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Preface

This thesis covers the word done during my Masters by research course

at the University of Technology, Sydney under the guidance of Dr. Jianguo

Wang.

The document is divided into 5 chapters. Chapter 1 introduces my re-

search. It covers a brief summary of navigation and justifies my decision

to work on bio-mimetic navigation. Chapter 2 consists of a detailed liter-

ature review of the various neuron sets that I worked with. Each chapter

detailing a neuron set has two sections - one for the neuroscience review,

and another for the computational modelling review. Chapter 3 details

the implementation of head direction cells on the ROS platform, and chap-

ter 4 details the addition of grid cells to the system. Finally, I discuss my

work in chapter 5. I present my views on the current state of literature, the

issues that researchers need to solve when working on a similar project,

and what I intend to work on next.
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Abstract

The importance of navigation in robotics cannot be understated. Without
being able to correctly and efficiently navigate in an environment, an agent
will be unable to carry out any tasks. Animals, even smaller mammals for
instance, have sufficiently developed navigation systems that enable them
to carry out their daily tasks: forage for food, find shelter, navigate to and
fro such sites. It has long been proposed that animals use a type of map
for navigation. Unlike maps generated by modern mapping techniques,
these maps are topological, and lack precise metric information.

Brain research has found sets of neurons that co-operate to form a
navigation system in animals. Such cells: head direction cells, place cells,
grid cells; decode specific information about the animal’s navigation, a
combination of which is sufficient to provide a complete navigation so-
lution.

The aim of mymasters research, as detailed in this report, was to study
these spatial neurons and their modelling for use in robotic navigation. I
have modelled head direction and grid cells, which are important com-
ponents of the neural path integrator system using the Robot Operating
System (ROS) platform. Both models have been validated with real time
data collected from the PR2 robot.



I cannot say what I feel in any human sense, Partner Elijah. I can say, however, that
the sight of you seems to make my thoughts flow more easily, and the gravitational
pull on my body seems to assault my senses with lesser insistence, and that there are
other changes I can identify. I imagine what I sense corresponds in a rough way to
what it is that you may sense when you feel pleasure.

R. Daneel Olivaw explaining to Elijah Baley that he enjoys his company and is, in
a robot sort of way, happy to see him again.

Taken from Isaac Asimov’s Robots of Dawn



Chapter 1

Introduction

I don’t know anything, but I do know that everything is
interesting if you go into it deeply enough.

Richard Feynman

1.1 Navigation

It is quite obvious that navigation is a necessary capability that a animals
need to possess. Without navigation, an animal would be unable to find
food, to seek shelter, to escape danger - to survive. We, humans, rarely
stop navigating during our day. We move from room to room, from object
to object, from person to person. Most, if not all, of our activities require
us to navigate.

Similarly, mobile robots must navigate to carry out their tasks. A simple
source to goal path can also be quite complicated to navigate. Since the
beginning of robotics research, navigation has been accepted as an impor-
tant focus area[1]. In general, while one would expect robotic navigation to
be inspired by biological systems - this isn’t the case. Most classical robotic
techniques treat navigation as a computational problem, where the input
from a set of sensors needs to be processed optimally to provide the agent
with accurate navigational information. In line with this perspective, com-
plex algorithms have been developed in attempts to solve the navigation
problem.

1



1. Introduction 2

Figure 1.1: The figure shows various local navigation strategies: A shows
the agent randomly searching until it finds its goal location. B shows the
agent following a trail, such as a smell or other chemical trail. C shows the
agent simply walking towards a beacon that signifies the goal location. D
shows the agent deducing its goal location by observing its relationships
with other landmarks.

I first discuss biological navigation and then move on to robotic navi-
gation. In the process, I cover how biological systems have inspired nav-
igation in robots. I glean over classical robotic navigation to provide a
contrast between the two robotic navigation paradigms.

1.2 Biological navigation

Even the smallest animals possess adaptive navigation systems that are
quite sufficient for their needs. Biological navigation is goal oriented, to
the effect that it is defined as[2]:

Definition 1. Navigation is the process of determining and maintaining a
course or trajectory to a goal location.
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This is based on the observation that animals can navigate without un-
derstanding their current location, or without asking the question - “Where
am I?”. Trullier et al. formally analysed the various hierarchies of ani-
mal/animat1 navigation in their seminal paper[3]:

1. Homing

2. Guidance

3. Place recognition triggered response

4. Topological navigation

5. Metric navigation

Franz andMallot further extended this classification to the following[4]:

1. Local navigation:

(a) Search

(b) Direction-following

(c) Aiming

(d) Guidance

2. Way finding:

(a) Recognition triggered response

(b) Topological navigation

(c) Survey navigation

They defined local navigation as navigation where only the goal needs
to be recognized along with only objects and places in the current “sensory
horizon”. In way finding, the agent needs to recognize various locations
and also the associations between these places which could be out of the
current “sensory horizon”.

In searching, the agent simply moves around in the environment and
comes upon the goal by chance. It does not attempt to orient itself in a

1An animat is an agent that attempts to mimic animal behaviour
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particular direction with reference to the goal, or another associated loca-
tion at all. Direction following requires the agent to align itself in a locally
available bearing to reach the goal. The goal may ormay not be in the sen-
sory horizon. An extension to this is aiming where the agent must align
itself in such a way that the goal is always in front of it. The goal may not
be in the sensory horizon, but it must be linked to some salient cue that
should always be in the sensory horizon. In the absence of a salient cue
that signifies the goal, the agent refers to other land marks that enable it
to navigate to the goal. Realizing a known relationship with a set of land
marks enables the agent to reach its goal location. The place recogni-
tion triggered responsemethod is an extension of the guidance method,
where, instead of considering places as points, places are extended to con-
stitute of a set of locations that have the same significance with respect to
action selection. The agent, instead of trying to replicate exact sensor per-
ceptions, carries out a fixed navigational action at a certain place. A chain
of such place-action sets is sufficient to permit navigation to a goal state.
This system is also a simple action-place association, and does not involve
mapping. For instance, if a certain place is blocked by an obstacle, the
agent will need to search until it finds another known location that has an
associated action leading to the current goal.

Topological navigation handles this limitation. In topological naviga-
tion, the perceived information is maintained in the form of amap. Since a
map is available with edges connecting various locations, the agent is able
to work out alternate paths in the case of obstacles or missing places. It
is noteworthy that none of the aforementioned methods permit optimiza-
tion, quite simply because they are not defined in terms of metric param-
eters: they do not consider time or distance, or another parameter such
as work. The most sophisticated representation of spatial data is themet-
ric map. The metric map stores relations between places using metric
information, most commonly the distances between them. However, the
metric to be considered is up to the agent: Google Navigator, for instance,
let’s you plan your trip keeping traffic conditions in mind, thus prioritising
time as a metric over distance. Survey navigation requires the represen-
tation of all spatial information into a common frame of reference, a map.
The spatial link between any two locations can then be inferred.



1. Introduction 5

A little introspection while travelling to and fro work will confirm that
we do indeed follow this hierarchy to navigate, daily, all the time. A sub-
tler observation is that we do not rely on metric maps for day to day nav-
igation. For instance, once the path to and fro work has been learned,
one does not need to use their car’s navigator services. Consider a col-
league from work requesting directions to a good restaurant nearby. Our
response, if we don’t point them to an internet map, would be on the lines
of, “So, you get out of University from the main Tower exit. Take a left. Walk
until the Co-op book store and take another left at the traffic lights. Walk to
the end of the road till you get to the university library. The restaurant should
be right at that corner, on the right, next to a Seven Eleven.” Even with our de-
pendence on metric maps, we hardly ever define paths as combinations
of distances and exact bearings.

1.2.1 The cognitive map theory of biological navigation

In 1948, Tolman presented his paper introducing his theory of cognitive
maps [5]. While carrying out experiments on rats, his students and col-
leagues hypothesized the process that enabled rats to successfully travel
through their experimental mazes. Tolman documents that there were
sets of people who believed that a simple stimulus response method was
all that was being used. However, Tolman observed behaviours in the
rats that suggested that a cognitive map would be required - for example,
avoidance of regions where the agent had been given an electric shock [5].
O’Keefe and Dotrovsky further added credence to this theory in 1971 [6]
with their discovery of place cells. The cognitivemap theory states that an-
imals, such as rats, build a cognitive map of their environment in the brain
as they receive new stimulus. This cognitive map has various functions -
for example, it permits the agent to plan efficient paths for navigation -
by bypassing obstacles as explained earlier for instance. The place cell is
believed to be the unit of this cognitive map [7, 8].
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1.3 Navigation in robots

Navigation in robots remains an area of great interest. In spite of the great
strides that have been made in all spheres of robotics: perception, plan-
ning, interaction with objects and others; the state of navigation is still far
from complete.

Navigation research in robotics can be classified broadly into a dichotomy:
classical robotics, which is based on nautical navigation and relies heav-
ily on a structured, algorithmic method of navigation; and bio-mimetic
robotics, in which researchers attempt to study biological navigation and
implement these methods on to robots.

1.3.1 Classical robotic navigation

As Franz and Mallot document [4], the term navigation originally applies
to the process of directing a ship to its final point of disembarkation. This
consists of three repeated steps:

1. Determining the ship’s current position as accurately as possible on
a metric map.

2. Finding the relationship between the vessel’s current location and
other important landmarks: final goal location, reference landmarks.

3. Setting a new course based on the information gathered from the
above steps.

This method has transferred almost unchanged to classical robotics -
the navigation problem has been defined as [9]:

Definition 2. The robot is placed in an environment that is unknown, large,
complex and dynamic. After a time needed by the robot to explore the envi-
ronment, the robot must be able to go to any selected place, trying to minimize
a cost function (e.g. time, energy, etc.).

This is also referred to as the maximum navigation test, which is subdi-
vided into smaller sub-challenges:
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1. Motion control problem: the robot must be able to move quickly,
safely and under control.

2. World modelling problem: the robot must be able to collect data
about it’s environment while moving.

3. Localization problem: the robot must know where it is located in
the environment.

4. Planning problem: the robot must be able to plan an efficient path
to its destination.

5. Architecture problem: the interactions between solutions to the
different problems.

The definition specifically limits itself to navigating in the environment.
It does not consider interaction with features in this environment. Ex-
tending the “architecture problem” to robotics in general, the solutions to
the navigation problem should be able to interact with solutions to other
robotic problems to form a truly autonomous agent.

While classical techniques have been able to carry out specialized nav-
igation tasks, none of these systems have yet reached the navigational
merit possessed by even smaller animals: fish, bees, ants; which enable
them to navigate successfully in their environments, forage for food, some-
times migrate long distances and return to their homes.

1.3.2 Bio-mimetic navigation

Bio-mimetic navigation stems from two research goals:

1. To understand biological navigation better.

2. To utilize this knowledge to create navigation systems for robotic ap-
plications.

Bio-mimetic navigation, as expected, is goal oriented, i.e., the one ques-
tion that needs to be answered is “Am I at my goal location?”. The agent
need not know it’s current location - it does not need to solve the localiza-
tion problem, for instance. The minimum requirements for bio-mimetic



1. Introduction 8

navigation are therefore the ability to move, and the ability to detect the
goal location. While higher animals do possess much more complex nav-
igational capabilities, the different navigational systems are used in a lay-
ered fashion akin to subsumption architecture[10] - only that which is re-
quired is used. This makes bio-mimetic systems more efficient at naviga-
tion. For example, while a complete robotic solution may use a simultane-
ous localization and mapping (SLAM) [11, 12] based metric map of its sur-
rounding even to approach a target in its sensory horizon, a bio-mimetic
system will instead only search for the target location and approach it
once located. In fact, as discussed earlier, even the most developed an-
imal species do not appear to have in-built systems that use metric infor-
mation.

Researchers have attempted to develop bio-mimetic navigation sys-
tems with different levels of detail. Franz and Mallory’s review lists a num-
ber of bio-mimetic systems. Some of them are:

1. Sharp and Webb’s robot that follows a trail of chemical cues similar
to ants[13].

2. Coombs and Roberts’ system that balances optic flow information in
both eyes similar to bees[14].

3. Lambrinos et al.’s path integrator system that used polarized light for
compass orientation similar to insects[15, 16].

4. Webb’s system that calculated phase difference between auditory
perceptions to detect the relative direction of a sound source simi-
lar to female crickets[17].

5. Recce and Harris’ implementation of a hippocampal model that uses
place cells[18] found in the rat hippocampus[19].

6. Owen and Nehmzow’s topological navigation system that recorded
the distance and direction between places[20].

Of course, over the past few decades many other bio-mimetic systems
have been developed by researchers for various uses.

