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Abstract

Sequential pattern mining refers to the identification of frequent subsequences

in sequence databases as patterns. It provides an effective way to analyze

the sequential data. The selection of interesting sequences is generally based

on the frequency/support framework: sequences of high frequency are treat-

ed as significant. In the last two decades, researchers have proposed many

techniques and algorithms for extracting the frequent sequential patterns, in

which the downward closure property (also known as Apriori property) plays

a fundamental role. At the same time, the relative importance of each item

has been introduced in frequent pattern mining, and “high utility itemset

mining” has been proposed. Instead of selecting high frequency patterns,

the utility-based methods extract itemsets with high utilities, and many al-

gorithms and strategies have been proposed. These methods can only process

the itemsets in the utility framework.

However, all the above methods suffer from the following common issues

and problems to varying extents: 1) Sometimes, most of frequent patterns

may not be informative to business decision-making, since they do not show

the business value and impact. 2) Even if there is an algorithm that considers

the business impact (namely utility), it can only obtain high utility sequences

based on a given minimum utility threshold, thus it is very difficult for users

to specify an appropriate minimum utility and to directly obtain the most

valuable patterns. 3) The algorithm in the utility framework may generate

a large number of patterns, many of which maybe redundant.

Although high utility sequential pattern mining is essential, discovering

xvii



ABSTRACT

the patterns is challenging for the following reasons: 1) The downward clo-

sure property does not hold in utility-based sequence mining. This means

that most of the existing algorithms cannot be directly transferred, e.g. from

frequent sequential pattern mining to high utility sequential pattern min-

ing. Furthermore, compared to high utility itemset mining, utility-based

sequence analysis faces the critical combinational explosion and computa-

tional complexity caused by sequencing between sequential elements (item-

sets). 2) Since the minimum utility is not given in advance, the algorithm

essentially starts searching from 0 minimum support. This not only incurs

very high computational costs, but also the challenge of how to raise the

minimum threshold without missing any top-k high utility sequences. 3)

Due to the fundamental difference, incorporating the traditional closure con-

cept into high utility sequential pattern mining makes the outcome patterns

irreversibly lossy and no longer recoverable, which will be reasoned in the

following chapters. Therefore, it is exceedingly challenging to address the

above issues by designing a novel representation for high utility sequential

patterns.

To address these research limitations and challenges, this thesis proposes

a high utility sequential pattern mining framework, and proposes both a

threshold-based and top-k-based mining algorithm. Furthermore, a compact

and lossless representation of utility-based sequence is presented, and an

efficient algorithm is provided to mine such kind of patterns.

Chapter 2 thoroughly reviews the related works in the frequent sequential

pattern mining and high utility itemset/sequence mining.

Chapter 3 incorporates utility into sequential pattern mining, and a gener-

ic framework for high utility sequence mining is defined. Two efficient algo-

rithms, namely USpan and USpan+, are presented to mine for high utility

sequential patterns. In USpan and USpan+, we introduce the lexicographic

quantitative sequence tree to extract the complete set of high utility se-

quences and design concatenation mechanisms for calculating the utility of

a node and its children with three effective pruning strategies.
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Chapter 4 proposes a novel framework called top-k high utility sequential

pattern mining to tackle this critical problem. Accordingly, an efficient al-

gorithm, Top-k high Utility Sequence (TUS for short) mining, is designed

to identify top-k high utility sequential patterns without minimum utility.

In addition, three effective features are introduced to handle the efficiency

problem, including two strategies for raising the threshold and one pruning

for filtering unpromising items.

Chapter 5 proposes a novel concise framework to discover US-closed (U-

tility Sequence closed) high utility sequential patterns, with theoretical proof

that it expresses the lossless representation of high-utility patterns. An ef-

ficient algorithm named CloUSpan is introduced to extract the US-closed

patterns. Two effective strategies are used to enhance the performance of

CloUSpan.

All of the algorithms are examined in both synthetic and real datasets.

The performances, including the running time and memory consumption, are

compared. Furthermore, the utility-based sequential patterns are compared

with the patterns in the frequency/support framework. The results show

that high utility sequential patterns provide insightful knowledge for users.
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