dual membrane systems	58
2.8.3. NF as an alternative to RO	61
2.8.3.1. Economic analysis	61
2.8.3.2. Contaminant removal	62
2.8.3.3. Issues of NF	63
i. Fouling and scaling	63
ii. Incomplete removal of pharmaceuticals	64
2.8.4. Membrane hybrid system as pre-treatment to NF	65
2.8.4.1. MF-activated carbon followed by NF hybrid system	65
2.8.5. Membrane hybrid systems as a pre-treatment to RO	67
2.8.5.1. NF as pre-treatment to RO	68
2.9. Development paths and benefits of Membrane-hybrid processes	69
2.10. Research gaps	70

3.1. Materials	72
3.1.1. Wastewaters	72
3.1.2. Membranes	75
a. Hollow fibre membrane module	75
b. Flat sheet membrane module	75
c. Nano filtration (NF) and reverse osmosis (RO) membranes	76
3.1.3. Adsorbents	76
a. Granular Activated Carbon (GAC)	76
b. Ion exchange resin - Purolite A502PS	77
3.2. Experimental Methods	77
3.2.1. Membrane Hybrid System	77
3.2.1.1. MF – GAC Hybrid System	79
3.2.1.2. MF – Ion exchange Hybrid System	80
3.2.2. Fluidized bed Experiments	81
3.2.3. NF/RO filtration systems	83
3.3. Experimental configurations used	84
3.3.1. MF-GAC/NF hybrid system	84
3.3.2. Combination of NF/RO processes	85
3.4. Experimental Analyses	86
3.4.1. Analysis of DOC	86
i. Liquid-Chromatography-Organic carbon detection	87
ii. Fluorescence Excitation Emission Matrix	88
3.4.2. Analysis of trace organics (pharmaceuticals and personal care	
products)	89
3.4.3. Inorganic ions Analysis	89
3.4.4. NF/RO Membrane Autopsy	89
3.4.4.1. Foulants extraction	89

3.4.4.2. Field emission - scanning electron microscope	90
3.4.4.3. Contact angle	90

4.1. Introduction	92
4.2. Materials and methods	94
4.2.1. Materials	94
4.2.2. Adsorption equilibrium	94
4.2.3. Adsorption Kinetics	94
4.2.4. Mathematical modelling	95
4.3. Results and discussion	98
4.3.1. Batch studies	98
4.3.1.1. Isotherm	96
4.3.1.2. Kinetics	105
4.3.2. Fluidized beds	108
4.3.2.1. GAC-packed fluidized contactor	108
4.3.2.1.1. Effect of GAC doses	108
4.3.2.1.2. Effect of fluidization velocities	113
4.3.2.1.3 Long-term fluidized bed experiments	116
4.3.2.2. Purolite A502PS packed fluidized contactor	117
4.3.2.2.1. Effect of Purolite A502PS dose	117
4.3.2.2.2. Effect of fluidization velocities	122
4.3.2.2.3. Long-term fluidized bed experiment with	
Purolite A502PS	124
4.3.2.2.4. Performance of Fresh vs. Regenerated Purolite A502PS	126
4.4. Conclusions	127

5.1. Introduction	129
5.2. Materials and methods	131
5.2.1. Materials	131
5.2.2. Methods	131
5.2.2.1. Adsorption/ion exchange equilibrium	131
5.2.2.2. Adsorption kinetics	132
5.2.2.3. MF – Ion exchange hybrid system	132
5.2.2.4. Analyses	133
5.3. Results and Discussion	134
5.3.1. Adsorption equilibrium	134
5.3.2. Adsorption kinetics	136
5.3.3. Membrane ion exchange hybrid system	138

