Masters Thesis Report

Bio-mimetic navigation in a dynamic environment

Student's name: Ankur Sinha

Institution: University of Technology, Sydney
Faculty: FEIT
Centre: Centre for autonomous systems
Principal supervisor: Dr. Jianguo Wang
Alternate supervisor: Dr. Xun Wang
Commencement date: July 2012
EWS date: July 20, 2014
Assessment date: -
Declaration

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:
Date:
Acknowledgements

First and foremost, I’m most grateful to my supervisor, Dr. Jianguo Wang, for his inputs into my research. He has guided my day by day, week by week and pushed me towards better research. He has ensured that I work on my all round development, my communication, my discipline, my work ethics that will ensure I stay on track to fulfil my masters course with skills that are expected by the Graduate Research School. I’m also indebted to my co-supervisor, Dr. Xun Wang, who provided valuable guidance to help me maintain and modify the direction of my research during the course.

None of this would be possible without the research community, that has worked on and questioned the state of research for decades. It is on their work that I build upon. I’m grateful to the local research community here that has helped me via discussions, feedback, ideas on my research.

I’m most grateful to the Graduate Research School that have made my stay here simple and enjoyable. I also owe a debt of gratitude to the entire FEIT administrative department that have helped me at each stage of my candidature - especially Van Le, Herni Winarta, Timothy Kevin, that helped me during my candidature when I needed assistance. I’m thankful to the Vice chancellor for granting me the funds to attend the international conference, IJCNN, where my research paper was accepted.
I owe a great debt to my family - my parents - Dr. Kalpana and Dr. Sanjay Sinha, my sister - Rati Sinha Tanwar and her husband Kunal Tanwar that have always been there to support me. Last, but not least, I'm grateful to my close friends - Sheryll, Ketki, Ayesha and all my friends at UTS Housing, especially at Bulga Ngarra, for ensuring that I maintain a good work-life balance that enabled me to always remain focussed and perform at the highest levels.
Preface

This thesis covers the word done during my Masters by research course at the University of Technology, Sydney under the guidance of Dr. Jianguo Wang.

The document is divided into 5 chapters. Chapter 1 introduces my research. It covers a brief summary of navigation and justifies my decision to work on bio-mimetic navigation. Chapter 2 consists of a detailed literature review of the various neuron sets that I worked with. Each chapter detailing a neuron set has two sections - one for the neuroscience review, and another for the computational modelling review. Chapter 3 details the implementation of head direction cells on the ROS platform, and chapter 4 details the addition of grid cells to the system. Finally, I discuss my work in chapter 5. I present my views on the current state of literature, the issues that researchers need to solve when working on a similar project, and what I intend to work on next.
Contents

Declaration i
Acknowledgements ii
Preface iv

1 Introduction 1
 1.1 Navigation .. 1
 1.2 Biological navigation 2
 1.2.1 The cognitive map theory of biological navigation . . 5
 1.3 Navigation in robots 6
 1.3.1 Classical robotic navigation 6
 1.3.2 Bio-mimetic navigation 7
 1.4 Justification of research 9
 1.5 Contributions 10

2 Literature review 12
 2.1 Head direction cells 13
 2.1.1 Neuroscience review 13
 2.1.2 Computational modelling review 19
 2.2 Grid cells .. 34
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Neuroscience review</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2 Computational modelling review</td>
<td>37</td>
</tr>
</tbody>
</table>

3 Towards bio-mimetic navigation: head direction cells on ROS | 44 |
3.1 Structure	45
3.2 Dynamics	46
3.3 Experimental Procedure and Results	49
3.3.1 System	49
3.3.2 Setting up of synaptic weights to appropriate values	51
3.3.3 Initializing the network to an initial direction	54
3.3.4 Running the system with angular velocity data	55
3.3.5 Correcting drift using salient visual cues: preliminary tests	58
3.4 Discussion	59

