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ABSTRACT 

Oxygen production and oxygen flux play an important role in marine habitats and 

ecosystems. The eddy correlation (EC) technique is a key aquatic flux measurement 

technique to measure and calculate vertical turbulent fluxes within aquatic boundary 

layers without disturbing environmental hydrodynamics. This method is based on the 

simultaneous measurement of two parameters at the same point; the turbulent 

velocity fluctuations and oxygen concentration. This thesis explores the reliability of 

the Eddy Correlation Microelectrode system (ECE) and Eddy Correlation Optode 

system (ECO) for O2 flux measurement in seagrass meadows and benthic organisms 

in the laboratory and field. Although EC has been used in aquatic system for over a 

decade, this system is still under development to gain robust results. According to its 

complexity, the EC and software used to analyse and calculate flux have been 

significantly enhanced over past three years. The method development and 

preliminary investigations were provided in Chapter 2.  

Generally, the oxygen concentration data from Eddy Correlation optode system 

(ECO) are converted from the raw oxygen signal based on the optode phase-shifted 

signal using Stern-Volmer-equation. Chapter 2 also showed a new oxygen 

conversion method based on the raw O2 intensity signal using Stern-Volmer-

equation. Seagrass sediment O2 uptake was investigated in a laboratory flume under 

controlled flow and temperature. The calculations of sediment O2 uptake using two 

oxygen conversion methods were compared. The result showed that the new oxygen 

conversion method can be used for EC O2 flux measurements. Although this method 

has lower fluctuation in O2 concentration which leads to better flux calculation, it 
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needs to be considered whether the ECO is deployed under strong light or sunlight 

that may interfere with the O2 intensity signal. 

The reliability and limitations of Eddy Correlation Optode system (ECO) were 

investigated by measuring seagrass sediment O2 uptake in a laboratory flume under 

controlled flow and temperature (Chapter 3). The seagrass sediment was treated 

with temperature varying from 18°C to 28°C and flow velocity from 17 cm s-1 to 51 

cm s-1. The EC data were validated by O2 microprofiling technique, which can 

measure fluctuating O2 concentrations at micro-scales. The results showed that O2 

microprofile and eddy correlation system provided the same range of O2 flux where 

the O2 consumption was observed due to microbial activities (respirations). It clearly 

showed that the eddy correlation systems using O2 optode could be used for 

measuring O2 flux in the marine system. Although the results of the ECO and O2 

microprofile were similar, the ECO results were not robust. This study provided 

verification for using eddy correlation system as a routine measurement for O2 flux 

in situ.  

Temperature and light are important controls of seagrass metabolism 

(photosynthesis, enzyme activity and maintenance of the carbon balance in seagrass) 

which in turn governs their growth, survival, reproduction and distribution. Optimal 

temperature and light requirements for photosynthesis and respiration in the 

temperate seagrass Zostera muelleri were examined using the non-invasive Eddy 

Correlation microelectrode system (ECE) and Chlorophyll a fluorescence using 

PAM under control-flow environment (Chapter 3). The results showed that the ECE 

has a potential to quantify O2 flux and O2 production in seagrass meadows at 
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different light and temperature conditions within a control-flow environment. 

Temperature and light have an effect on production, photosynthetic efficiency, 

photoinhibition and capacity for photoprotection in Z. muelleri. Optimal temperature 

and light for photosynthesis for this temperate seagrass is 25°C and 150-250 μmol 

photons m-2 s-1, respectively. 

The Eddy Correlation microelectrode system (ECE), Eddy Correlation optode 

system (ECO) and MiniProfiler MP4 system, an in situ microprofiler using a 

microelectrode, were deployed in Tweed River (New South Wales), Moreton Bay 

(Queensland) and Heron Island (Queensland) to determine the O2 flux of marine and 

estuarine benthic systems composed of  seagrasses, benthic microalgae, and 

microbes (Chapter 4). There were some situations in which the EC was unable to 

measure O2 flux correctly. However, the EC system can be used to measure O2 flux 

in the non-complex environment (steady environmental condition, homogeneous 

habitat and flat terrain). After the deployments and a series of detailed investigation 

of ECE and ECO along with consulting with the manufacturer, the first generation of 

Eddy Correlation optode system (ECO1) was replaced with the second generation of 

Eddy Correlation optode system (ECO2) in order to improve the O2 flux 

measurement. 

Experimental results throughout the thesis provided a better understanding of the 

limitations and reliability of Eddy Correlation system for O2 flux on seagrass 

meadows and benthic organisms in both laboratory flume and field. Although the EC 

has been developed with four major changes (from the first generation of the Eddy 

Correlation microelectrode system to the second generation of Eddy Correlation 
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optode system), their stability and robustness still needs to be improved. Further 

investigation on the limitations and reliability of this new generation of the EC are 

needed. 
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