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ABSTRACT

MODELLING AND CONTROL OF OFFSHORE CRANE SYSTEMS

by

R.M.T. Raja Ismail

Cranes are widely used in transportation, construction and manufacturing. Sus-

pended payloads in crane system are caused to swing due to actuator movement,

external disturbance such as wind flows, and motion of the crane base in the case

of portable cranes. Recently, offshore cranes have become a new trend in stevedor-

ing and in offshore construction as they can help to avoid port congestion and also

to exploit ocean engineering applications. For crane operations, it is important to

satisfy rigorous requirements in terms of safety, accuracy and efficiency. One of the

main challenges in crane operations has been identified as the sway motion control,

which is subject to underactuation of crane drive systems and external disturbances.

Particularly in offshore cranes, the harsh conditions can produce exogenous distur-

bances during the load transfer at various scenarios of offshore crane operations

in practice. Therefore, it is interesting as to how to design robust controllers to

guarantee high performance in the face of disturbances and parameter variations in

offshore cranes.

The motivation for this thesis is based on recent growing research interest in the

derivation of dynamic models and development of control techniques for offshore

cranes in the presence of, for example, the rope length variation, sway, ocean waves

and strong winds in offshore crane systems. Accordingly, the work for this thesis has

been conducted in the two main themes, namely analytical modelling and control

design, for which new results represent its contributions.

Dynamic models of two types of offshore crane systems, namely the offshore

gantry crane and offshore boom crane, are derived in the presence of vessel’s ocean



wave-induced motion. The effect of wind disturbances on the payload sway is also

considered in the modelling. In the control context, sliding mode control techniques

for a generic form of underactuated mechanical Lagrangian systems are presented,

including the conventional first-order, second-order and adaptive fuzzy sliding mode

controllers. The major component in this part of the thesis is the design of slid-

ing mode control laws based on the developed offshore crane models for trajectory

tracking problems, in the presence of persistent disturbances in severe open-sea con-

ditions. Extensive simulation results are presented to demonstrate the efficacy of

the models and robustness of the designed controllers.
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Chapter 1

Introduction

1.1 Background

Cranes are used for transportation of heavy loads such as containers and con-

struction materials on land as well as at open sea. They are widely used in con-

struction sites, warehouses and harbours (Figure 1.1) due to their ability to handle

hefty objects.

In general, cranes can be regarded as underactuated Lagrangian system. Firstly,

crane systems are underactuated because they have fewer independent control actu-

ators than degrees of freedom (DOF) to be controlled. For example, in a 2-D gantry

crane system, both cart position on the girder and payload sway are controlled by

a single motor. Secondly, cranes are classified as Lagrangian systems because their

equations of motion can be obtained based on the formulation of Lagrangian me-

chanics like robotic manipulators. Basically, a crane system consists of a support

mechanism, which is a part of its structure, and a hoisting mechanism. The hoisting

mechanism of a crane often exhibits an oscillatory behaviour due to the underactu-

ation of the system. For this reason, it is important for a crane operation to meet

stringent safety requirement.

A large number of studies on the development of control strategies to improve

the efficiency and safety of crane operations has been seen over the past few decades.

The hoisting mechanism that typically consists of cable, hook and payload assembly

has high compliance. Hence, certain exogenous excitations at the suspension point

can produce high amplitude of oscillations to the payload. The inertia forces due to
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Figure 1.1 : Panoramic view of Sydney Harbour.

the motion of the crane can induce significant payload pendulations as well. This

problem occurs because cranes are typically lightly damped. In other words, any

transient oscillation response in crane systems takes a long time to dampen out.

As the research on conventional cranes becomes well established, researchers have

explored a more complex problem, namely the offshore cranes. The growing usage

of ocean facilities in many segments such as shipping of containers, oil and gas ex-

ploration, and offshore wind farm construction have necessitated certain operations

occur in open sea conditions. These activities require the application of offshore

cranes to transfer loads between vessels or to place loads from a vessel to an offshore

site.

In general, offshore cranes operations can be categorised into two types, namely

the stevedoring and the moonpool operations. Offshore stevedoring or lightering is

the process of transferring containers between vessels, and moonpool operation is

the activity of a payload placement underwater or on the seabed for the purpose of

underwater installation. The advantage of offshore stevedoring operation is it can

avoid marine traffic congestion in a port. The transfer of containers between two
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vessels requires a crane equipment on one of the vessel (Figure 1.2) or a third vessel

(Figure 1.3). The common types of offshore cranes used in this operation is gantry

crane (Figure 1.4) and boom crane (Figure 1.5).

Port congestion has become a major issue over the last few years due to rapid

developments of logistics industry causing a substantial increase in the trading vol-

ume [50, 74, 144]. Some ambitious plans of port expansion have been proposed to

overcome this problem, but it is not a feasible solution due to land constraints. Con-

sequently, a new method of transportation, namely, the ship-to-ship cargo transfer

operation, is introduced [81]. This method, emerging to become a promising so-

lution to improve ports’ efficiency and productivity and reduce operational costs,

could enable the ports to stay competitive.

Despite all the necessities and benefits of offshore transportation and installation,

the presences of persistent disturbances in the crane operations due to harsh sea

condition are inevitable. Ocean waves can induce motions to vessels or ships where

cranes are located. These motions include roll, pitch, yaw, surge, sway and heave.

Besides, wind drag or buoyancy of seawater can produce exogenous forces on the

payload, whenever it is suspended in the air or submerged. For this reason, it is

necessary to have an element of robustness in the offshore cranes control system to

deal with the aforementioned disturbances.

In particular, motivated by a large amount of significant practical problems,

the control of underactuated nonlinear systems has become an important subject

of research. Intuitively, the control synthesis for underactuated systems is more

complex than that for fully actuated systems. Control of underactuated systems

is currently an active field of research due to their broad applications in robotics,

land and aerospace vehicles, surface vessels and crane automation. Based on recent

surveys, control of general underactuated systems is a major open problem. Since the
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Figure 1.2 : Ships lightering operation [126].

Figure 1.3 : An offshore crane transferring containers between a ship and a vessel

[135].

presence of uncertainties and parameter variations always aroused in underactuated

nonlinear systems, the implementation of robust control approach on the systems is

appealing.

Sliding mode control (SMC) is a well-known control methodology belonging to

the variable structure systems which are characterised by their robustness with re-
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Figure 1.4 : Container gantry crane mounted on a vessel [113].

Figure 1.5 : Ship-mounted boom cranes near Port Botany, Sydney.

spect to parameter variations and external disturbances. The basic idea of the

sliding mode is to drive the system trajectories into a predetermined hyperplane

or surface and maintain the trajectory on it for all subsequent time. During the

ideal sliding motion, the system is completely insensitive to uncertainties or exter-

nal disturbances. The dynamics and performance of the systems then depend on the

selection of the sliding surface. In SMC design, a sliding surface is first constructed
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to meet existence conditions of the sliding mode. Then, a discontinuous control

law is synthesized to drive the system state to the sliding surface in a finite time

and maintain it thereafter on that surface. However, the effects of the discontin-

uous nature of the control, known as the chattering phenomenon have originated

a certain scepticism about such an approach. The common practice to overcome

the chattering phenomena is by changing the system dynamics in a small vicinity

of the discontinuity surface. This modification can avoid real discontinuity while

preserving the main properties of the whole system. However, robustness of the

sliding mode were partially lost.

The introduction of higher-order sliding modes (HOSM) can practically attenu-

ate the chattering if properly designed. The chattering attenuation can be achieved

because the HOSM acting on the higher order derivatives of the system deviation

from the constraint (e.g., sliding function), instead of influencing the first deviation

derivative that occurs in standard or first-order sliding modes. HOSM preserve the

main advantages of the original approach, as well as totally remove the chattering

effect. Besides, HOSM can provide higher accuracy in realization of the control

system. Second-order sliding mode control (2-SMC) algorithms recently developed

have produced satisfactory results for single-input systems. The extension of second-

order sliding mode to multi-input systems, as in general, most of the underactuated

systems are, is nontrivial.

Fuzzy logic control has been an active research topic in automation and control.

The basic concept of fuzzy logic control is to utilize the qualitative knowledge of a

system for designing a practical controller. Generally, fuzzy logic control is appli-

cable to plants that are ill-modelled, but qualitative knowledge of an experienced

operator is available. The principle of SMC has been introduced in designing fuzzy

logic controllers. This combination which is known as adaptive fuzzy sliding mode

control (AFSMC) provides the mechanism to design robust controllers for nonlin-
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ear systems with uncertainty. Adaptive fuzzy has been either used to adjust the

control gain of the sliding mode or approximate the system dynamics to construct

the sliding function or the control law. The development of AFSMC for uncertain

mechanical systems to tackle more generic problems have been an active research

topic in recent years.

The motivation for this thesis is based on recent growing research interest in the

derivation of dynamic models and development of control techniques for offshore

cranes subject to exogenous disturbances and parameter variations. This research

has been conducted in the analytical modelling and control design for offshore crane

systems, for which new results represent its contributions.

1.2 Research objectives

The main objectives of this research are:

i. To develop dynamic models of 2-D and 3-D offshore cranes in the presence of

system disturbances due to open-sea condition.

ii. To formulate the generalisation of sliding mode control for a class of nonlinear

underactuated mechanical systems with bounded uncertainties.

iii. To construct the robust first-order and second-order sliding mode controllers

for offshore crane systems subject to system disturbances.

1.3 Thesis organization

This thesis is organised as follows:

• Chapter 2: This chapter presents a survey of the underactuated mechanical

systems, cranes dynamics and control, the recent development of offshore crane

control systems, and sliding mode control approaches.
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• Chapter 3: The dynamic models of offshore crane systems subject to distur-

bances and uncertainties based on the Euler-Lagrange formulation are derived

in this chapter.

• Chapter 4: This chapter presents the sliding mode control designs for a generic

form of underactuated mechanical systems. The proposed controllers have

been implemented to conventional crane systems.

• Chapter 5: In this chapter, the problem of robust sliding mode control is

investigated for trajectory tracking problem of offshore crane systems with

bounded disturbances.

• Chapter 6: In this chapter, a second-order sliding mode control law is proposed

for offshore gantry crane and boom crane, making use of its capability of chat-

tering alleviation while achieving high tracking performance and preserving

strong robustness.

• Chapter 7: A brief summary of the thesis contents and its contributions are

given in the final chapter. Recommendation for future works is given as well.
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Chapter 2

Literature Survey

In this chapter, a brief survey of underactuated mechanical systems, cranes dynamics

and control, and sliding mode control including the general first- and the second-

order control laws, is presented.

2.1 Underactuated mechanical system

Underactuated mechanical systems (UMS) are systems that have fewer indepen-

dent control actuators than degrees of freedom (DOF) to be controlled. UMS arise

in a broad range of real-life applications, and this class of systems have been the

subject of active scientific research. In general, the control of UMS is a more chal-

lenging task as compared to the control of fully actuated systems because the former

presents additional restrictions on the control design. Besides, it gives rise to com-

plex theoretical problems that may not found in fully actuated systems, and that

may not be solved using classical control techniques. The control of UMS has been

studied for a long period in the control literature and has been attracting more at-

tention in recent years due to the growing interests in new theories and applications.

This section provides brief survey of the most recent studies on UMS from control

point of view and focuses on its application to marine vehicles and crane systems.

A more detail survey of crane control strategies is provided in Section 2.2.2.

Research on UMS can trace back to twenty years ago when control of nonholo-

nomic mechanical systems were of great interest to researchers, e.g., [9, 21], and

references therein. Studies on this class of systems have gained more attention years
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after, and they have been widely used in robotics, aircrafts and marine vehicles.

Various control strategies for UMS have been proposed in the literature, including

intelligent control, backstepping, sliding mode, and many more. The most recent

review paper on UMS has been reported by Liu and Yu [90], in which a comprehen-

sive survey of UMS is presented from its history to the state-of-the-art research on

modelling, classification, and control.

Numerous studies have attempted to give a classification and a generalisation

of these systems with the aim of proposing a systematic control design method

for UMS. Several researchers have formulated the stabilisation problems of UMS

by using controlled Lagrangian methods [19, 20, 26], passivity-based control [106],

equivalent-input-disturbance approach [123], and Lyapunov-based method [117].

Sliding mode control (SMC) is one of the most popular methods in the control

designs for a generic form of UMS. These include studies on reachability [102], sta-

bilisation [100], and sliding surface design techniques [91]. The works on generic

SMC control design have been reported for two DOF UMS [94, 95] and also for

UMS without any restriction on the number of DOF [8, 121, 140, 142]. Other con-

trol methods proposed for a generic form of UMS are hybrid control [55], adaptive

control [27], and passivity-based control [31].

Marine vehicles and cranes are among UMS, which attracted many research

interests as the topic of control problems. The challenge in the underactuated ship

and surface vessel control systems is to solve the trajectory tracking problem in

the presence of ocean waves disturbance. Among the control strategies that have

been proposed for underactuated ships and surface vessels are state feedback control

[82], backstepping method [38, 58, 59, 111], adaptive control [37, 39], Lyapunov’s

method [36, 42, 72], SMC [7, 49, 146], and cooperative control [41, 57]. Studies on

underactuated gantry cranes, which have similar equations of motion with cart-pole

systems, are also have been reported by many researchers. Most recent works on
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underactuated crane motion control can be referred to [52, 130, 131, 147].

2.1.1 Equations of motion

The dynamics of UMS is formulated based on Lagrangian mechanics. In general,

the equations of motion of UMS can be written in the form of Euler-Lagrange

equation as follows [90, 91]:

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= E(q)u, (2.1)

where L = K(q, q̇)−P(q) is the Lagrangian, K(q, q̇) is the total kinetic energy, P(q)

is the total potential energy, q ∈ R
n is the vector of generalised coordinates, u ∈ R

m

is the vector of actuator input, and E(q) ∈ R
n×m is the matrix of external forces,

with 1 ≤ m < n. The kinetic energy K(q, q̇) is a quadratic function of the vector q̇

of the form

K(q, q̇) =
1

2

n∑
i,j

mij(q)q̇iq̇j =
1

2
q̇TM(q)q̇,

where M(q) ∈ R
n×n is the inertia matrix and mij(q) is an element of the matrix.

The Euler-Lagrange equation (2.1) can be written as [128]:

∑
j

mkj(q)q̈j +
∑
i,j

cijk(q)q̇iq̇j +
∂P(q)

∂qk
= pTkE(q)u, k = 1, · · · , n, (2.2)

where pk is the kth standard basis in R
n and cijk(q) are known as Christoffel symbols,

defined as

cijk(q) =
1

2

(
∂mkj(q)

∂qi
+

∂mki(q)

∂qj
− ∂mij(q)

∂qk

)
.

Finally, by defining Gk(q) = ∂P(q)/∂qk or

G(q) =
∂P(q)

∂q
,

(2.2) can be expressed in matrix form as

M(q)q̈ + C(q, q̇)q̇ +G(q) = E(q)u, (2.3)
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where C(q, q̇) ∈ R
n×n is the centrifugal-Coriolis matrix, ckj =

∑n
i=1 cijk(q)q̇i is an

element of C(q, q̇), and G(q) ∈ R
n is the vector of gravity. The dynamics (2.3) has

some important properties that facilitate control analysis and design. Among these

properties, the following are often used in control development [90]:

i. The inertia matrix M(q) is positive definite, symmetric, and bounded such as

for M(q) ∈ R
n×n,

k1In ≤ M(q) = MT (q) ≤ k2In,

where k1, k2 > 0.

ii. A skew symmetric relationship exists between the inertia matrix M(q) and the

centrifugal-Coriolis matrix C(q, q̇) such as for M(q), C(q, q̇) ∈ R
n×n

νT
(
Ṁ(q)− 2C(q, q̇)

)
ν = 0, ∀ν ∈ R

n.

iii. Define the total energy of the system as

W(q, q̇) = K(q, q̇) + P(q) =
1

2
q̇TM(q)q̇ + P(q).

Then the time derivative of the total energy is

Ẇ(q, q̇) =
1

2
q̈TM(q)q̇ +

1

2
q̇TM(q)q̈ +

1

2
q̇TṀ(q)q̇ + q̇T

∂P(q)

∂q

Since q̈TM(q)q̇ = q̇TMT (q)q̈ = q̇TM(q)q̈ (Property i) and q̇TṀ(q)q̇ = 2q̇TC(q, q̇)q̇

(Property ii), the above equation becomes

Ẇ(q, q̇) =q̇TM(q)q̈ + q̇TC(q, q̇)q̇ + q̇TG(q)

=q̇T
(
M(q)q̈ + C(q, q̇)q̇ +G(q)

)
=q̇TE(q)u,

which implies that the system is passive with respect to the input u and

output q̇. The passivity is an important character of UMS which shows that

the system has a stable origin.
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If the matrix E(q) is assumed to be E(q) = [Im 0T(n−m)×m]
T , the vector of

generalised coordinates can be partitioned as q = [qTa , q
T
u ]

T . By letting f(q, q̇) =

C(q, q̇)q̇ + G(q) and partitioning the vector as f(q, q̇) = [fT
a (q, q̇), f

T
u (q, q̇)]

T , (2.3)

can be expressed in the following form [8, 100, 102, 142]:⎡
⎢⎣Maa(q) Mau(q)

MT
au(q) Muu(q)

⎤
⎥⎦
⎡
⎢⎣q̈a
q̈u

⎤
⎥⎦+

⎡
⎢⎣fa(q, q̇)
fu(q, q̇)

⎤
⎥⎦ =

⎡
⎢⎣ Im

0(n−m)×m

⎤
⎥⎦u, (2.4)

where qa ∈ R
m, qu ∈ R

n−m, Maa(q) ∈ R
m×m, Mau(q) ∈ R

m×(n−m), Muu(q) ∈
R

(n−m)×(n−m), fa(q, q̇) ∈ R
m, and fu(q, q̇) ∈ R

n−m.

2.1.2 Feedback linearisation

The feedback linearisation approach generalised the concept of inverse dynamics

of Lagrangian systems. The basic concept of feedback linearisation is to construct

a nonlinear control law as an inner-loop control (see Figure 2.1). In ideal case, the

inner-loop control exactly linearises the nonlinear system after a proper state space

change of coordinates. One can then design a second stage or outer-loop control in

the new coordinates to satisfy the control design specifications.

Consider the dynamics equation in the form of (2.4). The idea of inverse dy-

namics is to seek a nonlinear feedback control law

u = U(q, q̇)

which, when substituted into (2.4), results in a linear closed-loop system. If we

choose the control u according to the equation

u =

[
Im −Mau(q)M

−1
uu (q)

]⎡⎢⎣fa(q, q̇)
fu(q, q̇)

⎤
⎥⎦+(

Maa(q)−Mau(q)M
−1
uu (q)M

T
au(q)

)
v, (2.5)

then, since the matrix M(q) as well as its partitions Maa(q) and Muu(q) are invert-
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Inner-loop

),( qqy &
yv

Figure 2.1 : Architecture of feedback linearisation control.

ible, the combined system (2.4) and (2.5) becomes⎡
⎢⎣Maa(q) Mau(q)

MT
au(q) Muu(q)

⎤
⎥⎦
⎡
⎢⎣q̈a
q̈u

⎤
⎥⎦ =

⎡
⎢⎣ Im −Mau(q)M

−1
uu (q)

0(n−m)×m 0(n−m)×(n−m)

⎤
⎥⎦
⎡
⎢⎣fa(q, q̇)
fu(q, q̇)

⎤
⎥⎦

−

⎡
⎢⎣fa(q, q̇)
fu(q, q̇)

⎤
⎥⎦+

⎡
⎢⎣Maa(q)−Mau(q)M

−1
uu (q)M

T
au(q)

0(n−m)×m

⎤
⎥⎦ v

=−

⎡
⎢⎣Mau(q)M

−1
uu (q)

In−m

⎤
⎥⎦ fu(q, q̇)

+

⎡
⎢⎣Maa(q)−Mau(q)M

−1
uu (q)M

T
au(q)

0(n−m)×m

⎤
⎥⎦ v.

Eventually, one can show that the last equation can be reduced to⎡
⎢⎣q̈a
q̈u

⎤
⎥⎦ =

⎡
⎢⎣ 0m×1

−M−1
uu (q)fu(q, q̇)

⎤
⎥⎦+

⎡
⎢⎣ Im

−M−1
uu (q)M

T
au(q)

⎤
⎥⎦ v. (2.6)

The term v represents a new input to the system which is yet to be chosen. However,

practical implementation of the inverse dynamics control law (2.5) requires both that

the parameters in the dynamic model of the system be known precisely and also that

the complete equations of motion be computable in real time [128].
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2.2 Crane dynamics and control

Cranes can be categorised based on the DOF the support mechanism offers the

payload suspension point, e.g., gantry cranes (rectiliner translations in a horizontal

plane); tower cranes (translation and rotation in a horizontal plane); and boom

cranes (rotations around two orthogonal axes). From the control literature, cranes

can be classified as UMS. The payload swing angles are considered as unactuated

coordinates in cranes dynamics, e.g., longitudinal and lateral sways in a gantry crane

system, and tangential and radial sways in a boom crane system. Abdel-Rahman

et al. [1] have conducted a comprehensive literature review of crane modelling and

control starting in 1961. In the following, we provide a survey of the most recent

works on crane dynamics and control.

2.2.1 Crane dynamics

The most common crane modelling approaches are the lumped-mass and distributed-

mass approaches. In the distributed-mass approach, the hoisting cable is modelled

as a distributed-mass system and the hook and payload, lumped as a point mass,

are applied as a boundary condition for this distributed-mass system [32, 114]. The

lumped-mass approach is the most widely used method to crane modelling. The

hoisting line is modelled as a massless rigid cable. The payload is lumped with the

hook and modelled as a point mass.

The complexities of dealing with a nonlinear model of the crane systems drive

many works on crane control to make-do with linearized approximations of the

model. This simplification, however, may reduce controller robustness, in which

linear controller may provide acceptable performance only within a small fixed op-

erating range around the equilibrium point of the pendulation angles. As a result,

there has been an increasing interest in the design of crane control strategies based

on nonlinear crane models.
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The general form of crane dynamics are presented in the extended form of un-

deractuated mechanical systems (2.3) as follows:

M(q)q̈ + C(q, q̇)q̇ +G(q) + d(t) = E(q)u, (2.7)

where d(t) can be regarded as the system uncertainty which may contains frictions

and external disturbances. Conventional and offshore container crane dynamics are

often presented in the form of (2.7), e.g., see [5, 53, 103]. Besides, in the case of

offshore cranes, the matrices M(q), C(q, q̇) and G(q) may contain the disturbance

terms from the vessel’s motion.

The offshore crane system in moonpool operation has a different form of dy-

namics as compared to (2.7), in which, the system is modelled as a fully-actuated

system. In this case, the crane dynamics are modelled based on the vertical mo-

tion of the payload. Besides, most of the studies on offshore cranes in moonpool

operation neglected the sway of the payload as well as the vessel’s rolling motion

[76, 97, 98, 120, 125]. However, the complexity of the model lies in the system

disturbance, namely the hydrodynamic forces due to the effects of buoyancy and

added mass. The crane dynamics in this working environment is represented in the

following form [98, 125]:

mz̈ +mg = f(t, z, ż) + u, (2.8)

where z ∈ R is the payload position, m is the payload mass, u ∈ R is the cable

force, and f(t, z, ż) is the hydrodynamic forces.

2.2.2 Crane control

In the following, we discuss the survey on crane control strategies. Due to some

major differences between conventional and offshore cranes, each type is discussed

separately.
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Conventional crane control

A significant research effort has been devoted to the development of control

strategies to improve the efficiency and safety of crane operations. From the crane

control literature, the control techniques can be categorised into two types, namely,

the open-loop and closed-loop control. In the conventional crane systems, the open-

loop control methods for sway suppression are input-shaping [18, 56] and filtering

techniques [68]. However, these methods are limited by the fact that they are sensi-

tive to external disturbances. On the other hand, various closed-loop control meth-

ods have been proposed for trajectory tracking and sway suppression of conventional

cranes. These methods include linear control [104], adaptive control [52, 143], fuzzy

logic control [25], optimal control [132], delayed-feedback technique [67], and non-

linear control. The nonlinear control methods for conventional cranes can further

be classified as Lyapunov’s direct method [51, 131], first-order sliding mode control

[5], and second-order sliding mode control [16]. In addition, many studies on crane

trajectory planning have been reported, for example, [130, 147].

Offshore crane control

Over the past two decades, research on cranes’ control and automation has fo-

cused on addressing challenges in their offshore operations. The synthesis of feed-

back control for offshore cranes remains a challenge because the systems involve

the presence of parameter variations, e.g., changes of load during the process of

loading/unloading, and the presence of disturbances, e.g., wave- and wind-induced

motion. Besides, the presence of obstacles in the environment, such as harbour and

vessel, must be taken into consideration for the path planning of load transfer.

Because of the facts as mentioned earlier, some researchers have proposed the

modifications of offshore cranes’ mechanical parts to change the properties of the

systems. The new mechanical properties can avoid resonance in the system during
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Table 2.1 : Summary of previous offshore crane models and control methods.

