Numerical Modelling and Condition Assessment of Timber Utility Poles using Stress Wave Techniques

by

Ning Yan

A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

June 2015

Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Ning Yan

Sydney, June 2015

Acknowledgement

I would like to express my deep appreciation to my supervisors Professor Jianchun Li, Professor Bijan Samali and Dr Ulrike Dackermann who were very supportive and motivating throughout my degree. Professor Jianchun Li was an excellent advisor in technical questions and always inspired me in achieving my goals. He allowed me to meet him any time I required to and spent lots of time to explain difficult concepts to me or helped me with some programming work. I believe the dissertation would have never been possible without his guidance and help.

I would also like to give special thanks to Professor Bijan Samali. He provided me this precious opportunity to start my research work at UTS in Australia. I always felt very comfortable to express my opinion regarding the research and discuss my personal issues. The kindness and co-operation of him would always be memorable throughout my life.

I would also like to express my gratitude to my co-supervisor Dr. Ulrike Dackermann who gave me great support in technical as well as academic writing matters. English is not my first language, and, therefore, I sometimes faced problems in academic writing. She always assisted very professionally with my writing and it was a pleasure working with her.

I am also very thankful to Dr. Ali Saleh, Dr. Emre Erkmen, Dr Behzad Fatahi and A./Prof. Hadi Khabbaz because of the time they spent with me for strengthening some of my fundamental concepts on structural analysis, numerical modelling and soil mechanics.

I would also like to thank my fellow students and colleagues, Saad Subhani, Roman Elsener and Bahram Jozi. Working together with you was a great pleasure for me since we were a real team in supporting and helping each other in many aspects of our work.

I cannot thank enough Dr Yang Yu for his patient and cordial support and spending lots of time with me for explaining some complicated concepts of the algorithms used in my research. I was always comfortable to work with him.

University of Technology, Sydney | Centre for Built Infrastructure Research ii

My parents and friends have made an invaluable contribution to the completion of my research. Many times during my PhD, I felt depressed when facing some difficult problems; however, I was always motivated and encouraged by them to complete my research work.

Finally, I would like to acknowledge the financial supports provided by the ARC linkage project (LP110200162) in conjunction with industrial partner Ausgrid for conducting my research. Also, the IRS scholarship offered by UTS provided me extensive support to accomplish my PhD goal.

Abstract

Timber utility poles are traditionally used for electricity and telecommunication distribution and represent a significant part of the infrastructure for electricity distribution and communication networks in Australia and New Zealand. Nearly 7 million timber poles are in service and about \$40-\$50 million is spent annually on their maintenance and asset management. To prevent the ageing poles from collapse, about 300,000 electricity poles are replaced in the Eastern States of Australia every year. However, up to 80% of the replaced poles are still in a very good condition (Nguyen et al., 2004). Therefore, huge natural resources and money is wasted. Accordingly, a reliable non-destructive evaluation technique is essential for the condition assessment of timber poles/piles to ensure public safety, operational efficiency and to reduce the maintenance cost.

Several non-destructive testing (NDT) methods based on stress wave propagation have been used in practice for the condition assessment of timber poles. However, stress wave propagation in timber poles especially with the effect of soil embedment coupled with unknown pole conditions below ground line (such as deterioration, moisture etc.) is complicated, and therefore it hindered the successful application of these NDT methods for damage identification of timber poles. Moreover, some stress wave based NDT methods are often based on over-simplified assumptions and thus fail to deliver reliable results.

In the presented study, in order to gain an in-depth understanding of the propagation of stress waves in damaged poles and to develop an effective damage detection method, a solid numerical study of wave behaviour is undertaken and novel wavelet packet energy (WPE) method is investigated for damage identification. Numerical studies utilises finite element (FE) models to track the wave propagation behaviour characteristics considering different boundary conditions, material properties as well as impact and sensing locations.

WPE is a sensitive indicator for structural damage and has been used for damage detection in various types of structures. This thesis presents a comprehensive investigation on the novel use of WPE for damage identification in timber utility poles

using FE models. The research study comprises several aspects of investigations such as a comparative study between 2D and 3D models, a sensitivity study of mesh density for 2D models, and a study of the novel WPE-based technique for damage classification and detection in timber poles. Support vector machine (SVM) is imported for damage classification and particle swarm optimisation (PSO) is selected to achieve the classification. The results clearly show the effectiveness of the proposed novel WPE based damage identification technique.

