UNIVERSITY OF TECHNOLOGY, SYDNEY

Advanced optical signatures of single, wurtzite GaN quantum dots: From fundamental exciton coupling mechanisms towards tunable photon statistics and hybrid-quasiparticles

by

Gordon Callsen

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy

in the

School of Mathematics and Physical Sciences

Faculty of Science

2015

Declaration of Authorship

I, Gordon Callsen, declare that this thesis titled, "Advanced optical signatures of single, wurtzite GaN quantum dots: From fundamental exciton coupling mechanisms towards tunable photon statistics and hybrid-quasiparticles" and the work presented in it is my own. I confirm that: This work was done wholly or mainly while in candidature for a co-tutelle research degree at this University and the Technische Universität Berlin.

- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University and Technische Universität Berlin or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given.
- With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.

25.06.2015

• Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Production Note: Signed: Signature removed prior to publication.

Date:

Abstract

The present work treats the fundamental optical signatures of individual, hexagonal GaN quantum dots embedded in AlN. The conducted experiments established the basis for numerous, novel observations, which are not only of interest for this particular quantum dot system, but also of general value for the entire quantum dot community. The presented analysis of the interaction in between quantum dot excitons and charged defects, as well as phonons, culminates in the first-time demonstration of quantum-optical device concepts for the ultraviolet (UV) spectral range. Here, a highlight is constituted by an optically pumped two-photon source based on the biexciton cascade, which maintains its highly promising photon statistics up to a temperature of 50 K. Further in-detail studies of this biexciton cascade even lead to the description of so-called hybrid-quasiparticles in this work, with prominent consequences for a wide range of exciton-based quantum light sources.

The first part of this thesis is dedicated to the preparation of multiexcitonic states. Based on the conjunction of excitation power dependent and time-resolved micro-Photoluminescence, an entire zoo of multiexcitonic complexes is identified for the first time. Here, the determination of relaxation times presents an observation with direct consequences for applications. Furthermore, it is demonstrated that the initial carrier capture process is predominantly realized by Auger-processes that dominate any multi-phonon contributions. However, in terms of intra-quantum dot carrier relaxation, it is exactly these multi-phonon processes that present the limiting factor, a phenomenon known as the "phonon-bottleneck" effect. As the emission of these excitons in hexagonal GaN is affected by "spectral diffusion", a strong emission line widths broadening occurs, which still limits future applications but also any more fundamental analysis. A line width statistic is obtained by analyzing hundreds of individual GaN quantum dots, allowing an indirect determination of the average, defect-induced electric field, whose fluctuations originate the line widths broadening. A continuative statistical analysis is given for the coupling between excitons and longitudinaloptical (LO) phonons. As a result, the corresponding Huang-Rhys factors and LO-phonon energies are extracted for an elevated number of quantum dots. Finally, a microscopic parameter, known as the exciton-LO-phonon interaction volume was approximated for the first time, based on the presented detailed statistical analysis.

Due to this extended, optical analysis of individual GaN quantum dots it was possible to characterize the optical traces of the biexciton cascade over a wide spectral range. Here, for a certain transitional range, a unique balance between one- and two-photon processes is observed, which arises from the biexciton decay and can be tuned means of temperature and excitation density. Especially the two-photon emission is a promising candidate for future applications as its temperature stability is demonstrated up to 50 K. Interestingly, the particular case of biexcitonic complexes also forms the basis for the description of an entire new class of hybrid-quasiparticles with so far unknown spin configurations. An extended analysis of the optical properties of these hybrid-quasiparticles presents highly unconventional decay characteristics, demonstrating the outmost importance of the dark-excitons in hexagonal GaN quantum dots based on the present thesis.