Author Modelling approach Control method Limitation

Osinski &

Wojciech

(1998) [107]

– Boom crane

– Euler-Lagrange formula-

tion

– Flexible boom

– Input shaping – Only consider

vessel’s heave

Driscoll et

al. (2000)

[43]

– Underwater conveying

– Finite-element lumped-

mass model

– Passive heave

compensation

– Impedance control

– Only consider

vessel’s heave

Kimiaghalam

et al.

(2002) [75]

– Boom crane

– Stevedoring operation

– Use Maryland rigging

– 2 DOF crane, 1 DOF

vessel

– Feedforward con-

trol

– 2-D model

– Only consider

vessel’s roll an-

gle

Sagatun

(2002) [120]

– Moonpool operation

– Vertical motion

– Consider hydrodynam-

ics force

– Passive heave

compensation

– Impedance control

– Only consider

vessel’s heave
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Author Modelling approach Control method Limitation

Johansen et

al. (2003)

[73]

– Moonpool operation

– Vertical motion

– Consider hydrodynam-

ics force

– Active heave com-

pensation

– Feedforward con-

trol

– Only consider

vessel’s heave

Masoud et

al. (2004)

[96]

– Boom crane

– Stevedoring operation

– 4 DOF crane, 3 DOF

vessel

– Delayed-feedback

control

– Fixed rope

length

– Vessel’s motion

is not included

in the dynamics

model

Skaare &

Egeland

(2006) [125]

– Moonpool operation

– Vertical motion

– Consider hydrodynam-

ics force

– Active heave com-

pensation

– Parallel

force/position

control

– Only consider

vessel’s heave

Al-Sweiti

& Söffker

(2007) [4]

– Boom crane

– Stevedoring operation

– Use Maryland rigging

– Variable gain

state-feedback

control

– 2-D model

– Only consider

vessel’s roll an-

gle
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Author Modelling approach Control method Limitation

Hatleskog

& Dun-

ningan

(2007) [66]

– Moonpool operation

– Vertical motion

– Passive heave

compensation

– Impedance control

– 2-D model

– Only consider

vessel’s heave

Parker et

al. (2007)

[110]

– Boom crane

– Stevedoring operation

– Use rider block tagline

– Inverse kinematic

– Utilise the rider

block tagline (no

specific control

method)

– 2-D model

– Lack of ana-

lytic modeling

in system dy-

namics

Do & Pan

(2008) [40]

– Underwater conveying

– Planar motion

– Use electro-hydraulic

system

– Active heave com-

pensation

– Lyapunov’s direct

method

– 2-D model

– Only consider

vessel’s heave

Messineo et

al. (2008)

[97]

– Moonpool operation

– Vertical motion

– Feedback compen-

sator

– 2-D model

– Only consider

vessel’s heave
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Author Modelling approach Control method Limitation

Schaub

(2008) [122]

– Boom crane

– Stevedoring operation

– Velocity-based inverse

kinematic

– 3 DOF crane, 3 DOF

vessel

– Rate-based con-

trol

– Ignore payload

sway/oscillation

Messineo

& Serrani

(2009) [98]

– Moonpool operation

– Vertical motion

– Consider hydrodynam-

ics force

– Heave compensa-

tion

– Adaptive control

– Only consider

vessel’s heave

Küchler et

al. (2011)

[76]

– Underwater conveying

– 2 DOF crane, 1 DOF

vessel

– Prediction algo-

rithm

– Input/output lin-

earisation

– Assume fully

actuated sys-

tem
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Author Modelling approach Control method Limitation

Ngo &

Hong

(2012) [103]

– Gantry (container)

crane

– Stevedoring operation

– Euler-Lagrange formula-

tion

– 3 DOF crane, 3 DOF

vessel

– Sliding mode con-

trol

– Assume fixed

rope length

Fang et al.

(2014) [53]

– Boom crane

– Stevedoring operation

– Euler-Lagrange formula-

tion

– 3 DOF crane, 2 DOF

vessel

– Lyapunov method – 2-D model

load transfer. For example, the rider block tagline system has been utilised to

change the natural frequency of offshore crane’s pendulation [110]. The Maryland

rigging system was also proposed to change the properties of offshore crane systems,

which can dissipate the payload sway with some additional control strategies, such

as feedforward control [75] and state feedback control [4]. However, the introduction

of the additional mechanism to crane systems leads to a higher complexity in the

analysis of the crane dynamics.

Recently, the works on offshore crane systems have utilised their available control

inputs rather than introducing additional mechanism. A common approach to deal



23

with the complexity and underactuation of offshore crane dynamics is to break up

the system into several parts and then analyse only a part or a decoupled part of the

system states. Some researchers have first separated payload motion in the vertical

direction and then designed a controller to vary the cable length. For example,

the application of input shaping to minimise the cable deformation during payload

vertical motion has been reported in [107]. Later, researchers have introduced the

heave compensation approach to assign the payload to move at a constant vertical

velocity in an earth-fixed reference frame in order to reduce the variations of the

cable tension. This approach can further be categorised into passive and active heave

compensations. Passive heave compensations can be constructed using augmented

impedance control laws by utilising the tension of the cable as the only control

input [43, 66, 120]. Some active compensation approaches have been constructed

by using various type of control strategies, for example, feedforward scheme [73],

feedback scheme [97], parallel force/position control [125], adaptive control [98],

and Lyapunov’s direct method [40]. Besides, active heave compensation approach

combined with prediction algorithm for vessel motion has been reported in [76].

On the other hand, research on offshore crane dynamics and control has been

devoted to considering a higher number of DOF in the systems’ model to achieve

satisfactory control performance. In [96], a delayed-feedback controller has been

proposed to place the payload by using a linearised offshore crane system. A rate-

based control strategy by using the measurements from onboard sensors has been

reported in [122]. The most recent work on the dynamics analysis and nonlinear

control has been reported in [53]. In this work, a Lyapunov’s based controller has

been designed for a simplified two-dimensional offshore crane model.

In terms of control strategies, sliding mode control (SMC) has been recognised

as a strong control methodology for Lagrangian systems. Most recent works on

SMC for offshore cranes have been reported in [103], [115] and [116]. However, the
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selections of SMC parameters to deal with the bounded disturbances were not fully

addressed in [103, 115] while model uncertainties and practical scenarios were not

adequately detailed in [116]. For this reason, the control designs for offshore crane

systems remains an open problem. The previous study on offshore crane models

and control methods are summarised in Table 2.1.

2.3 Sliding mode control

Research on variable structure control (VSC) systems has progressed from the

pioneering work in Russia of Emel’yanov and Barbashin in the early 1960s. The

idea of VSC only wide-spread outside of Russia during mid 1970s when a book by

Itkis in 1976 and a survey paper by Utkin [137] in 1977 were published in English.

VSC concepts have subsequently been utilised in the design of robust regulators,

model-reference systems, adaptive schemes, tracking systems, state observers and

fault detection schemes. The ideas have successfully been applied to problems as

diverse as automatic flight control, control of electric motors, chemical processes,

helicopter stability augmentation systems, space systems and robots [44]. One of

the earliest survey paper on VSC was written by Hung et al. [69] that provides many

references to the application of sliding mode ideas in various engineering problems.

Years later, the generalisation of VSC for a class of uncertain systems have been

developed, for example, in [29, 45]. The VSC approaches have been further dis-

tinguished to two types of controls, i.e., (i) VSCs that switch between different

parameters and (ii) systematic further development of the methods which is known

as soft variable structure controls (soft VSC) that continuously vary controllers’

parameters or structures and achieve nearly time-optimal control performance. A

survey paper on soft VSC has been reported in [3].

Sliding mode control (SMC) belonging to the VSC systems became popular be-

cause of its application to a broad class of systems containing discontinuous control
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elements such as relays. Among the earliest works involving the use of SMC in

mechanical systems is done by Young [145]. SMC has subsequently been applied

and developed for underwater vehicles, robust regulators, adaptive control, electrical

motors control, chemical processes, robotic manipulators, and in simulation of auto-

matic flight control, helicopter stability and space systems [127]. A generic SMC for

linear systems with bounded uncertainties has been proposed in [119]. This propo-

sition has been extended in [129] to design output tracking control and in [10] to

provide the sliding surface design procedure. Sliding mode control is inherently a

nonlinear methodology, so its applications are not limited to linear systems. It offers

a framework for controller design for a wide class of nonlinear systems. A controller

can be expected to perform better if it is based on a nonlinear model rather than a

linear approximation. Several works on generalisation of SMC have been reported

in [17, 30, 65, 141]. Some recent survey papers on SMC have been reported, namely,

the survey on SMC with application in mathematics [112] and the survey on SMC

strategies for induction motors [109].

2.3.1 Regular form of linear-time invariant system

A convenient way to facilitate the sliding mode control design for a linear time

invariant (LTI) system is to first transform the system into a suitable canonical

form. Consider the following LTI system:

ẋ(t) = Ax(t) +Bu(t), (2.9)

where A ∈ R
n×n and B ∈ R

n×m with 1 ≤ m ≤ n. Without loss of generality it can

be assumed that matrix B has full rank, i.e., rank(B) = m, and the pair of (A,B) is

controllable. Since rank(B) = m, there exists an orthogonal matrix T ∈ R
n×n such

that [44]

TB =

⎡
⎢⎣ 0(n−m)×m

B2

⎤
⎥⎦ , (2.10)
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where B2 ∈ R
m×m is nonsingular. This orthogonal matrix T can be obtained by

using QR decomposition based on (2.10). By using the coordinate transformation

z(t) = Tx(t), (2.9) becomes

ż(t) = TAT−1z(t) + TBu(t). (2.11)

If the states z(t) and the matrix TAT−1 in (2.11) are partitioned so that

z =

⎡
⎢⎣z1(t)
z2(t)

⎤
⎥⎦ , TAT−1 =

⎡
⎢⎣A11 A12

A21 A22

⎤
⎥⎦ ,

and by noting (2.10), (2.9) can be written as

ż1(t) =A11z1(t) + A12z2(t), (2.12)

ż2(t) =A21z1(t) + A22z2(t) +B2u(t). (2.13)

The representation in (2.12) and (2.13) is referred to as regular form [44]. Let the

sliding function s(t) represented as

s(t) = Sz(t),

where S ∈ R
m×n is full rank, and can be partitioned as

S = [S1 S2],

with S1 ∈ R
m×(n−m) and S2 ∈ R

m×m. During ideal sliding, s(t) = Sz(t) = 0 or

S1z1(t) + S2z2(t) =0

z2(t) =− S−12 S1z1(t) = −Lsz1(t),

where Ls = S−12 S1. Substituting the expression of z2(t) = −Lsz1(t) into the (2.12)

gives

ż1(t) = (A11 − A12Ls)z1(t). (2.14)

Note that this is similar with the problem of finding the state feedback matrix Ls

for the system in (2.12), where z2(t) has the role of a linear state feedback control
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signal. Any classical state feedback control method can be used to compute Ls.

Then the matrix S can be obtained as

S = S2[Ls Im].

The matrix S2 acts only as scaling factor for the sliding function, so it has no effect

on the dynamics of the sliding motion and can be chosen arbitrarily. Among the

approaches to compute the matrix Ls and subsequently obtaining the matrix S are

robust eigenstructure assignment, linear quadratic regulator, direct eigenstructure

assignment, and linear matrix inequality (LMI) method.

2.3.2 First-order sliding mode control

1-SMC for linear time invariant system

The most convenient control structure for multivariable systems, from a sliding

mode perspective, is the unit vector approach attributed to [119]. Consider an LTI

system with matched uncertainty

ẋ(t) = Ax(t) +Bu(t) + d(t, x, u), (2.15)

where d(t, x, u) is in the range space of matrix B, and is assumed to be unknown

but bounded and satisfies

‖d(t, x, u)‖ ≤ k‖u(t)‖+ α(t, x),

in which k ≥ 0 and α(t, x) is a known function. Without loss of generality, it can be

assumed that (2.15) is already in regular form as described in the previous section.

Thus, (2.15) can be written as

ẋ1(t) =A11x1(t) + A12x2(t), (2.16)

ẋ2(t) =A21x1(t) + A22x2(t) +B2u(t) + d(t, x, u), (2.17)
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where d(t, x, u) is a projection of d(t, x, u) in the regular form coordinates. Therefore

‖d(t, x, u)‖ ≤ k‖u(t)‖+ α(t, x), (2.18)

since the Euclidean norm of d(t, x, u) is preserved by the orthogonal transformation.

In the notation of Section 2.3.1, the sliding function can be expressed as

s(t) = S2Lsx1(t) + S2x2(t), (2.19)

and the derivative of the sliding function is

ṡ(t) = S2Lsẋ1(t) + S2ẋ2(t), (2.20)

where Ls ∈ R
m×(n−m) has been chosen by some appropriate design procedure to

stabilise the pair (A11, A12) of (2.16). Rearranging (2.19), we have

x2(t) = S−12 s(t)− Lsx1(t). (2.21)

By substituting (2.21) into (2.16) and (2.17), and further substituting the obtained

equations into (2.20), one can show that

ẋ1(t) =A11x1(t) + A12S
−1
2 s(t) (2.22)

ṡ(t) =S2A21x1(t) + S2A22S
−1
2 s(t) + S2B2u(t) + S2d(t, x, u), (2.23)

where A11 = A11 −A12Ls, A21 = LsA11 +A21 −A22Ls and A22 = LsA12 +A22. The

control law comprises linear and nonlinear components given by [44]

u(t) = uE(t) + uR(t), (2.24)

where the linear component is given by

uE(t) = (S2B2)
−1
(
− S2A21x1(t)− (S2A22S

−1
2 − Φ)s(t)

)
(2.25)

and the nonlinear component is defined to be

uR(t) = −ρ(t, x)Λ−1
Ps(t)

‖Ps(t)‖ , s(t) �= 0, (2.26)
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where Λ = S2B2. Matrix Φ ∈ R
m×m is any stable design matrix and P ∈ R

m×m is

a symmetric positive definite matrix satisfying the Lyapunov equation

PΦ + ΦTP = −Im.

The scalar function ρ(t, x), which depends only on the magnitude of the uncertainty,

is any function satisfying

ρ(t, x) ≥
‖S2‖

(
k‖uE(t)‖+ α(t, x)

)
+ η

1− k‖Λ−1‖‖S2‖ , (2.27)

where η is a positive scalar and k must satisfy k < ‖B−12 ‖−1. Substituting the

control law (2.24) into (2.23) gives

ṡ(t) = Φs(t)− ρ(t, x)
Ps(t)

‖Ps(t)‖ + S2d(t, x, u). (2.28)

To prove the stability of the control system, consider a Lyapunov function

V (s) =
1

2
sT (t)Ps(t).

Differentiating the Lyapunov function and using (2.28) yields

V̇ (s) =
1

2
ṡT (t)Ps(t) +

1

2
sT (t)P ṡ(t)

=
1

2

(
sT (t)ΦT − ρ(t, x)

sT (t)P

‖Ps(t)‖ +
(
S2d(t, x, u)

)T)
Ps(t)

+
1

2
sT (t)P

(
Φs(t)− ρ(t, x)

Ps(t)

‖Ps(t)‖ + S2d(t, x, u)

)

=− 1

2
‖s(t)‖2 − ρ(t, x)‖Ps(t)‖+ sT (t)PS2d(t, x, u)

≤− 1

2
‖s(t)‖2 − ‖Ps(t)‖

(
ρ(t, x)− ‖S2‖‖d(t, x, u)‖

)
. (2.29)

From (2.24), using triangular inequality and together with (2.26), it can be shown

that

‖u(t)‖ ≤ ‖uE(t)‖+ ‖uR(t)‖ ≤ ‖uE(t)‖+ ρ(t, x)‖Λ−1‖. (2.30)
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Rearranging (2.27), and using (2.30), one can show that

ρ(t, x) ≥‖S2‖
[
k
(‖uE(t)‖+ ρ(t, x)‖Λ−1‖)+ α(t, x)

]
+ η

≥‖S2‖ [k‖u(t)‖+ α(t, x)] + η

≥‖S2‖‖d(t, x, u)‖+ η. (2.31)

Finally, by using inequalities (2.31) and (2.29), it can be shown that

V̇ (s) ≤ −1

2
‖s(t)‖2 − η‖Ps(t)‖,

which proves that the controller induces ideal sliding in the presence of matched

uncertainty in finite time.

1-SMC for nonlinear system

Consider the state space equation

ẋ(t) = f(x) + g(x)u(t) + d(t), (2.32)

where x(t) ∈ R and u(t) ∈ R. Let s(t) = 0 be the sliding surface on which we want

to drive the system state. For simplicity, let consider a stabilisation problem where

s(t) = x(t). Assume that there exist a constant dM > 0 such that |d(t)| < dM .

Hence, the following 1-SMC law can drive the system trajectories of (2.32) onto

sliding surface s(t) = 0 in finite time [112]:

u(t) =
1

g(x)
[−f(x)−K sign s(t)], (2.33)

where K = dM+η, η > 0. To prove the stability of the system, choose the Lyapunov

function candidate to be

V =
1

2
s(t)T s(t).

Hence, the time derivative of V is

V̇ =s(t)ṡ(t)

=s(t)[−K sign s(t) + d(t)]

≤|s(t)|
(
−K + d(t)

)
≤ −η‖s(t)‖,
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which shows that sliding surface is reached in finite time.

Next, we present a 1-SMC law for Lagrangian system in the form of

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (2.34)

where q ∈ R
n and τ ∈ R

n. The controller is assigned to drive the generalised

coordinates to the desired trajectories qd ∈ R
n. Define the tracking error

e = q − qd

and define the sliding surface

s = ė+ λe = q̇ − q̇d + λe (2.35)

where λ = diag(λ1, · · · , λn), with λi > 0 for i = 1, · · · , n. From (2.35), let

q̇r =q̇ − s = q̇d − λe,

q̈r =q̈ − ṡ = q̈d − λė.

Using feedback linearisation, we obtain

τ = M̂(q)u+ Ĉ(q, q̇)q̇ + Ĝ(q),

in which u is chosen as [61]

u = q̈r − M̂−1(q)
[(

Ĉ(q, q̇) + Φ
)
s+K sign s

]
, (2.36)

where Φ = diag(Φ1, · · · ,Φn) and K = diag(K1, · · · , Kn) are positive definite matri-

ces with Φi, Ki > 0 for i = 1, · · · , n. The matrices M̂ , Ĉ, and Ĝ are the estimations

of M , C, and G, respectively. Let Δh express the bounded uncertainties as

Δh = ΔMq̈r +ΔCq̇r +ΔG, (2.37)

where ΔM = M̂ −M , ΔC = Ĉ − C, and ΔG = Ĝ − G. Furthermore, we assume

that there exist Ψi > 0, for i = 1, · · · , n such as |Δhi| ≤ Ψi. We choose K such that

Ki ≥ Ψi, i = 1, · · · , n. (2.38)
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To prove the stability of the system, we choose the Lyapunov function candidate to

be

V =
1

2
sTM(q)s.

Hence, the time derivative of V is

V̇ =
1

2

(
ṡTM(q)s+ sTM(q)ṡ+ sTṀ(q)s

)
=sTM(q)ṡ+

1

2
sTṀ(q)s

=sTM(q)ṡ+ sTC(q̇, q)s, (2.39)

in which (2.39) is obtained by using the first and the second property of matrix

M(q) as mentioned in Section 2.1.1. Substituting s = q̇ − q̇r and ṡ = q̈ − q̈r into

(2.39) yields

V̇ =sT [M(q)(q̈ − q̈r) + C(q̇, q)(q̇ − q̇r)]

=sT [M(q)q̈ + C(q̇, q)q̇ −M(q)q̈r − C(q̇, q)q̇r] . (2.40)

Substituting M(q)q̈ + C(q̇, q)q̇ = τ −G(q) obtained from (2.34) into (2.40) yields

V̇ =sT [τ −G(q)−M(q)q̈r − C(q̇, q)q̇r]

=sT
[
M̂(q)u+ Ĉ(q, q̇)q̇ + Ĝ(q)−G(q)−M(q)q̈r − C(q̇, q)q̇r

]
=sT

[
M̂(q)q̈r − Ĉ(q, q̇)s+ Φs−K sign s+ Ĉ(q, q̇)q̇ + Ĝ(q)−G(q)−M(q)q̈r − C(q̇, q)q̇r

]
=sT

[
(M̂(q)−M(q))q̈r + (Ĉ(q, q̇)− C(q, q̇))q̇r + (Ĝ(q)−G(q))− Φs−K sign s

]
=sT (ΔMq̈r +ΔCq̇r +ΔG− Φs−K sign s)

=sT (Δh− Φs−K sign s) . (2.41)

It follows that

V̇ =
n∑

i=1

si(Δhi −Ki sign si)− sTΦs

≤
n∑

i=1

|si|(|Δhi| −Ki)− sTΦs. (2.42)
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Taking into account (2.38), it can be shown that (2.42) becomes

V̇ ≤ −sTΦs,

which implies that sliding on the surface s(t) = 0 takes place in finite time.

Application of fuzzy logic in sliding modes

An alternative approach to constructing the SMC laws is by applying fuzzy logic.

It provides a method for formulating linguist rules from expert knowledge and is able

to approximate any real continuous system to arbitrary accuracy. Thus, it provides

a simple solution dealing with the broad range of the system parameters. In general,

fuzzy SMC approaches can be divided into two different types. In the first type of

fuzzy SMC, it is assumed that the model of the system is entirely unknown, and the

fuzzy systems are used to estimate the system dynamics [24, 70, 118]. In the second

type, it is assumed that the system model is partly known, and the fuzzy system

efforts are contributed to the construction of the control gain [61, 79, 88].

Previous researchers have applied fuzzy SMC in various kinds of nonlinear sys-

tems such as robotic manipulators [2, 62, 87], robot arms [46, 63], and overhead

cranes [89]. Some works have proposed the generalisation of fuzzy SMC [78, 80,

88, 101] and fuzzy terminal SMC [133] for a class of uncertain nonlinear systems.

Also, an adaptive fuzzy hierarchical SMC has been proposed for a class of uncertain

underactuated nonlinear systems [71]. The recently developed fuzzy second-order

sliding mode control [93] has combined the flexibility and intelligence of fuzzy logic

with the efficiency of the second-order SMC.

Usually, a fuzzy system has one or more inputs and a single output. A multiple-

output system can be considered as a combination of several single-output systems.

There are four basic parts of a fuzzy system. The fuzzification and defuzzification

are the interfaces between the fuzzy systems and the crisp systems. The rule base
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includes a set of “IF ... THEN ...” rules extracted from the human experience. Each

rule describes a relation between the input space and the output space. For each

rule, the inference engine maps the input fuzzy sets to an output fuzzy set according

to the relation defined by the rule. It then combines the fuzzy sets of all the rules

in the rule base into the output fuzzy set. This output fuzzy set is translated into

a crisp value output by the defuzzification.

Let consider a system represented in the form of

ẋ(t) = f(x) + g(x)u+ d(t, x), (2.43)

where x ∈ R, u ∈ R, and d(t, x) is the bounded disturbance. The terms f(x) and

g(x) are unknown. Let |d(t, x)| ≤ dM where dM > 0 is known. The kth rule in the

rule base are in the following format:

Rule k : IF v1 is F k
1 AND · · · AND vj is F

k
j AND · · · AND vr is F

k
r , THEN y is θk,

where r is the number of input of the fuzzy controller, vj is the fuzzy input, and F k
j

is the jth fuzzy set corresponding to the kth fuzzy rule. Hence, by using the centre

of average defuzzification, the output of the fuzzy system can be written as

y =

l∑
k=1

r∏
j=1

μFk
j
(vj)θk

l∑
k=1

r∏
j=1

μFk
j
(vj)

, (2.44)

where μFk
j
is the membership function of the fuzzy set F k

j , and θk is the centroid of

the kth fuzzy set corresponding to the output y. For example, the fuzzification of

control law (2.33) can be express as follows:

u(t) =
1

ĝ(x|θg)
[
− f̂(x|θf )−K sign s(t)

]
, (2.45)

where f̂(x|θf ) and ĝ(x|θg) are the estimates of f(x) and g(x), respectively.
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2.3.3 Second-order sliding mode

The discontinuous control of the sliding mode provides the robustness of the

control system with respect to matched uncertainties. However, the drawback of

the discontinuous control is chattering effect. A natural solution is to attempt to

smooth the discontinuity in the signum function, by replacing it with saturation

function to obtain an arbitrarily close but continuous approximation. Such contin-

uous approximation enables sliding mode controller to be utilised in the situations

where high-frequency chattering effects would be unacceptable. However, the con-

tinuous control action only drives the states to a neighbourhood of the switching

surface, in which the ideal sliding no longer takes place. This situation can cause

the ultimate accuracy and robustness of the sliding mode partially lost. Moreover,

1-SMC general application may be restricted, that is, for an output sliding function

to be zeroed, the standard sliding mode may keep the sliding function equal to zero

only if the outputs relative degree is one [86]. The equality of the relative degree

to r means, that the control u first appears explicitly only in the rth total time

derivative of the sliding function s. Higher-order sliding modes (HOSM) remove the

relative degree restriction of 1-SMC.

Emel’yanov et al. in 1986 initially presented the idea of acting on the higher

derivatives of the sliding variable and provided second-order sliding algorithms such

as the twisting algorithm, and algorithm with a prescribed law of convergence [47].