Damage prediction based on optimisation procedure is also carried out in this thesis. Several numerical models with different damage conditions are created and the damage size is predicted according to optimisation procedure based on information from sample damaged model. Genetic algorithm and artificial fish swarm algorithm are used as optimisation algorithms and the comparative study is conducted based on the prediction results.

The influence of damage on the strength of timber utility poles is also studied in this thesis. The damage conditions are changes in diameter, length as well as location. Wind is considered as a main reason to cause the collapse of timber utility poles in this research. Wind load is defined based on Australian standards and the Ausgrid manual, and the corresponding stress is calculated through FE analysis. According to this analysis, it can be found that under specific damage conditions, some small damage may cause collapse; however, for certain conditions, the timber poles can still be safe even when large damage exists.

In conclusion, a novel WPE based damage detection method has been successfully developed to address the limitations of existing methods for condition assessment of timber utility poles. The numerical verification has shown the method is effective for identification of the classification and severity of damage.

List of Publications Based on This Research

Refereed Conference Papers

- N. Yan, J. Li, U. Dackermann and B. Samali, (2012), 'Numerical and Experimental Investigations of Stress Wave Propagation in Utility Poles under Soil Influence', *Proceedings of 22nd Australasian Conference on the Mechanics* of Structures and Material, 11–14 December2012, University of Technology Sydney, Australia.
- N. Yan, U. Dackermann, J. Li and B. Samali, (2013), 'Numerical Investigations of Stress Wave Behaviour in Timber Utility Poles', *Proceedings of 6st International Conference on Structural Health Monitoring of Intelligent Infrastructure*, 9-11 December 2013, Hongkong, China.
- N. Yan, J.C. Li, U. Dackermann and B. Samali, (2014), 'A Numerical Investigation on the Damage Identification of Timber Utility Poles Based on Wavelet Packet Energy', *Proceedings of 23rd Australasian Conference on the Mechanics of Structures and Materials*, 9-12 December 2014, Byron Bay, Australia.

Refereed Journal Papers

 M. Subhani, J. Li, B. Samali and N. Yan (2013), 'Determination of the embedded lengths of electricity timber poles utilising flexural wave generated from impacts', *Australian Journal of Structural Engineering*, vol. 14, no. 1, pp. 85.

Content

1	IN	TRODUCTION	1
	1.1	BACKGROUND	1
	1.2	RATIONALE FOR THE RESEARCH STUDY	3
	1.3	Research Aim and Objectives	4
	1.4	ORGANIZATION OF THE THESIS	5
2	LI	TERATURE REVIEW	6
	2.1	INTRODUCTION	6
	2.2	OVERVIEW OF TRADITIONAL NON-DESTRUCTIVE TESTING METHODS FOR	
	POLES	S/PILES	6
	2.2	2.1 Sonic Echo/Impulse Response method	10
	2.2	2.2 Ultraseismic method	13
	2.3	NUMERICAL MODELLING OF EMBEDDED TIMBER POLES	15
	2.3	3.1 Introduction to numerical modelling	15
	2.3	3.2 Numerical modelling of timber material	17
	2.3	3.3 Numerical modelling of soil	19
	2.4	DAMAGE TYPES IN TIMBER POLES AND DAMAGE DETECTION METHODS	23
	2.4	4.1 Damages types in timber poles	23
	2.4	4.2 Damage detection methods	25
		2.4.2.1 Overview of vibration based damage detection methods	25
		2.4.2.2 Overview of wave propagation based damage detection methods	27
		2.4.2.3 Overview of advanced signal processing and pattern recognition me	ethods
	1	used in damage detection	29
		2.4.2.4 Optimisation techniques for structural damage detection	32
	2.5	LOAD CAPACITY OF TIMBER UTILITY POLES	33
	2.6	IDENTIFIED RESEARCH GAPS	35
3	FF	E MODELLING FOR WAVE PROPAGATION STUDY IN TIMBER	
		S	37
-		Introduction	
	Univ	versity of Technology, Sydney Centre for Built Infrastructure Research	vii