4 Including grid cells for location information | 64 |
4.1 Structure	65
4.2 Dynamics	67
4.3 Experimental procedure and results	68
4.3.1 System	68
4.3.2 Setting up of synaptic weights to appropriate values	69
4.3.3 Initializing the network with an initial packet of activity	71
4.3.4 Running the system with velocity information	72
4.4 Discussion	73

5 Discussion | 75 |
| 5.1 Challenges and future work | 76 |
CONTENTS

5.2 Conclusion ... 78

Appendices ... 80

A ROS - robot operating system 81
List of Figures

1.1 Local navigation strategies. 2

2.1 Shows the variation in firing rate of a head direction cell recorded from a rat 14

2.2 Neural circuitry of brain regions where head direction cells are found 15

2.3 Projections of left rotation cells causing the activity packet to shift in the model proposed by Skaggs and colleagues. 22

2.4 Schematic of Blair and Sharp’s model 24

2.5 Schematic showing the behavior of Redish et al.’s model ... 27

2.6 Grid cell recording images 35

2.7 Recurrent weight matrix in a grid cell attractor. 39

2.8 McNaughton et al.‘s proposal to correct the edge problem. 40

2.9 Connection of grid neurons that give rise to a torus. 40

2.10 The resulting twisted torus. 41

2.11 Grid cell networks with slightly varying spacing result in a large maxima. 42

2.12 One-dimensional representation of the network connectiv- ity according to the toroidal attractor model. 43
LIST OF FIGURES

3.1 The head direction cell set schematic. 45
3.2 Sigmoid function. .. 48
3.3 Willow Garage’s Personal Robot 2 - PR2. 49
3.4 Synaptic weight values in head direction attractor after training. ... 51
3.5 Effective synaptic weight values between presynaptic, post-synaptic head direction cells and the rotation cells. 53
3.6 Stabilization of initial activity packet (Time in seconds) 55
3.7 Sub-optimal parameters do not result in a stable activity packet (Time in seconds) ... 56
3.8 Firing rates during a test run of head direction neurons. . 57
3.9 Test runs with angular velocity data from the PR2 robot. Note that the firing rates of both rotation cells are positive. For visualisation purposes, to add a sense of direction, the values of firing rates of Rotation cell 2 have been multiplied by -1. (Time in seconds) ... 58
3.10 Correcting drift using a single visual cue. 60
4.1 The grid cell system schematic. 65
4.2 2D array of grid cells .. 66
4.3 Recurrent synaptic weight in grid cells 70
4.4 3D view .. 72
4.5 Top view .. 73
5.1 Schematic including place cells. 77
List of Tables

3.1 Constants used in the implementation 59
4.1 Constants used in the implementation 69
Abstract

The importance of navigation in robotics cannot be understated. Without being able to correctly and efficiently navigate in an environment, an agent will be unable to carry out any tasks. Animals, even smaller mammals for instance, have sufficiently developed navigation systems that enable them to carry out their daily tasks: forage for food, find shelter, navigate to and from such sites. It has long been proposed that animals use a type of map for navigation. Unlike maps generated by modern mapping techniques, these maps are topological, and lack precise metric information.

Brain research has found sets of neurons that co-operate to form a navigation system in animals. Such cells: head direction cells, place cells, grid cells; decode specific information about the animal’s navigation, a combination of which is sufficient to provide a complete navigation solution.

The aim of my masters research, as detailed in this report, was to study these spatial neurons and their modelling for use in robotic navigation. I have modelled head direction and grid cells, which are important components of the neural path integrator system using the Robot Operating System (ROS) platform. Both models have been validated with real time data collected from the PR2 robot.
I cannot say what I feel in any human sense, Partner Elijah. I can say, however, that the sight of you seems to make my thoughts flow more easily, and the gravitational pull on my body seems to assault my senses with lesser insistence, and that there are other changes I can identify. I imagine what I sense corresponds in a rough way to what it is that you may sense when you feel pleasure.

R. Daneel Olivaw explaining to Elijah Baley that he enjoys his company and is, in a robot sort of way, happy to see him again.

Taken from Isaac Asimov's Robots of Dawn