5.3.3.1. Effect of Purolite A502PS sizes on the MF-Purolite A502PS	142
5.3.3.2. Effect of Purolite A502PS doses on the MF-Purolite A502PS	146
i. Effect of Purolite A502PS dose on removal of organics	146
ii. Effect of Purolite A502PS doses on the adsorption of organic	
matter on the membrane	147
iii. Effect of Purolite A502PS dose on membrane cake	
resistance (r_c)	149
5.3.3.3. Effect of filtration flux on the MF-Purolite A502PS	149
i. Effect of filtration flux on removal of organic removal	149
ii. Effect of Purolite A502PS dose on the adsorption of organic	
matter on the membrane	151
iii. Effect of flux on membrane cake resistance (r_c)	153
5.4. Conclusions	153

6.1. Introduction	155
6.2. Materials and methods	156
6.2.1. Materials	156
6.2.2. Methodology	157
6.2.2.1. Optimization of GAC replacement	157
6.2.2.2. MF–GAC Hybrid System followed by NF system	158
a. MF-GAC Hybrid System	158
b. Dual membrane system	159
6.2.2.3. Analytical methods	160
6.3. Results and discussion	161
6.3.1. Optimization of GAC Replenishment	161
6.3.2. MF-GAC Hybrid System	163
6.3.2.1. Removal of dissolved organics	163
6.3.2.2. Liquid Chromatography and Organic Carbon Detection	167
6.3.2.3. Removal of organic micro pollutants	171
6.4. Dual membrane hybrid system (MF-GAC followed by NF)	178
6.4.1. Removal of dissolved (bulk) organics	178
6.4.2. Removal of trace organics - PPCPs	180
6.4.3. Removal of inorganic ions	182
6.5. Conclusions	183

7.1. Introduction	186
7.2. Materials and methods	189
7.2.1. Materials	189
7.2.2. Methodology	192
7.2.3. Chemical analysis	195
7.3. Results and Discussion	196
7.3.1. Characterization of feed water	196
7.3.2. Rejection of inorganic solutes and dissolved organics by NF	196
7.3.3. Rejection of pharmaceuticals and personal care products	200
7.3.4. Product water quality evaluation for irrigation	204
7.3.5. Performance of the nano filtration-reverse osmosis hybrid system	209
7. 4. Membrane Autopsy	209
7.5. Conclusions	214

8.1. Introduction	216
8.2. Materials and Methods	218
8.2.1. Materials	218
8.2.2. Methods	219
a. Batch adsorption studies	219
b. MF-GAC hybrid system	220
c. Analytical methods	222
8.3. Results and Discussion	223
8.3.1. Batch adsorption equilibrium and Kinetics	223
8.3.2. Characterization of ROC in terms of DOC and organic	
micro pollutants	223
8.3.3. MF-GAC hybrid system	227
8.3.3.1. Short term experiment	227
a. Selection of GAC dosage	227
b. Transmembrane pressure (TMP) development	229
c. Detailed organics removal	231
d. Fluorescence Excitation - Emission matrix (FEEM)	235
e. The removal of organic micro pollutants	237
8.3.3.2. Long term MF-GAC hybrid system	240
a. DOC and TMP development	240
b. Removal of Pharmaceuticals and personal care products	241
c. Long term operation of MF-GAC	244
8.4. Conclusions	246

9.1. Conclusions and Future Recommendations	248
9.1.1. Pre-treatment to reduce membrane fouling	248
9.1.2. Cost effective dual membrane hybrid system instead of RO	250
9.1.3. Combination of NF-RO membrane for high quality water reuse	251
9.1.4. Treatment of reverse osmosis concentrates (ROC)	253
9.2. Future Recommendations	254