	3.2	Gen	IERAL NUMERICAL MODELLING OF TIMBER POLES	38
	3	.2.1	Modelling of timber material	38
	3	.2.2	Modelling of boundary conditions	42
		3.2.	2.1 Modelling of soil	42
		3.2.	2.2 Modelling of soil-pole interaction	44
		3.2.	2.3 Comparison between soft boundary and hard boundary	45
	3.3	Nun	MERICAL MODEL VERIFICATION AND VALIDATION	49
	3.4	MA	TERIAL PARAMETRIC STUDY	56
		3.4.	1.1 Elastic Modulus	57
		3.4.	1.2 Density	62
		3.4.	1.3 Poisson's ratio	64
	3.5	Infi	LUENCE OF IMPACT LOCATION ON WAVE PROPAGATION	66
	3	.5.1	Introduction	66
	3	.5.2	Influence of impact location on wave propagation	67
		3.5.	2.1 Study of wave behaviour in isotropic material model	67
		3.5.	2.2 Study of wave behaviour in transversely isotropic material model	79
		3.5.	2.3 Study of wave behaviour in orthotropic material model	88
	3.6	WA	VE DISPERSION IN TIMBER POLE	92
	3	.6.1	Introduction	92
	3	.6.2	Dispersion study of wave propagation	94
		3.6.	2.1 Simplification of numerical model	94
		3.6.	2.2 Dispersion study	98
	3.7	CON	CLUSIONS	101
4	D	AM	AGE DETECTION BASED ON WAVELET PACKET ENERGY.	102
	4.1	Inte	RODUCTION	102
	4.2	OVE	ERVIEW OF WAVELET AND WAVELET PACKET	103
	4	.2.1	Continuous wavelet transform (CWT)	104
	4	.2.2	Discrete wavelet transform (DWT)	104
	4	.2.3	Wavelet packet transform (WPT)	105
		4.2.	3.1 Wavelet packet decomposition	105
		4.2.	3.2 Wavelet packet component energy	107
	4.3	DAM	MAGE DETECTION BASED ON WAVELET PACKET ENERGY	108

University of Technology, Sydney | Centre for Built Infrastructure Research viii

4.3.1 Sensitivity study of mesh density for 2D models	108
4.3.2 Proposed damage classification algorithm	111
4.3.2.1 Damage classification	112
4.3.2.2 Support vector machine	121
4.3.2.3 Design of classifier for damage type classification	125
4.3.2.4 Damage classification using experimental data	134
4.3.3 Proposed damage severity identification algorithm	138
4.3.3.1 Results and discussion	139
4.4 CONCLUSIONS	144
5 DAMAGE PREDICTION USING ADVANCED OPTIMISATION	
TECHNIQUES	146
5.1 Introduction	146
5.2 APPLICATION OF OPTIMISATION TECHNIQUES	
5.2.1 Optimisation algorithm	
5.2.1.1 Genetic algorithm	
5.2.1.2 Artificial fish-swarm algorithm (AFSA)	
5.2.2 Procedure of optimisation technique	
5.2.2.1 Optimisation technique using GA	153
5.2.2.2 Optimisation technique using AFSA	157
5.3 CONCLUSIONS	163
6 LOAD CAPACITY PREDICTION FOR IN-SITU TIMBER POLES	164
6.1 Introduction	164
6.2 LOAD CAPACITY ANALYSIS OF INTACT AND DAMAGED TIMBER POLES	164
6.2.1 Wind load design	164
6.2.1.1 Wind speed	165
6.2.1.2 Wind pressure	167
6.2.1.3 Wind load	170
6.2.2 Load capacity analysis of timber poles under wind load	173
6.2.3 Strength analysis of damaged timber poles	176
6.2.3.1 Damage at ground level	178
6.2.3.2 Damage at middle and top area	185
6.3 CONCLUSIONS	187
University of Technology, Sydney Centre for Built Infrastructure Research	ix

]