Emel’yanov et al. have also proposed the real second-order drift algorithm and the

super twisting algorithm, respectively in 1986 and 1990. According to Levant [83],

the sliding accuracy in the second-order sliding mode is proportional to the square

of the switching time delay that turns out to be another advantage of HOSM.

The implementation of HOSM requires the knowledge of a number of time deriva-

tives of the sliding function, depending on the system relative degree. For exam-
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ple, a second-order sliding mode controller (2-SMC) keeping s = 0 needs s and ṡ

to be available. The only exclusion is the super-twisting controller [83, 84] which

requires only measurements of s. The use of differentiators to obtain the deriva-

tives of a sliding function requires particular care in real implementation due to the

measurement noise, whose adverse effects on the overall closed-loop performance

dramatically increase with the number of differentiation stages. Some research have

been devoted to developing differentiation algorithms based on second- and higher-

order sliding modes that have shown an interesting trade-off between precision and

noise-immunity [13, 84]. Later, a development of real-time differentiators that is

less sensitive to the noise propagation, as well as control algorithms for nonlinear

uncertain systems with relative degrees higher than one, has been reported [12].

On the other hand, an active research have been devoted to propose control

algorithms belonging to the family of 2-SMC, i.e., algorithms in which the rela-

tive degree between the constraint output and the discontinuous control is two. The

main challenge when dealing with 2-SMC for uncertain systems is due to the need to

solve differential inequalities of order greater than one. 2-SMC has been successfully

implemented in various types of mechanical systems over the last two decades that

can be referred to survey papers [15] and [112]. Some efforts on the generalisation

of 2-SMC for a class of uncertain systems have also been developed, for example,

in [33, 54]. A formulation of nonlinear sliding surface based 2-SMC for uncertain

linear systems has been proposed in [99]. Some most recent works on the imple-

mentation of 2-SMC for mechanical systems have been reported, which include the

implementation on robotic manipulator [23], permanent magnet synchronous motor

[35], pneumatic actuator [48], land vehicle [22], surface vessel [139], and underwater

vehicle [14].

Like the first-order sliding mode, the stability of the second-order sliding mode

can be ensured if the derivative of a Lyapunov function is negative definite. However,
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it is difficult to find such a Lyapunov function [92]. In the literature, the finite-time

stability proofs are based on geometrical ideas.

Consider an uncertain system of the form

ẋ = f(t, x) + g(t, x)u, (2.46)

where x ∈ R
n and u ∈ R. The key step in the procedure is to describe the second-

order sliding dynamics of the system (2.46) with relative degree two in the form

s̈(t) = a(t, x) + b(t, x)u, (2.47)

with assumption the conditions

|a(t, x)| ≤ C, 0 < Km ≤ b(t, x) ≤ KM ,

holds globally for some C,Km, KM > 0. This implies the following differential

inclusion [86]:

s̈(t) ∈ [−C,C] + [Km, KM ]u. (2.48)

The problem is to find such a feedback

u = U(s, ṡ),

that all the trajectories of (2.48) converge in finite time to the origin s = ṡ = 0 of

the phase plane (s, ṡ).

The twisting controller

The twisting controller can be applied to relative degree two systems and imple-

ment a feedback switching logic derived from the time optimal control problem and

based on the current and past values of the system output. The controller is defined

by [83]:

u = −(r1 sign s(t) + r2 sign ṡ(t)), (2.49)

with convergence conditions

(r1 + r2)Km − C > (r1 − r2)KM + C, (r1 − r2)Km > C.
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The sub-optimal controller

Like the twisting controller, the sub-optimal controller can also be applied to

relative degree two systems, defined by the following formula [15, 86]:

u = −r1 sign

(
s(t)− s∗

2

)
+ r2 sign s

∗, r1 > r2 > 0, (2.50)

where s∗ is the value of s(t) detected at the closest time in the past when ṡ(t) was

zero. The convergence conditions for this controller are

2[(r1 + r2)Km − C] > (r1 − r2)KM + C, (r1 − r2)Km > C.

The super twisting controller

The super twisting controller can be applied to relative degree one systems and

is characterised by a dynamic controller that, using only the current value of the

sliding variable, applies a continuous control to the system input while maintaining

the discontinuity on the time derivative of the plant input. It is effective only for

chattering attenuation purposes as far as relative degree one constraints are dealt

with. For this case, (2.47) is replaced by [86]

ṡ(t) = a(t, x) + b(t, x)u. (2.51)

Differentiating (2.51) yields

s̈(t) =
∂a(t, x)

∂t
+

∂a(t, x)

∂x
ẋ+

(
∂b(t, x)

∂t
+

∂b(t, x)

∂x
ẋ

)
u+ b(t, x)u̇.

Substituting (2.46) into the above equation yields

s̈(t) = a′(t, x, u) + b(t, x)u̇. (2.52)

where

a′(t, x, u) =
∂a(t, x)

∂t
+

∂a(t, x)

∂x
(f(t, x) + g(t, x)u)

+

(
∂b(t, x)

∂t
+

∂b(t, x)

∂x
(f(t, x) + g(t, x)u)

)
u.
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Thus, the differential inclusion (2.48) is replaced by

s̈(t) ∈ [−C1, C1] + [Km, KM ]u̇, (2.53)

with assumption |a′(t, x, u)| ≤ C1. The super twisting controller is defined by the

following formula [85, 112]:

u(t) =v(t)− λ|s(t)|1/2 sign s(t)

v̇(t) =− α sign s(t),

(2.54)

with convergence conditions

α >
C1

Km

, λ2 >
2(αKM + C1)

Km

.

Second-order sliding mode observer

In order to realise a sliding function, it requires the availability of error and

derivative of error, which correspond to position and velocity, respectively. In many

applications of multivariable control, it is economically beneficial to avoid the direct

measurement of velocities, which can be estimated by a high-gain differentiator or

state observer based on the information of positions [5, 146]. Parameter estimation

using a high-gain differentiator [28] offers an exact derivative, but its gains tend

to infinity. Thus, the drawback of the high-gain differentiator is its sensitivity to

high-frequency noise, and it produces the so-called peaking effect [85]. Besides,

these mentioned observers and differentiators neglected the presence of nonlinear

friction terms. A new generation of observers based on the second-order sliding mode

algorithms has been recently developed. In particular, the asymptotic observers for

systems with Coulomb friction [6, 105] were designed based on the second-order

sliding mode. These observers require the verification of the separation principle due

to the asymptotic convergence of the estimated values to the actual ones. Davila

et al. [34] proposed a second-order sliding mode observer (2-SMO) for systems

with Coulomb friction. This 2-SMO design benefits from the a priori knowledge
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of the mathematical model of the process while its implementation does not need

the separation principle to be proven. It has been implemented for a fully actuated

system with a single coordinate.

In the following we presents one of the basic examples of 2-SMO. Consider an

n-dimensional observer proposed by Utkin [138]. Let the linear plant be the nth

order dynamical system as follows:⎧⎪⎨
⎪⎩

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.55)

where x ∈ R
n, u ∈ R, and the pair (C,A) is assumed to be observable. The 2-SMO

can be designed in the same form as the original system (2.55) with an additional

control input that depends on the error between the output of the observer and the

output of the plant: ⎧⎪⎨
⎪⎩

˙̂x(t) = Ax̂(t) +Bu(t) + Lw(t)

ŷ(t) = Cx̂(t)
(2.56)

where x̂ and ŷ are the estimates of the system state vector and system output,

respectively, and w ∈ R is the output of the 2-SMO algorithm. To drive ŷ to y(t),

let utilise the super twisting algorithm (2.54):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w(t) = v(t)− λ|s(t)|1/2 sign s(t)
v̇(t) = α sign s(t)

s(t) = y(t)− ŷ(t),

(2.57)

where α and λ are design parameters, and s(t) is the sliding function. It can be

shown that if the elements of L are sufficiently large, the sliding function converges

to zero in finite time.

2.4 Summary

The survey on underactuated mechanical systems (UMS), crane dynamics and

control, and sliding mode control (SMC) have been presented. The equations of
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motion of UMS and the notion of feedback linearisation have been introduced. The

dynamics model and control approaches of conventional and offshore crane systems

have been reviewed. The last section has listed some basic SMC algorithms includ-

ing the first-order SMC, the second-order SMC and the second-order sliding mode

observer.
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Chapter 3

Modelling of Offshore Crane Systems

3.1 Introduction

The chapter begins with the generalisation of cranes dynamics by using the

Lagrangian mechanics as the preliminary to the model derivations. From the Euler-

Lagrange formulation, the dynamic models of offshore gantry crane and boom crane

are derived by considering the vessels’ motion. For each crane types, 2-D and 3-D

models are developed with full system dynamics with respect to system dimensions.

To facilitate the first-order sliding mode control designs in the latter chapter, we

provide the linearised forms of 2-D offshore crane models.

3.2 Euler-Lagrange equation for cranes

In this section, we provide the generalisation of offshore crane dynamics based on

Lagrangian mechanics. The offshore crane models are derived based on the following

assumptions:

i. The payload is considered as a point mass.

ii. The crane’s support mechanism (girder or boom) has even mass distribution.

iii. The rope or cable is massless and there always exists strain in the rope so that

the rope will not bend under the motion of vessel or crane.

Consider a crane system consisting of r links and suppose the mass of link k is mk.

Let center of mass mk has position vector pk ∈ R
3. Thus, the kinetic energy of the
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system is

K =
1

2

r∑
k=1

mk‖ṗk‖2

and the potential energy of the system is

P =
r∑

k=1

mk[0 0 g]pk

where g is the gravitational acceleration. It follows that, the Lagrangian of the

system can be obtained as

L = K − P .

Let q ∈ R
n be the vector of generalised coordinates and τ ∈ R

n be the corresponding

generalised forces. By applying the Euler-Lagrange formulation

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= τ, (3.1)

the equation of motion of the system can be expressed in the following form:

M(q)q̈ + C(q, q̇)q̇ +G(q) + d(t) = τ, (3.2)

where M(q) ∈ R
n×n is the inertia matrix, C(q, q̇) ∈ R

n×n is the centrifugal-Coriolis

matrix and G(q) ∈ R
n is the vector of gravity. Vector d(t) ∈ R

n may consist

of frictions, uncertainty and disturbance terms. For simplicity, (3.2) can also be

written as

M(q)q̈ + f(q, q̇) = τ, (3.3)

where f(q, q̇) = C(q, q̇)q̇ +G(q) + d(t).

Now consider an underactuated mechanical system withm number of inputs such

that 1 ≤ m < n. By partitioning vector of generalised coordinates as q = [qTa qTu ]
T

and vector of generalised forces as τ = [τTa 01×(n−m)]
T , (3.3) can be expressed in the

following form:⎡
⎢⎣Maa(q) Mau(q)

MT
au(q) Muu(q)

⎤
⎥⎦
⎡
⎢⎣q̈a
q̈u

⎤
⎥⎦+

⎡
⎢⎣fa(q, q̇)
fu(q, q̇)

⎤
⎥⎦ =

⎡
⎢⎣ τa

0(n−m)×1

⎤
⎥⎦ , (3.4)
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where qa ∈ R
m, qu ∈ R

n−m, τa ∈ R
m, Maa(q) ∈ R

m×m, Mau(q) ∈ R
m×(n−m),

Muu(q) ∈ R
(n−m)×(n−m), fa(q, q̇) ∈ R

m, and fu(q, q̇) ∈ R
n−m. It follows from the

second row of (3.4) that

q̈u = M−1
uu (q)[−MT

au(q)q̈a − fu(q, q̇)]. (3.5)

Substituting (3.5) into the first row of (3.4) yields

q̈a = (Maa(q)−Mau(q)M
−1
uu (q)M

T
au(q))

−1

× [− fa(q, q̇) +Mau(q)M
−1
uu (q)(fu(q, q̇)) + τa

]
. (3.6)

3.3 Modelling of offshore gantry cranes

In this section, we present the models of two-dimensional (2-D) and three-

dimensional (3-D) offshore gantry cranes. The 2-D model is presented in the form

of uncertain LTI system, and the 3-D model is presented as the extended model of

[103] with full DOF in the crane coordinates.

3.3.1 2-D model

The offshore crane system considered in this study consists of a gantry crane

mounted on a ship vessel as visualize in Figure 3.1, where {OGxGyGzG},
{OBxByBzB} and {ONxNyNzN} are the coordinate frames of the ground, the con-

tainer ship, and the cart’s starting point, respectively. The offshore crane system

motion is represented by three generalized coordinates, i.e., the position of the cart,

y, the length of the rope measured from the cart to the payload, l, and the sway

angle induced by the motion of the cart, θ. Let ht denote the vertical position of the

cart from OB, and dy denote the distance of the cart’s starting point from zB-axis.

The masses of the cart and payload are denoted by mc and mp, respectively. Let ζ(t)

be the heaving and φ(t) be the rolling angular displacement of the vessel. Thus, the

position vectors of the cart and the payload with respect to the ground coordinate
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Figure 3.1 : Motion of the offshore crane during containers transfer operation.

frame {OGxGyGzG} are obtained as

pcG =

⎡
⎢⎣ (y + dy)Cφ + htSφ

−(y + dy)Sφ + htCφ + ζ

⎤
⎥⎦ ,

pmG =

⎡
⎢⎣ (y + dy)Cφ + lSθ−φ + htSφ

−(y + dy)Sφ − lCθ−φ + htCφ + ζ

⎤
⎥⎦ .

It follows that, the kinetic energy, potential energy and Lagrangian of the crane

system can be respectively obtained as,

K =
1

2
mc‖ṗcG‖2 +

1

2
mp‖ṗmG‖2,

P =mc[0, g]p
c
G +mp[0, g]p

m
G ,

L =K − P .

By applying the Euler-Lagrange formulation (3.1) with q = [y l θ]T and τ =

[Fy Fl 0]
T , the equation of motion of the offshore crane system can be expressed

in the following form:

M(q)q̈ + f(t, q, q̇) = τ(t)− ωd(t), (3.7)
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where

f(t, q, q̇) = h(q, q̇) + Δh(t, q, q̇),

in which h(q, q̇) = C(q, q̇)+Kq̇+P (q̇)+G(q) and Δh(·) contains the information of

the vessel’s rolling angle, velocity and acceleration, and heaving acceleration. The

matrices and vectors in (3.7) are listed as follows:

M(q) =

⎡
⎢⎢⎢⎢⎣
mc +mp mpSθ mplCθ

mpSθ mp 0

mplCθ 0 mpl
2

⎤
⎥⎥⎥⎥⎦ ,

C(q, q̇) =

⎡
⎢⎢⎢⎢⎣
0 mpCθθ̇ mp(l̇Cθ − lSθθ̇)

0 0 −mplθ̇

0 mplθ̇ mpll̇

⎤
⎥⎥⎥⎥⎦ ,

G(q) =

[
0, −mpgCθ, mpglSθ

]T
,

K =diag(Kcy, Kcl, Kcθ),

P (q̇) =

[
Pcy sign ẏ, Pcl sign l̇, Pcθ sign θ̇

]T
,

Δh(t, q, q̇) =

[
Δh1,Δh2,Δh3

]T
,

ωd(t) =

[
ωd1(t), ωd2(t), ωd3(t)

]T
,

where

Δh1 =(mc +mp)
(
−yφ̇2 + htφ̈− (g + ζ̈)Sφ

)
+ 2mp(lθ̇φ̇Sθ − l̇φ̇Cθ)

−mpl
(
Sθφ̇

2 + Cθφ̈
)
,

Δh2 =mp

[
(yCθ + htSθ)φ̈+ 2ẏφ̇Cθ + 2lθ̇φ̇− (ySθ − htCθ + l)φ̇2

+gCθ − (g + ζ̈)Cθ−φ
]
,

Δh3 =mp

[
−2ll̇φ̇− 2ẏφ̇lSθ − (ylSθ − htlCθ − l2)φ̈− glSθ

+l(yCθ + htSθ)φ̇
2 + (g + ζ̈)lSθ−φ

]
,
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in which Kcy, Kcl and Kcθ are the viscous friction coefficients and Pcy, Pcl and Pcθ

are the Coulomb friction coefficients. By letting q1 = q, q2 = q̇ and introducing a

state variable vector xa = [qT1 qT2 ]
T ∈ R

6, system (3.7) can be expressed in state

space as,

ẋa = F (t, xa) +Ga(xa)ua(t) +H(xa)ω(t), (3.8)

where

F (t, xa) =

⎡
⎢⎣ q2

−M−1(q)f(t, q, q̇)

⎤
⎥⎦ , Ga(xa) = −H(xa)E0,

H(xa) =

⎡
⎢⎣ 03×3

−M−1(q)

⎤
⎥⎦ , E0 =

⎡
⎢⎣1 0 0

0 1 0

⎤
⎥⎦

T

,

ua(t) = [u1, u2]
T = [Fy, Fl]

T .

The linearization of system (3.8) about an operating point (xa0, ua0) can be obtained

in the following form:

ẋ(t) = (A+ΔA(t))x(t) +Bu(t) +Dω(t), (3.9)

where x(t) = xa(t) − xa0 and u(t) = ua(t) − ua0. Since l �= 0, we choose xa0 =

[0 L 0 0 0 0]T , where L > 0 is the median length of the rope. It follows that

x(t) = [y Δl θ ẏ l̇ θ̇]T , where Δl = l − L. Thus, the system matrix, the input

matrix, and the disturbance matrices are respectively obtained as follows:

A+ΔA(t) =
∂F (t, xa)

∂xa

+
2∑

j=1

∂Gaj(xa)

∂xa

uaj

∣∣∣∣∣
xa=xa0
ua=ua0

,

B = Ga(xa0),

D = H(xa0),

where Gaj(·), j = 1, 2, denotes the jth column of matrix Ga(·). The wind-induced

motion, on the other hand provides an exogenous disturbance to system (3.7). Since

the wind drag mainly affects the motion of suspended container during transfer
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operation, we assume that the exogenous force has a direct influence on the payload

sway dynamics only, such that ωd1(t) = ωd2(t) = 0. Besides, the nonlinear Coulomb

friction terms P (q̇) can be combined with vector ωd(t), such as

ω(t) = P (q̇) + ωd(t) =

⎡
⎢⎢⎢⎢⎣

Pcy sign ẏ

Pcl sign l̇

τwd(t) + Pcθ sign θ̇

⎤
⎥⎥⎥⎥⎦ .

The term τwd(t) represents the torque produced by the wind drag Fwd(t) on the

payload such that τwd(t) = Fwd(t)lCθ−φ. The magnitude of the wind drag can be

estimated by [77]:

Fwd(t) =
1

2
ρwvw(t)|vw(t)|cdSp, (3.10)

where ρw is the density of air, cd is the drag coefficient, vw(t) is the wind velocity

and Sp is the effective surface area of the payload. Finally, by taking into account

all of the disturbance and uncertainty terms, (3.9) can be rewritten as,

ẋ(t) = (A+ΔA(t))x(t) +Bu(t) +Dω(t). (3.11)

After some mathematical manipulations, the details of system matrix, input matrix

and disturbance matrices in (3.11) are obtained as follows:

A =

⎡
⎢⎣03×3 I3

A3 A4

⎤
⎥⎦ , B =

⎡
⎢⎣03×2
B2

⎤
⎥⎦ ,

ΔA(t) =

⎡
⎢⎣03×3 03×3

ΔA3 ΔA4

⎤
⎥⎦ , D =

⎡
⎢⎣03×3
D2

⎤
⎥⎦ ,

A3 =

⎡
⎢⎢⎢⎢⎣
0 0 mpg

mc

0 0 0

0 0 − (mc+mp)g

mcL

⎤
⎥⎥⎥⎥⎦ , A4 =

⎡
⎢⎢⎢⎢⎣
−Kcy

mp
0 Kcθ

mcL

0 −Kcl

mp
0

Kcy

mcL
0 − (mc+mp)Kcθ

mcmpL2

⎤
⎥⎥⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎢⎢⎣

1
mc

0

0 1
mp

− 1
mcL

0

⎤
⎥⎥⎥⎥⎦ , D2 =

⎡
⎢⎢⎢⎢⎣
− 1

mc
0 1

mcL

0 − 1
mp

0

1
mcL

0 − mc+mp

mcmpL2

⎤
⎥⎥⎥⎥⎦ ,
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ΔA3 =

⎡
⎢⎢⎢⎢⎣

(
1 + 2mp

mc

)
φ̇2 − mp

mcL
(g + ζ̈)Sφ Ψ43

−φ̈ φ̇2 Ψ53

− 2
L

(
1 + mp

mc

)
φ̇2 Ψ62 Ψ63

⎤
⎥⎥⎥⎥⎦ ,

ΔA4 =

⎡
⎢⎢⎢⎢⎣

2mp

mc
φ̇ 0 0

−2φ̇ 0 0

− 2
L

(
1 + mp

mc

)
φ̇ 0 0

⎤
⎥⎥⎥⎥⎦ ,

Ψ43 =
mp

mc

[
(L+ ht)φ̇

2 − dyφ̈+ (g + ζ̈)Cφ − g
]
,

Ψ53 = −htφ̈+ dyφ̇
2 − (g + ζ̈)Sφ,

Ψ62 =
1

L2

(
1 +

mp

mc

)
(g + ζ̈)Sφ,

Ψ63 = − 1

L

(
1 +

mp

mc

)[
htφ̇

2 − dyφ̈+ (g + ζ̈)Cφ − g
]
− mp

mc

φ̇2.

3.3.2 3-D model

The coordinates system of the offshore crane is shown in Figure 3.2 where

{OGxGyGzG}, {OBxByBzB}, and {OCxCyCzC} respectively represent the coordi-

nate frames of the ground, the vessel, and the cart. The masses of the cart and the

payload are denoted as mc and mp, respectively. Let x and y respectively denote

the position of the girder and the cart, ht denote the crane height, l denote the rope

length. The longitudinal and the lateral sway angles of the load are denoted as θ

and δ, respectively. Let Fy and Fl denote the control forces applied at the cart and

hoist, respectively. Since Fy can only control the longitudinal sway, a control torque

τδ is applied to the rope to control the lateral sway. Let ζ, φ, ψ denote the heave,

roll, and yaw of the vessel, respectively. Based on Figure 3.2, the position vectors

of the cart and and the payload with respect to {OGxGyGzG} can be obtained as
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Figure 3.2 : Motion of the offshore crane during containers transfer operation.

pcG =

⎡
⎢⎢⎢⎢⎣

xCψ + ySψSφ + htSψCφ

yCφ − htSφ

ζ − xSψ + yCψSφ + htCψCφ

⎤
⎥⎥⎥⎥⎦ ,

pmG =

⎡
⎢⎢⎢⎢⎣

xCψ + ySψSφ + htSψCφ − lCθSδ

yCφ − htSφ + lSθ

ζ − xSψ + yCψSφ + htCψCφ − lCθCδ

⎤
⎥⎥⎥⎥⎦ .

By applying the Euler-Lagrange formulation with q = [y l δ θ]T and τ = [Fy Fl τδ 0]
T ,

the dynamic model of the offshore crane system can be cast in the form of

M(q)q̈ + f(q, q̇) = τ, (3.12)
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where

M(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

mc +mp mp(−SφCθCδ−ψ + CφSθ) mplSφCθSδ−ψ

mp(−SφCθCδ−ψ + CφSθ) mp 0

mplSφCθSδ−ψ 0 mpl
2C2

θ

mpl(SφSθCδ−ψ + CφCθ) 0 0

mpl(SφSθCδ−ψ + CφCθ)

0

0

mpl
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

f(q, q̇) =[f1 f2 f3 f4]
T ,

f1 =(mc +mp)
[
−xψ̈Sφ − htφ̈− htψ̇

2SφCφ + (g + ζ̈)CψSφ −
(
ψ̇2S2

φ + φ̇2
)
y
]

+mp

[
2l̇δ̇SφCθSδ−ψ + 2l̇θ̇SφSθCδ−ψ + 2l̇θ̇CφCθ + l

(
θ̇2 + δ̇2

)
SφCθCδ−ψ

−lθ̇2CφSθ − 2lθ̇δ̇SφSθSδ−ψ
]
,

f2 =mp

[
−2l̇θ̇CθSθ − l

(
θ̇2 + δ̇2

)
C2

θ − 2ẏφ̇CφCθCδ−ψ − 2ẏψ̇SφCθSδ−ψ

− yψ̈SφCθSδ−ψ − yφ̈CφCθCδ−ψ + y
(
ψ̇2 + φ̇2

)
SφCθCδ−ψ − 2yψ̇φ̇CφCθSδ−ψ

− htψ̈CφCθSδ−ψ + htφ̈SφCθCδ−ψ + ht

(
ψ̇2 + φ̇2

)
CφCθCδ−ψ + 2htψ̇φ̇SφCθSδ−ψ

+xψ̈CθCδ−ψ + xψ̇2CθSδ−ψ − (g + ζ̈)CθCδ

]
,

f3 =mpl
[
−2lδ̇θ̇SθCθ + 2l̇δ̇C2

θ + 2ẏφ̇CφCθSδ−ψ − 2ẏψ̇SφCθCδ−ψ − yψ̈SφCθCδ−ψ

+ yφ̈CφCθSδ−ψ − y
(
ψ̇2 + φ̇2

)
SφCθSδ−ψ − 2yψ̇φ̇CφCθCδ−ψ − htψ̈CφCθCδ−ψ

− htφ̈SφCθSδ−ψ − ht

(
ψ̇2 + φ̇2

)
CφCθSδ−ψ + 2htψ̇φ̇SφCθCδ−ψ − xψ̈CθSδ−ψ

+xψ̇2CθCδ−ψ + (g + ζ̈)CθSδ

]
,
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f4 =mpl
[
2l̇θ̇ + 2ẏψ̇SφSθSδ−ψ + 2ẏφ̇CφSθCδ−ψ − 2ẏφ̇SφCθ + 2yψ̇φ̇CφSθSδ−ψ

− yφ̇2CφCθ − y
(
ψ̇2 + φ̇2

)
SφSθCδ−ψ − yφ̈SφCθ + htφ̇

2SφCθ + yψ̈SφSθSδ−ψ

− htφ̈CφCθ + yφ̈CφSθCδ−ψ − xψ̇2SθSδ−ψ − xψ̈SθCδ−ψ + lδ̇2SθCθ

− 2htψ̇φ̇SφSθSδ−ψ − ht

(
ψ̇2 + φ̇2

)
CφSθCδ−ψ + htψ̈CφSθSδ−ψ

−htφ̈SφSθCδ−ψ + (g + ζ̈)SθCδ

]
.