References

LIST OF FIGURES

Figure 1.1: Reuse of effluent in Australia according to economic sector	2
Figure 2.1: Principles of membrane filtration	14
Figure 2.2: Basic schematic of membrane process	16
Figure 2.3: Different configurations of membrane (a) Batch (b) Series	18
Figure 2.4: External and intraparticle diffusion of adsorbate in activated	
carbon particle	38
Figure 2.5: Chemistry and mechanism of DOC exchange with	
ion exchange resin	40
Figure 2.6: Different configurations of membrane-hybrid systems	43
Figure 2.7: Development of membrane hybrid systems	70
Figure 3.1: Schematic of the WTP, Sydney, Australia	73
Figure 3.2: Schematic diagram of the membrane-hybrid system	79
Figure 3.3: Schematic diagram of the experimental setup of fluidized bed	82
Figure 3.4: Nano filtration/Reverse osmosis unit	83
Figure 3.5: Dual membrane-hybrid system	85
Figure 3.6: Coupling of NF/RO membranes in water reuse applications	86
Figure 4.1: (a) Effect of GAC and (b) Purolite A502PS on the removal of DOC	99
Figure 4.2: Modelling of adsorption and ion-exchange equilibrium	101
Figure 4.3: The performance of Purolite A502PS in the removal of nitrate,	
sulfate and DOC	103
Figure 4.4: (a) The removal of nitrate in the presence of sulfate (b) the	
removal of sulfates in the presence of nitrate	104
Figure 4.5: Prediction of adsorption kinetics of (a) GAC and	
(b) Purolite A502PS	106
Figure 4.6: Schematic diagram of the experimental setup of fluidized	
bed columns	108
Figure 4.7: Effect of doses on the removal of dissolved organics	109
Figure 4.8: Fluidized bed model simulation with different doses of GAC	112
Figure 4.9: The effect of fluidization velocities on the removal of dissolved	
organics by GAC	114
Figure 4.10: Fluidized bed model simulation with different fluidization	
velocities	115
Figure 4.11: Long-term study of GAC-packed fluidized bed contactor in	
terms of DOC removal	116
Figure 4.12: Effect of doses of Purolite A502PS on the removal of dissolved	
organics	118

Figure 4.13: Fluidized bed model simulation with different doses of	
Purolite A502PS	119
Figure 4.14: Efficiency of Purolite A502PS in removing nitrate and sulfate	121
Figure 4.15: DOC removal efficiency of Purolite A502PS fluidized bed with	
different velocities	122
Figure 4.16: Model simulation with different velocities of Purolite A502PS	
fluidized bed	123
Figure 4.17: Long-term study of Purolite A502PS packed fluidized bed	
contactor in terms of removing DOC	125
Figure 4.18: DOC removal efficiency of fresh vs regenerated	
Purolite A502PS	126
Figure 5.1: Schematic diagram of the submerged membrane ion exchange	
hybrid system	133
Figure 5.2: Equilibrium adsorption of DOC using Purolite A502PS	135
Figure 5.3: Adsorption kinetics of Purolite A502PS resin with BTSE	137
Figure 5.4: Effect of Purolite A502PS size on (a) DOC removal and (b) TMP	
development of MF-Purolite A502PS	143
Figure 5.5: Effect of Purolite A502PS dose on removing DOC	146
Figure 5.6: Effect of Purolite A502PS dose on (a) amount of organics	
retained on the membrane	148
Figure 5.7: DOC removal at flux of 60 L/m ² .h	150
Figure 5.8: (a) Amount of organics retained on the membrane $[M(t)]$ and	
(b) TMP of MF-Purolite A502PS at flux of 60 L/m^2 .h	152
Figure 6.1: Experimental schematic diagram of dual membrane system	159
Figure 6.2: Removal of DOC from BTSE with different rates of GAC	
replenishment	162
Figure 6.3: The MF-GAC hybrid system's efficiency in removing DOC	165
Figure 6.4: The MF-GAC hybrid system's efficiency in removing DOC with	
filtration flux 5 L/m^2 .h at two different GAC replacements	166
Figure 6.5: Concentration of PPCPs in the treated effluent and their	
corresponding Log D values	173
Figure 7.1: Schematic diagram of the treatment trains of sewage effluent at	
water treatment plant and in the laboratory.	194
Figure 7.2: Effluent level contaminants of interest after NP 010, NP 030	
and NTR 729HF	199
Figure 7.3: Membrane autopsy of NF membrane after filtering 20 L of BTSE	210
Figure 7.4: Contact angle (a) virgin (b) fouled membrane	211
Figure 7.5: SEM images of virgin and fouled NF membranes after filtering	
20 L of BTSE	212
Figure 7.6: Organic foulants on the membrane surface of RO with and	
without NF pre-treatment	213