7	CONCLUSIONS AND RECOMMENDATIONS	
7.1	CONCLUSIONS	
7.2	RECOMMENDATIONS FOR FUTURE RESEARCH	
BIBL	JOGRAPHY	
APPI	ENDIX	

List of Figures

Figure 2-1 levels of damage detection
Figure 2-2 Inspection below ground line (Ausgrid, 2006)
Figure 2-3 Different types of stress waves (ParkSeismic, 2012)9
Figure 2-4 SE/IR testing applied to (a) a pile and (b) a timber utility pole11
Figure 2-5 US testing of a pile
Figure 2-6 Stacked record of US testing (Olson, 2014)14
Figure 2-7 Stress-strain curve used to simulate the material behaviour of timber (Junior
and Molina, 2010)
Figure 2-8 Shear stress strain curve for soil (Wood, 1990)
Figure 2-9 Interface element with zero thickness (Drumm et al., 2000)
Figure 2-10 3-D model of pile-soil response (Wu, 1994)
Figure 2-11 Possible decay patterns of utility poles below ground level (Nguyen et al.,
2004)
Figure 2-12 Details of decay rate from software developed by Wang (Wang et al., 2008)
Figure 3-1 SOLID 185 homogeneous structural solid geometry (ANSYS, 2011)
Figure 3-2 Transversely isotropic materials
Figure 3-3 Three dimensional fibre of timber40
Figure 3-4 (a)Stress/strain relationship for Balau loaded in compression up to a strain
level of 1.0, (b) Zoomed-in view of the stress/strain relationship (Ellis and Steiner, 2002)
Figure 3-5 Drucker-Prager Model
Figure 3-6 Comparison of numerical results according to different soil modelling
methods
Figure 3-7 Contact element created by ANSYS45
Figure 3-8 LINK180 geometry (ANSYS, 2011)
Figure 3-9 FE model with free end
Figure 3-10 FE model with fixed boundary
Figure 3-11 Mesh geometry of FE model for the contact suface
Figure 3-12 Results comparison between different boundary conditions

Figure 3-13 Testing equipment (a) impact hammer - PCB model HP 086C05, (b)
piezoelectric accelerometer - model PCB 352C34, (c) multi-channel signal conditioner -
model PCB 483B03, (d) multi-channel data acquisition system- model NI PCI-6133 and
(e) laptop equipped with the National Instrument software LabVIEW (Dackermann et
al., 2014)
Figure 3-14 Sensors attached to the pole
Figure 3-15 Experimental testing set up
Figure 3-16 FE model vs. experimental settings
Figure 3-17 Comparison of experimental and numerical results using the frictional
contact method
Figure 3-18 Comparison of experimental and numerical results using the bonded contact method
Figure 3-19 Comparison between the results from FE models and experimental testing
Figure 3-20 Diagram of nodes vs. time
Figure 3-21 Elastic modulus influences on wave behaviour in isotropic material58
Figure 3-22 Elastic modulus in longitudinal direction influences on wave behaviour in
orthotropic material
Figure 3-23 Elastic modulus in radial direction influences on wave behaviour in
orthotropic material
Figure 3-24 Elastic modulus in tangential direction influences on wave behaviour in
orthotropic material
Figure 3-25 Density influences on wave behaviour in isotropic material
Figure 3-26 Density influences on wave behaviour in orthotropic material
Figure 3-27 Poisson's ratio influences on wave behaviour in isotropic material
Figure 3-28 Poisson's ratio influences on wave behaviour in orthotropic material65
Figure 3-29 Three different impact locations
Figure 3-30 Different locations of impact and sensor arrangement
Figure 3-31 Sensor measurement directions
Figure 3-32 Comparison of wave patterns at 0 ° in three orthogonal directions70
Figure 3-33 Comparison of wave patterns at 180 ° in three orthogonal directions70
Figure 3-34 Comparison of wave patterns at 90 ° in three orthogonal directions71
Figure 3-35 Comparison of wave patterns in longitudinal direction72