As more and more information on biological navigation is made avail-
able, researchers have been able to develop systems that mimic biological
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navigation in more and more detail. Over the past few decades, neuro-
science researchers have discovered neuron sets in the mammalian brain
that respond to spatial information perceived by the agent - head direc-
tion cells[21], grid cells[22], place cells[7], boundary cells[23] and others.
Various studies have been made to elucidate the properties of these neu-
ron sets, and the information thus collected has enabled computational
neuroscientists to model the neuron sets to replicate their functioning.
At the present, due to the infancy of the field of neuromorphic engineer-
ing, hardware implementations of these neuron sets are still limited and
rare. However, research literature is strewn with computational simula-
tions of these neuron sets, with various models building on older ones
to incorporate new information that may have since come to light. Some
researchers have also attempted to use these neuron systems as compo-
nents of a complete bio-mimetic navigation system for robots as we’ll see
in the literature review.

1.4 Justification of research

I’ve had the opportunity to study both classical and bio-mimetic robotics.
While I am in awe of the state of research in classical navigation, I cannot
help but observe that I, personally, being a human, do not use the con-
cepts that classical navigation is based on. Combined with the generally
experienced inflexibility of classical navigation techniques, this turned me
towards bio-mimetic navigation. My interest in neuroscience and naviga-
tion eventually turned me to neuromimetic navigation.

Neuro-mimetic navigation, like bio-mimetic navigation, has two goals:

• Understanding the functions and properties of neuron sets in the
brain.

• Modelling these neuron sets for use on robots as components of
bio-mimetic systems.

In my research, I attempt to study the aforementioned neuron sets
that encode spatial information, and model them for use with the Robot
Operating System (ROS ).
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1.5 Contributions

In this work, we’ve developed the lowest building blocks of a bio-mimetic
navigation system. Instead of using classical robotic techniques, we have
made use of biologically plausible neural processing. In our work, we’ve
tried to remain as true to biology as possible - only diverting when ab-
solutely necessary. Our work focusses on the path integrator systems of
the brain, covering directional and spatial coding. The two neuron sets
that we have implemented, head direction cells and grid cells are strongly
coupled, to such an extent that they are found together in certain brain
regions. These neuron sets are also closely related to other navigational
neurons - such as place cells which encode locations.

The models used are based on previous models that have been pro-
posed in literature. Among the many proposed models, we based our
work on self organizing models, in which the synaptic weights between
neurons are ascertained via Hebbian learning - a majority of the existing
models ignore this biological process and use other, non biological pro-
cess instead. We believe, that for a system to be truly bio-mimetic, it is
imperative that the system itself ascertain the synaptic weights required
for its functioning. The use of Hebbian learning is also most important for
our future work - use of allothetic visual cues, as we’ll discuss later.

The two main components of our work - head direction cells and grid
cells are described in chapters 3 and 4:

Head direction cells Head direction cells[24] are neurons found in ar-
eas of the hippocampus and related regions that encode the direction
that the agent is facing. The main underlying process depends on idio-
thetic self motion cues, mostly from the vestibular system. Like an inertial
navigation system, a set of head direction neurons integrate self motion
information to calculate the current directional state of the agent. Since a
path integrator system by itself is insufficient for use - it necessarily drifts
over a period of time, a correcting input is required to reset the drift. It
has been found that head direction neurons are capable of associating
with visual landmarks and use them as an extra, corrective input.

In our work, we implemented and tested the path integrator mecha-



1. Introduction 11

nism exhibited by head direction neurons. We also tested to see if our
model was capable of being extended to incorporate visual landmark in-
formation as required by head direction cells.

Grid cells Similar to head direction cells, grid cells[22] have also been
found to exhibit dead reckoning characteristics. Grid cells are laid out in
a triangular mesh in layers of the entorhinal cortex such that grid cells
correspond to a spatial co-ordinate map of the agent’s environment. In
a manner similar to head direction cells, a set of grid cells integrates idio-
thetic direction and speed information to encode the location of the agent
on the mesh.

The effects of visual landmarks on grid cells is still an area of research.
However, it has been established that head direction and grid cells project
on to place cells, along with other neuron sets to encode location. It is pos-
sible that projections back from place to grid cells are used for correcting
drift that builds up over time.

In our work, we implemented and tested out a set of grid cells. The
model makes use of the above mentioned head direction cell implemen-
tation for direction information. Also, the model, since built on the same
concepts as the head direction cell model, can be extended to include
other inputs that may be discovered in the future.



Chapter 2

Literature review

How well he’s read, to reason against reading!

William Shakespeare

Research papers published related to this chapter:

• Modelling head direction cells: a review - Ankur Sinha & JianguoWang
- Submitted to Neural Computation for consideration - under review.

The literature review summarizes the current state of literature on head
direction cells and grid cells. Each section is divided into two subsections
that outline biological and computational modelling information respec-
tively.

12
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2.1 Head direction cells

Head direction neurons were discovered by Ranck in 1984 [21]. Head di-
rection neurons calculate and encode the animal’s current bearing via a
neural mechanism. In a set of head direction neurons, each neuron is
associated with a specific direction and discharges maximally only when
the animal faces in this particular direction: consequently, this direction
is referred to as the cell’s “preferred direction”. Since their discovery, var-
ious studies have focussed on elucidating various aspects of head direc-
tion cells: their interaction with the environment, the contribution of vari-
ous inputs, the neural pathway involved in their functioning and the over-
all role that they play in the biological navigation system. Section 2.1.1
encapsulates the available neuroscience information on head direction
cells. Section 2.1.2 discusses the computational modelling of head direc-
tion cells.

2.1.1 Neuroscience review

This section briefly outlines some salient properties of head direction cells.
I build on past reviews - Sharp’s review [25], Taube’s comprehensive re-
views [24, 26], Clark and Taube’s review [27] and books on the subject [28,
29], adding information where necessary.

Discharge properties

As introduced earlier, individual head direction cells fire maximally only
at their “preferred directions”. As the animal’s head turns, the firing rate
of the head direction cell decreases symmetrically about the maxima in
an almost linear fashion as shown in Figure 2.1. The “tuning width” of a
head direction neuron is the angular extent that it is active in. Note that
head directions cells with adjacent “preferred directions” are not neces-
sarily found adjacent to each other in the brain. This assumption is made
by most computational models that we’ll discuss in the next section, but
is only for sake of simplicity. Only the synaptic connections between head
direction neurons dictate their function. While Taube et al. described the
graph to be triangular with the decrease on both sides of the peak being
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Figure 2.1: Shows the variation in firing rate of a head direction cell
recorded from a rat as it moved around in a controlled environment [30].
The preferred direction of this head direction cell is ≈ 270°and the tuning
width is ≈ 150°. The peak firing rate is ≈ 100 spikes/second.

almost the same [24], Gaussian models have also been used to describe
and approximate head cell firing [31, 32, 33]. An ensemble of head cells
fires in a manner such that the entire 360°directional space is covered. It
is noteworthy that the peak firing rates of the cells in the ensemble are
not the same [24]. While the ensemble covers the 360°directional space,
the range in which each cell fired, termed the “directional firing range” of
a cell, was also found to vary [24].

Head direction cells in brain regions

Until now, head direction cells have been discovered in several areas of the
brain (Figure 2.2): in components of the limbic system: the postsubicu-
lum [21], the anterior dorsal nucleus of the anterior thalamus [34], the
dorsal sector of the caudal lateral dorsal thalamic nucleus [35], dorsal
tegmental nuclues [36], anteroventral thalamic nucleus [37], areas of the
retrosplenial cortex [38], portions of the extra-striate cortex [38], lateral
mammillary nuclei [39], parasubiculum [40] and layers III-VI of the dorsal
medial entorhinal cortex(dMEC) [41]. Other than these components of the
limbic system, many of which are also present in the classical Papez circuit,
head direction cells have also been located in the dorsal striatum [42, 43]
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Figure 2.2: The figure shows the neural circuitry of brain regions containing
and related to head direction cells. (The striatum has not been included)

and the medial precentral nucleus [44].
Head direction cells in various brain areas, by definition, display the

same directional firing properties: their firing rates are a function of the
agent’s bearing and aremaximumat their individual “preferred directions”;
their firing rates decrease symmetrically around the maxima as the head
direction changes from the “preferred direction” of the neuron; they have
well defined “tuning widths”. However, even though these fundamental
properties are shared between all head direction cells, the parameters as-
sociated with them fall in a range of values for a particular brain region.
For different brain regions, some of these ranges have also been observed
to vary. As an example, peak firing rates range from 5-120 spikes/second
and while this signifies variability within neurons of an area, each area ex-
hibits a similar range. Tuning width, on the other hand, displays steady
variations between some regions: head direction cells in the lateral mam-
millary nucleus and dorsal tegmental nucleus have wider tuning curve
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widths than the other regions.
Similarly, the effect of various inputs on the functioning of head direc-

tion cells also varies slightly from region to region. On the whole, head
direction cells process a combination of idiothetic (self-centred) and allo-
thetic (not self-centred) inputs. Idiothetic inputs comprise of angular ve-
locity projections from the vestibular system, optic flow information from
the vision system, and other self-motion cues such as motor, kinesthetic
and proprioceptive cues [45, 46]. Allothetic cues, on the other hand, are
mainly landmark cues from vision system and olfactory inputs. As an ex-
ample of variations in the effects of inputs, consider: it was observed that
some head direction cells in the lateral dorsal thalamus region only fired
in the presence of light in the room, and not when the roomwas dark [35].
However, for head direction cells in the other areas of the brain, a dark-
ened environment did not cause noticeable changes in the firing rate of
the head direction cells.

Dynamics of head direction cells

Head direction cell sets exhibit both path integrator [47] and landmark
navigation [48, 49] capabilities. Since they integrate angular velocity in-
puts to “calculate” the current head direction, they function like an inertial
navigation system (INS) [50]. An inertial navigation system, or a dead reck-
oning system as it’s called, necessarily suffers from drift. Therefore, the
head direction cell set must have other inputs that help rectify this drift.
Experiments carried out by researchers [51, 52, 53, 54, 55, 56, 57] to as-
certain the effects of environmental cues showed that head direction cells
are capable of associating with salient landmark cues in the environment.
Experiments where idiothetic and allothetic cues were made to conflict
demonstrate that salient visual landmark cues are capable of overriding
information provided by the idiothetic cues.

The path integrator component of head direction cells processes cer-
tain idiothetic inputs - angular velocity inputs from the vestibular system is
a primary input. The quicker the animal turns, the quicker the head direc-
tion cell set will change its firing rate profile. Also, the quicker the animal
turns, the more the head direction cells will fire as the peak of the firing
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rate profile passes them. It has also been found that the firing of head di-
rection cells also depend on translation of the agent - translation increases
the firing rate of head direction cells in general [30, 54]. Another idiothetic
input, optic flow stimulus, also updates the activity of head direction cells
in the anterodorsal thalamus [58].

Many experiments have been carried out to ascertain the extent to
which visual cues control the behaviour of head direction cells. Taube
and colleagues reported that replacement of specific visual cues, such
as a cue card spanning 100°of their circular experimental apparatus, to
a new location caused an almost equal change in the preferred directions
of head direction cells. Thus, head direction cells associate with salient
visual cues and therefore represent a more abstract relationship with the
environment, than just being an internal compass [59, 60, 18, 52, 61]. Vi-
sual cues, however, do not affect the general discharge properties of head
direction cells - they only affect the preferred or reference directions of
head direction cells. The geometry of the environment also exerts control
of head direction cells. However, this geometric control can be overridden
by salient distal visual landmarks. The environment boundaries may be
acting as landmarks themselves in the absence of other discernible visual
features [59].

Other researchers also carried out experiments using cylindrical com-
partments where they rotated visual cues on the walls at different speeds
to ascertain the contribution of visual and vestibular cues. For example,
Blair and Sharp [55] varied the following parameters - rotation of plat-
form base at slow and fast speeds; rotation of compartment wall at slow
and fast speeds; lights on or off. For example, rotating both the platform
and the wall at fast speeds by an angle of 90°, they tested the effect of
only vestibular cues on head direction cell firing. This configuration also
provided them with data on conflicts between vestibular input and op-
tic flow input, since the optic flow input did not indicate any movement.
Other configurations provided data in a similar manner. They reported
that while vestibular cues correctly lead the head direction cell set to track
current direction, visual landmarks controlled the preferred directions of
head direction cells. Since their cylinder was visually symmetrical, some
of the experiments warrant more experiments for confirmation. They also
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reported that most experiments in a dark environment appeared to sim-
ply disorient the rat - they produced a range of responses. However, they
did observe, that even in the dark, the head direction cell did make use of
vestibular cues to maintain a reasonably accurate bearing representation.