Figure 8.1: Schematic diagram of the submerged	
membrane – PuroliteA502PS/GAC hybrid system	221
Figure 8.2: Batch adsorption results (a) batch equilibrium study	
(b) batch kinetic	223
Figure 8.3: The effect of GAC on the development of TMP in	
MF-GAC hybrid system	230
Figure 8.4: Removal of organics by MF-GAC hybrid system	232
Figure 8.5: FEEM intensity of untreated ROC and after GAC treatment of	
5 g/L and 20 g/L	236
Figure 8.6: DOC removal efficiency and TMP development of the long-term	
submerged MF-GAC hybrid system used in treating ROC	241
Figure 8.7: Removal of organic micro pollutants by MF/GAC hybrid system	
from ROC as the function of calculated Log D	244

LIST OF TABLES

Table 2.1: Overview of pressure-driven membrane processes and their	
characteristics	15
Table 2.2.: Occurrence of pharmaceuticals in Australia	24
Table 2.3: Mechanisms, effects, advantages and disadvantages of various	
conventional treatments used prior to membranes	34
Table 2.4: Unit treatment processes and operations in the removal of EDCs and	
PPCPs	55
Table 3.1: Water quality characteristics of filtered BTSE and ROC	74
Table 3.2: Detail organic fractions of filtered BTSE and ROC	74
Table 3.3: Characteristics of Hollow fibre membrane	75
Table 3.4: Characteristics of flat sheet membrane	75
Table 3.5: Characteristics of NF and RO membranes used	76
Table 3.6: Characteristics of GAC	77
Table 3.7: Characteristics of Ion-exchange resin A502PS	76
Table 3.8: Major fluorescent components of seawater organic matter	88
Table 4.1: Isotherm model parameters for GAC and Purolite A502PS	102
Table 4.2: The mass transfer coefficients of GAC and Purolite A502PS with	
BTSE	107
Table 4.3: Bed height after and before the fluidization, detention time, K_f , D_s of	
GAC fluidized contactor at different doses	111
Table 4.4: The effect of GAC doses on the removal (%) of organic fractions	113
Table 4.5: Mass transfer coefficients in BTSE at different fluidization	
velocities – GAC	115
Table 4.6: Bed height after and before the fluidization, detention time, $K_{\rm f}$, $D_{\rm s}$ of	
Purolite fluidized contactor at different doses	118
Table 4.7: Bed height after and before the fluidization, detention time, K_f , D_s of	
Purolite A502PS columns at different fluidization velocities	123
Table 4.8: The effect of Purolite flow rates on the removal of organic fractions	124
Table 5.1: The mass transfer coefficients of Purolite A502PS with BTSE	138
Table 5.2: System parameters of membrane hybrid system	139
Table 5.3: Effect of Purolite A502PS size on surface diffusion coefficient and	
external mass transfer coefficient	144
Table 5.4: Effect of Purolite A502PS dose on surface diffusion coefficient, exter	nal
mass transfer coefficient and membrane cake resistance with BTSE	147
Table 5.5: Surface diffusion coefficient, external mass transfer coefficient and	
membrane cake resistance with BTSE at flux 60 L/m ² .h	150
Table 6.1: Physico-chemical characteristics of BTSE	156
Table 6.2: Concentration of organic fractions in the effluent (mg/L) at different	
daily replacement rates of GAC	169
Table 6.3: Removal (%) of organic fractions by MF-GAC hybrid system with	
filtration flux 10 L/m ² .h at different daily replacement rates of GAC	170