The control torque τδ is produced by adjusting the tensions in the additional ropes

such that

τδ = (d1 − d2)Fδ0 + (d1 + d2)Fδ

where Fδ0 is the initial tension in each additional rope and d1 and d2 are the distances

from the cart centre to the additional ropes, which are defined as follows:

d1 =
blCψ−δ√

(b− a)2 + l2 + 2l(b− a)Sψ−δ

d2 =
blCψ−δ√

(b− a)2 + l2 − 2l(b− a)Sψ−δ

in which a and b are the specific distances between spreader centres and pulleys

[103]. Then (3.12) can be rewritten as

M(q)q̈ + f(q, q̇) = τ , (3.13)

where

f(q, q̇) =

[
f1 f2 f3

f4 − (d1 − d2)Fδ0

d1 + d2

]T
,

τ =[Fy Fl Fδ 0]T .

3.4 Modelling of offshore boom cranes

In this section, we derive the dynamics models of 2-D and 3-D offshore boom

cranes. In a similar fashion of Section 3.3, we present an uncertain LTI model for

the 2-D crane and a nonlinear model for the 3-D crane.
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Figure 3.3 : Motion of the 2-D offshore boom crane.

3.4.1 2-D model

The offshore boom crane motion is represented by three generalised coordinates,

i.e., the luff angle, β, the rope length measured from the boom tip to the payload,

l, and the sway angle, θ. Let Lb denote the boom length and ht denote the height

from OB to the joint of tower and boom. Let Mb and mp denote the masses of the

boom and the payload, respectively. Let introduce L as the length from the joint of

tower and boom to a point b in the boom. Thus, the position vectors of the point b,

pbG and the payload, pmG , with respect to the ground coordinate frame {OGxGyGzG}
are respectively obtained as

pbG =

⎡
⎢⎣ LCβ−φ + htSφ

LSβ−φ + htCφ + ζ

⎤
⎥⎦ ,

pmG =

⎡
⎢⎣ LbCβ−φ + lSθ−φ + htSφ

LbSβ−φ − lCθ−φ + htCφ + ζ

⎤
⎥⎦ .
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Thus, the kinetic energy, K, potential energy, P and Lagrangian, L of the system

can be respectively obtained as,

K =
1

2

Mb

Lb

∫ Lb

0

‖ṗbG‖2dL+
1

2
mp‖ṗmG‖2,

P =
Mb

Lb

∫ Lb

0

[0, g]pbGdL+mp[0, g]p
m
G ,

L =K − P .

Hence, by using the Euler-Lagrange formulation with q = [β, l, θ]T and τ = [τβ, Fl, 0]
T ,

the dynamics of the offshore boom crane can be represented as

M(q)q̈ + f(t, q, q̇) = τ(t)− ωd(t), (3.14)

where

M(q) =

⎡
⎢⎢⎢⎢⎣

Jb +mpL
2
b −mpLbCβ−θ −mpLblSβ−θ

−mpLbCβ−θ mp 0

−mpLblSβ−θ 0 mpl
2

⎤
⎥⎥⎥⎥⎦ ,

f(t, q, q̇) =[f1, f2, f3]
T ,

f1 =
3Jb
2Lb

[
(g + ζ̈)Cβ−φ − ht(Sβφ̈+ Cβφ̇

2)
]
− Jbφ̈

+mpLb

[
lSβ−θφ̈− 2l̇Sβ−θ(θ̇ − φ̇) + lCβ−θ(θ̇ − φ̇)2 − Lbφ̈+ (g + ζ̈)Cβ−φ

−ht(Sβφ̈+ Cβφ̇
2)
]
+Kcββ̇ + Pcβ sign β̇,

f2 =mp

[
LbCβ−θφ̈− l(θ̇ − φ̇)2 + LbSβ−θ(β̇ − φ̇)2 − (g + ζ̈)Cθ−φ

+ht(Sθφ̈+ Cθφ̇
2)
]
+Kcl l̇ + Pcl sign l̇,

f3 =mp

[
LblSβ−θφ̈+ 2ll̇(θ̇ − φ̇)− LblCβ−θ(β̇ − φ̇)2 − l2φ̈+ (g + ζ̈)lSθ−φ

+htl(Cθφ̈− Sθφ̇
2)
]
+Kcθθ̇ + Pcθ sign θ̇,

ωd(t) =[0 0 τwd(t)]
T .

in which Kcβ, Kcl and Kcθ are the viscous friction coefficients and Pcβ, Pcl and

Pcθ are the Coulomb friction coefficients. Using the same notation in Section 3.3.1,
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τwd(t) represents the torque produced by the wind drag Fwd(t) on the payload such

that τwd(t) = Fwd(t)lCθ−φ, in which, the magnitude of the wind drag is estimated

by (3.10).

By letting q1 = q, q2 = q̇ and introducing a state variable vector x = [qT1 qT2 ]
T ,

the system (3.14) can be represented in state space as

ẋ(t) = F (t, x) +G(x)u(t) +H(x)ω(t), (3.15)

where

F (t, x) =

⎡
⎢⎣ q2

−M−1(q)h(t, q, q̇)

⎤
⎥⎦ , G(x) = −H(x)E0,

H(x) =

⎡
⎢⎣ 03×3

−M−1(q)

⎤
⎥⎦ , E0 =

⎡
⎢⎣1 0 0

0 1 0

⎤
⎥⎦

T

,

u(t) = [u1 u2]
T = [τβ Fl]

T , ω(t) =

⎡
⎢⎢⎢⎢⎣

Pcβ sign β̇

Pcl sign l̇

τwd(t) + Pcθ sign θ̇

⎤
⎥⎥⎥⎥⎦ .

To facilitate the control design, system (3.15) is linearised about an operating point

x0 = [βe le 0 0 0 0]T . The selection of the operating point x0 with βe �= 0, le �= 0

does not guarantee the existence of u0 such that F (t, x0) + G(x0)u0 = 0. In other

words, x0 is not an equilibrium state of (3.15). Therefore, we construct a linear

model in x and u that approximates the behaviour of (3.15) in the vicinity of the

operating state x0, that is, we wish to find constant matrices A and B such that in

a neighbourhood of x0,

F (t, x) +G(x)u ≈ Ax+ Bu.

By following the approximation method in [134], the linearisation of (3.15) in the

vicinity of x0 = [π/4 1 0 0 0 0]T is obtained as

ẋ(t) = (A+ΔA(t))x(t) +Bu(t) +Dω(t), (3.16)
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where

A+ΔA(t) =
∂F (t, x)

∂x

∣∣∣∣
x=x0

+

(
F (t, x0)− ∂F (t, x)

∂x

∣∣∣∣
x=x0

x0

)
xT
0

‖x0‖2 ,

B =G(x0),

D =H(x0).

The matrices A, B, ΔA(t) and D are obtained as follows:

A =

⎡
⎢⎣03×3 I3

A3 A4

⎤
⎥⎦ , B =

⎡
⎢⎣03×2
B2

⎤
⎥⎦ ,

ΔA(t) =

⎡
⎢⎣03×3 03×3

ΔA3 ΔA4

⎤
⎥⎦ , D =

⎡
⎢⎣03×3
D2

⎤
⎥⎦ ,

A3 =

⎡
⎢⎢⎢⎢⎣
−3

√
2(π−4)g

(π2+16)Lb
−3

√
2(π+4)g

(π2+16)Lb
0

(π+24)g
π2+16

−2(3π−2)g
π2+16

−3g
4

− 6πg
π2+16

3(π2−16)g
4(π2+16)

−g
4

⎤
⎥⎥⎥⎥⎦ ,

A4 =

⎡
⎢⎢⎢⎢⎣

− 3Kcβ

MbL
2
b

−3
√
2Kcl

2MbLb
−3

√
2Kcθ

2MbLb

−3
√
2Kcβ

2MbLb
− (2Mb+3mp)Kcl

2Mbmp
−3Kcθ

2Mb

−3
√
2Kcβ

2MbLb
−3Kcl

2Mb
− (2Mb+3mp)Kcθ

2Mbmp

⎤
⎥⎥⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎢⎢⎣

3
MbL

2
b

3
√
2

2MbLb

3
√
2

2MbLb

2Mb+3mp

2Mbmp

3
√
2

2MbLb

3
2Mb

⎤
⎥⎥⎥⎥⎦ , D2 =

⎡
⎢⎢⎢⎢⎣
− 3

MbL
2
b

− 3
√
2

2MbLb
− 3

√
2

2MbLb

− 3
√
2

2MbLb
−2Mb+3mp

2Mbmp
− 3

2Mb

− 3
√
2

2MbLb
− 3

2Mb
−2Mb+3mp

2Mbmp

⎤
⎥⎥⎥⎥⎦ ,

ΔA3 =

⎡
⎢⎢⎢⎢⎣
Ψ41 Ψ42 0

Ψ51 Ψ52 Ψ53

Ψ61 Ψ62 Ψ63

⎤
⎥⎥⎥⎥⎦ , ΔA4 =

⎡
⎢⎢⎢⎢⎣

0 0 0
√
2Lbφ̇ 0 −2φ̇

−√
2Lbφ̇ 2φ̇ 0

⎤
⎥⎥⎥⎥⎦ ,

Ψ41 = − 1

(π2 + 16)Lb

(
24(g + ζ̈)Sφ−π

4
+ 6π(g + ζ̈)Cφ−π

4
+ (12− 3π)

√
2htφ̇

2

− (4πLb + (12 + 3π)
√
2ht)φ̈+ (12− 3π)

√
2g
)
,
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Ψ42 =
1

(π2 + 16)Lb

(
− 24(g + ζ̈)Cφ−π

4
+ 6π(g + ζ̈)Sφ−π

4
+ (12 + 3π)

√
2htφ̇

2

+ (16Lb + (12− 3π)
√
2ht)φ̈+ (12 + 3π)

√
2g
)
,

Ψ51 = − 1

π2 + 16

(
− (24 + π)(g + ζ̈)Cφ + 3π(g + ζ̈)Sφ

+ ((8 + 2π)
√
2Lb + (24 + π)ht)φ̇

2 − 3πhtφ̈+ (24 + π)g
)
,

Ψ52 =
1

π2 + 16

(
(4− 6π)(g + ζ̈)Cφ − 12(g + ζ̈)Sφ

+ ((−8 + 2π)
√
2Lb + (−4 + 6π)ht + π2 + 16)φ̇2 + 12htφ̈+ (−4 + 6π)g

)
,

Ψ53 = −3

4
(g + ζ̈)Cφ +

1

4
(g + ζ̈)Sφ +

1

4
(2
√
2Lb + 3ht)φ̇

2 − 1

4
htφ̈+

3

4
g,

Ψ61 =
1

π2 + 16

(
− 6π(g + ζ̈)Cφ + (−24 + 2π)(g + ζ̈)Sφ

+ ((−8 + 4π)
√
2Lb + 6πht)φ̇

2 + ((24− 2π)ht + 4π)φ̈+ 6πg
)
,

Ψ62 =
1

4(π2 + 16)

(
(−48 + 3π2)(g + ζ̈)Cφ + (16 + 24π − π2)(g + ζ̈)Sφ

+ ((32 + 8π − 2π2)
√
2Lb + (48− 3π2)ht)φ̇

2

+ ((−16− 24π + π2)ht + 64)φ̈+ (48− 3π2)g
)
,

Ψ63 = −1

4
(g + ζ̈)Cφ +

3

4
(g + ζ̈)Sφ +

1

4
(2
√
2Lb + ht)φ̇

2 − 3

4
htφ̈+

1

4
g,

3.4.2 3-D model

The offshore crane system considered in this study consists of a boom crane

mounted on a ship vessel as visualize in Figure 3.4. The coordinates system of

the offshore crane is shown in Figure 3.5, where {OGxGyGzG} and {OBxByBzB}
respectively represent the coordinate frames of the ground and the vessel. The

crane system motion is represented by five generalized coordinates; in which, α is

the slew angle of the tower, β is the luff angle of the boom, l is the length of the

rope, θ1 is the tangential pendulation due to the motion of the tower and θ2 is the

radial sway due to the motion of the boom. The values of the boom length, Lb, and

the tower height, ht (measured from crane base {0} to joint {1}), are considered
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Figure 3.4 : An offshore boom crane.

0z

0x

0y}0{
α

β
1θ 2θ

}1{

}2{

}3{Bz

Bx

By
BO

Gz

Gx
Gy

GO

bL

th
l

pm

Figure 3.5 : Motion of the offshore boom crane.

as constants. By referring to Figure 3.5, the position vectors of the links {1} and

{2}, and payload (point {3}) with respect to the frame {O0x0y0z0} are respectively

obtained as

p1
0 = [0 0 ht]

T ,

p2
0 = [LbCαCβ LbSαCβ ht + LbSβ]

T ,

p3
0 =

⎡
⎢⎢⎢⎢⎣
LbCαCβ − lSαSθ1Cθ2 + lCαSθ2

LbSαCβ + lCαSθ1Cθ2 + lSαSθ2

ht + LbSβ − lCθ1Cθ2

⎤
⎥⎥⎥⎥⎦ .
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Let define the position vector of the crane base with respect to the frame {OBxByBzB}
as

p0
B = [pbx pby pbz]

T .

The homogeneous transformation matrix from coordinates frame {OBxByBzB} to

frame {OGxGyGzG} and from frame {O0x0y0z0} to frame {OBxByBzB} are respec-

tively given by

TB
G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cψ SψSφ SψCφ 0

0 Cφ −Sφ 0

−Sψ CψSφ CψCφ ζ

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

T 0
B =

⎡
⎢⎣ I3 p0

B

01×3 1

⎤
⎥⎦ ,

where φ and ψ are the rolling and pitching angular displacements of the vessel,

respectively, and ζ is the heaving of the vessel. Therefore, the homogeneous trans-

formation matrix from coordinates frame {O0x0y0z0} to frame {OGxGyGzG} can be

obtained as

T 0
G = TB

G T 0
B.

The dynamic model of the offshore crane system can be cast in the form of

M(q)q̈ + C(q, q̇)q̇ + Bq̇ +G(q) = τ, (3.17)

where M(q) is the inertia, C(q, q̇) is the centrifugal-Coriolis, B is the friction, and

G(q) is the gravity matrices. The system matrices are obtained as follows:

M(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 0 0

m41 m42 0 m44 0

m51 m52 0 0 m55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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C(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15

c21 0 c23 c24 c25

c31 c32 0 c34 c35

c41 c42 c43 c44 c45

c51 c52 c53 c54 c55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =diag(b1, b2, b3, b4, b5),

G(q) =mpg

[
0 LbCβ −Cθ1Cθ2 lSθ1Cθ2 lCθ1Sθ2

]T
,

where

m11 =Jα +mpl
2 +mpL

2
bC

2
β + 2mpLblCβSθ2 −mpl

2C2
θ1
C2

θ2
,

m12 =m21 = mpLblSβSθ1Cθ2 ,

m13 =m31 = mpLbCβSθ1Cθ2 ,

m14 =m41 = mp(LblCβ + l2Sθ2)Cθ1Cθ2 ,

m15 =m51 = −mp(LblCβSθ2 + l2)Sθ1 ,

m22 =Jβ +mpL
2
b ,

m23 =m32 = −mpLb(SβSθ2 + CβCθ1Cθ2),

m24 =m42 = mpLblCβSθ1Cθ2 ,

m25 =m52 = mpLbl(−SβCθ2 + CβCθ1Cθ2),

m33 =mp,

m44 =mpl
2C2

θ2
,

m55 =mpl
2,

c11 =mpll̇(1− C2
θ1
C2

θ2
) +mpLbl̇CβSθ2 +mp(l

2C2
θ1
Sθ2 + LblCβ)Cθ2 θ̇2 +mpl

2Sθ1Cθ1C
2
θ2
θ̇1

−mp(L
2
bCβ + LblSθ2)Sββ̇,

c12 =mpLblCβSθ1Cθ2 β̇ −mpSβα̇(L
2
bCβ + LblSθ2),
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c13 =mplCθ1Cθ2Sθ2 θ̇1 +mpLbCβ(Sθ2α̇ + Cθ1Cθ2 θ̇1 − Sθ1Sθ2 θ̇2) +mplα̇(1− C2
θ1
C2

θ2
)

−mplSθ1 θ̇2,

c14 =mpl
2Sθ1Cθ1C

2
θ2
α̇ +mpl̇Cθ1Cθ2(LbCβ + lSθ2)−mp(LblCβ + l2Sθ2)Sθ1Cθ2 θ̇1

−mp(LblCβSθ2 + l2S2
θ2
)Cθ1 θ̇2,

c15 =mp(LblCβ + l2C2
θ1
Sθ2)Cθ2α̇−mpl̇Sθ1(l + LbCβSθ2)−mpLblCβSθ1Cθ2 θ̇2

−mp(LblCβSθ2 + l2S2
θ2
)Cθ1 θ̇1,

c21 =mpSβ(L
2
bCβα̇ + LblSθ2α̇ + Lbl̇Sθ1Cθ2 + LblCθ1Cθ2 θ̇1 − LblSθ1Sθ2 θ̇2),

c23 =mpLbSθ1Cθ2(Sβα̇ + Cβ θ̇1) +mpLb(CβSθ1Cθ2 θ̇1 − SβCθ2 θ̇2 + CβCθ1Sθ2 θ̇2),

c24 =mpLblCθ1Cθ2(Sβα̇ + Cβ θ̇1) +mpLbCβSθ1(l̇Cθ2 − lSθ2 θ̇2),

c25 =−mpLblSβSθ1Sθ2α̇−mpLbl̇(SβCθ2 + CβCθ1Sθ2)−mpLblCβSθ1Sθ2 θ̇1

+mpLblθ̇2(SβSθ2 + CβCθ1Sθ2),

c31 =mpα̇(−l + lC2
θ1
C2

θ2
− LbCβSθ2)−mpLbSβSθ1Cθ2 β̇ −mplCθ1Sθ2Cθ2 θ̇1 +mplSθ1 θ̇2,

c32 =mpLb(SβCθ1Cθ2 β̇ − SβSθ1Cθ2α̇− CβSθ2 β̇),

c34 =−mpl(C
2
θ2
θ̇1 + Cθ1Sθ2Cθ2α̇),

c35 =mpl(Sθ1α̇− θ̇2),

c41 =mpCθ1Cθ2(−l2Sθ1Cθ2α̇− LblSββ̇ + ll̇Sθ2 + l2Cθ2 θ̇2),

c42 =−mpLblSβCθ2(Cθ1α̇ + Sθ1 β̇),

c43 =mpl(Cθ1Sθ2Cθ2α̇ + C2
θ2
θ̇1),

c44 =mpll̇C
2
θ2
−mpl

2Sθ2Cθ2 θ̇2,

c45 =mpl
2(Cθ1C

2
θ2
α̇− Sθ2Cθ2 θ̇1),

c51 =−mpCθ2α̇(LblCβ + l2C2
θ1
Sθ2) +mpSθ1(LblSβSθ2 β̇ − ll̇)−mpl

2Cθ1C
2
θ2
θ̇1,

c52 =mpLbl(SβSθ1Sθ2α̇− CβCθ2 β̇ − SβCθ1Sθ2 β̇),

c53 =mpl(−Sθ1α̇ + θ̇2),

c54 =mpl
2(−Cθ1C

2
θ2
α̇ + Sθ2Cθ2 θ̇1),

c55 =mpll̇,
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in which mp is the payload mass, and Jα and Jβ are the inertias of the tower and the

boom, respectively. The vector of generalized coordinates q and the input vector τ

are respectively defined as q = [α β l θ1 θ2]
T and τ = [τα τβ Fl 0 0]T .

In order to find the payload swing angle with respect to the earth coordinates

frame, we express all the position vectors of the links and payload with respect to

the frame {OGxGyGzG}, such that

p̃i
G = T 0

Gp̃
i
0, i = 1, 2, 3,

where p̃i
G and p̃i

0 are the augmented vectors of homogeneous representation, i.e.,

p̃i
G = [(pi

G)
T 1]T and p̃i

0 = [(pi
0)

T 1]T . Then, we introduce the function of vector

projection to the xNyN -plane as

ρ(pi
G) = [pi

G · x̂G pi
G · ŷG 0]T ,

where x̂G and ŷG are the unit vectors along xG- and yG-axes, respectively. Therefore,

the projections of unit vectors in the radial and tangential directions of the boom

motion to the xGyG-plane are respectively obtained as

r̂ =
ρ(p2

G)− ρ(p1
G)

‖ρ(p2
G)− ρ(p1

G)‖
,

t̂ = ẑG × r̂,

where ẑG is the unit vectors along zG-axis. Hence, the tangential pendulation and

radial sway with respect to the earth coordinate frame {OGxGyGzG} are respectively

obtained as ⎧⎪⎪⎨
⎪⎪⎩

δ1 =arctan
(p3

G − p2
G) · t̂

(p3
G − p2

G) · ẑG
,

δ2 =arcsin
(p3

G − p2
G) · r̂

l
.

(3.18)

We denote δ(q) = [δ1 δ2]
T for the purpose of synthesizing the control algorithm.
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3.5 Summary

The derivations of offshore gantry cranes and offshore boom cranes model have

been presented. Based on the generalisation of system dynamics by using the Euler-

Lagrange formulation, the offshore cranes model have been derived with full-scale

system states with respect to the dimension of the systems. The linearisation of 2-D

offshore gantry crane model has also been presented.
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Chapter 4

Sliding Mode Control Approaches for

Underactuated Mechanical Systems with

Application to Cranes

4.1 Introduction

In this chapter, generic forms of sliding mode controllers for a class of underac-

tuated mechanical systems (UMS) are proposed. Initially, the problem formulation

which includes the trajectory tracking problem is presented. The basic formulation

of the sliding mode control for UMS is introduced, by defining the sliding function as

a linear combination of the actuated and unactuated position and velocity tracking

errors. Firstly, an adaptive fuzzy sliding mode control law is proposed to deal with

model uncertainties in the UMS. Secondly, a second-order sliding mode controller for

UMS is designed in which an observer is utilised to estimate the system velocities.

The performances of the proposed control laws are illustrated using gantry crane

systems.

4.2 Problem formulation

Consider the Euler-Lagrange equation for UMS (2.3) with uncertainties in the

following form:

M(q)q̈ + ϕ(q, q̇) + h(q, q̇) = Eu, (4.1)

with q ∈ R
n, u ∈ R

m, M(q) ∈ R
n×n, ϕ(q, q̇) = C(q, q̇) + G(q) ∈ R

n, and E =

[Im 0T(n−m)×m]
T ∈ R

n×m. The term h(q, q̇) ∈ R
n is the vector of uncertainties in

the system. Similarly, after partitioning the vector of generalized coordinates into
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actuated and unactuated vectors, i.e. q = [qTa qTu ]
T with qa ∈ R

m and qu ∈ R
n−m,

(4.1) can be written as

Maa(q)q̈a +Mau(q)q̈u + ϕa(q̇, q) + ha(q̇, q) =u, (4.2)

MT
au(q)q̈a +Muu(q)q̈u + ϕu(q̇, q) + hu(q̇, q) =0. (4.3)

By substituting q̈u = −M−1
uu (q)(M

T
au(q)q̈a + ϕu(q, q̇) + hu(q, q̇)) obtained from (4.3)

into (4.2), we get

q̈a = ϕa(q, q̇) + ha(q, q̇) +Da(q)u, (4.4)

where

ϕa(q, q̇) =−D−1
a (q)

(
ϕa(q, q̇)−Mau(q)M

−1
uu (q)ϕu(q, q̇)

)
,

ha(q, q̇) =−D−1
a (q)

(
ha(q, q̇)−Mau(q)M

−1
uu (q)hu(q, q̇)

)
,

Da(q) =
(
Maa(q)−Mau(q)M

−1
uu (q)M

T
au(q)

)−1
.

Consequently, it follows that

q̈u = ϕu(q, q̇) + hu(q, q̇) +Du(q)u, (4.5)

where

ϕu(q, q̇) =−M−1
uu (q)

(
MT

au(q)ϕa(q, q̇) + ϕu(q, q̇)
)
,

hu(q, q̇) =−M−1
uu (q)

(
MT

au(q)ha(q, q̇) + hu(q, q̇)
)
,

Du(q) =−M−1
uu (q)M

T
au(q)Da(q).