Predictive firing of head direction cells

An interesting property of head direction cells found in the anterior dor-
sal nucleus, the lateral mammillary nucleus and the retrosplenial cortex is
that they predict head direction rather than simply encoding current head
direction [62, 63] - a time displacement of about 40 msec was observed
in head direction cells of the anterior dorsal nucleus. This suggests that
head direction cells in the anterior dorsal nucleus integrate self motion
information as path integrators to calculate future heading and pass this
information on to the postsubicular head direction cells which, as a re-
sult, encode current heading. The discovery of head direction cells that
signal future heading also helped confirm the presence of a path integra-
tion component in head direction cells, since future heading could only be
calculated from movement related information [64].

Contribution in complete neural navigation circuit

The role of head direction cells in the complete biological navigation circuit
is becoming clearer as more information on their interaction with other
navigation related neurons is exposed. Primarily, head direction cells en-
code direction information and project this to other neuron sets related
to navigation. For example, head direction cells project direction informa-
tion on to grid cells[65]. Grid cells utilize this information along with speed
information for their own path integration purposes. In fact, head direc-
tion cells have been found to co-exist with with grid cells in some layers of
the entorhinal cortex. Some neurons in the entorhinal cortex also exhibit
properties of both head direction and grid cells and are called “conjugate
cells” or “conjunctive cells” [41]. Head direction cells are also closely related
to place cells [18]. A recent study on the contribution of otolith signals to
spatial learning further confirms that the head direction signal contributes
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to spatial learning [66]. We discuss the interaction of head direction cells,
grid cells and place cells in detail in chapter 5.

Head direction cells are one of the better researched navigation related
neurons. The abundance of information permits researchers to model
biological navigation circuits for research purposes and sometimes im-
plement bio-mimetic systems for use on robots. In the next section, we
discuss the computational models of head direction cells that have been
proposed.

2.1.2 Computational modelling review

Computationalmodelling of neuron sets is a research area in itself. Broadly
speaking, it has two goals. First, to propose how information processing
occurs in neuron sets that have been discovered by experimental neuro-
scientists. This can either be at a higher, computational level, where sim-
pler firing rate models can be used to study the flow of information or, at
a much lower molecular level where researchers attempt to model neu-
rons sets in detail. Simulators such as NEURON [67, 68, 69] can be used
to model neuron sets at a neural level. The “blue brain” project is another
example of low level modelling of neuron sets: it employs the BlueGene/L
supercomputer in a bid to construct a virtual brain from the information
on various neuron sets that is collated by researchers [70]. The second
goal is to mimic neurological systems to implement bio-mimetic systems
in robots. This goal is more difficult to achieve at present, due to the large
computational costs involved in the massively parallel neural processing
system. Research in the field of neuromorphic engineering will help with
this goal in the future. It is notable, that as a result of the large compu-
tational costs involved in neural processing, while quite a few bio-mimetic
systems have been implemented [3, 4], a majority of these mimic only the
behavioural characteristics, not the neural processes that are responsible
for them. That is, they are biomimetic but not neuromimetic.

From a navigation perspective, head direction cells are capable of con-
tributing to both path integration and landmark based navigation. Integra-
tion of idiothetic inputs computes the current, or as is the case of some
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regions, future head direction. A path integrator system necessarily suf-
fers from drift: a minute bounded error exists at the start of the compu-
tation and is compounded with each successive integration, causing the
computed value to drift more and more from the actual value [50]. In or-
der to restrict this drift to a usable value, the system must be reset from
time to time to a known accurate value. In autonomous navigations sys-
tems, INS are generally deployed in conjunction with another navigation
system, such as a visual beacon system [71] or a global positioning system
(GPS) [72] that provide accurate data to restart the integration process
from time to time. Similarly, in the head direction system, the landmark
system can reset the head direction from time to time, limiting the drift.
On the flip side, the landmark navigation system cannot form a complete
navigation system by itself either. If the system is unable to find enough
salient features at frequent intervals to use as landmarks, the agent will
be disoriented. In such situations, the path integration system works to
continue tracking the head direction. These two systems are, therefore,
complementary.

In the following sections, we discuss the computational models that
have been put forward by researchers in the past. We discuss them in a
chronological order, stating how each model improved upon a previous
model so that we present an evolutionary view of head direction cell mod-
els. We use the following criteria to review the models, similar to one set
by Blair and Sharp [73]:

• The extent to which the model replicates the basic directional firing
properties of head direction cells.

• The architecture used in the model: is it coherent with the informa-
tion known about the anatomy and physiology of modelled regions?

• Does the model attempt to simulate both the path integrator and
landmark navigation functions of head direction cells?

• Is the model biological plausible?

• Was the model validated by simulations/implementations?
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Look up table

At the time of discovery of head direction cells, the information that was
available covered only their directional firing characteristics. McNaughton
et al. [74] made one of the earlier hypothesis on how head direction cell
sets may function. Their proposal, while based loosely on path integra-
tion, used association rather than computation: instead of computing the
head direction from idiothetic inputs, McNaughton and colleagues sug-
gested that a “look up table” system carried out the required function.
The set of cells could be trained to store the mapping between an input
set, consisting of the current heading and angular velocity, and the output,
the required new heading. Formally, in this theory, a set of head direction
cells would be trained to store the mapping

f : (θ × ω) → θ

where, θ is the set of all directions and ω is the set of all possible angular
velocity values, such that at any instant of time, the current head direc-
tion θt and current angular velocity ωt would give the value of the next
head direction θt+1. However, one must note that in order to implement a
head direction system based on this theory of look up tables, the input set
must consist of all possible directions, and every possible value of angular
velocity that the agent may encounter, to be complete [75]. It is also note-
worthy that this system would employ a recurrent artificial network, since
the current head direction is required to compute the next head direction
value. The paper also addressed the issue of limiting cumulative errors in
this inertial direction system by proposing the presence of “local view” cells
that detect salient landmarks. Associations between head direction cells
and these view cells would be sufficient to anchor preferred directions to
salient landmarks, which in turn would be used to reset the system’s state
when errors aggregate. The system, while functional, is improbable. The
discovery of attractor characteristics in regions that head direction cells
were previously found in further shifted researchers’ attention towards a
neural integrator rather than a look up table.

The proposal was not accompanied by simulations or discussion on
how it might actually be implemented. It did not discuss the variations in
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Figure 2.3: Projections of left rotation cells causing the activity packet to
shift in the model proposed by Skaggs and colleagues.

the properties of head direction cells in different regions, many of which
were not yet known at this time.

Neural integrator and attractor dynamics

Skaggs et al. [76, 77] focussed on the architecture of the head direction cell
system that would enable it to carry out the neural processing required to
compute the current head direction. Their model, while also employing a
path integrator method, proposed a neural integrator instead of the look
up table used by McNaughton and colleagues before.

The proposal consisted of three sets of neurons: left and right rotation
cells and head direction cells. The head direction cells had stronger recur-
rent synaptic connections that were set up to ensure that only a localised
clump of cells would be active at any time, as the stable state of the net-
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work. This would result in a firing pattern with the most active head direc-
tion cell in the cluster denoting the current head direction. These attractor
characteristics [78] were imposed on the network by using strong excita-
tory synaptic connections amongst neighbouring neurons, and inhibitory
connections between neurons that were further apart. The recurrent con-
nections between head direction cells maintained an activity packet once
it had formed. The rotation cells were connected to the head direction
cells in such a way that their projections selectively excite neurons to the
left or right of the current “activity packet”. These selective activations,
combined with the recurrent activity of head direction cells caused the
peak to shift at a rate proportional to the strength of the projections (Fig-
ure 2.3). Redish et al. termed this a “shift register” method, and, while it
did use an attractor to limit the network to a single peak of activity, docu-
mented that it was not a pure attractor model [79].

The model also made use of “visual feature detectors” which would
project on to the head direction cells. These were assumed to fire when
a feature was detected at a certain angular displacement relative to the
current head direction angle. Since various feature detector cells have
been found in the visual cortex [80, 81], it was quite probable that such
cells exist.

Skaggs et al. pointed out that the required synaptic set up in this
model was quite specific. They observed that a method of self organiza-
tion would improve the model. They also observed that the system could
be used as a generic neuronal integrator. The model was the first pro-
posal that employed attractor dynamics. The model predicted the pres-
ence of visual feature detectors [82] and rotation cells [39], both of which
have since been discovered in the brain. The transcript, however, only
presented a theoretical report of the model and no simulations or mathe-
matical details were provided to enable researchers to implement or verify
the model.

Anticipatory characteristics

Blair and Sharp discovered the predictive nature of head direction cells
located in the anterior dorsal nucleus [62]. They simulated a “thalamo-
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Figure 2.4: Schematic of Blair and Sharp’s model. Note how the anterior
thalamic nucleus leads the postsubiculum.

cortical circuit” [73, 64] on the NEURON simulator [69, 67, 68]. Similar to
Skaggs et al. [76], they incorporated various neuron sets in their simula-
tion to generate the observed characteristics of head direction cells.

The model was the first to incorporate head direction cells from re-
gions of the brain with varying directional firing properties (Figure 2.4): a
set of “present head direction (PHD)” cells represented cells of the post-
subiculum that encode current head direction while “anticipatory head di-
rection (AHD)” cells represented cells in the anterior thalamic nucleus that
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encoded the future head direction. Inputs to these two sets of cells were
served by groups of “angular velocity (AV)”, “angular speed (AS)” and“angular
velocity modulated head direction (AVHD)” cells. Two sets of AV cells fired
in a rotation specific manner, i.e., one fired during clockwise rotation and
the other during counter clockwise rotation. Such cells have been ob-
served in the postsubiculum [83] and retrosplenial cortex [84]. AS cells
encoded the magnitude of rotation velocity, irrespective of the direction
and have also been found in both the postsubiculum [83] and the retro-
splenial cortex [84]. AVHD cells are rotation specific head direction cells,
that fire for their specific preferred directions only when the head rotates
in a certain course, either clockwise or counter clockwise. Such cells were
reported by Taube et al. [30] in the postsubiculum. Similar to Skaggs et
al., the synaptic connections between the different neuron groups were
pre-defined as either excitatory or inhibitory, as required.

During a clockwise head turn, the clockwise angular velocity cells are
activated and inhibit the layer of counter-clockwise angular velocity mod-
ulated head direction cells. As a result, the currently active anterior thala-
mic head direction cells stop inhibiting their right neighbours and activity
spreads to the right through the layer of head direction cells. Because the
anterior thalamic head direction cells continue to inhibit their neighbours
to the left, activity is shut down in the leftward direction, in the wake of
activity to the right.

The model itself successfully simulated some characteristics observed
in head direction cells: AHD cells in the model that represented head di-
rection cells in the anterior thalamus had higher firing rates than the PHD
cells modelling head direction cells in the postsubiculum. AHD cells also
showed a direct proportionality to the angular velocity while PHD cells did
not. The PHD cells correctly tracked head direction with varying inputs and
the AHD cells lead PHD cells by approximately 20 msec. Via the model, the
authors predicted the presence of AS cells in the mammillary bodies, and
of AVHD cells in the reticular thalamic nucleus which had only been found
in the postsubiculum [30, 83] and retrosplenial cortex [85].

The manuscript documented some limitations of the model. First, the
model does not incorporate landmark cues. Second, themodel only worked
with a small range of angular velocities. Third, the tuning curves for the
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cells in the model did not match experimental data, in that, they were not
as broad as cells in the rat. Last, the model relies on lateral connections
amongst the AHD cells in the modelled anterior thalamus but such con-
nections are yet to be discovered.

Synaptic modification

Zhang [86] put forward a modified attractor based model where he split
the synaptic weights between head direction cells into two sets: even and
odd synaptic connections. The even connections were constant, respon-
sible for maintaining the head direction cell system’s behaviour in the ab-
sence of any inputs. In such a scenario, the odd synaptic weights were ab-
sent. Zhang showed that under the influence of the even synaptic projec-
tions, the system could take two possible states: an unstable state where
each cell was equally silent and a state where appropriately chosen pa-
rameters would result in the network displaying the head direction cell
profile defined by a localized peak. The odd component, supplied by in-
puts such as the vestibular system, would cause a continuous shift of the
peak while maintaining it’s shape. In his attempt to find a weight distribu-
tion to fit a chosen sigmoid activity profile, Zhang showed that it is improb-
able that such a solution exists. Instead, he settles for approximate solu-
tions found by using regularization and Fourier transformations. His solu-
tions were coherent with the expected “local excitation, global inhibition”
conditions for attractor networks. By including the effect of acceleration
in his system, Zhang showed that the model does indeed show predictive
behaviour as described by Blair and Sharp [62]. Zhang also discusses how
the presence of noise causes the formation of point attractors, which in-
herently destroy the neutral equilibrium required for a head direction cell
network. The drift caused by such noise can be corrected by anchoring via
other inputs, such as landmark detection and is also demonstrated.

