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Abstract 

Timber utility poles are traditionally used for electricity and telecommunication 

distribution and represent a significant part of the infrastructure for electricity 

distribution and communication networks in Australia and New Zealand. Nearly 7 

million timber poles are in service and about $40-$50 million is spent annually on their 

maintenance and asset management. To prevent the ageing poles from collapse, about 

300,000 electricity poles are replaced in the Eastern States of Australia every year. 

However, up to 80% of the replaced poles are still in a very good condition (Nguyen et 

al., 2004). Therefore, huge natural resources and money is wasted. Accordingly, a 

reliable non-destructive evaluation technique is essential for the condition assessment of 

timber poles/piles to ensure public safety, operational efficiency and to reduce the 

maintenance cost. 

Several non-destructive testing (NDT) methods based on stress wave propagation have 

been used in practice for the condition assessment of timber poles. However, stress 

wave propagation in timber poles especially with the effect of soil embedment coupled 

with unknown pole conditions below ground line (such as deterioration, moisture etc.) 

is complicated, and therefore it hindered the successful application of these NDT 

methods for damage identification of timber poles. Moreover, some stress wave based 

NDT methods are often based on over-simplified assumptions and thus fail to deliver 

reliable results. 

In the presented study, in order to gain an in-depth understanding of the propagation of 

stress waves in damaged poles and to develop an effective damage detection method, a 

solid numerical study of wave behaviour is undertaken and novel wavelet packet energy 

(WPE) method is investigated for damage identification. Numerical studies utilises 

finite element (FE) models to track the wave propagation behaviour characteristics 

considering different boundary conditions, material properties as well as impact and 

sensing locations.    

WPE is a sensitive indicator for structural damage and has been used for damage 

detection in various types of structures. This thesis presents a comprehensive 

investigation on the novel use of WPE for damage identification in timber utility poles 
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using FE models. The research study comprises several aspects of investigations such as 

a comparative study between 2D and 3D models, a sensitivity study of mesh density for 

2D models, and a study of the novel WPE-based technique for damage classification 

and detection in timber poles. Support vector machine (SVM) is imported for damage 

classification and particle swarm optimisation (PSO) is selected to achieve the 

classification. The results clearly show the effectiveness of the proposed novel WPE 

based damage identification technique. 

Damage prediction based on optimisation procedure is also carried out in this thesis. 

Several numerical models with different damage conditions are created and the damage 

size is predicted according to optimisation procedure based on information from sample 

damaged model. Genetic algorithm and artificial fish swarm algorithm are used as 

optimisation algorithms and the comparative study is conducted based on the prediction 

results.  

The influence of damage on the strength of timber utility poles is also studied in this 

thesis. The damage conditions are changes in diameter, length as well as location. Wind 

is considered as a main reason to cause the collapse of timber utility poles in this 

research. Wind load is defined based on Australian standards and the Ausgrid manual, 

and the corresponding stress is calculated through FE analysis. According to this 

analysis, it can be found that under specific damage conditions, some small damage 

may cause collapse; however, for certain conditions, the timber poles can still be safe 

even when large damage exists. 

In conclusion, a novel WPE based damage detection method has been successfully 

developed to address the limitations of existing methods for condition assessment of 

timber utility poles. The numerical verification has shown the method is effective for 

identification of the classification and severity of damage. 
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Nomenclature 

Error! Not a valid link. 

 velocity adjustment factor  

 elastic strain vector 

 shear strain vector 

 stress vector 

 Poison‟s ratio 

 strain tensor 

{} stress tensor  

[C]orth orthotropic elastic matrix 

ur displacement components along radial direction 

uθ displacement components along tangential direction 

uz displacement components along longitudinal direction 

k wavenumber 

 angular frequency  

c0 wave speed 

c phase velocity 

φ(t) mother wavelet  

 , - original signal  

g(k) group-conjugated orthogonal filters  

h(k) group-conjugated orthogonal filters  

    
  wavelet packet coefficients 

   
  component signal in a WP tree 

2D two-dimensional 

3D three-dimensional 

ASFA artificial fish swarm algorithm  

BEM boundary element method 

BW Bending Wave method  

CWT continuous wavelet transform 

Dav average diameter of the pole 

DEC difference of each energy component among the sensors 

DOF degree of freedom 

DWT discrete wavelet transform  

E elastic modulus 

 
  
  component energy of the decomposed signal  

EF parameter of the energy feature 

    total WP energy under the damaged conditions 

    total WP energy under the intact condition 

F measured frequency interval 

FDM finite difference method 
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FE finite element  

FEA finite element analysis  

FEM Finite element method   

FFT Fast Fourier Transform  

FF parameter of the frequency feature 

FT tip strength of a pole 

    frequency of the corresponding mode under damaged 

conditions 

    frequency of the corresponding mode under intact 

conditions 

FRF Frequency Response Function  

G shear modulus  

GA genetic algorithm  

GW guided wave  

IR impulse response method 

L (for timber material) longitudinal direction 

L Length of the pole 

Ld length of pole in the dry zone 

LT length between the location of the sensor and the bottom 

of a pole or the location of a defect 

Lw length of a pole in the wet zone 

LCR rate of the maximum load capacity  

NDT non-destructive testing  

OAO multi-class classification using SVM: one-against-one  

OAR multi-class classification using SVM: one-against-the rest  

PSO particle swarm optimization 

R (for timber material) radius direction 

R  cross-correlation coefficients  

SE sonic echo method 

SEM spectral element method  

SVM support vector machines  

T time difference between the first arrival event and the first 

reflection event of stress wave 

T (for direction) tangential direction 

US Ultraseismic method  

V velocity of the longitudinal wave 

Vd wave velocity of the dry wood 

Vw wave velocity of the wet wood 

WP wavelet packet 

WPT wavelet packet transform 
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