Let qd denote the desired trajectory vector, with qd = [(qda)
T (qdu)

T ]T . Hence, the

vector of trajectory tracking error is

e(t) = q − qd =

⎡
⎢⎣qa − qda

qu − qdu

⎤
⎥⎦ =

⎡
⎢⎣ea
eu

⎤
⎥⎦ . (4.6)

The problem is to find suitable control strategies to drive the tracking error to zero

subject to nonlinearity and uncertainty of the system.
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4.3 First-order sliding mode control

The sliding functions can be defined as a weighted combination of position track-

ing error and velocity tracking error such that

s(t) = Γė(t) + Λe(t) = Γaėa + Γuėu + Λaea + Λueu, (4.7)

where Γ = [Γa Γu] and Λ = [Λa Λu], with Γa,Λa ∈ R
m×m and Γu,Λu ∈ R

m×(n−m).

From (4.6), (4.7) can be written as

s(t) = Γaq̇a + Γuq̇u − q̇r, (4.8)

where q̇r = Γaq̇
d
a +Γuq̇

d
u−Λaea−Λueu. Then the derivative of the sliding function is

ṡ(t) = Γaq̈a + Γuq̈u − q̈r. (4.9)

Substituting (4.4) and (4.5) into (4.9) yields

ṡ(t) = f(q, q̇) + g(q)u− q̈r + h(q, q̇), (4.10)

where

f(q, q̇) =Γaϕa(q, q̇) + Γuϕu(q, q̇),

g(q) =ΓaDa(q) + ΓuDu(q),

h(q, q̇) =Γaha(q, q̇) + Γuhu(q, q̇).

We assume there exist a known positive scalar hM such that ‖h(q, q̇)‖ ≤ hM . Thus,

the 1-SMC law is proposed as

u = g−1(q) [−f(q, q̇) + q̈r − Φs− (hM + η) sign s] , (4.11)

where Φ, η > 0. To prove the stability of the system, choose the Lyapunov function

candidate to be

V =
1

2
s(t)T s(t).
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Hence, the time derivative of V is

V̇ =sT (t)ṡ(t)

=sT (t)
[
f(q, q̇) + g(q)u− q̈r + h(q, q̇)

]
=sT (t)

[
h(q, q̇)− (hM + η) sign s− Φs

]
≤− sTΦs− η‖s(t)‖,

which shows that sliding on the surface s(t) = 0 is attained in finite time.

4.4 Adaptive fuzzy sliding mode control

In this section, an adaptive fuzzy logic sliding mode control (AFSMC) is pro-

posed for underactuated mechanical systems described in Section 4.2. The system

dynamics subject to nonlinear frictions and disturbances are approximated with

fuzzy logic. Based on the approximated functions of the system dynamics, the

derivative of a sliding function in the form of (4.10) is composed and a fuzzy adap-

tive law for sliding mode controller is proposed. The adaptive law is designed based

on the Lyapunov method. Besides, the stability of the closed-loop system is pre-

sented in the Lyapunov sense. The robust performance of the AFSMC is illustrated

using a gantry crane system.

4.4.1 Fuzzy logic control

For a fuzzy logic controller with p inputs, v1, . . . , vj, . . . , vp, and using the center

of average defuzzification, it can be represented as

u =

l∑
k=1

p∏
j=1

μFk
j
(vj)θk

l∑
k=1

p∏
j=1

μFk
j
(vj)

, (4.12)

where l is the number of fuzzy rules, F k
j is the jth fuzzy set corresponding to the

kth fuzzy rule, and θk is the centroid of the kth fuzzy set corresponding to the
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controller’s output, u. By introducing regressor of kth fuzzy rule as

ζk =

r∏
j=1

μFk
j
(vj)

l∑
k=1

r∏
j=1

μFk
j
(vj)

,

(4.12) can be written as

y =
l∑

k=1

ζkθk = θT ζ, (4.13)

where θ = [θ1, · · · , θk, · · · , θl]T and ζ = [ζ1, · · · , ζk, · · · , ζl]T . Now we consider the

vector of the centroid of fuzzy sets as a function of time, that is,

θ(t) = [θ1(t), . . . , θk(t), . . . , θl(t)]
T ,

where θ̇k(t) = ωk(t), k = 1, . . . , l. The function θ(t) can be ensured to lie between its

lower bound θk and upper bound θk, that is, θk ≤ θk ≤ θk by defining the following

projection function:

θ̇k(t) = proj
θk

(ωk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if θk = θk and ωk(t) < 0

0 if θk = θk and ωk(t) > 0

ωk(t) otherwise

(4.14)

In the following, an AFSMC is proposed by using the notion introduced in this

section.

4.4.2 Adaptive fuzzy sliding mode controller

Suppose that for i = 1, . . . ,m, the derivative of the sliding function (4.10) can

be expressed as

ṡi = fi(q, q̇) + gi(q, q̇)ui − q̈ri + hi(q, q̇). (4.15)

Here, we assume that |hi(q, q̇)| ≤ hMi
, ∀i = 1, . . . ,m, where hMi

> 0 is known. It

follows that, the sliding mode control (4.11) can be modified as

ui =
1

gi(x)
[−fi(x)− Φisi + q̈ri ]−Ki sign si, (4.16)
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where x = [qT q̇T ]T . The first term on the right-hand side of (4.16) is the equivalent

control which maintains the sliding motion on the sliding surface, and the second

term is the switching control which forces the system trajectories towards the slid-

ing surface. We now consider that the functions fi(x) and gi(x) are uncertain.

Hence, we approximate fi(x) and gi(x) with fuzzy logic systems θTfiξfi and θTgiξgi ,

respectively.

Let θ∗fi and θ∗gi be optimal vectors such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ∗fi = argmin
θfi

sup
x∈Ω

|fi(x)− θTfiξfi(x)|,

θ∗gi = argmin
θgi

sup
x∈Ω

|gi(x)− θTgiξgi(x)|,
(4.17)

where Ω ⊆ R
2n is a region to which the state x is constrained. We assume that⎧⎪⎨

⎪⎩
|fi(x)− θ∗fi

T ξfi(x)| ≤ dfi ,

|gi(x)− θ∗gi
T ξgi(x)| ≤ dgi ,

∀x ∈ Ω, (4.18)

where dfi > 0 and dgi > 0, and each kth element of θ∗fi and θ∗gi is constant and

bounded as follows: ⎧⎪⎨
⎪⎩

θfik
≤ θ∗fik ≤ θfik ,

θgik
≤ θ∗gik ≤ θgik ,

∀k = 1, . . . , l. (4.19)

For the purpose of designing the sliding mode control, we choose the following

adaptation laws: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ̇fi = proj
θfi

(γfisiξfi),

θ̇gi = proj
θgi

(γgisiξgiwi),

(4.20)

where γfi > 0 and γgi > 0 are design parameters and

wi =
1

θTgiξgi
(−θTfiξfi + q̈ri ). (4.21)

Then, we define the adaptation parameter errors δfi and δgi respectively as⎧⎪⎨
⎪⎩

δfi = θfi − θ∗fi ,

δgi = θgi − θ∗gi .
(4.22)
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Since θ∗fi and θ∗gi are constants, and from (4.20), the time derivatives of the adapta-

tion parameter errors are obtained as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ̇fi = θ̇fi = proj
θfi

(γfisiξfi),

δ̇gi = θ̇gi = proj
θgi

(γgisiξgiwi).

(4.23)

Finally, by assuming that gi(q, q̇) has a positive lower bound, i.e., there exists a

constant g
i
such that gi(q, q̇) ≥ g

i
> 0, ∀i = 1, . . . ,m, we propose the AFSMC as

follows:

ui = wi − 1

g
i

Φisi −Ki sign si (4.24)

=
1

θTgiξgi
(−θTfiξfi + q̈ri )−

1

g
i

Φisi −Ki sign si.

4.4.3 Stability analysis

To prove the stability by means of control algorithm (4.24), we choose the fol-

lowing Lyapunov function candidate:

V =
1

2

m∑
i=1

(
s2i +

1

γfi
δTfiδfi +

1

γgi
δTgiδgi

)
.

Then, its time derivative is

V̇ =
m∑
i=1

(
siṡi +

1

γfi
δTfi δ̇fi +

1

γgi
δTgi δ̇gi

)

=
m∑
i=1

(
si(fi + giui − q̈ri ) +

1

γfi
δTfi δ̇fi +

1

γgi
δTgi δ̇gi

)
. (4.25)

From (4.21), we have q̈ri = θTfiξfi + θTgiξgiwi. Substituting this equation together with

(4.23) and (4.24) into (4.25) yields

V̇ =
m∑
i=1

[
si

(
−gi
g
i

Φisi + (fi − θTfiξfi) + (gi − θTgiξgi)wi − giKi sign si

)

+
1

γfi
δTfi proj

θfi

(γfisiξfi) +
1

γgi
δTgi proj

θgi

(γgisiξgiwi)

]
. (4.26)
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From (4.18) and (4.22), (4.26) becomes

V̇ ≤
m∑
i=1

[
si

(
−gi
g
i

Φisi − δTfiξfi − δTgiξgiwi − giKi sign si

)

+
1

γfi
δTfi proj

θfi

(γfisiξfi) +
1

γgi
δTgi proj

θgi

(γgisiξgiwi)

]

=
m∑
i=1

[
−gi
g
i

Φis
2
i − giKi|si|+ δTfi

(
1

γfi
proj
θfi

(γfisiξfi)− siξfi

)

+δTgi

(
1

γgi
proj
θgi

(γgisiξgiwi)− siξgiwi

)]
. (4.27)

From the definition of projection function (4.14), one can verify that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δTfi

(
1

γfi
proj
θfi

(γfisiξfi)− siξfi

)
≤ 0,

δTgi

(
1

γgi
proj
θgi

(γgisiξgiwi)− siξgiwi

)
≤ 0,

By applying the above inequalities to (4.27), it gives

V̇ ≤
m∑
i=1

(
−gi
g
i

Φis
2
i − giKi|si|

)

≤
m∑
i=1

(
−gi
g
i

Φis
2
i

)

≤
m∑
i=1

(−Φis
2
i ),

since gi ≥ g
i
. Thus, it implies that the surface s = 0 is globally reached in a finite

time.

4.4.4 Results and discussion

In this example, the adaptive fuzzy sliding mode control is applied to the two-

dimensional gantry crane system as shown in Figure 4.1. The motion of the crane

system is described in Figure 4.2, where x is the trolley position, φ is the swing angle

of the hoisting rope, l is the rope length, M and m are the masses of the trolley

and payload, respectively, and Fx is the trolley driving force. The crane dynamics

is described by the following equation:
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Figure 4.1 : Two-dimensional gantry crane system at UTS laboratory.

x

m

l

MxF

Y

X

Figure 4.2 : Motion of the gantry crane system.

⎡
⎢⎣M +m mlCφ

mlCφ ml2

⎤
⎥⎦
⎡
⎢⎣ẍ
φ̈

⎤
⎥⎦+

⎡
⎢⎣−mlSφẋφ̇+ Bxẋ+ Px sign ẋ

mg0lSφ + Bφφ̇+ Pφ sign φ̇

⎤
⎥⎦+

⎡
⎢⎣dx(t)
dφ(t)

⎤
⎥⎦ =

⎡
⎢⎣u
0

⎤
⎥⎦ , (4.28)

in which the vector of generalized coordinates is defined as q = [qa qu]
T = [x φ]T .

In (4.28), g0 is the gravitational acceleration, Bx and Bφ denote the viscous friction
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coefficients, and Px and Pφ denote the Coulomb friction coefficients associated with

the trolley and rope sway motions, respectively.

The trajectory tracking problem consists of the positional control of the trolley

while the sway angle must be suppressed to zero. Thus, the desired trajectory vector

is defined as qd(t) = [qda qdu]
T = [xd(t) 0]T . Therefore, from (4.8), the sliding function

is determined as

s(t) = Γaẋ+ Γuφ̇− q̇r(x, φ)

where q̇r(x, φ) = (Γaẋ
d(t)−Λa(x−xd(t))−Λuφ). Then time derivative of the sliding

function is

ṡ(t) = Γaẍ+ Γuφ̈− q̈r(x, φ)

which can be expressed in the form of

ṡ(t) = f(x, φ, ẋ, φ̇) + g(x, φ)u− q̈r(x, φ) + d(x, φ, ẋ, φ̇).

By assuming that the functions f(x, φ, ẋ, φ̇) and g(x, φ) are unknown apart from

their bounds, we can propose the AFSMC, in which the control signal u = Fx is

defined as follows:

u =
1

θTg ξg
(−θTf ξf + q̈r)− 1

g
Φs−K sign s, (4.29)

where θf and θg are the vectors of the centroid of the membership functions and ξf

and ξg are the corresponding regressor vectors, g is the known positive lower bound

of g(x, φ), Φ is the positive design parameter, and K is the control gain.

In this work, we use adaptive fuzzy rules of the following form:

Rule k: IF s is Ak AND ṡ is Bk, THEN y = θk

for k = 1, . . . , 12, where Ak = {N,P} and Bk = {LN,N, SN, SP,P,LP} are the
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linguistic variables. The membership functions are described as follows:

μP,N(s) = min

(
1,max

(
0,

2± s

4

))
,

μLP,LN(ṡ) = min

(
1,max

(
0,

−1.5± ṡ

18.5

))
,

μP,N(ṡ) = min(0.5,max(−0.5,−1± ṡ)) + min

(
0.5,max

(
−0.5,

10.75± ṡ

18.5

))
,

μSP,SN(ṡ) = max(0, 1− |ṡ∓ 0.5|).

The nominal values of the crane parameters are listed as M = 2.70 kg, m = 2.24

kg, l = 0.795 m, g0 = 9.8065 m-s−2, Bx = 0.17 N/m-s−1, Bφ = 0.04 N-m/rad-s−1,

Px = 0.90 N, Pφ = 0.45 N-m and the disturbances, are assumed bounded such

that |dx(t)| ≤ 10 N and |dφ(t)| ≤ 20 N-m. The controller parameters used are

Γa = 1, Γu = 0.5, Λa = 40, Λu = −10, γf = 5000, γg = 1000, g = 1/(M + m),

Φ = 250, and K = 100. The bounds on the adaptation parameters are chosen

as θf = −200, θf = 200, θg = 50, and θg = 150. The initial cart position is

(x0, φ0) = (0 m, 0.2 rad).

Figures 4.3(a) and (b) show the trolley position and sway angle responses with-

out the presence of external disturbance. Figure 4.3(a) shows a good trajectory

tracking, and Figure 4.3(b) shows the sway angle of the hoisting rope is suppressed

from an initial value. The control effort for this corresponding case is shown in

Figure 4.3(c).

Figure 4.4 shows the system responses and control effort with the presence of

external disturbances. As can be seen in Figures 4.4(a) and 4.4(b), the proposed

control system appears to be insensitive to the presence of the disturbances. How-

ever, higher control effort is required as shown in Figure 4.4(c).

The payload of the crane system consists of two steel blocks with 1.00 kg weight

each and a carrier of 0.25 kg weight as shown in Figure 4.1. To demonstrate the

robustness of the controller, the payload is varied between 1.00 kg to 2.25 kg, which
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Figure 4.3 : (a) Trolley position; (b) Sway angle; and (c) Control effort; when

dx = dφ = 0.

reflects the process of loading/unloading of the gantry crane. From Figures 4.5(a)

and 4.5(b), it is shown that the trajectory tracking of the trolley position and the

sway angle of the hoisting rope are unperturbed by payload variations.
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Figure 4.4 : (a) Trolley position; (b) Sway angle; and (c) Control effort; when dx �= 0

and dφ �= 0.

4.5 Second-order sliding mode control

In this section, an observer-based control scheme based on the second-order

sliding modes is proposed for underactuated systems described in Section 4.2, subject

to modelling uncertainties, nonlinear frictions and disturbances. To remove the

chattering effect, we consider higher-order sliding modes. Here, at first, a second-



77

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

Tr
ol

le
y 

po
si

tio
n 

(m
) Actual

Reference

(a)

0 5 10 15 20 25 30

-0.2

-0.1

0

0.1

0.2

Time (s)

S
w

ay
 a

ng
le

 (r
ad

)

(b)

0 5 10 15 20 25 30
-20

-10

0

10

20

Time (s)

C
on

tro
l e

ffo
rt 

(N
)

(c)

0 5 10 15 20 25 30
0

1

2

3

Time (s)

P
ay

lo
ad

 m
as

s 
(k

g)

(d)

Figure 4.5 : (a) Trolley position; (b) Sway angle; (c) Control effort; and (d) Payload

mass; when dx �= 0, dφ �= 0, and the payload mass is varied.
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order sliding mode observer is designed as the extension of [34] to estimate the

velocities which are part of generalized vector coordinates of the system. Based

on the measured outputs and estimated state variables, a 2-SMC is then proposed

for trajectory tracking. The proposed observer-based controller is illustrated by

using a 3-D gantry in the presence of Coulomb friction and high-frequency external

disturbance.

4.5.1 Second-order sliding mode controller

Suppose that for i = 1, . . . ,m, the derivative of the sliding function in (4.10) can

be expressed as

ṡi(t) = ai(t,x) + bi(t,x)ui, (4.30)

where x = [qT q̇T ]T , ai(t,x) = fi(q, q̇) − q̈ri + hi(q, q̇), and bi(t,x) = gi(q, q̇). It

follows that, the second derivative of the sliding function is obtained in the form of

s̈i(t) = a′i(t,x, ui) + b(t,x)u̇i (4.31)

where a′i(t,x, ui) = ȧi(t,x) + ḃi(t,x)ui. Suppose that the following conditions

0 < Kmi
≤ bi(t,x) ≤ KMi

, |a1i(t,x, ui)| ≤ CMi
(4.32)

hold globally for some Kmi
, KMi

, CMi
> 0. Let the super-twisting controller defined

as [18, 19]

ui(t) = vi(t)− ρi|si| 12 sign si,
v̇i(t) = −μi sign si

(4.33)

subject to the following sufficient condition

μi >
CMi

Kmi

, ρ2i > 2
μiKMi

+ CMi

Kmi

can guarantee the finite time stability of the sliding manifold S = {x : ṡ(x) =

s(x) = 0}. Then (4.31) and (4.33) imply the differential inclusion [112]

s̈i(t) ∈ −[μiKmi
− CMi

, μiKMi
+ CMi

] sign si − ρi
2
[Kmi

, KMi
]
ṡi

|si| 12
.
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4.5.2 Second-order sliding mode observer

Here, we use the same form of the sliding function in Section 4.3. For convenience,

let renumber equations (4.7)-(4.10) as follows:

s(t) =Γaėa + Γuėu + Λaea + Λueu (4.34)

=Γaq̇a + Γuq̇u − q̇r, (4.35)

ṡ(t) =Γaq̈a + Γuq̈u − q̈r (4.36)

=f(q, q̇) + g(q)u− q̈r + h(q, q̇). (4.37)

To realise the sliding function in the form of (4.35), we require the availability of

position and velocity. Here, we design a second-order sliding mode observer for

system (4.1) subject to Coulomb frictions terms and uncertainties. Let us represent

the system (4.1) in the following form:

M(q)q̈ + C(q, q̇)q̇ +Dq̇ + P (q̇) +G(q) + d(t) = τ, (4.38)

where D ∈ R
n×n is the matrix of viscous frictions, P (q̇) is the vector of Coulomb

frictions, and d(t) is the vector of uncertainties. By letting x = [xT
1 xT

2 ]
T , where

x1 = q, x2 = q̇, (4.38) can be written in the state space form as follows:

ẋ1 = x2

ẋ2 = f(t, x1, x2, u) + ξ(t, x1, x2, u), u = U(t, x1, x2),
(4.39)

where the nominal part of the system dynamics is represented by the function

f(t, x1, x2, u) = −M̂−1(x1)[Ĉ(x1, x2)x2 + D̂x2 + P̂ (x2) + Ĝ(x1)− u],

containing the known nominal functions M̂ , Ĉ, D̂, P̂ and Ĝ. The uncertainties are

lumped in the term ξ(t, x1, x2, u). Thus, the super-twisting observer has the form of

˙̂x1 = x̂2 + w1

˙̂x2 = f(t, x1, x̂2, u) + w2,
(4.40)
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where x̂1 and x̂2 are the state estimates. The correction terms w1 and w2 are output

injections of the form

w1 = diag{γi} diag{|x1i − x̂1i| 12} sign(x1 − x̂1)

w2 = diag{κi} sign(x1 − x̂1),
(4.41)

where κi > 0 and γi > 0, i = 1, . . . , n. By taking x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2, we

obtain the error equations

˙̃x1 = x̃2 − diag{γi} diag{|x̃1i| 12} sign x̃1

˙̃x2 = Ψ(t, x1, x2, x̂2)− diag{κi}x̃1,
(4.42)

where

Ψ(t, x1, x2, x̂2) =f(t, x1, x2, U(t, x1, x2))− f(t, x1, x̂2, U(t, x1, x2))

+ ξ(t, x1, x2, U(t, x1, x2)).

Suppose that the system states are bounded, then the convergence of observer error

system (4.42) is ensured if there exists constant ΨMi
> 0 such that the inequality

|Ψi(t, x1, x2, x̂2)| < ΨMi

holds for any possible t, x1, x2 and |x̂2| ≤ 2 sup |x2| [85]. Thus the proposed velocity

observer has the form

˙̂x1 =x̂2 + diag{γi} diag{|x1i − x̂1i| 12} sign(x1 − x̂1)

˙̂x2 =− M̂−1(x1)
[
Ĉ(x1, x̂2)x̂2 + D̂x̂2 + Ĝ(x1)− τ

]
+ diag{κi} sign(x1 − x̂1).

(4.43)

According to [84], the values of the constants are chosen as γi = 1.5(ΨMi
)
1
2 and

κi = 1.1ΨMi
, ∀i = 1, . . . , n. Finally, estimates of the state vector and state vector

error are respectively obtained by

x̂ =

⎡
⎢⎣x1

x̂2

⎤
⎥⎦ and ê = x̂− xd =

⎡
⎢⎣e1
ê2

⎤
⎥⎦ ,
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The measured and estimated state vector error can be partitioned further into ac-

tuated and unactuated parts as

e1 =

⎡
⎢⎣e1a
e1u

⎤
⎥⎦ , ê2 =

⎡
⎢⎣ê2a
ê2u

⎤
⎥⎦ .

4.5.3 Observer-based 2-SMC

The control objective is to drive the vector q(t) to the desired position qd(t).

Based on the observer (4.43) and the sliding function (4.34), an observer-based

sliding function is proposed as follows:

ŝ(t) = Γaê2a(t) + Γuê2u(t) + Λae1a(t) + Λue1u(t). (4.44)

Hence, the super-twisting controller (4.33) becomes as proposed:

û(t) = v̂(t)− diag{ρj} diag{|ŝj| 12} sign ŝ(t),
˙̂v(t) = − diag{μj} sign ŝ(t)

(4.45)

where j = 1, . . . ,m, and the sliding estimate ŝ is used in lieu of s.

4.5.4 Results and discussion

In this example, the observer-based 2-SMC is applied to the bidirectional gantry

crane as shown in Figure 4.6. In order to implement a control strategy to a crane

system, position and velocity measurements must be available. In the case of a

gantry crane, velocity sensors may not be ready because of the cost, volume and

weight of the sensors [5, 60]. In practice, for the 3D overhead crane with a constant

rope length, the motion is driven by two dc motors such that both rail and cart

are capable of positioning horizontally in the X-direction while the cart is capable

of positioning horizontally along the rail in the Y -direction. Thus, there are four

incremental encoders measuring four state variables, i.e., the cart’s x and y coor-

dinates on the horizontal plane, and two deviation angles θx and θy of the payload
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Figure 4.6 : Motion of a 3D overhead gantry crane.

(refer Figure 4.6). Based on the available position measurements, we implement

the second-order sliding mode velocity observer. The block diagram, shown in Fig-

ure 4.7, indicates the relationship between the second-order sliding mode observer

(2-SMO) and the second-order sliding mode controller (2-SMC) using the estimated

sliding function ŝ = σ(e1, ê2).

For the 3D overhead gantry crane system of Figure 4.6, where n = 4, m = 2, the

matrices M(q), C(q, q̇), G(q), P (q̇) and D are:

M(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Mx +mp 0 mplCθxCθy −mplSθxSθy

0 My +mp 0 mplCθy

mplCθxCθy 0 mpl
2C2

θy
0

−mplSθxSθy mplCθy 0 mpl
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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1xû+

−

Figure 4.7 : Schematic diagram of the observer-based control using second-order

sliding modes for an underactuated mechanical system.