Zhang discusses the limitations of his models, stating that while his
model provides sufficient simulation of the basic properties of head di-
rection cells, it does not cover all it’s properties. Biological observations,
such as effects of restraint cannot be explained by Zhang’s model [87].
The functioning of Zhang’s model relies on quick synaptic changes, and
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Figure 2.5: Schematic showing the behaviour of Redish et al.’s model dur-
ing a right turn.

on units that have both excitatory and inhibitory properties, which makes
it less biologically plausible.

Coupled attractor network

Redish et al. [79] put forward an attractor model that made use of two
attractor systems to represent head direction cell sets in the postsubicu-
lum and the anterior thalamic nucleus (Figure 2.5). Each coupled attrac-
tor module consisted of an excitatory and an inhibitory pool, the cells of
which were interlinked to induce attractor dynamics. The inhibitory pool
weakly inhibited neurons of both pools uniformly, while the excitatory
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pool excited only neurons that were close neighbours of each other. A
set of equations that define the action potential, the probability of firing
and the “synaptic drive” described the spatial and temporal characteris-
tics of the system. (A set of such equations has been shown to form a
steady neuronal model by Pinto et al. [88]). In addition to the sets of con-
nections between and within each pool, the model employed two other
sets of connections between the excitatory pools of the two attractor sets:
“matching” connections that serve to restrict the peaks in the postsubicu-
lar and anterior thalamic sets to their fixed locations while keeping them
concomitant; and “offset” connections that were modulated by angular
velocity inputs and served to move the activity packet to either side, in a
manner similar to earlier discussed models. During a right head turn, for
example, the right offset connections would be strengthened proportion-
ally to the right head turn angular velocity and cause a shift in the peak
towards the right. In the absence of a turn, the offset connections would
all be zero, permitting the matching connections to synchronize the firing
of the postsubicular head direction cells and the head direction cells of
the anterior thalamic nucleus. Thus, the combination of the matching and
offset connections ensured that the hill of the anterior thalamic attractor
set will lead the hill of the postsubicular set during rotations and remain in
sync when at rest. These connections are similar to the “even” and “odd”
connections used by Zhang. An additional set of projections is made on to
the excitatory pool of the leading attractor to maintain it’s shape. These
projections are assumed to be sourced in the mammillary bodies, similar
to Blair’s model [73].

The results obtained by the model were compared to data recorded
by Blair and Sharp [64] from freely moving rats. The model successfully
integrated rodent head movements and exhibited a anterior thalamic set
of head direction cells that lead the postsubicular set. In their review [31]
Taube et al. have pointed out that lesion studies have been able to con-
firm the interdependence of the head direction cells in the anterior thala-
mic nucleus and postsubiculum: information is projected both ways. The
anterior dorsal nucleus is necessary for head direction cell activity in the
postsubiculum. In the opposite direction, the postsubicular head direction
cells appear to have some control over the extent to which head direction



2. Literature review 29

cells in the anterior dorsal nucleus associate their preferred directions to
salient visual landmarks [89] . Thus, the modelling of these connections
is somewhat incomplete. The model was limited to vestibular inputs only,
and made no attempt to incorporate or discuss how landmark navigation
occurs. The model also did not discuss how the inhibitory or excitatory
connections would be set up in a biologically plausible manner i.e., these
connections were fixed manually. Similar to Zhang’s model, this model
also relied on quick synaptic variations and is also less biologically plau-
sible. The absence of inhibitive GABA [90] containing interneurons in the
anterior thalamic nucleus also invalidates the use of an attractor for the
predictive head direction cells in anterior thalamic nucleus in this model.

Self organized synaptic connections

Stringer et al. [75] proposed a model that employed a biologically plausi-
blemethod to ascertain the synaptic weights in an attractormodel of head
direction cells. In the previous models summarized above, the synaptic
weights between the various cell ensembles were derived by other, undoc-
umented means, usually by repeated iterations of inspection and modifi-
cation. This lacked biological plausibility, i.e., there was no discussion of
how the synaptic weights, which are the basis of these models, were to
be ascertained. In their manuscript, Stringer et al. proposed a method
of setting up synaptic weights in the head direction cell system via Heb-
bian learning [91]. Only the path integrator system of head direction cells
was discussed, though. Also, only head direction cells encoding current
head direction were considered, not head direction cells with anticipatory
firing or any other related neuron sets. The model provided clear cut de-
tails of both the mathematical foundations employed and the results that
validated its functioning. Self organization of synaptic weights is an impor-
tant step towards a complete biological navigation system including head
direction and other neuron sets. Stringer et al. also extended their work to
a two dimensional model of place cells based on the same concepts [92].
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Variants of the self organizing model

The self organizingmodel, because of it’s biological plausibility and relative
simplicity has been used as the base for a few other models. The major
advantage of this model over others is that there is a documentedmethod
to train the synaptic connections of the network. We discuss some of it’s
variants here:

Incorporation of kinesthetic and visual input: Kyriacou [93] built on
the self organization driven head direction cell model proposed by Stringer
et al. [75] by extending it to also use kinesthetic and visual inputs. The
modified model was governed by the following equation:
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Here, the rKIN
k and wHD KIN

ijk terms are additions to the original model
and represent the firing rate of the kinesthetic inputs and the synaptic
weight between head direction cells and kinesthetic inputs respectively.
The model was implemented and tested on a LEGO® robot. Kyriacou
further used three test cases to observe the contribution of various in-
puts, and how they conflicted when not synchronized. The model cor-
rectly reproduced head direction cell behaviour where a drift incurred in
the absence of visual input is corrected when visual input is reapplied. A
test case was aimed at observing the effect of external force (by remov-
ing kinesthetic input but letting vestibular inputs continue to affect the
head direction cell packet). It suggested that the presence of kinesthetic
input incurred less drift than it’s absence did, suggesting that kinesthetic
input did indeed affect the head direction system. A third test case was
designed to simulate conflicts between visual and vestibular input. This
test case also correctly showed that the head direction cell system was
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dominated by visual input but could be driven by vestibular inputs in its
absence, albeit with error accumulation.

The utilization of visual input in this model, while sufficient enough to
simulate inputs in the model, is incomplete. The visual input in this model
did not anchor to visual landmarks, as is supposed in head direction cells.
Rather, visual inputs were stimulated in an abstract way by using an omni-
directional image to calculate current orientation: an initial image defined
the initial state of the continuous attractor network and subsequently, the
direction of the robot was calculated by finding the difference between
the video image at a time and this initial image. There were no synaptic
connections between the head direction cell network and the visual cells.

Models based on the initial version of the model proposed by Stringer
et al. [75] use a method of trial and error to fine tune the required pa-
rameters. As in, they iteratively fine tuned the parameters of the system
till it exhibited the properties they expected. In a subsequent work, Kyria-
cou proposed the use of an evolutionary algorithm [94] to ascertain these
parameters [95]. Kyriacou employed a self adaptive (μ + α) -ES evolution-
ary strategy [94]. The basic idea is to define a function that describes the
error between the biologically expected and actual response of the head
direction model with sets of parameter values that are to be ascertained.
Minimising this function, then, yields optimal values of the parameters.
In his implementation, Kyriacou used a mutative rule suggested by Bayer
and Schwefel [94].

Other models

Other than the above discussedmodels, there have been a fewmoremod-
els that attempt to simulate the head direction cell system.

Arleo andGerstner proposed amodel that captures the functional prop-
erties [96, 97, 98] of head direction cells. This model was implemented
and verified on a Khepera robot. The model makes use of both idiothetic
and allothetic inputs. The allothetic inputs are visual inputs which pro-
vide the robot with a bearing to a static light source. This visual input is
used to recalibrate the robot’s head direction when needed. The synap-
tic associations between various parts of the network seem to have been
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fixed manually as covered in [97]. The model predicted that lesions to the
postsubicular head direction cells would make head direction cells in the
anterior dorsal nucleus and the lateral mammillary nuclei unresponsive
to external cues. A similar relationship has been confirmed by Goodridge
and colleagues [89]. The paper did not discuss how the synaptic weights
were calibrated, and only made use of head direction cells that encode
present direction. The model was also extended to consist of place cells
in an attempt to implement a neuromimetic path integrator navigation
system.

Song and Wang proposed a spiking neuron model [99]. Citing a lack
of data to support the presence of recurrent excitatory connections in the
head direction cell ensemble, Song and Wang showed that a continuous
attractor network could be realized without recurrent excitation. By em-
ploying organized inhibitive and excitatory connections, they successfully
reproduced known properties of head direction cell ensembles: persis-
tence of activity in absence of input; translation of peak when angular
velocity was applied; abrupt re-formation of activity packet at a new pre-
ferred direction in the presence of a strong enough landmark stimulus.

Degris et al. [100] implemented a spiking neuron model based on Song
andWang’s work [99] on amobile Pekee robot. Similar to Song andWang’s
model, the synaptic weights in this model were pre-determined. Degris et
al. employed genetic algorithms to ascertain values of required parame-
ters, such as maximum synaptic weight and Gaussian width. The system
successfully integrated angular velocity to track head direction. Since the
authors did not include a calibrating mechanism, the head system did in-
cur some drift over a period of time, as expected. The authors also tested
the effects of reorienting stimuli by simulating an external stimulus. This
external stimulus did cause a reset of preferred directions as dictated
by the external stimulus. The goal of the research was to implement a
bio-mimetic allocentric direction representation in the Psikharpax robot
project [101, 102].

Goodridge and Touretzky [103] put forward a model where they in-
cluded both the postsubiculum and the anterior dorsal nucleus. In their
model however, they omitted an attractor network in the anterior dorsal
nucleus in coherence with observations that GABA containing interneu-
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rons were absent in this region. In their model, the anterior dorsal nu-
cleus was driven by the lateral mammillary nucleus. The absence of an
attractor network permitted the firing graphs to show shape distortions
as described by Blair and Sharp [62].

Zeidman and Bullinaria [104] extendedGoodridge and Touretzky’smodel [103]
by including optical flow information into the model. They employed fea-
ture tracking to calculate movement vectors for salient visual features to
generate visual flow information into the model.
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2.2 Grid cells

The discovery of neurons that encode spatial information in the mam-
malian brain - place cells [7], and then head direction cells [21], resulted in
the formation of the cognitive map theory of animal navigation[6]. How-
ever, in spite of these discoveries, researchers agreed that efficient navi-
gation is more dependent on metric information. Therefore, the focus of
research moved further upstream from the hippocampus on to the en-
torhinal cortex which provides major cortical inputs to the hippocampus -
grid cells were discovered in the region by Hafting et al. in 2005 [22].

2.2.1 Neuroscience review

This section summarizes the information researchers have collected over
the years on grid cells. Grid cells are neurons that exhibit regular firing
fields such that these firing fields form a triangular or hexagonal pattern
tiling the environment available to the animal. The firing of grid cell net-
works is incredibly accurate - Hafting et al. document that the spatial tun-
ing pattern remains sharp and stable over paths accumulated over tens
of minutes and with a total length of hundreds of meters.

Discharge properties

Single units of the dorsal medial entorhinal cortex (dMEC) have multiple
discreet fields of similar amplitude, unlike place and head direction cells
which have single confined fields. The interaction, or overlap, of the indi-
vidual fields results in the formation of a regular triangular “grid” (hence
the name: grid cells). In order to confirm the regularity of the mesh, Haft-
ing et al. used spatial autocorrelation analysis. The analysis affirmed that
the unit of this mesh was an equilateral triangle, and that the central peak
of this unit was surrounded by six others at nearly equal distances, at an-
gular separations of nearly 60° each. Figure 2.6 shows diagrams depicting
the mesh.

Grid neurons show a systematic topographic organization in the dMEC
- metric characteristics of neurons recorded at the same electrode were
almost same - spacing, orientation specificity and field size. Spacing, for
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Figure 2.6: a, Sagittal Nissl-stained section indicating the recording loca-
tion (red dot) in layer II of the dMEC. Red line indicates border to postrhinal
cortex. b, Firing fields of three simultaneously recorded cells at the dot in
a during 30 min of running in a large circular enclosure. Cell names refer
to tetrode (t) and cell (c). Left, trajectory of the rat (black) with superim-
posed spike locations (red). Middle, colour-coded rate map with the peak
rate indicated. Red is maximum, dark blue is zero. Right, spatial autocor-
relation for each rate map. The colour scale is from blue (r 14 21) through
green (r 14 0) to red (r 14 1). c, Box plot showing distribution of angles f1, f2
and f3 between the central peak of the autocorrelogram and the vertices
of a hexagon defined by the nearest six peaks. The diagram shows me-
dian angles (horizontal lines inside boxes), interquartile distances (boxes),
upper and lower limits, and outliers (horizontal lines). d, Discharge maps
(as in b) showing similar triangular structure in enclosures of different size
(left, large; middle, small; right, large). (Image taken from Hafting et al.,
2005 [22])
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example, was characterized by a standard deviation of only 2.1 cm, while
orientation was characterized by a standard deviation of only 1.8° at a fixed
electrode. Over the entire population of grid cells, however, spacing had a
standard deviation of 30 cm [22].