University of Technology, Sydney | Centre for Built Infrastructure Research xii

Figure 3-36 Wave patterns captured from all sensors in longitudinal direction with three
orientations72
Figure 3-37 Comparison of wave patterns in radial direction73
Figure 3-38 Comparison of wave patterns at 0 $^{\circ}$ in three orthogonal directions
Figure 3-39 Comparison of wave patterns at 180 ° in three orthogonal directions74
Figure 3-40 Comparison of wave patterns at 90 $^{\circ}$ in three orthogonal directions
Figure 3-41 Comparison of wave patterns in longitudinal direction75
Figure 3-42 Comparison of wave patterns in radial direction76
Figure 3-43 Comparison of wave patterns in tangential direction
Figure 3-44 Top side impact at 45 ° and measurement in longitudinal direction at 90 ° 77
Figure 3-45 Comparison of different impact scenarios via measuring in the longitudinal
direction at 90°
Figure 3-46 Comparison of wave patterns at 0 ° in three orthogonal directions
(Transversely isotropic model)
Figure 3-47 Comparison of wave patterns at 180 ° in three orthogonal directions
(Transversely isotropic model)
Figure 3-48 Comparison of wave patterns at 90 ° in three orthogonal directions
(Transversely isotropic model)
Figure 3-49 Comparison of wave patterns in longitudinal direction (Transversely
isotropic model)
Figure 3-50 Comparison of wave patterns in radial direction (Transversely isotropic
model)
Figure 3-51 Comparison of wave patterns at 0 ° in three orthogonal directions
(Transversely isotropic model)
Figure 3-52 Comparison of wave patterns at 180 ° in three orthogonal directions
(Transversely isotropic model)
Figure 3-53 Comparison of wave patterns at 90 ° in three orthogonal directions
(Transversely isotropic model)
Figure 3-54 Comparison of wave patterns in longitudinal direction (Transversely
isotropic model)
Figure 3-55 Comparison of wave patterns in radial direction (Transversely isotropic
model)

Figure 3-56 Comparison of wave patterns in tangential direction (Transversely isotro	pic
model)	. 86
Figure 3-57 Comparison of wave patterns generated by top centre impact and tops	ide
impact	. 87
Figure 3-59 Wave trace for 5 m pole (a) isotropic model (b) orthotropic model	. 89
Figure 3-60 Wave trace for 12 m pole (a) isotropic model (b) orthotropic model	.90
Figure 3-61 Wave trace in12m timber pole and soil	.91
Figure 3-62 Comparison of phase velocity and group velocity curves between tract	ion
free and embedded condition (Subhani, 2014)	.95
Figure 3-63 Two-dimensional axisymmetric numerical model	.97
Figure 3-64 3D and 2D axisymmetric models created with ANSYS	.97
Figure 3-65 Excitation with central frequency of 20 kHz	.98
Figure 3-66 Result comparisons between 2D and 3D models of 5 m long pole	.98
Figure 3-67 Comparison between analytical and numerical results 1	00
Figure 4-1 Damage scenarios created by ANSYS 1	103
Figure 4-2 3 level decomposition by DWT1	105
Figure 4-3 WP decomposition tree	106
Figure 4-4 Mesh density influence on wave signal under excitation of 25 kHz1	09
Figure 4-5 Damage detection for beam structure using WP energy method 1	11
Figure 4-6 Damage detection for utility pole structure 1	12
Figure 4-7 Damage with 150mm in width and 200mm in height1	13
Figure 4-8 Damage classifications 1	14
Figure 4-9 Damage localization for type 21	15
Figure 4-10 Energy feature obtained from 7 sensors 1	17
Figure 4-11 Energy feature obtained from 13 sensors	17
Figure 4-12 Energy feature obtained from 25 sensors	18
Figure 4-13 Frequency feature obtained from all damage scenarios 1	20
Figure 4-14 Combined feature to identify the damage classification (5 damage sizes)1	21
Figure 4-15 Combined feature to identify the damage classification (7 damage sizes)1	21
Figure 4-16 Classification of data by SVM (linear)1	122
Figure 4-17 Parameter optimization process of SVM classifier	129
Figure 4-18 Design of classifier for damage type classification	130
Figure 4-19 Parameter optimization process of sub SVM 1 1	131