C(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −mplSθxCθy θ̇x −mpl(CθxSθy θ̇x + SθxCθy θ̇y)

0 0 0 −mplSθy θ̇y

0 0 −mpl
2SθyCθy θ̇y −mpl

2SθyCθy θ̇x

0 0 mpl
2SθyCθy θ̇x 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

G(q) =mpgl[0 0 SθxCθy CθxSθy ]
T ,

D =diag(Dx, Dy, 0, 0),

P (q̇) =[Px sign ẋ Py sign ẏ 0 0]T ,

where x and y are the cart position respectively inX- and Y -directions, θx and θy are

the swing angle projection respectively onto the YMZM - and XMZM -planes, Mx, My

and mp are the X- and Y -component masses of the crane and payload, respectively,

l is the rope length, Fx and Fy are the cart’s driving force respectively in X- and

Y -directions, and g is the gravitational acceleration. Dx and Dy denote the viscous

friction coefficients and Px and Py denote the Coulomb friction coefficients associated

with the X- and Y -directions of motion, respectively. The state vector q = [qTa qTu ]
T

and the control vector τ , are respectively defined as

q(t) = [x y θx θy]
T , τ = [Fx Fy 0 0]T ,

where the actuated and unactuated state vectors from partitioning q(t) are respec-
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Figure 4.8 : Sigmoid function trajectory.

tively qa = [x y]T and qu = [θx θy]
T . Since the cart position is required to track a

specific trajectory, let the vectors of desired position and swing angle respectively

be

qda(t) = [xd(t) yd(t)]T , qdu(t) = [0 0]T ,

such that qd(t) = [qda(t)
T qdu(t)

T ]T . Hence, from (4.6), the tracking errors of the cart

position and rope swing angle respectively become

ea(t) = qa(t)− qda(t), eu(t) = qu(t).

Let the pre-specified trajectory shown in Figure 4.8 be defined as

xd(t) =
1

3
t− 1, yd(t) = tanh(3xd(t)), 0 ≤ t ≤ 6. (4.46)

We also denote

x1 = [x1 y1 θx1 θy1]
T , x2 = [x2 y2 θx2 θy2]

T ,

where subscript 1 is used for the positions or angles and subscript 2 for the prismatic

velocities or angular velocities. This trajectory tracking problem is to ensure the cart

to track the specific path described by (4.46), for example, to avoid obstacles in a real

situation. In this study the values of the crane parameters are listed as Mx = 7.46
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kg, My = 6.4 kg, mp = 0.73 kg, l = 0.7 m, and g = 9.8065 m-s−2, Dx = 0.17

N/m-s−1, Dy = 0.04 N/m-s−1, Px = 0.90 N, Py = 0.45 N and the uncertain external

perturbation, designated as high frequency noise, is assumed bounded such that

|di(t)| ≤ 10 N, i = 1, . . . , 4. The controller parameters used in the simulations are

diag(μ1, μ2) = diag(30, 30), diag(ρ1, ρ2) = diag(15, 15), Γa = I2, Γu = diag(0.1, 0.1),

Λa = diag(10, 10), and Λu = diag(−1,−1). The nominal parameters for observer

are M̂x = 7 kg, M̂y = 6 kg, m̂p = 1 kg, l̂ = 0.75 m, D̂x = 0.15 N/m-s−1, D̂y = 0.05

N/m-s−1, P̂x = 0.1 N, and P̂y = 0.5 N, where it is assumed that the real parameters

differ from the nominal values by not more than 10%. Here, ΨMi
= 60, ∀i = 1, . . . , 4.

The initial cart position is (x0, y0) = (−1,−1).

Figure 4.9(a) shows the cart position respectively in X- and Y -directions, and

Figure 4.9(b) shows the actual and desired trajectories. Figure 4.10 shows the

tracking errors of cart position, in which, it is exhibited that the magnitude and

frequency of sway angles are greatly suppressed during the motion and at the mo-
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Figure 4.9 : (a) Cart position in X- and Y -directions; (b) Actual and reference

trajectories.
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Figure 4.10 : Trajectory tracking error in (a) X-direction; and (b) Y -direction.

0 5 10 15 20 25 30

-0.1

-0.05

0

0.05

0.1

0.15

Time (s)

Sw
in

g 
an

gl
e 

pr
oj

ec
tio

n 
to

 th
e  Y

M
Z M

-p
la

ne
, θ

x
(ra

d)

0 5 10 15 20 25 30

-0.1

-0.05

0

0.05

0.1

0.15

Time (s)

Sw
in

g 
an

gl
e 

pr
oj

ec
tio

n 
to

 th
e  X

M
Z M

-p
la

ne
, θ

y
(ra

d)

(a) (b)

Figure 4.11 : Swing angle projection to the (a) YMZM -plane; and (b) XMZM -plane.

tion end point. The swing angle projections to the YMZM - and XMZM -planes are

shown in Figure 4.11. The proposed control system appears to be insensitive to

the presence of high frequency noise d(t), which demonstrates robustness of the

proposed 2-SMO. Figure 4.12 shows the finite-time convergence of the estimated
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Figure 4.12 : Real and estimated cart velocities in (a) X-direction; and (b) Y -

direction.
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Figure 4.13 : Cart position with payload variation.

velocities in X- and Y -directions to their actual ones over 15 s time duration. Apart

from its transient state, the observer produces accurate estimate velocities. For the

sake of simulation, arbitrary initial values of velocities have been selected since the
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actual initial velocities are unknown. Yet, the estimated velocities have been suc-

cessfully convergent to the actual measurements from any arbitrary initial values of

the observer. To demonstrate the robustness of the controller, the payload is varied

between 0.5 to 1 kg, which reflects the process of loading/unloading of the gantry

crane. From Figure 4.13, it is shown that the trajectory tracking is unperturbed by

the presence of payload variation. It is worth noting that the selection of greater

values for the entries of matrix Λa will reduce the overshoot but will increase the

amplitude of swing angle in the steady state.

4.6 Summary

This chapter has addressed the sliding mode control algorithms for UMS. Firstly,

we have proposed an AFSMC for trajectory tracking for a class of UMS. The sys-

tem dynamic is approximated by using fuzzy model. Then, a sliding function is

composed based on the approximated functions of the system dynamics. The adap-

tive law for the sliding mode control is designed based on the Lyapunov method.

The performance of the AFSMC is evaluated by applying the controller to a gantry

crane system in the presence of nonlinear frictions. A robust control performance is

obtained when the system is subject to external disturbances and parameter varia-

tions.

Secondly, we have proposed an observer-based control scheme for trajectory

tracking for a class of UMS. The development is based on the second-order slid-

ing mode methodology. The sliding mode observer and then observer-based sliding

mode controller are designed to track the pre-specified trajectory based on infor-

mation of the output positions. The sliding function is constructed from the actual

and estimate states. The explicit dependence of the sliding function on the swing

angles guarantees zero-swing at the end of transportation as well as the sway angle

suppression during the load movement. A robust control performance is obtained
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when the system is subject to parametric uncertainties and nonlinear frictions. The

2-SMC scheme is applied to a 3-D gantry crane to demonstrate the efficacy of the

proposed method.
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Chapter 5

Development of First-order Sliding Mode Control

for Offshore Crane Systems

5.1 Introduction

This chapter addresses the problem of robust sliding mode control for 2-D off-

shore gantry crane and boom crane systems in which their dynamics have been

developed in Chapter 3. The linear quadratic regulator (LQR) and linear matrix

inequality (LMI) design approaches are utilised to obtain the sliding surface. Robust

sliding mode controllers are proposed to track the desired trajectory of the crane

systems. Extensive simulation results are given to illustrate the feasibility of the

proposed approach, in terms of reducing the effects of disturbances and uncertain-

ties in some practical scenarios coming from the occurrence of strong waves and

winds in the open-sea.

5.2 Problem statement

Our objective is to obtain an error dynamics of the offshore crane systems tra-

jectory tracking problems. The 2-D offshore gantry crane and boom crane dynamics

are represented by uncertain LTI systems in the form of equations (3.11) and (3.16),

respectively. Since both equations have the same form, for convenience, let renumber

the equations as follows:

ẋ(t) = (A+ΔA(t))x(t) +Bu(t) +Dω(t). (5.1)

It should be noticed that when in the sliding mode, a system completely rejects any

signals which satisfy the matching conditions. The inclusion of a tracking require-
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ment is thus nontrivial and must always be achieved in such a way as to ensure

that the command is not wholly or partly rejected by the sliding system. For this

purpose, a reference model is constructed which represents the ideal model of the

corresponding LTI system [44, 136].

Let us consider a reference model as follows:

ẋd(t) = Adxd(t) +Bdrd(t), (5.2)

where xd(t) and rd(t) ∈ R
2 is the bounded reference input. Matrices Ad and Bd are

assumed to satisfy the following matching condition:

BK = Ad − A, BN = Bd, (5.3)

where matrices K and N are of appropriate dimensions. Let us define the tracking

error xe as the difference between the plant and the reference model states:

xe(t) = x(t)− xd(t).

From (5.1) and (5.2), the following error dynamic system can be obtained as,

ẋe(t) =Adxe(t) + (A− Ad)x(t) + ΔA(t)x(t) +Bu(t)

− Bdrd(t) +Dω(t). (5.4)

Without loss of generality, the system disturbances ΔA(t) and ω(t) are assumed to

be norm-bounded, i.e.,

‖ΔA(t)‖ ≤ μ, ‖ω(t)‖ ≤ ωp, (5.5)

where μ and ωp are known positive scalars.

The tracking problem is constituted in finding a control action by using 1-SMC

guaranteeing that limt→∞ xe(t) = 0.
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5.3 Control design for 2-D offshore gantry crane

In this section, a 1-SMC scheme is proposed to deal with the problem of trajec-

tory tracking for offshore crane system developed in Section 3.3.1. A desired sliding

surface is obtained by utilizing the linear quadratic regulator (LQR) design ap-

proach. A robust sliding mode controller is proposed to track an optimal trajectory

of the crane system during load transfer.

5.3.1 Crane trajectory

The optimal crane trajectory is formulated to minimize the payload residual

sway at end points of the cart’s motion [64]. For that purpose, a trapezoidal velocity

pattern is chosen for the cart’s motion and two reference points of the rope length,

namely the lower and upper positions, lD and lU , are defined. Details of the optimal

crane trajectory during container transfer operations are described as follows:

Stage 1 (Picking up the container with time t1): The hoisting rope length de-

creases from lD, where the container is on the deck of the mother ship, to lU where

the container is in the upper position, with a maximum lateral velocity vR. Thus,

we have

t1 =
2(lD − lU)

vR
.

It should be noted that the rope length lD and lU are assumed to be constant among

different containers.

Stage 2 (Moving the container with a maximum longitudinal velocity vy): As-

suming the whole distance of travel of lifting, moving and placing the container is

yF with the corresponding time tF , the moving phase then will take (tF − 2t1) in

time.

Stage 3 (Placing the container on the smaller ship with time t1): The rope length

increases from lU to lD. This is the reverse process for lifting the container.
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Let yd(t) and ld(t) denote the desired trajectories of the cart position and rope

length, respectively. The trajectory diagrams are shown in Figure 5.1 and Figure

5.2, from which yd(t) and ld(t) are derived from given parameters lD, lU , vR, vy and

yF as

yd(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2
at2, 0 ≤ t ≤ t1,

vyt− vy
t1
2
, t1 < t ≤ t2,

−1
2
at2 + vy

tF
t1
t+ yF − 1

2
at2F , t2 < t ≤ tF ,

ẏd(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

at, 0 ≤ t ≤ t1,

vy, t1 < t ≤ t2,

−at+ vy
tF
t1
, t2 < t ≤ tF ,

where a = vy
t1

and t2 = tF − t1. Similarly, desired trajectories of the rope length and

its rate of change are, respectively,

ld(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2
bt2 + lD, 0 ≤ t ≤ t1

2
,

1
2
bt2 − 2vRt+ vRt1 + lU ,

t1
2
< t ≤ t1,

lU , t1 < t ≤ t2,

1
2
bt2 − bt2t+

vR
t1
t22 + lU , t2 < t ≤ tF − t1

2
,

−1
2
bt2 + btF t− 1

2
bt2F + lD, tF − t1

2
< t ≤ tF ,

l̇d(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−bt, 0 ≤ t ≤ t1
2
,

bt− bt1,
t1
2
< t ≤ t1,

0, t1 < t ≤ t2,

bt− bt2, t2 < t ≤ tF − t1
2
,

−bt+ btF , tF − t1
2
< t ≤ tF ,

where b = 2vR
t1

. As described in the previous section, θ is the swing angle with

respect to the vessel’s coordinates frame. Obviously, θ should be kept at zero if the
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Figure 5.1 : Cart position and velocity reference trajectories.
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Figure 5.2 : Hoisting rope length and velocity reference trajectories.

vessel is stationary. However, due the to wave-induced motion of the vessel, it can

be shown that if the swing angle tracks the roll angle of the vessel φ(t) during the

operation process, the payload will be held on the vertical plane in the ground’s

coordinate frame. Therefore, the desired payload swing angle trajectory is chosen

as θd(t) = φ(t).
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In the following, the desired trajectory for the rope length is denoted as Δld(t) =

ld(t)− L for the trajectory tracking process. Thus, the state vector of the reference

model (5.2) can be defined as xd(t) = [yd Δld θd ẏd l̇d θ̇d]
T We are now ready to

design a stable sliding surface using the linear quadratic regulator design approach

and then a robust control law to guarantee that the system sliding motion converges

exponentially to a ball whose radius and the rate of exponential convergence can be

chosen arbitrarily.

5.3.2 Sliding surface design using LQR approach

Consider the error dynamic of the 2-D offshore gantry crane in the form of (5.4)

with Ad ∈ R
6×6 and B ∈ R

6×2. To facilitate the sliding surface design, it is noted

that there exists a transformation matrix T ∈ R
6×6 [44] such that

TB =

⎡
⎢⎣04×2
B2

⎤
⎥⎦ ,

where B2 ∈ R
2×2 is nonsingular. By using the coordinate transformation e = Txe =

z − Txd, (5.4) can be rewritten in the form of the new coordinate:

ė(t) =Ade(t) + (A− Ad)z(t) + ΔA(t)z(t) +Bu(t)

−Bdrd(t) +Dω(t), (5.6)

where z = Tx, Ad = TAdT
−1, A = TAT−1, ΔA(t) = TΔA(t)T−1, B = TB,

Bd = TBd and D = TD. It can be assumed that the transformation used to obtain

the regular form was an orthogonal one. Hence the Euclidean norm is preserved, in

which (5.5) implies

‖ΔA(t)‖ ≤ μ, ‖ω(t)‖ ≤ ωp.

The sliding function is defined in terms of trajectory tracking errors as follows

s(t) = Se(t) = S1e1(t) + S2e2(t) = S2(Lse1(t) + e2(t)), (5.7)
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where e1(t) ∈ R
4, e2(t) ∈ R

2, S = [S1 S2] ∈ R
2×6, and Ls = S−12 S1 ∈ R

2×4 is a

constant matrix to be designed. Consider the following quadratic performance index

J =
1

2

∫ ∞

ts

eT (t)Qe(t)dt, (5.8)

where Q ∈ R
6×6 is a given symmetric positive definite matrix and ts is the starting

time which indicates the induction of the sliding motion. By partitioning Q into

subblocks

Q =

⎡
⎢⎣Q11 Q12

Q21 Q22

⎤
⎥⎦

and noting that

2eT1 (t)Q12e2(t) + eT2 (t)Q22e2(t)

= (e2(t) +Q−122 Q21e1(t))
TQ22(e2(t) +Q−122 Q21e1(t))− eT1 (t)Q

T
21Q

−1
22 Q21e1(t),

(5.8) can be rewritten in the form of

J =
1

2

∫ ∞

ts

(
eT1 (t)Qe1(t) + υT (t)Q22υ(t)

)
dt,

where

Q =Q11 −Q12Q
−1
22 Q21,

υ(t) =e2(t) +Q−122 Q21e1(t).

Based on the LQR minimisation of J in association with the nominal system (5.6),

we obtain

υ(t) = −Q−122 A
T
12Pe1(t),

where P satisfies the following equation

ATP + PA− PA12Q
−1
22 A

T
12P +Q = 0,

in which A = A11 −A12Q
−1
22 Q21 and Aij is the subblocks obtained from partitioning

matrix Ad. Consequently, we obtain

e2(t) = −Q−122 (A
T
12P +Q21)e1(t). (5.9)
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During the sliding motion, we have s(t) = 0 so that

e2(t) = −Lse1(t). (5.10)

By comparing (5.9) and (5.10), the design matrix of the sliding function is obtained

explicitly as

Ls = Q−122 (A
T
12P +Q21) = S−12 S1. (5.11)

Hence, by choosing a suitable matrix for S2, the sliding function s(t) = Se(t), where

S = S2[Ls I2] can be obtained.

5.3.3 Sliding mode control

Before presenting our proposed control scheme, the following definition and

lemma are introduced.

Definition 1: The solution of system (5.6) is uniformly exponentially convergent to

a ball B(0, r) = {e ∈ R
n : ‖e‖ ≤ r} with rate γ > 0 if for any ξ > 0, there exists

k(ξ) > 0 such that

‖e(t)‖ ≤ r + k(ξ) exp(−γt), ∀t ≥ 0.

Lemma 1 [108]: Let V (t) be a continuous positive definite function for all t ≥ 0,

k∗ ≥ 0. Let

V̇ (t) ≤ −ηV (t) + ν, ∀t ≥ 0,

where η and ν are positive constants, then

V (t) ≤ r + k∗ exp(−γt), ∀t ≥ 0,

in which r = ν/η and γ = η is the exponential convergence rate.

Now, the control scheme proposed here has the form of

u(t) = uE(t) + uR(t), (5.12)
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where uE(t) and uR(t) are respectively the equivalent and switching control. The

equivalent control which maintains the sliding motion on the sliding surface is defined

as

uE(t) = −Λ−1
(
SAde(t) + Φs(t)

)
+Kz(t) +Nrd(t), (5.13)

where Λ = SB = S2B2, K = KT−1, and Φ is a design diagonal matrix with

real distinct positive eigenvalues chosen such that λmin(Φ) = γ‖S‖2, where γ is the

chosen convergence rate. The following switching control uR(t) is designed to drive

the system trajectories towards the prescribed sliding surface:

uR(t) = −Λ−1
ρs(t)

‖s(t)‖+ ε
, (5.14)

where

ρ = μ‖S‖‖z(t)‖max + ‖SD‖ωp, (5.15)

in which ‖z(t)‖max is the maximal norm of the transformed state z(t) = Tx(t) of

the crane, and ε > 0 is a small positive scalar for chattering reduction to be selected

according to the theorem stated below.

Theorem 1: For given bounds of the system disturbances and uncertainties ωp and

μ, as well as a convergence rate γ and positive scalar ε, the state error trajectories of

offshore gantry crane system (5.6) are exponentially convergent to the ball B(0, r0)

with rate γ under the following control law:

u(t) = −Λ−1
(
SAde(t) + Φs(t) +

ρs(t)

‖s(t)‖+ ε

)
+Kz(t) +Nrd(t), (5.16)

where radius r0 is determined as

r0 =

√
ερ

λmin(Φ)
. (5.17)

Proof: Consider the Lyapunov function

V (t) =
1

2
sT (t)s(t).
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By taking its derivative and substituting (5.6) into V̇ (t), we obtain

V̇ (t)) =sT (t)ṡ(t)

=sT (t)
(
− Φs(t) + SΔA(t)z(t) + SDω(t)− ρs(t)

‖s(t)‖+ ε

)

≤− λmin(Φ)‖s(t)‖2 +
(
μ‖S‖‖z(t)‖+ ‖SD‖ωp

)
‖s(t)‖

− ρ‖s(t)‖2
‖s(t)‖+ ε

=− λmin(Φ)‖s(t)‖2 +
(
μ‖S‖‖z(t)‖+ ‖SD‖ωp

) ‖s(t)‖ε
‖s(t)‖+ ε

+
(
μ‖S‖‖z(t)‖+ ‖SD‖ωp − ρ

) ‖s(t)‖2
‖s(t)‖+ ε

(5.18)

From (5.15), we have ρ ≥ μ‖S‖‖z(t)‖+‖SD‖ωp, and hence by combining inequality

(5.18), it can be verified that

V̇ (t) ≤ −λmin(Φ)‖s(t)‖2 +
(
μ‖S‖‖z(t)‖+ ‖SD‖ωp

) ‖s(t)‖ε
‖s(t)‖+ ε

,

or

V̇ (t) ≤− λmin(Φ)‖s(t)‖2 +
(
μ‖S‖‖z(t)‖+ ‖SD‖ωp

)
ε

≤− 2γV (t) + ρε.

Hence, from Definition 1 and Lemma 1, we get

V (t) ≤ ρε

2γ
+ k∗ exp(−2γt), ∀t ≥ 0.

Thus, from the sliding function s(t) = Se(t), we obtain

‖e(t)‖2 ≤ 2

‖S‖2
(
ρε

2γ
+ k∗ exp(−2γt)

)

≤ ρε

λmin(Φ)
+

2k∗

‖S‖2 exp(−2γt), ∀t ≥ 0.

By using the inequality
√
a+ b ≤ √

a+
√
b, ∀a, b ≥ 0, we finally obtain

‖e(t)‖ ≤ r0 + k exp(−γt), ∀t ≥ 0,

where r0 =
√

ρε
λmin(Φ)

and k =
√
2k∗
‖S‖ . The proof is completed.
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5.3.4 Results and discussion

In this work, the numerical values of the offshore gantry crane system parameters

are listed as mc = 6× 103 kg, mp = 20× 103 kg, ht = 15 m, d = 5 m, and g = 9.81

m/s. The viscous friction and Coulomb friction coefficients are listed as Kcy = 600

Ns/m, Kcl = 200 Ns/m, Kcθ = 100 Nms/rad, Pcy = 200 N, Pcl = 150 N, and

Pcθ = 800 Nm. The parameters for wind drag of (3.10) are ρw = 1.225 kg/m3,

cd = 1.05 and Sp = 12 m2. The nominal state vector is chosen as x0 = [0 7 0 0 0 0]T

(L = 7 m), with u0 = [0 − 196.14]T kN. For the sake of illustration, the following

parameters are provided as lD = 10 m , lU = 4 m, vR = 3 m/s, vy = 0.63 m/s and

yF = 10 m. The matrices K, N and transformation T are obtained as follows:

K =

⎡
⎢⎣0 0 −1.962 0.006 0 −0.0014

0 0 0 0 0.002 0

⎤
⎥⎦ , N =

⎡
⎢⎣1 0

0 1

⎤
⎥⎦ ,
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Figure 5.3 : Wind drags due to (a) short burst; and (b) persistent wind disturbances.
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Figure 5.4 : Trajectory tracking responses of the (a) cart position; (b) rope length;

and (c) swing angle subject to short burst wind disturbance.

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0.5735 0 0 0.6711 0 0.4698

0 1 0 0 0 0

−0.8192 0 0 0.4698 0 0.3289

0 0 0 0.5735 0 −0.8192

0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Figure 5.5 : Tracking error responses of the (a) cart position; (b) rope length; and

(c) swing angle subject to short burst wind disturbance.

The state weighting matrix Q of the quadratic minimisation is chosen as Q =

TRT−1, R = diag(10, 10, 5, 1, 1, 1) which, by choosing S2 = I2 and using (5.11),

provides the sliding function matrix S = S2[Ls I2] as

S =

⎡
⎢⎣−1.9496 4.9236 0 −0.4135 1 0

0 0 3.1623 0 0 1

⎤
⎥⎦ .

The upper bounds of the system disturbances and uncertainties, ωp and μ are a

priori selected as 2.8× 103 and 4.5 respectively. From Theorem 1, by choosing the
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Figure 5.6 : (a) Cart velocity and (b) hoist velocity responses subject to short burst

wind disturbance.

exponential decay rate γ = 40, and ε = 10 × 10−3, we obtain ρ = 20, and radius

r0 = 13.1× 10−3.

A few scenarios are considered in the simulations to demonstrate the robustness

of the designed controller. To accommodate persistent ocean waves in an allowable

range, the rolling angular displacement and the heaving acceleration of the vessel

are assumed to be respectively φ(t) = 7 cos t (in degrees) and ζ̈(t) = 2 sin t m/s2.

To investigate the effects of high amplitude wind disturbances, two types of wind

profiles are considered with respect to time, namely short burst and persistent, with

a maximum wind speed of 5.14 m/s or 18.52 km/h corresponding to the limit 10

knots of Sea State 3 conditions [124]. For the short burst wind drag (Figure 5.3(a)),

its peak value is set to be 237 N at 3.5 s before it decays to zero. For the persistent

wind drag (Figure 5.3(b)), we set its magnitude at around 204 N after it has reached
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Figure 5.7 : Sliding functions subject to short burst wind disturbance.

the peak value. We also set the initial values of the positions generalized coordinates

as y(0) = 0 m, l(0) = 9 m and θ(0) = 8◦. Our simulation is aimed to assess the

controller performance to track the optimal crane trajectories as depicted in Figures

5.1 and 5.2.

In the first scenario, we consider the case of the offshore crane system in the

presence of short burst wind and ocean waves disturbances. Simulation results

for this scenario including the responses of positions, tracking errors, velocities,

sliding functions and control forces are presented in Figures 5.4-5.8. As can be seen

from Figures 5.4 and 5.5, the cart position and the swing angle track their desired

trajectories in about 7 s and the rope length tracks it desired trajectory in a shorter

time of about 1.5 s. This is due to higher complexity in the cart input force Fy(t)

which is assigned to drive both cart position and swing angle towards their desired

trajectories at the same time, as compared to the hoist input force Fl(t). Figure
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Figure 5.8 : (a) Cart driving force; and (b) hoisting input force subject to short

burst wind disturbance.