Grid cells in brain regions

As documented in the previous sub-section, the discharge properties of
grid neurons at the same recording point were largely similar. These prop-
erties varied as the region that was being recorded from was varied, how-
ever. As the recording sites were chosen further away from the postrhinal
border, spacing and field size both were found to increase. The spacing,
as an example, was more compact at dorsal recoding sites than ventral
ones. The researchers document that they were unable to detect any well
defined change between dorsal and ventral sites in orientation specificity
of neurons, however.

Further recordings from the different principal layers of theMEC showed
the presence of different neuron sets in each layer - while layer II was dom-
inated by grid neurons, the deeper layers III to VI contained grid cells along
with direction specific grid cells and even head direction cells [41]. As with
head direction cells of found in the hippocampal regions, the entire range
of head directions was represented in these layers of the MEC, and the
properties also varied within each region.

Dynamics of grid cells

Similar to head direction cells, grid cells have been found to illustrate both
path integrator and landmark navigational paradigms. It is likely that the
population of grid, head direction and direction specific grid cells may in-
tegrate speed, direction and position inputs to update the current position
as encoded by the grid cell ensemble. Regression analysis has confirmed
that there is a positive relationship between speed of the rat and the firing
rates of all grid cells [41].

The stability of grid vertices across multiple trials in the same environ-
mental set up suggest that the allothetic cues should exert some control
over the functioning of grid cells. Cue card rotation experiments, similar
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to ones done with head direction neurons, were done with grid cells. Ro-
tation of the cue card by 90° caused a similar rotation in grid cells. There
was no effect on the grid spacing or field size of the grid cells. This sug-
gests that orientation and phase are both controlled by external visual
landmarks, similar to how the preferred directions of head direction neu-
rons [22]. Sensory information related to the environment could therefore
be used for setting the initial parameters of the grid, or to correct accumu-
lated drift errors in the path-integration system. This is similar to the effect
of landmark cues on head direction cells.

In order to analyse the extent to which allothetic cues affect grid cell
functioning, experiments were also carried out in a darkened environ-
ment, so as to nullify any visual landmarks. It was found that the trian-
gular grid was maintained in darkness suggesting that allothetic cues did
not control the grid like firing behaviour of the neuron sets.

Since the gridmesh covered the entire extent of multiple environments
of different sizes, it conveys that the grid mesh may be continuous and
extend to an infinite size [105].

2.2.2 Computational modelling review

Computationmodels of grid cells fall into two broad categories: oscillatory
interference models and attractor network models [106]. Since my work is
based only on attractor networks, I only present a review of this particular
category of models.

Attractor based models of head direction neuron sets are based on a
one dimensional attractor network [78]. Attractormodels of grid cells, that
encapsulate the same path integrator mechanism are, therefore, mod-
elled as two dimensional attractor networks - this concept was first pro-
posed as the underlying system for place cells [107]. While models of head
direction cells evolved over decades from simple association based mod-
els, to shift registers, and finally to attractor models as discussed in sec-
tion 2.1.2, researchers modelling grid cells were able to take advantage of
the work already done by other researchers modelling attractor models
of neuron sets such as head direction cells [75] and place cells [92]. The
history of computational modelling of grid cells is therefore, shorter than
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that of head direction and place cells.
The earliest attractor model of grid cell was proposed by Fuhs and

Touretzky [108]. An attractor depends on a correct organization of synaptic
weights between neurons. In this model, the authors, inspired by Zhang’s
model of head direction cells [86], employed synaptic weights which con-
sisted of two components - a symmetric and an asymmetric component.
The model, therefore, suffers from the same biological implausibility - it
requires rapid synaptic changes in order to correctly function. The au-
thors provided some insights into how a grid cell network may be devel-
oped. The model made use of a Hebbian rule similar to the Biensenstock-
Cooper-Munro (BCM) learning rule [109] in order to configure connections
between the dMEC units. Figure 2.7 shows a central unit in their sheet of
grid neurons. The model demonstrated that multiple unrelated networks
could set up a representation of space over a larger domain as compared
to a single network - this is coherent with the observation that while the
size and spacing of fields is similar in neurons close to each other, it varies
along the dorsoventral axis. The network was only tested with limited tra-
jectories and did not scale up to larger ones. Another issue the model
didn’t address was the edge effect present in attractor networks. The au-
thors did document that using a torus shaped attractor would correct this,
in line with the circular one dimensional attractor used for modelling head
direction cells [110](Figure 2.8.

Guanella et al. improved the initial model by proposing one that used
a twisted torus (Figures 2.9 and 2.10) which would have a surface with a
regular triangular mesh [112]. They also made use of asymmetric synaptic
weights tomove the bump of activity around - these synaptic weights were
alsomodulated by velocity of the animal as in the previousmodelThey also
made use of asymmetric synaptic weights to move the bump of activity
around - these synaptic weights were also modulated by velocity of the
animal as in the previous model. The model also included a sheet of place
cells as inputs to the grid cells. The connections between these two sheets
were set up by Hebbian learning and served to reset the activity of grid
cells when a drift was incurred.

Burak and Fiete proposed a model that used feed forward excitation
to move the packet of activity in an attractor to represent the rat’s move-
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Figure 2.7: Recurrent weight matrixWij contains symmetric and asymmet-
ric components. Shown here are the weights for the central unit in the
sheet. A, Symmetric component contains angular rings of excitation. B,
Asymmetric component contains a ring of inhibition, offset slightly from
the centre, opposite the preferred direction φi of the unit. C, The output
weights of a unit (a column of Wij ) are the sum of the weights in A and
B. D, The input weights for the unit (a row ofWij) are approximately sym-
metrical; the “noise” reflects the variation in preferred directions of the
afferent cells. All weights have been raised to the 0.5 power in these plots
to better reveal the structure in both components, which differ in magni-
tude by a factor of 3. (Image taken from Fuhs and Touretzky [108])
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Figure 2.8: McNaughton et al.’s proposal to correct the edge problem. Fig-
ure taken from McNaughton et al. [111]

Figure 2.9: Connection of grid neurons that give rise to a torus

ment [113]. In their model, each neuron received inhibitory input from a
surrounding ring of local neurons, but the entire network received exci-
tatory projections which are modulated by the velocity and direction of
movement. The dynamics of the network were based on asymmetric con-
nectivity, such that, it would drive the activity in a specific direction. When
the entire network receives the same input, such asymmetric connections
will tend to equalize each other out, causing the packet of activity to re-
main stable at its location. The idea in use here is not completely different
from the ones used in early head direction neuron models [76, 114]. The
paper included models with both a periodic and aperiodic boundaries -
the aperiodic model required fine tuning to perform as well as the peri-
odic implementation. The authors presented a detailed analysis of both
the periodic and aperiodic models and made certain predictions along
with tests that could help confirm these predictions - for example, they
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Figure 2.10: The resulting twisted torus. Images taken from Guanella et
al. [112]

document that the rotation of the single neuron response which occurs in
cue card experiments is predicted to be caused by an isotropic rotation of
the head direction inputs to the network, while the grid neuron pattern is
predicted to remain the same. They also documented that the use of an
attractor model adds limitations to the rotation and stretching of the pop-
ulation pattern - any evidence of in the phase relationships between neu-
rons, or no changes in the velocity modulation of head direction inputs to
the dMEC, when the single neuron firing appears to be stretched, would
be evidence against an attractor based model. One noteworthy aspect
of the model is that the grid neurons used here are all direction specific,
which implies that this model makes use of head direction neurons for
modulation of conjunctive grid neurons that have been discovered. The
model does not attempt to explain the existence of pure grid neurons.

McNaughton et al. [111] suggested that the combination of grid cells
networks with variable spacing would also result in a maxima (Figure 2.11).
They also discussed the interaction of grid cells that would lead to place
fields in place cells. Further, they discussed how the formation of grid
cells might happen using a theoretical proposal made by Alan Turing in
1952 which was based on the difference in diffusion rates of inhibitors and
activators.

Navratilova et al. [115] proposed a simplified one dimensional model of
grid cells function. The goal of their model was to simulate phase preces-
sion and the change in scale of grid cells along the dorso-ventral axis of
the MEC. In their model, grid cells and conjunctive, direction specific grid
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Figure 2.11: Grid cell networks with slightly varying spacing result in a large
maxima. Images taken from McNaughton et al. [111]

cells were connected in such a way that the conjunctive neurons projected
at a fixed offset to the grid cell bump causing the required movement of
the bump (Figure 2.12).
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Figure 2.12: One-dimensional representation of the network connectivity
according to the toroidal attractor model. Grid cells (in blue) are arranged
in a ring. Each grid cell has synaptic connections onto nearby neurons,
with the synaptic strength decreasing as a Gaussian function of distance
between neurons. Thus, a bump of activity forms at one position. Grid
cells project to conjunctive (grid-by-HD) cells (red and orange). Conjunctive
cells also receive inputs from head-direction cells (light and dark brown),
so that when the animal is moving north, the orange conjunctive cells are
active. Conjunctive cells project back to the grid cell layer, with an offset
in the relative direction which they represent. Thus, when the animal is
moving north, the orange conjunctive cells activate the grid cells in the
counter-clockwise direction from the position of the grid cell activity bump
and thus move the bump in the counter-clockwise direction. Figure taken
from Navratilova et al. [115]



Chapter 3

Towards bio-mimetic navigation:
head direction cells on ROS

“Exactly!” said Deep Thought. “So once you do know what
the question actually is, you’ll know what the answer
means.”

- Douglas Adams, The Hitchiker’s guide to the galaxy

Research papers published related to this chapter:

• An implementation of the path integrator mechanism of head direc-
tion cells for bio-mimetic navigation - Ankur Sinha & Jianguo Wang -
Accepted by IJCNN 2014 (Grade A conference) held at Beijing, China -
July 6 to 11, 2014.

This chapter describes my implementation of a head direction cell set
on the ROS platform for the PR2 robot. I made use of the inertial navi-
gation sensors of the PR2 for real time angular velocity input to the head
direction cell network, which in turn, integrated this input to “calculate”
the current bearing of the robot. The model was verified using a C++ im-
plementation and we observed encouraging results.

Our model is based on the self organizing model proposed by Stringer
et al. [75]. Their original model presented a biologically plausible method
of setting up synaptic weights in the head direction cell system, via Heb-
bian learning [91]. It only applied themethod to the path integrator system

44
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Figure 3.1: The head direction cell set schematic.

of head direction cells and only briefly discussed visual inputs as a fixed
stimulus. We’ve incorporated vision cells into their model in an attempt to
extend it to project both vestibular and visual inputs on the head direction
cell set as has been found. We’ve also verified the model using real time
data as one of the parts of a complete bio-mimetic navigation system.

3.1 Structure

The head direction cell system here makes use of three sets of neurons as
shown in the Figure 3.1. The head direction cell set is a fully connected re-
current network, i.e., each neuronHDi is connected to every other neuron
HDj via synapses, the weights of which are denoted as wHD

ij . Here, HDi

and HDj are the pre-synaptic and post-synaptic neurons with firing rates
rHD
i and rHD

j respectively. The head direction cells, therefore, form a one
dimensional circular array. While cells with adjacent preferred directions
appear next to each other in our implementation (and most models), this
is not how head direction cells are found in the brain. In fact, as long as
the synaptic connections are set up appropriately, the location of neurons
is irrelevant to the functioning of the system.

Rotation cells ROTk, with firing rates rROT
k , are also connected to each

head direction cell via synapses denoted wHD ROT
ijk . Here, these synapses

are not simply synapses between a singular head direction cell and a rota-
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tion cell. Rather, they’re effective synapses between the pre-synaptic neu-
ron HDi, the post-synaptic neuron HDj and the rotation cell ROTk. The
two rotation cells in Figure 3.1 fire depending upon clockwise and anti-
clockwise rotation inputs respectively as shown in Figure 3.9.

The visual cell set represents an abstraction of the visual processing
system and each visual cell V ISl, with firing rate rV IS

l , is connected to every
head direction cell HDi via synapses wHD V IS

il .

