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ABSTRACT 

 

The aims of this study were to (i) characterize different sludge types, which were 

anaerobically digested sludge (ADS), aerobically digested sludge (AEDS) and waste 

activated sludge (WAS) obtained from 3 Wastewater Treatment Plant (WWTP) of 

Sydney Water, Australia, for the purpose of determining feasible correlations of sludge 

properties with polymer demand (PD) for sludge conditioning and dewatering, and (ii) 

apply a new method, namely “Modified Centrifugal Index” test, in evaluating the 

dewaterability of these sludges after dewatering as well as determining optimal polymer 

demand (OPD). Besides polymer conditioning, the study also (iii) investigated several 

conditioning methods using other chemicals such as dual conditioning 

(Cationic/Anionic polymers and Iron/cationic polymer conditionings) and Fenton 

oxidation for improving/maintaining sludge dewaterability while reducing the chemical 

cost of sludge treatment. 

It is believed that a comprehensive understanding of the sludge characteristics is 

essential for optimizing the dewatering process. The study results of sludge 

characteristics show that ADS required the highest polymer demand for conditioning 

compared to the other sludge types studied. On the contrary, WAS required the least 

amount of polymer. The study also proved that there were good correlations between 

soluble biopolymers (mainly protein and polysaccharides) and OPD, which highlights 

the major role of soluble biopolymers in deciding polymer demand for sludge 

conditioning. Besides, these relationships could provide helpful information on suitable 

polymer types and dosages for an effective sludge conditioning.  
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Although CST is the most common parameter to evaluate the solid – liquid separation 

ability, it is often not a reliable indicator. In this study, a modified laboratory – scale 

centrifuge apparatus was employed. The experimental results show that Modified 

centrifugal index (MCI) test can be successfully used to evaluate the dewaterability of 

different sludge types with and without conditioning by estimating the maximum solids 

cake achievable by the centrifuge. After conditioning and centrifuge, solids contents 

were increased from 16% to almost 30% for ADS and from 19% to 23% for WAS. 

These values were similar to the results observed in real WWTPs. This demonstrates 

that MCI measurement is good to estimate the final cake concentration as well as 

simulate the real centrifuge process. This method can also help to determine optimal 

polymer demand (OPD) required for sludge conditioning.  

Based on both CST and MCI tests, lower polymer doses than currently used ones were 

found to be suitable for sludge conditioning of these 3 WWTPs. This could lead to an 

implication of reducing a significant amount of expensive cationic polymers for sludge 

conditioning at these plants. 

Conditioning methods using other chemicals (besides cationic polymers) which are also 

promising solutions for replacing expensive conditioners in the WWTPs were 

demonstrated to improve sludge dewaterability in term of CST. However, full – scale 

trials or MCI test are needed in the future study to confirm this finding. 
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