5.6 shows the trapezoidal and triangular velocity profiles of the cart and hoisting

rope motions, respectively, with some overshoots due to nonzero initial values in

the swing angle and rope length responses. As can be seen from sliding function

responses of Figure 5.7, the trajectory of s1(t) intercepts the sliding surface for the

first time at approximately 1.5 s before it converges, while the trajectory of s2(t)

reaches the sliding surface at approximately 0.3 s. Oscillations can be seen in the

input plots of Figure 5.8 after the desired trajectories tracking have been attained

due to the effect of the persistent ocean waves. Furthermore, the effect of short

burst wind disturbance can be seen from Figure 5.8(a), where the cart driving force

produces its peak at around 3 s and decreases gradually after the wind disturbance

decayed thanks to the merit of the robust control scheme proposed. From Figure

5.8(b), two peaks can be seen in the hoisting input force response at around 2 s and

18 s which correspond to the process of lifting and lowering the payload.
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Figure 5.9 : Trajectory tracking responses of the (a) cart position; (b) rope length;

and (c) swing angle subject to persistent wind disturbance.

To examine the exponential convergence of the sliding mode, we consider the

scenario with the presence of persistent wind and ocean waves disturbances in the

system. The simulation results for this scenario are presented in Figures 5.9-5.11.

Owing to robustness of the control system, similar trajectory tracking responses

(Figure 5.9) with the previous scenario have been obtained. However the effects of

persistent wind disturbance can obviously be seen from the plots of sliding function

s1(t) and input force Fy(t). As shown in Figure 5.10(a), the sliding function s1(t)
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Figure 5.10 : Switching functions subject to persistent wind disturbance.

remains in a small bound within a close vicinity of the sliding surface s1(t) = 0.

This subsequently yields persistent magnitude in the input force Fy(t) with an av-

erage value about 2.8 kN once the sliding mode is achieved, as can be seen from

Figure 5.11(a). On the other hand, the switching function response s2(t) of Figure

5.10(b) and the hoisting input force response of Figure 5.11(b) are similar with the

responses in the previous scenario due to the equivalent rolling and heaving motions

in both scenarios. Furthermore, these results have been achieved because the wind

disturbance only provides a small effect on the vertical motion of the payload.

Finally, we consider the case when the nominal values of cart and container

masses have been perturbed such as Δmp/mp = 10%, together with the presence of

short burst wind and ocean waves disturbances. As can be seen from the responses of

Figures 5.12-5.14, the closed-loop system completely rejects the uncertainties caused

by these perturbations once sliding has been established. Small differences between
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Figure 5.11 : (a) Cart driving force; and (b) hoisting input force subject to persistent

wind disturbance.
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with Δmp/mp = 10%.
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Figure 5.14 : Swing angle responses with nominal values of system masses and with

Δmp/mp = 10%.

the responses with nominal and perturbed parameters can only be seen during the

reaching phase of the system. In addition, the rope length response (Figure 5.13)

is least affected by these perturbations due to the aforementioned fact, that is, less
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complexity in Fl(t) as compared to Fy(t) which contains the decoupling of y- and

θ-coordinates.

5.4 Control design for 2-D offshore boom crane

In this section, we propose a 1-SMC scheme for offshore boom crane system

developed in Section 3.4.1. Linear matrix inequalities with feasible performance

constraints are used to design the sliding surface. A robust sliding mode controller

is proposed to for trajectory tracking and the stability of the proposed controller is

analytically proven.

5.4.1 Sliding surface design using LMI approach

Consider the error dynamic of the 2-D offshore boom crane in the form of (5.4)

with Ad ∈ R
6×6 and B ∈ R

6×2. For convenience, by taking into account (5.3) and

by letting d(t, x) = ΔA(t)x(t) +Dω(t), (5.4) can be rewritten as

ẋe(t) = Adxe(t) +Bu(t)− BKx(t)− BNrd(t) + d(t, x). (5.19)

The disturbance term d(t, x) is assumed to be norm-bounded, that is,

‖d(t, x)‖ ≤ dM . (5.20)

Let Θ ∈ R
6×r be a matrix whose columns forms an orthonormal basis of null

space of matrix BT , i.e.

ΘTB = 0r×2, ΘTΘ = Ir. (5.21)

Matrix Θ can be obtained by using the singular value decomposition (SVD) of B.

Let the SVD form of B is

B = UBΣBVB,

with UB ∈ R
6×6, ΣB ∈ R

6×2 and VB ∈ R
2×2. Thus, Θ is formed by the last

(6− rank(B)) columns of UB. Since rank(B) = 2, we have r = 4.
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Let the following LMI condition is satisfied:⎧⎪⎨
⎪⎩

ΘT (AdP + PAT
d )Θ < 0

P > 0
(5.22)

Then the sliding surface can be constructed as

s(t) = Sxe(t) = (BTP−1B)−1BTP−1xe(t). (5.23)

5.4.2 Sliding mode control

To construct the control law, define a coordinate transformation w(t) = Tsxe(t),

where the transformation matrix Ts is defined as

Ts =

⎡
⎢⎣ (ΘTPΘ)−1ΘT

(BTP−1B)−1BTP−1

⎤
⎥⎦ =

⎡
⎢⎣Π
S

⎤
⎥⎦ .

Thus,

w(t) = Tsxe(t) =

⎡
⎢⎣Πxe(t)

Sxe(t)

⎤
⎥⎦ =

⎡
⎢⎣w1(t)

s(t)

⎤
⎥⎦ .

It can be shown that

T−1s = [PΘ B]

and

TsB =

⎡
⎢⎣04×2

I2

⎤
⎥⎦ .

Hence, by taking into account (5.19), the derivative of w(t) becomes

ẇ(t) =Tsẋe(t)

=TsAdT
−1
s w(t) + TsBu(t)− TsBKx(t)− TsBNrd(t) + Tsd(t, x)⎡

⎢⎣ẇ1(t)

ṡ(t)

⎤
⎥⎦ =

⎡
⎢⎣ΠAdPΘ ΠAdB

SAdPΘ SAdB

⎤
⎥⎦
⎡
⎢⎣w1(t)

s(t)

⎤
⎥⎦

+

⎡
⎢⎣04×2

I2

⎤
⎥⎦ (u(t)−Kx(t)−Nrd(t)) +

⎡
⎢⎣Π
S

⎤
⎥⎦ d(t, x),
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or

ẇ1(t) =ΠAdPΘw1(t) + ΠAdBs(t) + Πd(t, x), (5.24)

ṡ(t) =SAdPΘw1(t) + SAdBs(t) + u(t)−Kx(t)−Nrd(t) + Sd(t, x). (5.25)

Based on (5.25), the equivalent control which maintains the sliding motion on the

sliding surface is obtained as

uE(t) = −SAdPΘΠxe(t)− (SAdB − Φ)s(t) +Kxe(t) +Nrd(t), (5.26)

where Φ ∈ R
2×2 is any stable design matrix. The switching control which forces the

system states to reach the predefined sliding surface is proposed as

uR(t) = −ρ
Prs(t)

‖Prs(t)‖ , (5.27)

where Pr ∈ R
2×2 is a symmetric positive definite matrix satisfying the Lyapunov

equation

PrΦ + ΦTPr = −I2,

and ρ is a constant satisfying

ρ ≥ ‖S‖dM . (5.28)

Thus, we have the following theorem.

Theorem 2: For given bounds of the system disturbances and uncertainties μ and ωp,

as well as arbitrary radius r0 and convergence rate γ, the state error trajectories of

offshore boom crane system (5.19) converge to zero in finite time under the following

control law:

u(t) = −SAdPΘΠxe(t)− (SAdB − Φ)s(t) +Kxe(t) +Nrd(t)− ρ
Prs(t)

‖Prs(t)‖ . (5.29)

Proof: Consider the Lyapunov function

V (t) =
1

2
sT (t)Prs(t).
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By taking its derivative and taking into account (5.25) and (5.29), we obtain

V̇ (t) =2sT (t)Prṡ(t)

=2sT (t)PrΦs(t)− 2ρsT (t)PrPrs(t)

‖Prs(t)‖ + 2sT (t)PrSd(t, x)

=− ‖s(t)‖2 − 2ρ‖Prs(t)‖+ 2sT (t)PrSd(t, x),

since sT (t)PrPrs(t) = ‖Prs(t)‖2. It follows that

V̇ (t) ≤ −‖s(t)‖2 − 2‖Prs(t)‖(ρ− ‖S‖‖d(t, x)‖), (5.30)

Combining inequality (5.28) and (5.30) yields

V̇ (t) ≤ −‖s(t)‖2,

which implies a stable sliding motion is induced in finite time. The proof is com-

pleted.

Remark: To eliminate the chattering phenomenon induced by the term Prs(t)
‖Prs(t)‖ in

control law (5.27), a differentiable approximation has been used as follows:

uR(t) = −ρ
Prs(t)

‖Prs(t)‖+ ε
,

where ε is a small positive constant.

To investigate the dynamical behaviour when the state error trajectories confined

to the sliding surface, we substitute s(t) = 0 into (5.24) which gives

ẇ1(t) = ΠAdPΘw1(t) + Πd(t, x). (5.31)

Let the matrix P1 ∈ R
4 × 4 be the unique symmetric positive definite solution to

the following equation:

P1A1 + AT
1 P1 = −Q1, (5.32)

where A1 = ΠAdPΘ and Q1 ∈ R
4 × 4 is a symmetric positive definite matrix.

Let V (w1) = wT
1 (t)P1w1(t) be a Lyapunov function for (5.31). Taking the time
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derivative of V (w1) along the system trajectories gives

V̇ (w1) =ẇT
1 (t)P1w1(t) + wT

1 (t)P1ẇ1(t)

=(A1w1(t) + Πd(t, x))TP1w1(t) + wT
1 (t)P1(A1w1(t) + Πd(t, x))

=wT
1 (t)(A

T
1 P1 + P1A1)w1(t) + 2wT

1 (t)P1Πd(t, x)

=− wT
1 (t)Q1w1(t) + 2wT

1 (t)P1Πd(t, x)

≤− wT
1 (t)Q1w1(t) + 2‖P1w1(t)‖‖Π‖dM

≤− λmin(Q1)‖w1(t)‖2 + 2λmax(P1)‖w1(t)‖‖Π‖dM

=− ‖w1(t)‖λmin(Q1)

[
‖w1(t)‖ − 2λmax(P1)‖Π‖dM

λmin(Q1)

]
. (5.33)

Define

δ =
2λmax(P1)‖Π‖dM

λmin(Q1)

and let B(0, δ) represent the ball centred at origin given by

B(0, δ) = {w1(t) : ‖w1(t)‖ < δ}.

It follows that, from (5.33) for w1(t) �∈ B(0, δ), V̇ (w1) < 0. Therefore there exists a

t0 > 0 such that the states w1(t) is ultimately bounded with respect to B(0, δ).

5.4.3 Results and discussion

In this simulation, we consider the lab-scaled offshore boom crane [53]. The

numerical values of the system parameters are listed as Mb = 4 kg, mp = 1 kg,

Lb = 4 m, ht = 1 m, and g = 9.81 m/s. The viscous friction and Coulomb friction

coefficients are listed as Kcβ = 2 Nms/rad, Kcl = 1 Ns/m, Kcθ = 1 Nms/rad,

Pcβ = 2 Nm, Pcl = 1 N, Pcθ = 1 Nm. The parameters for wind drag of (3.10) are

ρw = 1.225 kg/m3, cd = 1.05 and Sp = 40 cm2. The matrices K and N are obtained

as follows:

K =

⎡
⎢⎣ 18.977 68.307 −20.803 2 0 2.8284

−9.3125 −2.4925 7.3549 010

⎤
⎥⎦ , N =

⎡
⎢⎣0.0469 0.1326

0.1326 1.3750

⎤
⎥⎦ .
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The matrices Θ, P , Π and S are obtained as:

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.2425 0.6860 0.6860

0 −0.2287 0.7276 −0.6468

1 0 0 0

0 0.8889 0 −0.3143

0 0 0 0

0 −0.3143 0 0.1111

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

99.3640 102.2222 −49.6839 −42.8032 −3.2398 −18.5619

102.2222 172.7351 −15.4513 −11.6871 −60.2023 0.5128

−49.6839 −15.4513 246.5580 7.5874 −11.6354 −60.0027

−42.8032 −11.6871 7.5874 79.2209 16.6665 33.4700

−3.2398 −60.2023 −11.6354 16.6665 311.1186 −111.3354

−18.5619 0.5128 −60.0027 33.4700 −111.3354 306.8052

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.0053 −0.0027 0.0049 0.0002 0 −0.0001

0.0254 −0.0149 0.0021 0.0179 0 −0.0063

0.0109 −0.0019 0.0017 0.0035 0 −0.0012

0.0374 −0.0250 0.0053 0.0059 0 −0.0021

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

S =

⎡
⎢⎣24.2859 −13.8708 4.5222 16.2034 −2.8284 4.6421

−3.6093 2.2810 −0.5066 −2.3446 1 −0.1711

⎤
⎥⎦ .

The upper bounds of the system disturbances ωp, μ, and dM are obtained as 11.225,

2.86, and 25.4 respectively. The control parameters are chosen as Φ = diag(2, 2),

ρ = 80 and ε = 0.1.

Based on the model reference (5.2), the rolling angular displacement φ(t) is set

to be a sinusoidal wave with maximum amplitude 60◦. The heaving acceleration

of the vessel is assumed to be ζ̈(t) = 0.4 sin t m/s2. The maximum wind speed is
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assumed to be 3 m/s. We also set the initial values of the positions generalized

coordinates as β(0) = 50◦, l(0) = 0.5 m and θ(0) = 30◦.
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Figure 5.15 : Trajectory tracking responses of the (a) luff angle; (b) rope length;

and (c) swing angle.

The tracking response are depicted in Figure 5.15. As can be seen from the

results, the luff angle (Figure 5.15(a)) and the payload swing angle (Figure 5.15(c))

track the desired trajectories in about 5 s, despite the relatively large initial error.

The rope length (Figure 5.15(b)) tracks the desired trajectory in about 4 s. This

is due to higher complexity in the boom input torque τβ(t) which is assigned to
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Figure 5.16 : Tracking error responses of the (a) luff angle; (b) rope length; and (c)

swing angle.

drive both luff angle and swing angle towards their desired trajectories at the same

time, as compared to the hoist input force Fl(t). Figure 5.16 shows the tracking

error responses of the control system and Figure 5.17 shows the corresponding slid-

ing functions. Oscillations can be seen in the input plots of Figure 5.18 after the

desired trajectories tracking have been attained due to the effect of the persistent

disturbances.
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5.5 Summary

In this chapter, we have addressed the problem of robust sliding mode control

for 2-D offshore gantry crane and offshore boom crane systems with bounded dis-

turbances and uncertainties. Two design approaches has been utilised to construct

the sliding surfaces, namely the LQR and LMI. Robust sliding mode control laws

are proposed to drive the state variables of the system towards the sliding surface

in finite time and maintain them within an arbitrarily small band in the presence

of system disturbances. Extensive simulation results are provided to demonstrate

good tracking performance of the proposed controller for offshore crane systems in

dealing with the harsh open-sea conditions.



120

Chapter 6

Development of Second-order Sliding Mode

Control for Offshore Crane Systems

6.1 Introduction

This chapter presents a 2-SMC law for trajectory tracking and sway suppression

control, making use of its capability of chattering alleviation while achieving high

tracking performance and preserving strong robustness. The 2-SMC is designed to

deal with 5 DOF offshore crane systems in the presence of vessels’ roll, pitch and

heave motions. The asymptotic stability of the closed-loop system is guaranteed

in the Lyapunov sense. Extensive simulation results are given to illustrate the

feasibility of the proposed approach, in terms of reducing the effects of disturbances

and model discrepancy.

6.2 Second-order sliding mode control

This section presents the design of the control algorithm for trajectory tracking

control of the offshore crane.

6.2.1 The control algorithm

Consider the dynamics of offshore cranes in the form of (3.4)-(3.6) with qa ∈ R
m,

qu ∈ R
n−m, and τa ∈ R

m. For convenience, we renumber the equations as follows:⎡
⎢⎣Maa(q) Mau(q)

MT
au(q) Muu(q)

⎤
⎥⎦
⎡
⎢⎣q̈a
q̈u

⎤
⎥⎦+

⎡
⎢⎣fa(q, q̇)
fu(q, q̇)

⎤
⎥⎦ =

⎡
⎢⎣ τa

0(n−m)×1

⎤
⎥⎦ , (6.1)

q̈u = M−1
uu (q)[−MT

au(q)q̈a − fu(q, q̇)], (6.2)
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q̈a =
(
Maa(q)−Mau(q)M

−1
uu (q)M

T
au(q)

)−1
× [− fa(q, q̇) +Mau(q)M

−1
uu (q)fu(q, q̇) + τa

]
. (6.3)

We assume that all states and vessel coordinates motion are measurable. By using

feedback linearisation

τa = fa(q, q̇)−Mau(q)M
−1
uu (q)fu(q, q̇) +

(
Maa(q)−Mau(q)M

−1
uu (q)M

T
au(q)

)
u, (6.4)

equations (6.3) and (6.2) can be rewritten as⎧⎪⎨
⎪⎩

q̈a = u,

q̈u = −M−1
uu (q)M

T
au(q)u−M−1

uu (q)fu(q, q̇),
(6.5)

where u ∈ R
m is the new control. The tracking problem is constituted in finding a

control action guaranteeing that limt→∞ qa(t) = qda(t) and limt→∞ qu(t) = 0, where

qda(t) represents the reference trajectories for the vectors of the actuated generalised

coordinates. On the other hand, qu(t) which represents the system’s sway with

respect to the ground vertical axis is required to be kept at zero.

Let us define the vector of sliding function s(t) ∈ R
m as

s(t) =q̇a − q̇da + γ(q̇u − q̇du) + λaqa + λuqu

=q̇a + γq̇u − q̇r, (6.6)

where q̇r = q̇da − λaqa − λuqu. Hence, the second order derivative of the sliding

function is obtained as

s̈(t) =
...
q a + γ

...
q u −

...
q r

=
(
Im − γM−1

uu (q)M
T
au(q)

)
u̇+ ξ(t, q, q̇, u), (6.7)

where

ξ(t, q, q̇, u) =− γ

[
d

dt

(
M−1

uu (q)M
T
au(q)

)
u+

d

dt

(
M−1

uu (q)fu(q, q̇)
)]

− ...
q r

=γM−1
uu (q)

[(
Ṁuu(q)M

−1
uu (q)M

T
au(q)− ṀT

au(q)
)
u

+
(
Ṁuu(q)M

−1
uu (q)fu(q, q̇)− ḟu(q, q̇)

)]
− ...

q r, (6.8)
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and

...
q r =

...
q d
a + λaq̈

d
a − λaq̈a − λuq̈u

=
...
q d
a + λaq̈

d
a −

(
λaIm − λuM

−1
uu (q)M

T
au(q)

)
u+ λuM

−1
uu (q)fu(q, q̇). (6.9)

Next, we consider an auxiliary dynamics constituted by a double integrator with

input v ∈ R
m and output w ∈ R

m as follows:

ẅ = v. (6.10)

Introduce a function σ ∈ R
m such that

σ = s− w. (6.11)

Thus, the second derivative of σ is obtained as

σ̈ = s̈− v. (6.12)

The sliding motion on σ = σ̇ = 0 is referred as second-order sliding mode. The

theoretical properties of this special class of sliding modes have been thoroughly

investigated in [83]. It has been evidenced that the equivalent control for the second-

order sliding mode can be defined as the continuous control that solves the equation

σ̈ = 0 [11]. Thus, from (6.12) and (6.7), the equivalent control of the system is

obtained as

veq = s̈ = (Im − γM−1
uu (q)M

T
au(q))u̇+ ξ(t, q, q̇, u). (6.13)

Once the second-order sliding mode has been established on σ = σ̇ = 0, the equiva-

lent representation of system (6.12) can be obtained by substituting veq for v [138],

yielding to

ẅ = veq = (Im − γM−1
uu (q)M

T
au(q))u̇+ ξ(t, q, q̇, u). (6.14)

The equivalent system (6.14) can be stabilized by 1-SMC law. For this purpose,

define the following sliding function:

sw = ẇ + λww. (6.15)
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Figure 6.1 : Block diagram of the offshore crane control system

The first derivative of sw is obtained as

ṡw =ẅ + λwẇ

=(Im − γM−1
uu (q)M

T
au(q))u̇+ ξ(t, q, q̇, u) + λwẇ. (6.16)

The 2-SMC law for the system (6.5), with s, σ and sw be defined according to (6.6),

(6.11) and (6.15) respectively, is proposed as follows:

u̇ =(Im − γM−1
uu (q)M

T
au(q))

−1(−λwẇ − (ΞM + η) sign sw), (6.17)

v =(2ΨM + η) sign
(
σ − 1

2
σM

)
. (6.18)

Figure 6.1 illustrates the architecture of 2-SMC for offshore crane systems.

6.2.2 Stability analysis

Stabilisation of the system (6.12) on the sliding manifold σ̇ = σ = 0 can be

determined by the boundedness of the term s̈. From (6.7), (6.8) and (6.9), the

second order derivative of the sliding function can be expressed as a function of t,

q, q̇ and u, that is,

s̈ = Ψ(t, q, q̇, u).
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From the boundedness of matrix M(q) and vector f(q, q̇), the entries of the second

derivative of the sliding function can be upper bounded such as

|s̈i| ≤ ΨMi
. (6.19)

To prove the stability of the equivalent system by means of control algorithm

(6.17), we choose the following Lyapunov function candidate

Vw =
1

2
sTwsw.

Then, the derivative of Vw is

V̇w =sTwṡw

=sTw
[
(Im − γM−1

uu (q)M
T
au(q))u̇+ ξ(t, q, q̇, u) + λwẇ

]
=sTw [ξ(t, q, q̇, u)− (ΞM + η) sign sw]

≤−
m∑
i=1

(
(ΞMi

+ ηi)− ξi(t, q, q̇, u)
)
|swi

|

≤ −
m∑
i=1

ηi|swi
|

which implies that the surface sw = 0 is globally reached in a finite time.

6.3 Results and discussion

The control law (6.17), (6.18) is applied to the offshore gantry crane and offshore

boom crane described in Section 3.3.2 and Section 3.4.2, respectively.

6.3.1 Offshore gantry crane

Consider the offshore gantry crane system (3.13). From (6.6), the vector of

sliding function is chosen as

s =

⎡
⎢⎢⎢⎢⎣
s1

s2

s3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
ẏ − ẏd + λ1(y − yd) + γθ̇ + λ4θ

l̇ − l̇d + λ2(l − ld)

δ̇ + λ3δ

⎤
⎥⎥⎥⎥⎦ . (6.20)
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The values of the offshore gantry crane parameters are listed as mc = 6000 kg,

mp = 20000 kg, ht = 10 m, x = 5 m, a = 0.5 m, b = 4 m, Fδ0 = 8000 N, and

g = 9.81 m/s2. The vessel’s motion (ζ, φ, ψ) is considered as disturbance in which

its amplitude is based on certain scenarios. The controller parameters used in the

simulations are λ1 = 10, λ2 = λ3 = 1, λ4 = −1, γ = 0.1, λwi
= 1, ΞMi

= 50 × 103,

ΨMi
= 10 × 103, ηi = 30 and σMi

= 10, ∀i = 1, 2, 3. The initial value of the

generalised coordinates vector is chosen as (y0, l0, δ0, θ0) = (0m, 10m,−0.1rad, 0rad).

Several scenarios are considered for simulation to assess the capability of the pro-

posed controller. The first one is the control with stationary vessel, i.e., its heave, roll

and pitch are set to zero (ζ = 0 m and φ = ψ = 0 rad), whose responses are shown

in Figure 6.2. In this case, both longitudinal and lateral swing angles are totally

suppressed a few seconds after the trolley reached its reference position. The second

scenario considered in the study is the control with the presence of vessel’s move-

ment such that ζ = 0.02 sin 1.25t m, φ = 0.02 sin 1.25t rad and ψ = 0.01 sin 1.25t

rad. In practice, this situation can occur due to the presence of ocean currents.

As shown in Figure 6.3, the lateral sway is suppressed to zero but the longitudinal

sway keep swinging with amplitude 0.03 rad. This is due to the longitudinal sway

is controlled indirectly by the control force Fy which is applied to the cart.

To demonstrate the robustness of the controller, the value of payload mass is

perturbed by 10% increment. From Figure 6.4, it is shown that the cart position

trajectory and swing angles responses are unaffected by the perturbation in payload

mass. However, the rope length trajectory of Figure 6.4(b) is slightly affected by

the payload variation with 0.02 m steady state error.