3.2 Dynamics

Ourmodel is a firing rate basedmodel, which provides a level of detail that
is sufficient for our system. The activation, hHD

i , of each head direction cell
HDi is given at time t by:

τ
dhHD

i (t)

dt
= −hHD

i (t) +
φ0

CHD

∑
j

((wHD
ij − wINH)rHD

j (t))

+
φ1

CHD×ROT

∑
jk

(wHD ROT
ijk rHD

j (t)rROT
k (t))

+
φ2

CHD×V IS

∑
jl

(wHD V IS
jl rV IS

l (t))

(3.1)

Here, τ is the time constant while φ0, φ1, φ2, CHD, CHD×ROT , CHD×V IS

and wINH are tunable parameters. These parameters control the effect
the respective inputs have on the head direction cell attractor. wINH rep-
resents global inhibition that the GABAergic interneurons exert on the sys-
tem. The combination of local excitation of head direction cells and the
global inhibition gives the system continuous attractor characteristics [78].
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We use a Euler stepper method to integrate equation (3.1):

hHD
i (t+Δt) = ((1− Δt

τ
)hHD

i (t)) + ((
Δt

τ
× φ0

CHD
)
∑
j

((wHD
ij − wINH)rHD

j (t)))

+((
Δt

τ
× φ1

CHD×ROT
)
∑
jk

(wHD ROT
ijk rHD

j (t)rROT
k (t)))

+((
Δt

τ
× φ2

CHD×V IS
)
∑
jl

(wHD V IS
jl rV IS

l (t)))

(3.2)

The firing rate of each head direction neuron is a sigmoid function of
its activation:

rHD
i (t) = f(hHD

i (t)) =
1

1 + e−2β(hHD
i (t)−α)

(3.3)

where α and β are constants. Figure 3.2 shows the nature of the sig-
moid function as the constants are varied. Figure 3.8 shows firing rate
profiles exhibited by the head direction cell set during a test run. Due to
the regular learning employed in this implementation, the discharge prop-
erties of all head direction cells are similar. This isn’t the case in biology,
where the discharge properties of head direction cells vary from one to
another as discussed in chapter 2.1.1.

The synapses between all neuron sets are set up using Hebbian learn-
ing:

Δw = k × (rpost × rpre) (3.4)

Here, Δw is the change in synaptic weight. k is the learning rate of the
synapse. rpre and rpost are the firing rates of the pre-synaptic and post-
synaptic neurons respectively. This learning rule does not, however, in-
clude synaptic depression, or bounding of synaptic weights. We use a
competition based normalization rule to bound our synapses:

Ŵ =
W

|W | (3.5)

Here,W is a matrix containing the individual synaptic weights between
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Figure 3.2: The figure shows the behaviour of the sigmoid function (3.3)
with different β values. α is kept constant at 1.5 and only serves to move
the graph to the left or the right.

neurons of the form:

W =

⎛
⎜⎜⎜⎜⎝

w0,0 w0, 1 · · · w0,n

w1,0 w1,1 · · · w1,n

...
... . . . ...

wn,0 wn,1 · · · wn,n

⎞
⎟⎟⎟⎟⎠

|W | is the norm of the W matrix and Ŵ is the normalized synaptic
weight. It is worth noting that the above normalization departs from the
Hebbian learning requirement of locality [116] - when a normalizationmethod
such as (3.5) is used, the final values of the individual synaptic connec-
tions between the neuron pairs become dependent on all the synaptic
strengths in the complete neuron set. However, the classical Hebbian rule
states that the synaptic weights between two neurons should only be af-
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fected by the activity of the two concerned neurons. We briefly discuss
other formulations of Hebbian learning in section 3.4.

3.3 Experimental Procedure and Results

3.3.1 System

Figure 3.3: Willow Garage’s Personal Robot 2 - PR2

We implemented the model based on the ROS [117] platform which
provides support for a number of robots, including the PR2 (Figure 3.3).
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The PR2 consists of the following sensors:

• A: Head

– Wide Angle global shutter colour stereo ethernet camera

– Microsoft Kinect

– Narrow angle global shutter monochrome stereo ethernet cam-
era

– LED texture projector triggered with narrow angle stereo cam-
era

• B: Above the shoulders

– Tilting Hokuyu UTM-30LX Laser scanner

– Microstrain 3DM-GX2 Inertial measurement unit

• C: Forearm

– Global shutter ethernet camera

• D: Gripper

– Three axis accelerometer

– Fingertip pressure sensor arrays

– Calibration LED

• E: Base

– Hokuyo UTM-30LX Laser scanner

For the head direction system, the Microstrain IMU provided us with
required angular velocity information. ROS provides underlying tools that
enable us to develop offline simulations and then move the code as-is on
to the robot. For development and testing, we collected data bags from
the inertial measurement unit (IMU) sensors of the PR2 robot to run our
simulations. In ROS, each sensor presents itself as a node. The inertial unit
presented itself as imu node in ROS and published data to the imu/data

topic. The entire C++ source code was developed as a ROS stack called
Bionav. Appendix A contains information on the ROS implementation.
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Figure 3.4: wHD
ij values after training.

In the neuron network, we used a hundred head direction cells to cover
the 360° direction space. We used two rotation cells, one each for clock-
wise and anti clockwise rotation, and a single visual cell (Figure 3.1). The
values of constants used in our implementation are given in table 3.1.

The system runs in three phases:

3.3.2 Setting up of synaptic weights to appropriate val-
ues

During this first phase, we set up the synaptic weights in the network
to their appropriate values. The network is initialized with all synaptic
weights as zero, implying that no learning or association has taken place
between the sets of neurons. In order to set up both the internal head
direction cell synapses wHD

ij and the effective rotation synapses wHD ROT
ijk ,

we simulate rotation in the system in both clockwise and anti-clockwise
directions. Each head direction cell is assigned a preferred direction such
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that the set encompasses the complete 360° range: 0°, 3.6°, . . . , 356.4°.
As done previously in literature, we model the head direction cell firing
profile as a Gaussian:

rHD
i = exp(−1 + ΔS2

2σHD2 ) (3.6)

ΔS is the angular distance between the current head direction and the
head direction cell’s preferred direction:

ΔS = min(|x|, |360− x|) (3.7)

where, for each neuron HDi with preferred direction xpreferred
i , for a head

direction θ

x = θ − xpreferred
i (3.8)

σHD is a constant that controls the width of the Gaussian profile, and
consequently, controls the angular width that a head direction cell is active
in. Note that equation (3.6) is only used to calibrate the synapses to their
correct values. Equation (3.3) is used thereafter.

In order to calibrate the network’s synapses, one of the rotation cells is
activated, simulating either clockwise or anti-clockwise rotation. Simulta-
neously, the firing rate profile, as obtained by equation (3.6), is simulated
such that each head direction cell fires maximally, i.e., the system is simu-
lated to face the preferred direction of each head direction neuron in the
set, one neuron after the other. The firing rate profile of the head direction
neuron set shifts according to (3.6).

Since we permit each neuron to fire maximally only once during both
the clockwise and anti-clockwise iterations, our training method is uni-
form. The uniformity can be seen in Figure 3.4, which shows the recurrent
synaptic weights between head direction cells, wHD

ij , before normalization.
Observe that normalization will not modify the nature of the graph. Also
note that as a result of Hebbian learning from the simulated Gaussian
firing rate profiles, cells with preferred directions near each other have
stronger synaptic connections than cells that are far apart, as is expected.

For the recurrent head direction cell synapses, the learning rule be-
comes:

ΔwHD
ij = k.rHD

i ∗ rHD
j (3.9)
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Figure 3.5: wHD ROT
ijk values after training. Observe how the two overlap-

ping graphs are slightly offset from the centre when compared to the sur-
face plot of the recurrent synapses between head direction cells in 3.4

Similarly, for the effective synaptic weights between head direction
cells and the two rotation cells, the learning rule becomes:

ΔwHD ROT
ijk = k.rHD

i ∗ r′HD
j ∗ rROT

k (3.10)

Figure 3.5 shows the final values of these synaptic weights after train-
ing.

r′HD
i is the trace of the firing rate calculated as follows:

r′HD
i (t) = (1− η) ∗ rHD

i (t− δt) (3.11)

The trace serves to add temporal information to the synaptic modifica-
tion in the firing rate based model.
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3.3.3 Initializing the network to an initial direction

Once the synaptic weights are set up appropriately, a packet of activity
must be stimulated in the attractor. This packet of activity is the initial or
reference heading of the agent. An initial packet of activity is forced on
the system by projecting the required profile on to the head direction cell
attractor from the visual input for a short period of time. The firing of the
single vision cell can be simulated by simply setting its firing rate to the
maximum value, 1, in equation (3.1):

rV IS
1 = 1 (3.12)

Further, to set the initial direction to the preferred direction of head di-
rection cell i, we simply set the synapses between the vision cell and head
direction cells, wHD V IS

1,j , to the synaptic weight between head direction cell
i and every other head direction cell j, wHD

ij . This is equivalent to setting
up the association between the visual feature cell and the head direction
cell set using equation (3.9)

wHD V IS
1j = wHD

Ij (3.13)

where I is the head direction cell that has the required initial direction as
its preferred direction. SincewHD

Ij has already been set up in a way that will
cause the set of head direction neurons to form a packet of activity peak-
ing at head direction neuron I during the training step, the assignment
plainly ensures that projections from the visual cell will form a similar ac-
tivity packet that also peaks at the chosen head direction neuron. The
particular neuron is associated to the visual feature cell in this way. Note
that this method cannot be extended to a set of multiple visual feature
cells that will project a firing rate profile instead of a single projection. In
such a case, an association will have to bemade by simulating the set of vi-
sual feature cells and head direction cells similar to the method described
in the previous section.

During our experiments, we observed that forcing an initial packet of
activity did not guarantee a functional system. The attractor should main-
tain the packet of activity in the absence of external inputs. The parame-
ters φ0 and wINH that effect the recurrent behaviour of the network must
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Figure 3.6: Stabilization of initial activity packet (Time in seconds)

be fine tuned to ensure that the activity packet stabilizes as shown in Fig-
ure 3.6, the other outcome being the activity packet flattening out as shown
in Figure 3.7.1

The continuous attractor, if set up properly, permits the packet of ac-
tivity to lie in a state of neutral equilibrium, like a ball lying on a perfectly
horizontal table surface.

3.3.4 Running the system with angular velocity data

Figure 3.9 shows the behaviour of the network when tested with angu-
lar velocity data. The firing rates of the two rotation cells are a sigmoid
function of the angular velocity inputs similar to equation (3.3). The figure
shows that the head direction indeed responds to angular velocity inputs.
Of special interest is the graph’s behaviour at time=1300 which shows cir-
cular attractor nature of the network - since synaptic weights between

1We are most grateful to Dr. Simon Stringer for his input on this subject.
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Figure 3.7: Sub-optimal parameters do not result in a stable activity packet
(Time in seconds)

head direction neurons with preferred directions 356.4° and 0° have been
trained such that these two neurons are adjacent, the firing profile trans-
lates seamlessly off the “end” of our one dimensional attractor to its “be-
ginning”. This is a consequence of equation (3.7) which ensures that the
head direction neuronwith preferred direction 356.4° has the same synap-
tic connection with its two adjacent cells that have 352.8° and 0° as their
preferred directions respectively. This confirms the continuous attractor
nature of the network. Figure 3.7 also illustrates the ring nature of the
one dimensional attractor network - it shows an initial packet of activity
where the firing rate peaks at head direction neuron 0 and symmetrically
reduces in both directions. We tested the systemwith several bags of data
and observed encouraging results.

Figure 3.8 shows the stable gaussian activity profile of the head direc-
tion cell set firing rate at different times when angular velocity inputs are
provided to the system. The rate at which the head direction firing pro-
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Figure 3.8: Firing rates, rHD
i , obtained from equations 3.1 and 3.3 during

test run. (Time in seconds)

file moves depends on the strength of the rotation neurons’ projections
on it. In the current configuration, the system has not been optimised to
correctly map the rotations of the agent, i.e., the movement of the head
direction activity profile does not reflect the true rotation of the agent in
the world frame. This isn’t because it cannot be done: the accuracy can
be improved fine tuning the value of φ1 which controls the strength of
the rotation neurons’ projections on to the head direction cells. However,
as we briefly discuss in the next sub section, our current work focusses
on associating head direction cells to salient features in the environment
for landmark navigation, and since this will function as a drift correction
mechanism in itself, we’ve permitted the system to drift and have put off
optimization of these constants.
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Figure 3.9: Test runs with angular velocity data from the PR2 robot. Note
that the firing rates of both rotation cells are positive. For visualisation
purposes, to add a sense of direction, the values of firing rates of Rotation
cell 2 have been multiplied by -1. (Time in seconds)

3.3.5 Correcting drift using salient visual cues: prelimi-
nary tests

Figure 3.10 shows the results of a simulation where the head direction
cell set is assumed to incur drift and, a projection from the visual feature
cell, which would be caused by the agent observing a familiar feature, is
used to correct this drift. The mechanism behind this is similar to the
mechanism used to initialize the network as described in section 3.3.3. In
order for the visual inputs to override the activity packet maintained by
path integration, the projections must be strong enough. We discuss our
ideas on using multiple visual features in the next section.
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Table 3.1: Constants used in the implementation

Number of head direction cells 100
Number of rotation cells 2
Number of vision cells 1

α 1.5
β 3
φ0 1000
φ1 2000
φ2 1000

CHD 100
CHD×ROT 200
CHD×V IS 100

k 1
wINH 0.02
σHD 10

3.4 Discussion

Researchers have attempted to implement bio-inspired navigation sys-
tems in the past, although the level of inspiration and the extent of im-
plementation has varied. The Psikharpax project [101, 102], for example,
attempted to create an artificial rat and implemented head direction and
place cells as its basis for navigation. RatSLAM [118], on the other hand,
uses similar “pose cells” to propose a solution to the simultaneous local-
ization and mapping (SLAM) [119] problem. (For more examples, see Franz
& Mallot’s review [4].)