Table 6.4: Removal of PPCPs at different filtration	175
Table 6.5: Influent and effluent PPCPs, removal efficiency (%) of PPCPs for	
different doses of GAC by Membrane-GAC hybrid system	177
Table 6.6: Removal of DOC by dual membrane system	179
Table 6.7: Effluent concentrations (mg/L) of inorganic ions in the effluents of	
MF-GAC and NF systems	182
Table 7.1: Physico-chemical characteristics of feed water	191
Table 7.2: Characteristics of NF and RO membranes	192
Table 7.3: Rejection (%) of inorganic solutes and organics by NF/RO	
membranes	197
Table 7.4: The removal (%) of organic micro pollutants by NF and RO	
membrane from BTSE	201
Table 7.5: Different blending ratios of raw feed and NF permeate, and their	
suitability for irrigation water	206
Table 7.6: Different blending ratios of raw feed and RO permeate, and their	
suitability for irrigation water	207
Table 7.7: Different blending ratios of NF permeate and RO permeate required	
to obtain product water suitable for irrigation.	208
Table 8.1: Physico-chemical characteristics of ROC	218
Table 8.2: Concentrations of organic micro pollutants detected in ROC	226
Table 8.3: System parameters of membrane hybrid system	229
Table 8.4: Removal of organic fractions by MF-GAC at different doses of GAC	234
Table 8.5: Influent, effluent levels of PPCPs and subsequent removal efficiency	
by MF- GAC hybrid system	239
Table 8.6: The removal of organic micro pollutants by MF-GAC hybrid system	
from ROC	242

ABBREVIATIONS

AC	Activated carbon
AER	Anion exchange resin
ANZECC	Australian and New Zealand Environment and Conservation Council
AOC	Assimilable organic carbon
ATP	Adenosine tri phosphate
BAC	Biological activated carbon
BOD	Biological oxygen demand
BTSE	Biologically treated sewage effluent
CEC	Critical Environmental concentrations
CFU	Colony forming unit
CMF	Continuous micro filtration
COD	Chemical oxygen demand
DBPs	Disinfection by products
DOC	Dissolved organic carbon
EC	Electric conductivity
EDCs	Endocrine distrupting compounds
EfOM	Effluent organic matter
EPA	Environmental protection agency
F-EEM	Fluorescence excitation emission matrices
FTIR	Fourier transform infrared spectroscopy
GAC	Granular activated carbon
HA	Humic acid
HRT	Hydraulic retention time
HSDM	Homogenous surface diffusion models
IER	Ion exchange resin
IMS	Integrated membrane systems
LC-OCD	Liquid chromatography organic carbon detection
LMW	Low molecular weight
LPRO	Low pressure reverse osmosis
MBR	Membrane bio reactor
MCC	Membrane correlation coefficient
MF	Micro filtration
MIEX	Magnetic ion exchange
MSFD	Multi-stage flash distiller
MW	Molecular weight
MWCO	Molecular weight cutoff
NF	Nano filtration
NOM	Natural organic matter
NSAIDs	Non-steroidal anti-inflammatory drugs
PAC	Powdered activated carbon
PhAC	Pharmaceutically active compounds

PPCPs	Pharmaceuticals and personal care products
RO	Reverse osmosis
ROC	Reverse osmosis concentrate
SAR	Sodium adsorption rate
SDI	Silt density index
SEM	Scanning electron microscope
SMPs	Soluble microbial products
SWRO	Sea water reverse osmosis
TDS	Total dissolved solids
TMP	Transmembrane pressure
TOC	Total organic carbon
TSS	Total suspended solids
UF	Ultra filtration
VOCs	Volatile organic compounds
WHO	World health organization
WRP	Water reclamation plant
WWTP	Wastewater treatment plant