Contents

1	Introduction			7		
	1.1	Objec	tives and thesis structure	10		
2	Exp	Experimental techniques				
	2.1	GaN o	quantum dot specimen	13		
	2.2	Advar	nced micro-Photoluminescence setup	15		
3	Fun	Fundamentals and theoretical background				
	3.1	Funda	amental properties of GaN and AlN	19		
		3.1.1	Crystal structure and polarization fields	19		
		3.1.2	Band structure and valence band ordering	21		
		3.1.3	First order phonon modes	22		
	3.2	From	single- to multi-particle states	23		
		3.2.1	Strain state and built-in electric field calculations	24		
		3.2.2	Single-particle states	26		
		3.2.3	Multi-particle states	28		
	3.3	Quant	tum-confined Stark effect	33		
4	Bas	ics of s	ingle GaN quantum dot spectroscopy	36		
	4.1	Ensen	able spectroscopy of GaN QDs	37		
	4.2	Spectroscopy of individual QDs under continuous wave excitation		37		
	4.3 Spectroscopy of individ		Spect	roscopy of individual QDs under pulsed excitation	41	
		4.3.1	Generation of multiexcitons under high excitation	43		
	4.4	Time-	resolved analysis of multiexcitons	47		
		4.4.1	Relaxation mechanisms - towards an initial occupation	49		
		4.4.2	The random initial occupation model	50		
		4.4.3	Radiative recombination and relaxation of multiexcitons	52		
	4.5	Summ	nary	57		

5	Emission energy dependent line widths broadening				
	5.1	Phenomenon of spectral diffusion	60		
		5.1.1 Basic emission line widths analysis	60		
		5.1.2 Excitonic dipole moments: experiment vs. theory	62		
		5.1.3 Emission line widths statistics	63		
	5.2	Identification of excitonic complexes based on emission line broadening	g 66		
	5.3	Towards ultra narrow emission line widths	69		
5.4 Summary					
6	Stat	stical analysis of the exciton-LO-phonon coupling	71		
	6.1	Exciton-phonon coupling - from bulk materials to nanostructures	72		
	6.2	Phonon-assisted luminescence from single GaN quantum dots \ldots .	73		
		6.2.1 Comment regarding the emission line identification	74		
		6.2.2 Fundamental scaling behaviors of the Huang-Rhys factor and			
		the LO-phonon energy	76		
		6.2.3 Theoretical dependencies for the Huang-Rhys factor \ldots .	78		
	6.3	Statistical analysis of the Huang-Rhys factor and the LO-phonon energy 8			
	6.4	Microscopic analysis of alloying effects			
	6.5	5 Concept of the exciton-phonon interaction volume $\ldots \ldots \ldots$			
		6.5.1 Applicability of the spherical approximation and discussion .	89		
		6.5.2 The Huang-Rhys factor in strongly and weakly polar quantum			
		dot systems - arsenides vs. nitrides	91		
	6.6	Summary	95		
7	Ana	ysis of photon statistics: From one- to two-photon emission	97		
	7.1	Introduction to the bunching phenomenon	97		
	7.2	Influence of the biexciton binding energy			
	7.3	The quantum-state tomography of the biexcitonic decay $\ldots \ldots \ldots 1$	101		
		7.3.1 Intuitive explanation of the bunching phenomenon \ldots \ldots 1	104		
		7.3.2 One- and two-photon processes in the biexciton cascade $\ . \ . \ 1$	106		
	7.4	Excitation power and temperature dependence 1	109		
	7.5	Alternative origins of the bunching phenomenon	111		
	7.6	Summary	114		

5

8	Manifestation of unconventional biexciton states					
	8.1	From anti-binding to binding biexcitons				
		8.1.1	Particle interaction energies in excitonic complexes	117		
	8.2	Hybrid-biexciton decay cascade - experimental evidences				
		8.2.1	Polarization-dependent luminescence traces	121		
		8.2.2	Temperature dependence of the luminescence	123		
		8.2.3	Temperature-dependent second-order correlation analysis $\$.	125		
		8.2.4	Excitation power dependent measurements	127		
		8.2.5	Multi-excitonic rate equation model	128		
	8.3	Summ	ary	131		
9	Sum	mary		132		
10	Pub	ublications				
11	11 Conference contributions					
12	12 Appendix					
Bil	Bibliography					
Ac	Acknowledgment					