Bio-mimetic navigation provides two closely related research areas. The
first is to improve our understanding of biological navigation. This is done
at different levels, for example, via behavioural studies or neuron record-
ings. The second, computational modelling, serves as a tool to verify col-
lected information and proposed theories, while providing alternative nav-
igation systems that can, in the future, be used in robotics. Even though
bio-mimetic systems are not yet consideredmature enough for use in task



3. Towards bio-mimetic navigation: head direction cells on ROS 60

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  10  20  30  40  50  60  70  80  90  100

A
ct

iv
at

io
n

Head direction cells

At time 0
At time 10
At time 20
At time 30
At time 40
At time 50

Figure 3.10: Correcting drift using a single visual cue. (Note that the graphs
for t=40 and t=50 overlap) (Time in seconds)

oriented robotics ahead of classical navigation techniques, it is accepted
that even smaller animals such as ants and rats possess navigational ca-
pabilities that are superior to classical robotic navigation techniques. To
be able to reliably mimic these biological methods would be a great stride
in the field of autonomous navigation.

In spite of the complexity of the underlying neural systems that makes
bio-mimetic systems difficult to implement, systems that achieve a high
level of similarity can and have be designed. The model of the head direc-
tion system implemented here, for example, deviates from known infor-
mation on head direction cells in certain aspects but does still sufficiently
carry out its intended navigational function.

Challenges and future work

The implementation of the path integrator half of the head direction cell
system is the starting point in our attempt to develop a bio-mimetic nav-
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igation system for the PR2 robot using the ROS platform. In its current
state, the system is not mature enough to be used in an actual robot.
While the performance of the system can be improved by tweaking the
parameters that the head direction cell model relies on, in the absence of
a set of salient visual cues, the system will continue to drift as it runs, like
any other INS [71]. An INS is generally coupled with other input sources,
such as GPS [72], that reset the accumulated drift at regular intervals.
The head direction system can similarly correct drift by detecting famil-
iar visual features in the environment as was briefly demonstrated in sec-
tion 3.3.5. Our next goal, is therefore, to associate the head direction cell
system to environmental cues that will reset the head direction system to
its associated direction whenever they are observed. Since the system will
associate with a set of cues, it will be capable of approaching these cues.
The agent will be able to carry out the local navigation strategies: search,
direction-following, aiming and guidance, as enumerated by Franz & Mal-
lot [4]. This task is a research area in itself. The extraction of meaningful
features reliably from an environment repeatedly at different times from
different view points is a topic under great research. Some algorithms
such as SIFT[120], SURF[121] and their variants perform admirably in this
task - however, simply using one of these algorithms is not sufficient in
our model. Since the model relies on population encoding via firing rates
of neurons, a method to encode features tracked by computer vision algo-
rithms into firing rates is also required, which we foresee as the function
of the vision cell ensemble. While the earlier model proposed by Stringer
and colleagues [75] did implement this idea, they did not discuss how the
vision cells would project on to the head direction cells. In our model,
since we’ve also implemented synapses between head direction cells and
vision cells, a hebbian learning method can be used during the running
of the model to make a specific head direction (encoded as a specific fir-
ing rate pattern of head direction cells) associate with a specific landmark
(encoded as a specific firing rate pattern of visual cells). This association
will cause vision cells to project the previously “remembered” head direc-
tion associated with a known feature on to the head direction cells and
correct drift as a result. Due to time constraints, the entire vision system
and ideas presented here are merely something we intend to do in the
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future - it has not been implemented or evaluated at the time of writing
this document.

A further goal of ours is to include other known neuron sets that are
related to navigation: grid cells [22], place cells [7] and boundary cells [23].
Grid cells form a regular triangular grid which acts as a spatial map to
encode the agents location. The neuron set uses path integrator mech-
anisms similar to head direction cells. Place cells too encode the agent’s
location and have been found to associate with visual features similar to
head direction cells. However, they form place fields instead of a regu-
lar grid like map that is exhibited by grid cells. The last, boundary cells,
respond to environmental boundaries. Implementing a system that in-
cludes all these neuron sets will provide obstacle, location and heading
information to the agent along with some information on visual features
that they associate with. This information is enough for a simple landmark
based system.

An important part of themodel is the Hebbian learning rule mentioned
in equation (3.4). The formula that we’ve used currently is the simplest
mathematical formulation of a Hebbian synaptic modification rule (3.9).
As is visible, this rule does not provide for synaptic saturation. As long
as the pre-synaptic and post-synaptic neurons fire simultaneously, the
synapse between themwill continue to strengthen. While this formulation
covers strengthening of synapses by long term potentiation (LTP) [122, 123],
it does not implement the flip side: long term depression (LTD) [124]. Just
as LTP causes strengthening of synapses when presynaptic and postsy-
naptic neurons fire nearly simultaneously, LTD causes weakening of synapses
if such simultaneous firing does not occur. The inability of the learning
rule to provide for synaptic saturation and weakening makes it less bi-
ologically plausible. It also makes the implementation more difficult: if
the synapses do not saturate at a known value, it is difficult to ascertain
constant values for parameters that control the projection of inputs on to
head direction cells: φ0, φ1, φ2. During our simulations, we discovered that
unbounded synapses constitute one of the cases where the projections on
the head direction cells increase to such an extent that all neurons begin
to fire maximally. Since the maximum firing rate in our model is the same
for all head direction cells, this also causes the firing rate profile to flat-
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ten out and the system ceases to provide a peak that denotes the current
head direction.

A number of formulations of the Hebbian rule have been proposed
in literature [125, 126]. Such rules incorporate modifications to provide
for LTD and synaptic saturation. One such modification is to normalize
the synaptic weights, as shown in equation (3.5). Normalization is a com-
petition based method: if synaptic efficacy increases, it must be at the
expense of other synapses [116]. Other formulations include gating of
the synaptic changes by either presynaptic or postsynaptic activity. While
we did attempt to use gated rules with saturation in our model, we were
unable to find a set of parameters that provided the required dynamics.
Since the recurrent synapses between the head direction cells and the
synapses between rotation cells and head direction cells remain largely
unchanged during the running of the system, we decided to use the nor-
malization rule and fix the synaptic weights after initial calibration of the
system. For association with visual features, however, the formulation
that is used to modify synapses between the head direction and visual
cells will need to incorporate weakening of synapses via LTD so that the
system can disassociate with (forget) features that are no longer present
in the environment over a period of time. A simple method of doing this
is to incorporate synaptic decay, which causes the synaptic strengths to
weaken over time.



Chapter 4

Including grid cells for location
information

“Would you tell me, please, which way I ought to go from
here?”
“That depends a good deal on where you want to get to.”
“I don’t much care where ”
“Then it doesn’t matter which way you go.”

- Lewis Carroll, Alice in Wonderland

Research papers published related to this chapter:

• Bio-mimetic path integration using a self organizing population of
grid cells - Ankur Sinha & Jianguo Wang - Accepted by ICANN 2014
(Grade B conference) held at Hamburg, Germany - September 15 to 19,
2014.

Themodel detailed here is amodified version of the self organizing two
dimensional attractor network model Stringer et al. proposed for place
cells[92]. In the original model, Stringer and colleagues detailed how their
one dimensional attractormodel for a head direction cell system[75] could
be extended to two dimensions to produce place fields. The model suc-
cessfully set up a two dimensional attractor network using Hebbian style
learning rules and displayed spatial firing patterns consistent with biolog-
ical observations of place cell networks. While using similar Hebbian style

64
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Figure 4.1: The grid cell system schematic.

learning rules, we make modifications to the structure of the network re-
quired for the formation of a triangular lattice of neurons, rather than a
traditional co-ordinate map. We also modify the organization process to
ensure that the lattice forms a toroid of grid cells, rather than a flat map
to work around edge effects.

Since the model is a two dimensional attractor based model, it is in
manyways, just an extension of the one dimensional attractor basedmodel
that we used for head direction cells. It suffers from the same issues and
the dynamics and working is very very similar.

4.1 Structure

Figure 4.1 shows a schematic of the neuron sets implemented in themodel.
The model consists of two fully connected attractors, one for the head
direction cell set and another for the grid cell set. Each head direction
cell, HDi is connected to every other head direction cell HDj via recurrent
synapseswHD

ij . Similarly, every grid cell,Gk is connected to every other grid
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Figure 4.2: 2D array of grid cells

cell Gl via recurrent synapses wG
kl. In this way, each synapse possesses a

pre-synaptic and post-synaptic neuron necessary for our Hebbian learn-
ing based organization rule. The head direction cell set takes input from
a set of rotation cells, ROTm, which project angular velocity information
on to them via synapses, wHD ROT

ijm . Similarly, a set of velocity cells, V ELn,
project speed information on to the grid cell set via synapses wG V EL

kln . It
is noteworthy that these synapses are effective synapses in that they rep-
resent the synaptic weight between a pre-synaptic head/grid cell, the ro-
tation/velocity cell, and the post-synaptic head/grid cell. A set of visual
feature cells, V ISo projects on to both the head direction and grid cell sets
via synapses wHD V IS

io and wG V IS
ko respectively. The visual feature cells are
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used for initial training of the synapses only in this model and represent
an abstraction of the visual processing system.

4.2 Dynamics

We employ a model similar to the one proposed by Stringer et al. for place
cells[92]. The activation of each grid cell, Gk is given by:

τ
dhG

k (t)

dt
= −hG

k (t) +
φ0

CG

∑
l

(wG
kl − wINH)rGl (t)

+
φ1

CG×HD×V EL

∑
ljn

(wG V EL
kljn rGl (t)r

HD
j (t)rV EL

n (t))

+
φ2

CG×V IS

∑
o

(wG V IS
ko rV IS

o (t))

(4.1)

Here, τ is the time constant while φ0, φ1, φ2, CG, CG×HD×V EL, CG×V IS and
wINH are tunable parameters. These parameters control the effect the re-
spective inputs have on the grid cell attractor. wINH represents global
inhibition that the GABAergic interneurons exert on the system. The com-
bination of local excitation of grid cells and the global inhibition gives the
system continuous attractor characteristics. Again, we use a simple Euler
stepper method to integrate equation (4.1):

hGk (t+Δt) = ((1− Δt

τ
)hGk (t)) + ((

Δt

τ
× φ0

CG
)
∑

l((wG
kl − wINH)rGl (t)))

+((
Δt

τ
× φ1

CG×HD×V EL
)
∑
ljn

(wG V EL
kljn rGl (t)r

HD
j (t)rV EL

n (t)))

+((
Δt

τ
× φ2

CG×V IS
)
∑
o

(wG V IS
ko rV IS

o (t)))

(4.2)

The firing rate of each grid neuron is also a sigmoid function of its acti-
vation:

rGk (t) = f(hG
k (t)) =

1

1 + e−2β(hG
k (t)−α)

(4.3)

where α and β are constants. Figure 4.4 shows the firing rate profile ex-



4. Including grid cells for location information 68

hibited by the grid cell lattice after stabilization during a test run . Due to
the regular learning employed in this implementation, the firing rates of
all grid cells are similar. This isn’t the case in biology, where the firing rates
of grid cells vary from one another and from layer to layer.

The synapses between all neuron sets are set up using Hebbian learn-
ing:

Δw = k × (rpost ∗ rpre) (4.4)

Here, Δw is the change in synaptic weight. k is the learning rate of the
synapse. rpre and rpost are the firing rates of the pre-synaptic and post-
synaptic neurons respectively. This learning rule does not, however, in-
clude synaptic depression, or bounding of synaptic weights. We use a
competition based normalization rule to bound our synapses:

Ŵ =
W

|W | (4.5)

Here |w| is the norm of the w matrix and ŵ is the normalized synap-
tic weight. It is worth noting that the above normalization departs from
the Hebbian learning requirement of locality[116],i.e., the synapse between
two neurons should only bemodified by their behaviour. Various formula-
tions of Hebbian learning have been proposed to overcome this shortcoming[125].
However, we use the normalization rule for sake of simplicity.