In all three scenarios, the proposed 2-SMC has provided a shorter rise time of

the trolley position, which is 4.02 s, as compared to [103], which is 8.20 s. However,
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Figure 6.2 : (a) Trolley position; (b) rope length; and (c) swing angles; when the

mobile harbour is stationary, i.e. ζ = 0 m and φ = ψ = 0 rad.
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Figure 6.3 : (a) Trolley position; (b) rope length; and (c) swing angles; when ζ =

0.02 sin 1.25t m, φ = 0.02 sin 1.25t rad and ψ = 0.01 sin 1.25t rad.
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Figure 6.4 : (a) Trolley position and payload mass; (b) rope length; and (c) swing

angles; when ζ = 0.02 sin 1.25t m, φ = 0.02 sin 1.25t rad, ψ = 0.01 sin 1.25t rad, and

Δm/m = 10%.
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this faster response comes at the cost of 10.1% overshoot.

6.3.2 Offshore boom crane

Here, we consider the offshore boom crane system (3.17). From (6.6), the sliding

function for the 2-SMC is chosen as

s =

⎡
⎢⎢⎢⎢⎣
s1

s2

s3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
α̇− α̇d + λ1(α− αd) + γ1δ̇1 − λ4δ1

β̇ − β̇d + λ2(β − βd) + γ2δ̇2 − λ5δ2

l̇ − l̇d + λ3(l − ld)

⎤
⎥⎥⎥⎥⎦ .

The offshore boom crane parameters are listed as Jα = 120 × 103 kg-m2, Jβ =

20 × 103 kg-m2, m = 10 × 103 kg, ht = 10 m, Lb = 21 m, b1 = b2 = b4 = b5 =

0.1 N-m/rad-s−1, b3 = 0.2 N/m-s−1 and g = 9.8065 m-s−2. The crane base is located

on the vessel such that pbx = 20 m, pby = 0 m and pbz = 10 m. The vessel’s heaving,

rolling and pitching are considered as disturbances, where ζ = 0.02 sin 1.25t m and

φ = ψ = 0.01 sin 1.25t rad. The controller parameters used in the simulations are

λ1 = λ2 = 2, λ3 = λ4 = λ5 = 1, γ1 = γ2 = 0.5, λwi
= 1, ΞMi

= 50 × 103,

ΨMi
= 10×103, ηi = 30 and σMi

= 10, i = 1, 2, 3. The initial value of the generalised

coordinates vector are chosen as (α0, β0, l0, θ10 , θ20) = (0rad, 0.5rad, 10m, 0rad, 0rad).

The swing angles responses which will be presented in this section are the tangential

pendulation and radial sway with respect to the ground coordinate frame, namely

δ1 and δ2 respectively, as defined by (3.18). The reference trajectories are chosen

such that αd = βd = 1.0 rad and ld = 15 m.

We consider several scenarios for simulation to assess the capability of the pro-

posed controller. In the first scenario, we consider that the vessel is stationary, i.e.,

its heaving, rolling and pitching are set to zero (ζ = 0 m, φ = ψ = 0 rad), where

the system responses are shown in Figure 6.5. In this case, the swing angles are

suppressed to the maximum amplitude of 0.04 rad which results a small amplitude

of oscillation on the slew and luff angles after they reach their references. The rope
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length response reaches its reference after 4.0 s. The second scenario considered in

the study is the control with the presence disturbances in the vessel, i.e., the heaving,

rolling and pitching of the vessel are set as nonzero such that ζ = 0.02 sin 1.25t m

and φ = ψ = 0.01 sin 1.25t rad. As shown in Figure 6.6(d), the maximum amplitude

of the swing angles increases to 0.07 rad due to the presence of disturbances. This

also results small increases in the oscillation amplitude of both slew and luff angles

responses as shown in Figures 6.6(a) and Figure 6.6(b), respectively.

Additionally, the payload mass is perturbed by 10% increment in order to demon-

strate the robustness of the controller. It can be seen that from Figure 6.7, the slew,

the luff and the swing angles, and the rope length responses are unperturbed by the

change in payload mass, which is similar with the responses in Figure 6.6.

6.4 Summary

A robust control scheme has been proposed for 3-D offshore gantry crane and

boom crane. From a chosen sliding surface vector, a 2-SMC law has been proposed,

and the asymptotic stability of the equivalent system in the Lyapunov sense has been

presented. Good performance in trajectory tracking and swing angle suppression are

obtained either when the vessels are stationary or moving with heave, roll and pitch

motions. Robust control performances have been obtained when the systems are

subjected to payload variations. Simulation results are provided to demonstrate the

effectiveness of the proposed control method.
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Figure 6.5 : (a) Slew angle; (b) luff angle; (c) rope length; and (d) swing angles;

when the vessel is stationary, i.e. ζ = 0 m and φ = ψ = 0 rad.
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Figure 6.6 : (a) Slew angle; (b) luff angle; (c) rope length; and (d) swing angles;

when ζ = 0.02 sin 1.25t m and φ = ψ = 0.01 sin 1.25t rad.
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Figure 6.7 : (a) Slew angle; (b) luff angle; (c) rope length; and (d) swing angles;

when ζ = 0.02 sin 1.25t m, φ = ψ = 0.01 sin 1.25t rad, and Δm/m = 10%
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Chapter 7

Thesis Contributions and Conclusions

7.1 Thesis contributions

The contributions of the thesis are summarised as follows:

• The two most common types of offshore cranes, namely the gantry crane and

boom crane, have been considered in the study. For each crane types, 2-D

and 3-D models have been developed with full system dynamics including the

rope length variation. Disturbance terms due to wave-induced motion of the

vessels are included in the dynamic models. The 2-D offshore crane models

have been presented in uncertain linear time-invariant (LTI) forms to facilitate

the first-order sliding mode control design.

• A generalisation of the second-order sliding mode control has been formulated

for a class of underactuated mechanical systems (UMS) to establish a basic

idea of the control technique. A second-order sliding mode observer has been

proposed to estimate the state velocities subject to high-frequency noise. A

generalisation of the fuzzy first-order sliding mode for a class UMS has also

been developed in which the fuzzification technique has been used for model

estimation in the construction of the control law.

• First-order sliding mode control laws have been proposed for 2-D offshore

gantry crane and boom crane systems. By making use of the LTI forms of

the offshore crane models, the sliding surfaces have been constructed based

on linear quadratic regulator and linear matrix inequality design approaches.



135

Robust sliding mode controllers were then proposed to drive the state error

trajectories to the sliding surface in a finite time and maintain it there for

subsequent time.

• A second-order sliding mode control (2-SMC) law has been proposed for tra-

jectory tracking and pendulation suppression for 3-D offshore gantry crane

and boom crane systems. The controller has been constructed to deal with 5

DOF crane systems subject to vessels’ roll, pitch and heave motions. From a

chosen sliding surface vector, a 2-SMC control laws have been proposed, and

the asymptotic stability of the equivalent system has been presented in the

Lyapunov sense.

7.2 Conclusions

The main theme of this thesis is the analytical modelling and control design of

offshore crane systems. The new topic of offshore crane control systems in crane

automation field becomes the motivation to produce this work.

To accomplish the thesis objectives, we have developed nonlinear mathematical

models of offshore gantry and boom cranes. Based on the Euler-Lagrange formula-

tion, full system dynamics have been derived for the cranes by considering the effects

of roll, pitch and heave motions of the vessels. The linearised models have also been

derived to utilise the advantage of linear time invariant theoretical knowledge. In

addition, the effect of wind disturbances has been considered in the offshore crane

models.

Since cranes are classified as underactuated mechanical systems (UMS), the

generic form of problem formulation for UMS can provide a useful conceptual frame-

work for crane control design. For this purpose, an adaptive fuzzy sliding mode con-

troller (AFSMC) has been proposed for a class of UMS, in which, the model with
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uncertainties is approximated using fuzzy logic. Based on the Lyapunov method, the

adaptive law for the controller is designed. A generic form of second-order sliding

mode controller (2-SMC) for UMS has been developed as well. The sliding function

for the 2-SMC is obtained from the actual and estimate states. The performances

of the proposed AFSMC and 2-SMC are evaluated by applying the control schemes

to a conventional gantry crane systems.

In Chapter 5, first-order sliding mode control (1-SMC) laws have been designed

for 2-D offshore cranes in the presence of vessel’s rolling motion and wind flows.

Two sliding function design approaches have been utilised, namely the quadratic

minimisation and linear matrix inequalities (LMI) technique. Robust 1-SMC laws

are proposed to drive the state variables of the system towards the sliding surface

in finite time and maintain them in a small bound within a close vicinity of the

sliding surface. The reference signals of crane trajectories are incorporated within

the sliding mode design procedure by using the model-reference approach. This

approach has been implemented to ensure the reference signals are not rejected by

the sliding mode controller. Extensive simulation results are provided to illustrate

the feasibility of the proposed design approach in some practical scenarios.

In Chapter 6, we have proposed a second-order sliding mode control (2-SMC)

scheme for trajectory tracking and pendulation suppression control for 3-D offshore

cranes with full system dynamics. The challenge in this control problem is to deal

with 5 DOF crane systems in the presence of vessels’ roll, pitch and heave motions.

Based on the generalisation of the 2-SMC, a control law has been constructed for

offshore gantry and boom cranes, and the asymptotic stability of the equivalent

system has been presented. Simulations have been performed for both offshore

crane systems to show that the proposed controller can deal with the aforementioned

problem.
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In conclusion, the sliding mode control developments throughout this thesis have

shown high performances against nonlinearities and uncertainties of the systems.

The results have shown that chattering alleviation can be achieved whether by using

a boundary layer in 1-SMC or exploiting the advantage of 2-SMC. In spite of that,

research on crane systems in marine operations remains an open problem due to

various considerations can be taken into account in terms of actuator dynamics,

path planning, disturbances rejection, and so on.

7.3 Future work

Potential future works in the offshore cranes automation topic can be explored

in two main aspects, namely, the system modelling and control design.

Offshore cranes modelling

In the development of offshore cranes model, despite full number of DOF includ-

ing rope length variation has been considered for cranes model, only three DOF are

taken into account for the ships, i.e., roll, pitch and heave. We also assume that

the ships are ideally held by moorings, in which, the ships’ centres of gravity are

only displaced from the ground reference point by heave motions. For future work,

the inclusion the other three DOF of ships motion, namely, yaw, surge and sway, is

recommended.

The future work may focus on the offshore boom cranes model development

since they are widely used in offshore operations. Sway suppression control of boom

cranes is more difficult than gantry cranes due to certain constraints in the rotational

motion of the boom, such as luff angle range and angular velocity limit. Moreover,

research on boom cranes is still preliminary as compared to gantry cranes in terms

of the availability of lab-scale model in the experimental setup.

For the purposes of practicality, the offshore cranes model development may
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include the actuators dynamics. The actuator mechanisms that commonly used in

crane systems are electric, hydraulic and pneumatic actuators. The inclusion of

actuator dynamics may add the relative degree in the overall system model. Hence,

the higher-order sliding mode can be a good approach to tackling these problems.

In addition, time-delay can also be considered in the model development.

Offshore cranes control

In offshore cranes control, more effort is required to construct robust control

to deal with the harsh sea conditions. In fact, the magnitude of wind disturbance

is more difficult to estimate as compared to ocean waves that can be assumed as

sinusoidal.

Offshore cranes control for underwater load placement operations is a challeng-

ing, yet an interesting topic to be explored. In this particular problem, the designer

must consider the effects of ocean current and buoyancy to payload position un-

derwater. The presence of ship motions during underwater conveying may also be

considered as system disturbances.

In most of the works on offshore cranes from the literature and some parts of this

thesis, step reference inputs have been used for trajectory tracking problems. Cranes

path planning can be important in some circumstances, e.g., to avoid obstacles

during load transfer operation. The reference trajectories other than step functions

may pose a more challenging problem in terms of sway amplitudes. Additionally, the

optimal trajectories for offshore cranes to minimise sway can further be investigated.
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[4] Y. M. Al-Sweiti and D. Söffker, “Planar cargo control of elastic ship cranes

with the “Maryland rigging” system,” Journal of Vibration and Control,

vol. 13, no. 3, pp. 241–267, 2007.

[5] N. B. Almutairi and M. Zribi, “Sliding mode control of a three-dimensional

overhead crane,” Journal of Vibration and Control, vol. 15, no. 11, pp.

1679–1730, 2009.

[6] J. Alvarez, I. Orlov, and L. Acho, “An invariance principle for discontinuous

dynamic systems with application to a coulomb friction oscillator,” Journal

of Dynamic Systems, Measurement, and Control, vol. 122, no. 4, pp. 687–690,

2000.

[7] H. Ashrafiuon, K. Muske, L. McNinch, and R. Soltan, “Sliding-mode track-

ing control of surface vessels,” IEEE Transactions on Industrial Electronics,



140

vol. 55, no. 11, pp. 4004–4012, 2008.

[8] H. Ashrafiuon and R. S. Erwin, “Sliding mode control of underactuated

multibody systems and its application to shape change control,” International

Journal of Control, vol. 81, no. 12, pp. 1849–1858, 2008.

[9] A. Astolfi, “Discontinuous control of nonholonomic systems,” Systems &

Control Letters, vol. 27, no. 1, pp. 37–45, 1996.

[10] S. Bag, S. Spurgeon, and C. Edwards, “Output feedback sliding mode design

for linear uncertain systems,” IEE Proceedings - Control Theory and Applica-

tions, vol. 144, no. 3, pp. 209–216, 1997.

[11] G. Bartolini, A. Ferrara, A. Pisano, and E. Usai, “Adaptive learning and

control using sliding modes,” Journal of Applied Mathematics and Computer

Science, vol. 8, no. 1, pp. 51–71, 1998.

[12] G. Bartolini, A. Ferrara, and E. Punta, “Multi-input second-order sliding-

mode hybrid control of constrained manipulators,” Dynamics and Control,

vol. 10, no. 3, pp. 277–296, 2000.

[13] G. Bartolini, A. Pisano, and E. Usai, “First and second derivative estimation

by sliding mode technique,” Journal of Signal Processing, vol. 4, no. 2, pp.

167–176, 2000.

[14] G. Bartolini and A. Pisano, “Black-box position and attitude tracking for

underwater vehicles by second-order sliding-mode technique,” International

Journal of Robust and Nonlinear Control, vol. 20, no. 14, pp. 1594–1609,

2010.

[15] G. Bartolini, A. Pisano, E. Punta, and E. Usai, “A survey of applications

of second-order sliding mode control to mechanical systems,” International

Journal of Control, vol. 76, no. 9-10, pp. 875–892, 2003.



141

[16] G. Bartolini, A. Pisano, and E. Usai, “Second-order sliding-mode control of

container cranes,” Automatica, vol. 38, no. 10, pp. 1783–1790, 2002.

[17] G. Bartolini, E. Punta, and T. Zolezzi, “Multi-input sliding mode control of

nonlinear uncertain affine systems,” International Journal of Control, vol. 84,

no. 5, pp. 867–875, 2011.

[18] D. Blackburn, W. Singhose, J. Kitchen, V. Patrangenaru, J. Lawrence,

T. Kamoi, and A. Taura, “Command shaping for nonlinear crane dynamics,”

Journal of Vibration and Control, vol. 16, no. 4, pp. 477–501, 2010.

[19] A. Bloch, D. E. Chang, N. Leonard, and J. Marsden, “Controlled Lagrangians

and the stabilization of mechanical systems. II. Potential shaping,” IEEE

Transactions on Automatic Control, vol. 46, no. 10, pp. 1556–1571, 2001.

[20] A. Bloch, N. Leonard, and J. Marsden, “Controlled lagrangians and the sta-

bilization of mechanical systems. i. the first matching theorem,” IEEE Trans-

actions on Automatic Control, vol. 45, no. 12, pp. 2253–2270, 2000.

[21] A. Bloch, M. Reyhanoglu, and N. McClamroch, “Control and stabilization of

nonholonomic dynamic systems,” IEEE Transactions on Automatic Control,

vol. 37, no. 11, pp. 1746–1757, 1992.

[22] M. Canale, L. Fagiano, A. Ferrara, and C. Vecchio, “Vehicle yaw control via

second-order sliding-mode technique,” IEEE Transactions on Industrial Elec-

tronics, vol. 55, no. 11, pp. 3908–3916, 2008.

[23] L. M. Capisani, A. Ferrara, and L. Magnani, “Design and experimental

validation of a second-order sliding-mode motion controller for robot

manipulators,” International Journal of Control, vol. 82, no. 2, pp. 365–377,

2009.



142
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[91] M. López-Mart́ınez, J. Acosta, and J. Cano, “Non-linear sliding mode surfaces

for a class of underactuated mechanical systems [Brief Paper],” IET Control

Theory Applications, vol. 4, no. 10, pp. 2195–2204, 2010.

[92] K. Ma, “Comments on “quasi-continuous higher order sliding-mode controllers

for spacecraft-attitude-tracking maneuvers”,” IEEE Transactions on Indus-

trial Electronics, vol. 60, no. 7, pp. 2771–2773, 2013.

[93] M. Manceur, N. Essounbouli, and A. Hamzaoui, “Second-order sliding fuzzy

interval type-2 control for an uncertain system with real application,” IEEE

Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 262–275, 2012.

[94] R. Martinez, J. Alvarez, and Y. Orlov, “Hybrid sliding-mode-based control of

underactuated systems with dry friction,” IEEE Transactions on Industrial

Electronics, vol. 55, no. 11, pp. 3998–4003, 2008.

[95] R. Martinez and J. Alvarez, “A controller for 2-DOF underactuated

mechanical systems with discontinuous friction,” Nonlinear Dynamics,

vol. 53, no. 3, pp. 191–200, 2008.

[96] Z. Masoud, A. Nayfeh, and D. Mook, “Cargo pendulation reduction of ship-

mounted cranes,” Nonlinear Dynamics, vol. 35, no. 3, pp. 299–311, 2004.

[97] S. Messineo, F. Celani, and O. Egeland, “Crane feedback control in offshore

moonpool operations,” Control Engineering Practice, vol. 16, no. 3, pp. 356–

364, 2008.

[98] S. Messineo and A. Serrani, “Offshore crane control based on adaptive

external models,” Automatica, vol. 45, no. 11, pp. 2546–2556, 2009.

[99] S. Mondal and C. Mahanta, “Nonlinear sliding surface based second order

sliding mode controller for uncertain linear systems,” Communications in



151

Nonlinear Science and Numerical Simulation, vol. 16, no. 9, pp. 3760–3769,

2011.

[100] K. Muske, H. Ashrafiuon, S. Nersesov, and M. Nikkhah, “Optimal sliding

mode cascade control for stabilization of underactuated nonlinear systems,”

Journal of Dynamic Systems, Measurement, and Control, vol. 134, no. 2, pp.

021 020–1 – 021 020–11, 2012.

[101] V. Nekoukar and A. Erfanian, “Adaptive fuzzy terminal sliding mode control

for a class of MIMO uncertain nonlinear systems,” Fuzzy Sets and Systems,

vol. 179, no. 1, pp. 34–49, 2011.

[102] S. G. Nersesov, H. Ashrafiuon, and P. Ghorbanian, “On estimation of the

domain of attraction for sliding mode control of underactuated nonlinear

systems,” International Journal of Robust and Nonlinear Control, 2012.

[103] Q. Ngo and K. Hong, “Sliding-mode antisway control of an offshore container

crane,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 2, pp. 201–

209, 2012.

[104] H. M. Omar and A. H. Nayfeh, “Gantry cranes gain scheduling feedback

control with friction compensation,” Journal of Sound and Vibration, vol.

281, no. 1-2, pp. 1–20, 2005.

[105] Y. Orlov, L. Aguilar, and J. C. Cadiou, “Switched chattering control

vs. backlash/friction phenomena in electrical servo-motors,” International

Journal of Control, vol. 76, no. 9-10, pp. 959–967, 2003.

[106] R. Ortega, M. Spong, F. Gomez-Estern, and G. Blankenstein, “Stabilization of

a class of underactuated mechanical systems via interconnection and damping

assignment,” IEEE Transactions on Automatic Control, vol. 47, no. 8, pp.

1218–1233, 2002.



152

[107] M. Osiński and S. Wojciech, “Application of nonlinear optimisation methods

to input shaping of the hoist drive of an off-shore crane,” Nonlinear Dynamics,

vol. 17, no. 4, pp. 369–386, 1998.

[108] S. Oucheriah, “Robust exponential convergence of a class of linear delayed

systems with bounded controllers and disturbances,” Automatica, vol. 42,

no. 11, pp. 1863–1867, 2006.

[109] V. Panchade, R. Chile, and B. Patre, “A survey on sliding mode control

strategies for induction motors,” Annual Reviews in Control, vol. 37, no. 2,

pp. 289–307, 2013.

[110] G. Parker, M. Graziano, F. Leban, J. Green, and J. Bird, “Reducing crane

payload swing using a rider block tagline control system,” in OCEANS 2007

- Europe, June 2007, pp. 1–5.

[111] K. Y. Pettersen and H. Nijmeijer, “Underactuated ship tracking control:

Theory and experiments,” International Journal of Control, vol. 74, no. 14,

pp. 1435–1446, 2001.

[112] A. Pisano and E. Usai, “Sliding mode control: A survey with applications in

math,” Mathematics and Computers in Simulation, vol. 81, no. 5, pp. 954–979,

2011.

[113] Port Consultants Rotterdam, “Procurement Container Handling Cranes -

Port El Sokhna, Egypt,” 2014, [Online; accessed 17-November-2014].

[114] C. D. Rahn, F. Zhang, S. Joshi, and D. M. Dawson, “Asymptotically stabi-

lizing angle feedback for a flexible cable gantry crane,” Journal of Dynamic

Systems, Measurement, and Control, vol. 121, no. 3, pp. 563–566, 1999.

[115] R. Raja Ismail and Q. P. Ha, “Trajectory tracking and anti-sway control of

three-dimensional offshore boom cranes using second-order sliding modes,”



153

in IEEE International Conference on Automation Science and Engineering

(CASE), 2013, pp. 996–1001.

[116] R. Raja Ismail, N. D. That, and Q. P. Ha, “Offshore container crane systems

with robust optimal sliding mode control,” in International Symposium on

Automation and Robotics in Construction and Mining (ISARC), 2014, pp.

149–156.

[117] M. Ravichandran and A. Mahindrakar, “Robust stabilization of a class of

underactuated mechanical systems using time scaling and Lyapunov redesign,”

Industrial Electronics, IEEE Transactions on, vol. 58, no. 9, pp. 4299–4313,

2011.

[118] M. Roopaei, M. Zolghadri, and S. Meshksar, “Enhanced adaptive fuzzy

sliding mode control for uncertain nonlinear systems,” Communications in

Nonlinear Science and Numerical Simulation, vol. 14, no. 910, pp. 3670–3681,

2009.

[119] E. Ryan and M. Corless, “Ultimate boundedness and asymptotic stability

of a class of uncertain dynamical systems via continuous and discontinuous

feedback control,” IMA Journal of Mathematical Control and Information,

vol. 1, no. 3, pp. 223–242, 1984.

[120] S. I. Sagatun, “Active control of underwater installation,” IEEE Transactions

on Control Systems Technology, vol. 10, no. 5, pp. 743–748, 2002.

[121] V. Sankaranarayanan and A. Mahindrakar, “Control of a class of under-

actuated mechanical systems using sliding modes,” IEEE Transactions on

Robotics, vol. 25, no. 2, pp. 459–467, 2009.

[122] H. Schaub, “Rate-based ship-mounted crane payload pendulation control

system,” Control Engineering Practice, vol. 16, no. 1, pp. 132–145, 2008.



154

[123] J. She, A. Zhang, X. Lai, and M. Wu, “Global stabilization of 2-DOF

underactuated mechanical systemsan equivalent-input-disturbance approach,”

Nonlinear Dynamics, vol. 69, no. 1-2, pp. 495–509, 2012.

[124] F. Singleton, “The Beaufort scale of winds – its relevance, and its use by

sailors,” Weather, vol. 63, no. 2, pp. 37–41, 2008.

[125] B. Skaare and O. Egeland, “Parallel force/position crane control in marine

operations,” IEEE Journal of Oceanic Engineering, vol. 31, no. 3, pp. 599–

613, 2006.

[126] Skaugen PetroTrans Inc., “Lightering 101 Introduction to Lightering,” Jan

2004.

[127] J.-J. E. Slotine and W. Li, Applied nonlinear control. Englewood Cliffs, New

Jersey: Prentice Hall, 1991.

[128] M. W. Spong and M. Vidyasagar, Robot dynamics and control. New York:

John Wiley & Sons, 1989.

[129] S. K. Spurgeon and R. Davies, “A nonlinear control strategy for robust sliding

mode performance in the presence of unmatched uncertainty,” International

Journal of Control, vol. 57, no. 5, pp. 1107–1123, 1993.

[130] N. Sun and Y. Fang, “An efficient online trajectory generating method for

underactuated crane systems,” International Journal of Robust and Nonlinear

Control, vol. 24, no. 11, pp. 1653–1663, 2014.

[131] N. Sun, Y. Fang, and X. Zhang, “An increased coupling-based control method

for underactuated crane systems: Theoretical design and experimental

implementation,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1135–1146, 2012.



155

[132] K. Takagi and H. Nishimura, “Control of a jib-type crane mounted on a flexible

structure,” IEEE Transactions on Control Systems Technology, vol. 11, no. 1,

pp. 32–42, 2003.

[133] C. Tao, J. Taur, and M.-L. Chan, “Adaptive fuzzy terminal sliding mode con-

troller for linear systems with mismatched time-varying uncertainties,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34,

no. 1, pp. 255–262, 2004.
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