University of Technology, Sydney | Centre for Built Infrastructure Research xiv

Figure 4-20 Parameter optimization process of sub SVM 2	131
Figure 4-21 Parameter optimization process of sub SVM 3	132
Figure 4-22 Parameter optimization process of sub SVM 4	132
Figure 4-23 Parameter optimization process of sub SVM 5	132
Figure 4-24 Parameter optimization process of sub SVM 6	133
Figure 4-25 Visualization classification results of six sub SVM classifiers	134
Figure 4-26 (a) tractile transducer, (b) tactile transducer mounted on sensor	wedge
(Dackermann et al., 2015)	135
Figure 4-27 Testing set up and dimensions - (a) and (b) line measurement	set-up
(Dackermann et al., 2015)	136
Figure 4-28 Damage configurations and dimensions of tested poles in longit	udinal-
section and cross-section view (a) intact pole (b) internal void damage (c) e	xternal
circumferential cross-section loss damage (Dackermann et al., 2015)	136
Figure 4-29 Damage severity identification	140
Figure 4-30 Damage severity identification using different sensor arrangement	140
Figure 4-31 Length and localisation of damage for type 2	141
Figure 4-32 Damage severity identification for damage length of 300mm	141
Figure 4-33 Change of location for damage type 2	142
Figure 4-34 Damage severity identification for damage location at 600mm free	om the
bottom	143
Figure 4-35 Damage severity identification for damage location at 800mm fro	om the
bottom	143
Figure 4-36 Pick-up wave signal	144
Figure 5-1 Flow chart for applying GA	148
Figure 5-2 Roulette wheel approach: based on fitness (Newcastle University, 201-	4).149
Figure 5-3 Artificial Fish behaviour (Azizi, 2014)	150
Figure 5-4 Damage severity index	152
Figure 5-5 Damage prediction by optimisation technique	153
Figure 6-1 Wind regions (Australian/New Zealand Standard 1170.2, 2011)	166
Figure 6-2 Cables attached to timber utility poles for network distribution	168
Figure 6-3 Stays applied to distribution system	169
Figure 6-4 Collapse of timber utility poles	169
Figure 6-5 Wind Force on Conductor	172

University of Technology, Sydney | Centre for Built Infrastructure Research xv

Figure 6-6 Straight line intermediate	173
Figure 6-7 Typical example of ground line decay	175
Figure 6-8 Different damage types and locations	177
Figure 6-9 Damage length influences on the maximum strength of the poles	183
Figure 6-10 Load capacity changes with damage size under different damage types	184
Figure 6-11 Maximum load capacity of utility poles with external damage at different	ferent
locations	187

List of Tables

Table 3-1 Properties for orthotropic and transversely isotropic material	42
Table 3-2 Material properties of soil models	43
Table 3-3 Material properties for three structural components	
Table 3-4 Parametric study of elastic modulus for isotropic model	
Table 3-5 Parametric study of elastic modulus for orthotropic model (longi	itudinal
direction)	
Table 3-6 Parametric study of elastic modulus for orthotropic model (radial direct	tion)60
Table 3-7 Parametric study of elastic modulus for orthotropic model (tar	ngential
direction)	60
Table 3-8 Parametric study of density for isotropic model	
Table 3-9 Parametric study of density for orthotropic model	63
Table 3-10 parametric study of Poison's ratio for isotropic model	64
Table 3-11 Parametric study of Poison's ratio for orthotropic model	65
Table 3-12 Calculated wavenumber and phase velocity under different excitations	s100
Table 4-1 Comparison of cross-correlation coefficients under different mesh de	
Table 4.2 WD energy components from 7 sensors under intest and demograd (1	
Table 4-2 WP energy components from 7 sensors under intact and damaged (1 conditions	
Table 4-3 Comparison between transient and modal analysis under intact condition	
Table 4-4 Comparison between transient and modal analysis under severe condition.	-
Table 4-5 Natural frequencies (Hz) for intact and damaged condition	
Table 4-6 Classification results of all sub SVM classifiers using n-fold cross val	
Table 4-7 Identification results of a new group of cases	
Table 4-8 EF index of damage classification	
Table 4-9 Natural frequencies (Hz) and <i>FF</i> index	
Table 4-10 Calculation of DECs	
Table 5-1 Damage size prediction for the damage type of internal type 1	
Table 5-2 Damage size prediction for the damage type of internal type 2	
Table 5-3 Damage size prediction for the damage type of surface type 1	

