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ABSTRACT

With the rapid development of the information society and the wide applications of
networks, almost incredibly large numbers bytes of data are generated every day from the
social networks, business transactions and so on. In such cases, hashing technology, if
done successfully, would greatly improve the performance of data management. The goal

of this thesis is to develop hashing methods for large-scale structured data classification.

First of all, this work focuses on categorizing and reviewing the current progress on

hashing from a data classification perspective.

Secondly, new hashing schemes are proposed by considering different data
characteristics and challenges, respectively. Due to the popularity and importance of

graph and text data, this research mainly focuses on these two kinds of structured data:

1) The first method is a fast graph stream classification method using Discriminative
Clique Hashing (DICH). The main idea is to employ a fast algorithm to decompose a
compressed graph into a number of cliques to sequentially extract clique-patterns over
the graph stream as features. Two random hashing schemes are employed to compress
the original edge set of the graph stream and map the unlimitedly increasing clique-
patterns onto a fixed-size feature space, respectively. DICH essentially speeds up the
discriminative clique-pattern mining process and solves the unlimited clique-pattern

expanding problem in graph stream mining;

2) The second method is an adaptive hashing for real-time graph stream classification
(ARC-GS) based on DICH. In order to adapt to the concept drifts of the graph stream, we
partition the whole graph stream into consecutive graph chunks. A differential hashing

scheme is used to map unlimited increasing features (cliques) onto a fixed-size feature

X



space. At the final stage, a chunk level weighting mechanism is used to form an ensemble
classifier for graph stream classification. Experiments demonstrate that our method

significantly outperforms existing methods;

3) The last method is a Recursive Min-wise Hashing (RMH) for text structure. In this
method, this study aims to quickly compute similarities between texts while also
preserving context information. To take into account semantic hierarchy, this study
considers a notion of “multi-level exchangeability”, and employs a nested-set to represent
a multi-level exchangeable object. To fingerprint nested-sets for fast comparison,
Recursive Min-wise Hashing (RMH) algorithm is proposed at the same computational
cost of the standard min-wise hashing algorithm. Theoretical study and bound analysis

confirm that RMH is a highly-concentrated estimator.
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