4.3 Experimental procedure and results

4.3.1 System

We continued to use the same system for grid cells as we did for head
direction cells, as described in section 3.3.1. For development and testing,
we collected data bags from the IMU sensors of the PR2 robot to run our
simulations. We extended our earlier Bionav stack to also include grid
cells. We used a hundred grid cells to form a 10 × 10 mesh, and a hun-
dred head direction cells to cover the 360°direction space. We used two
rotation cells, one each for clockwise and anti clockwise rotation, a single
speed cell, and a single visual cell (Figure 4.1).
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Table 4.1: Constants used in the implementation

Number of grid cells 100
Number of velocity cells 1
Number of vision cells 1

α 1.5
β 3
φ0 1000
φ1 2000
φ2 1000
CG 100

CG×HD×V EL 200
CG×V IS 100

k 1
wINH 0.02
σG 10

The grid cell lattice merits some discussion. Conforming to biologi-
cal observations, we designed a regular triangular lattice as shown in Fig-
ure 4.2. Each cell is assigned a preferred location such that it coincides
with the vertices of the equilateral triangles of the lattice. The distance be-
tween any two adjacent neurons is, therefore, one unit. Figure 4.2 shows
how our implementation expands out to a two dimensional lattice. The
grid lattice does not provide any advantages at the time when compared
to a normal square co-ordinate lattice. It is only included to be coherent
with biological observations.

The system runs in three phases:

4.3.2 Setting up of synaptic weights to appropriate val-
ues

During this phase, we set up the synaptic weights in the network to their
appropriate values. The network is initialized with all synaptic weights as
zero, implying that no learning or association has taken place between
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Figure 4.3: Recurrent synaptic weight in grid cells

the sets of neurons. In order to set up both the internal grid cell synapses
wG

kl and the effective velocity synapses wG V EL
kjn , we simulate movement in

the system in the four major directions: forward, backward, left and right;
neuron by neuron by projections from the visual feature cell. The firing
rate of a grid cell is calculated as a function of the distance between it’s
preferred location and the preferred direction for the respective training
iteration, ΔS:

rGl = exp(−1 + ΔS2

2σG2 ) (4.6)

where ΔS is given by:

ΔS =

√
(min(|x|, |10− x|))2 + (min(|y|, |(10 ∗ (

√
3/2))− y|))2 (4.7)

where, for each neuron Gk with preferred location xpreferred
k , ypreferredk for a

location X, Y

(x, y) = (X, Y )− (xpreferred
k , ypreferredk ) (4.8)
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σG controls the width of the Gaussian profile. The above formulation
of ΔS ensures the formation of a regular toroidal continuous attractor
neural network.

In order to calibrate the synapses of the network, we simulate activity
in the input neuron sets: visual feature cell, velocity cell and head direction
cells. Projections from the visual feature cell force a firing profile in the
grid cell network which acts as the post synaptic neuron set. Since the
velocity and head direction cells are simultaneously simulated to fire in
accordance, they function as pre-synaptic neurons in our Hebbian style
learning rule.

Similar to the head direction cells, the learning rules for grid cells be-
come:

ΔwG
kl = k.rGk ∗ rGl (4.9)

The learning rule used to train the effective synaptic weights between
head direction cells, grid cells and velocity cells follows similar to the learn-
ing rule used to train the effective synaptic weights between head direc-
tion and rotation cells:

ΔwG V EL
kljn = k.rGk ∗ r′Gl ∗ rHD

j ∗ rV EL
n (4.10)

r′Gl is the trace of the firing rate calculated as follows:

r′Gl = (1− η) ∗ rGl (4.11)

Figure 4.3 shows the recurrent synaptic weights of the grid cell net-
work, wG

kl. As expected, the synaptic weights are maximum for neurons
with similar preferred directions and decrease as the difference in pre-
ferred directions increase.

4.3.3 Initializing the networkwith an initial packet of ac-
tivity

Once the synapses are trained, the network is initialized with a packet of
activity which is the initial location or reference location of the system. An
initial packet of activity is forced on to the grid cell attractor via projections
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Figure 4.4: 3D view

from the visual cell and permitted to stabilize in the absence of input. Fig-
ure 4.4 shows the two dimensional attractor with a packet of activity after
initialization. Figure 4.5 shows the top view. Note that in order for the
packet of activity to be stable in the absence of input, as is the character-
istic of an attractor network, both the recurrent synaptic weights between
the grid cells and the constants, φ0 and wINH , that control the behaviour
of the network must be set up correctly. (If this is not the case, the packet
of activity will not be maintained in the absence of inputs and will instead
flatten out.)

4.3.4 Running the system with velocity information

The firing rate of the rotation cells and the velocity cell are linear functions
of the angular velocity and forward velocity respectively. The angular ve-
locity is first integrated in the head direction cell attractor which in turn
projects on to the grid cell set attractor. The rate at which the activity
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Figure 4.5: Top view

packet translates depends on the strength of projections on to the net-
work: projections from the velocity set and the head direction cell set.

4.4 Discussion

A combination of head direction cells, border cells and grid cells can be
thought to provide a complete path integrator system in biology. In spite
of successful modelling of head direction and grid cells, our system is not
yet complete enough for deployment as a bio-mimetic system. Due to
time and computational constraints, we were unable to run enough tests
that would provide us with enough data to improve the performance of
the system via parameter tuning. In the current state, the system suf-
fers from huge drift and while the generated activity packet does move
in the directions similar to the agent, the magnitude of the direction and
movement are both unusable. The performance of the grid cells depends
greatly on the performance head direction cell set, and since the head di-
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rection cell set does not compute accurate direction and suffers from drift
in the absence of visual corrective measures, the performance of the grid
cell set is worse. At the most, this implementation is currently a proof of
concept - that when the other required components are put in place and
perform accurately, the grid cell ensemble will correctly track the move-
ment of the agent in a horizontal plane.

The grid cell model suffers with most of the same issues that we dis-
cussed with respect to the head direction cells. While the calibration of
constants in the system that map movement in world co-ordinates can be
done by using a method based on evolutionary algorithms that was em-
ployed by Kyriacou for a one dimensional head direction attractor network[95],
this would still not correct the drift problem. In order to correct drift, these
neuron sets anchor to visual landmarks in biology as is discussed in the
previous chapter (3.4). Implementing such a visual feature system that will
project on to our attractors is a task we consider important for progress
towards a complete bio-mimetic navigation system. In order to complete
the bio-mimetic navigation system which the robot could use to navigate
to goal locations safely, the implementation of other neuron sets such as
place cells, border cells, and a reward system are also required. We set
these as our future work.



Chapter 5

Discussion

At the beginning of the course, we had set out certain goals: to understand
biological navigation at the lowest possible level and to use this knowledge
to develop path integrator portions of a bio-mimetic navigation system.
As documented in this thesis, while being close to our goal, we are not
quite there yet - there is much work to be done. As such, the work done
in the masters course serves as a proof of concept of various research
results - that navigation via populations of neurons such as head direction
and grid cells is possible - and that these methods can be used in robotic
navigation in place of classical navigation techniques. As mentioned in the
earlier chapters, the system in its current state is not good enough to be
deployed on actual robotics. The system cannot compete with the existing
navigation stack that ROS boasts of, which has been developed over years
of concentrated research.

Our models are based on the available biological information on neu-
ron sets and while neuronal structures such as neurons and synapses are
incredibly complicated, for the purpose of modelling, we chose a level of
abstraction appropriate for our purposes. As discussed in the previous
chapters, we only used firing rate models and not more biologically plausi-
ble models such as spiking neurons; certain assumptions were also made
for the sake of simplicity, while modelling these individual neurons and
neural assemblies. For example, our models employ regular neuron net-
works - the firing characteristics of all neurons in the attractor as similar.
This is not so in biology. Another important example is our use of effective
synapses in the models for simplifying hebbian learning. In a more accu-
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rate biological representation, they effective synapses should be differen-
tiated. The neural navigation system in humans is known to be incredibly
complex and researchers are still working on uncovering the many many
details that enable us to navigate with ease. As more information on the
biology of navigation is uncovered, themodel will be able to evolve as well.

5.1 Challenges and future work

In this section, we briefly discuss the limitations of our work and the future
work that can be done to improve the system.

Improving performance of current implementation by the fine tuning
of parameters Even though our system shows characteristics of a path
integrator system that would provide heading and location information,
the system is not yet as accurate as systems that are built on techniques
of classical robotics. As in, the movements do not accurately represent
movement in the real world. In order to improve the accuracy of the sys-
tem, the firing rates of the input neurons must be calibrated to correctly
reflect the real world data provided by sensors. This task requires the fine
tuning of the parameters used in our equations and is generally carried
out by iterative observe and tune methods. Accurate tuning of the param-
eters would greatly improve the performance of the system, and limit the
drift to manageable magnitudes.

Inclusion of visual system for drift correction and landmark naviga-
tion As discussed earlier, the inclusion of a visual feature detection sys-
tem for drift correct and later, landmark navigation, will be a big step to-
wards a complete navigation system. Drift correction is, perhaps, themost
important extension that is required in themodel at this stage - to improve
its performance over long periods of time. The addition of a visual feature
detection system is necessary for implementation of navigation strategies
other than basic path integration, such as landmark navigation. A feature
detection system can be based on current computer vision algorithms as
was earlier discussed, or can also be a bio-mimetic model of the visual
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cortex that may be implemented in the future. Of note is the fact that we
do not need the path integrator component of the visual system currently,
since the data provided by the intertial sensors is an accurate enough in-
put to the system.

Figure 5.1: Schematic including place cells.

A complete navigation systemwould also need to include place cells[127,
128, 129, 7] as shown in figure 5.1 - place cells encode location specific in-
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formation - a unique place field is formed from the firing profile of a set
of place cells each time the agent visits a certain location. Place cells, like
head direction and grid cells, make use of a number of inputs. Since place
cells encode location, they’re likely involved in the neural path planning
process - for example, they can denote unique start and goal locations[130].
The modelling of place cells has been done in a manner similar to head
direction and grid cells[98, 131, 132, 133, 92]. In fact, grid cells are only one
synapse upstream from place cells and therefore, models where grid cells
project on to place cells as an important input source have already been
proposed in literature[133, 134].

5.2 Conclusion

The work detailed in this thesis is, in the authors knowledge, the first at-
tempt at building a navigation platform that can be used on ROS that is
based on biological navigation instead of classical navigation.

The main advantage of using a biological method such as ours that in-
corporates learning is that the system not only learns its initial behaviour,
it will continue to learn about its environment once components that re-
ceive data from the environment, such as the visual feature detection sys-
tem, are included. This functionality is incredibly complex to implement
and is an entire research area in itself (Simultaneous localisation andmap-
ping - SLAM) in classical robotics. SLAM focuses on building a map of the
environment while the agent explores it - it generally relies on inputs that
provide it with information about the boundaries in the environment -
walls and so on - and generally ignores other important contextual infor-
mation present in the environment. Since biological navigation systems
were not designed to solve specific problems, but rather evolved with the
requirements of the organism, they consist of tightly coupled multifunc-
tional components - for example, head direction cells track the heading
of the animal, but are tightly coupled with place cells via grid cells. The
place cells, in turn, use direction information along with information from
multiple sources to “remember” a location - not as the co-ordinates on a
grid, but instead, as a location where certain features are found in the en-
vironment. This enables the agent to use feature-centric navigation which
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is more likely to enable the agent to interact with features in the environ-
ment, which is another research area in classical robotics. One can say
that while the biological navigation system is tightly integrated with other
core systems of the agent, various systems in classical robotics solve var-
ious specific problems independently and are not integrated with each
other.

Keeping in mind the difference in design between biological navigation
and classical navigation that were briefly discussed in chapter 1, I certainly
hope that other students and researchers will continue to work on bio-
mimetic navigation.
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Appendix A

ROS - robot operating system

The Robot Operating System (ROS) is a collection of software packages
made available for the Linux operating system related to robotics. The
packages are made available under a BSD license and are therefore free
and open source software (FOSS). The package set includes software for
an underlying communication framework along with many robotic sub-
systems - perception, motion, planning, control, grasping. These sub-
systems are composed of implementations of various algorithms. The
software collection also provides various development software such as
simulators. Development libraries are provided for multiple programming
languages - C++, Python, Lisp.

The system itself is implemented as a collection of nodes. A ROS mas-
ter node is used for co-ordination, which all other nodes need to register
with. During registration, they inform the master of the topics and ser-
vices that they make available to each other. For example, the bionav
stack node that was used in this research work subscribed to the imu
node which publishes the imu\data topic. The bionav node in turn pub-
lishes bionav\head direction and bionav\grid location topics. The bionav
stack was developed in C++.

The source code for the bionav stack is now available at https://github.
com/sanjayankur31/bionav. Doxygen documentation can be found at http:
//ankursinha.in/files/research/bionav-doc/annotated.html.
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