Table 5-4 Damage size prediction for the damage type of surface type 2 156
Table 5-5 Damage size prediction for the damage type of internal type 1
Table 5-6 Damage size prediction for the damage type of internal type 2
Table 5-7 Damage size prediction for the damage type of surface type 1
Table 5-8 Damage size prediction for the damage type of surface type 2
Table 5-9 Damage size prediction for case 1 with surface damage type 2
Table 5-10 Damage size prediction for case 1 with internal damage type 2161
Table 5-11 Damage size prediction for case 2 with surface damage type 2
Table 5-12 2Damage size prediction for case 2 with internal damage type 2162
Table 6-1 Strength analysis for an intact pole
Table 6-2 Maximum acceptable tip load for the intact pole and the poles with damage at
ground level178
Table 6-3 External light damages at ground level influencing the strength of the pole179
Table 6-4 Internal damages at ground level influencing the strength 180
Table 6-5 Maximum load capacity for external damage at ground level
Table 6-6 Maximum load capacity for internal damage at ground level
Table 6-7 Strength of the poles with large damage
Table 6-8 Maximum load capacity for external damage at the middle of poles
Table 6-9 Maximum load capacity for external damage at the top area of poles

Nomenclature

Error! Not a valid link.

β	velocity adjustment factor
3	elastic strain vector
γ	shear strain vector
σ	stress vector
ν	Poison's ratio
{3}	strain tensor
$\{\sigma\}$	stress tensor
[C] _{orth}	orthotropic elastic matrix
u _r	displacement components along radial direction
u_{θ}	displacement components along tangential direction
uz	displacement components along longitudinal direction
k	wavenumber
ω	angular frequency
c_0	wave speed
С	phase velocity
$\varphi(t)$	mother wavelet
x[n]	original signal
g(k)	group-conjugated orthogonal filters
h(k)	group-conjugated orthogonal filters
$C^i_{j,k}$ f^i_j	wavelet packet coefficients
f_j^i	component signal in a WP tree
2D	two-dimensional
3D	three-dimensional
ASFA	artificial fish swarm algorithm
BEM	boundary element method
BW	Bending Wave method
CWT	continuous wavelet transform
Dav	average diameter of the pole
DEC	difference of each energy component among the sensors
DOF	degree of freedom
DWT	discrete wavelet transform
E	elastic modulus
$E_{f_{l}^{i}}$	component energy of the decomposed signal
EF	parameter of the energy feature
E_{Di}	total WP energy under the damaged conditions
E_{Si}	total WP energy under the intact condition
F	measured frequency interval
FDM	finite difference method

University of Technology, Sydney | Centre for Built Infrastructure Research xix

FE	finite element
FEA	finite element analysis
FEM	Finite element method
FFT	Fast Fourier Transform
FF	parameter of the frequency feature
FT	tip strength of a pole
f _{Di}	frequency of the corresponding mode under damaged conditions
f _{si}	frequency of the corresponding mode under intact conditions
FRF	Frequency Response Function
G	shear modulus
GA	genetic algorithm
GW	guided wave
IR	impulse response method
L (for timber material)	longitudinal direction
L	Length of the pole
Ld	length of pole in the dry zone
L _T	length between the location of the sensor and the bottom of a pole or the location of a defect
Lw	length of a pole in the wet zone
LCR	rate of the maximum load capacity
NDT	non-destructive testing
OAO	multi-class classification using SVM: one-against-one
OAR	multi-class classification using SVM: one-against-the rest
PSO	particle swarm optimization
R (for timber material)	radius direction
R	cross-correlation coefficients
SE	sonic echo method
SEM	spectral element method
SVM	support vector machines
Т	time difference between the first arrival event and the first
	reflection event of stress wave
T (for direction)	tangential direction
US	Ultraseismic method
V	velocity of the longitudinal wave
Vd	wave velocity of the dry wood
Vw	wave velocity of the wet wood
WP	wavelet packet
WPT	wavelet packet transform