

Hashing for Large-Scale
Structured Data
Classification

Lianhua Chi

A thesis submitted for the Degree of

Doctor of Philosophy

Faculty of Engineering and Information Technology

University of Technology, Sydney 2015

i

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate:

 Date:

ii

ACKNOWLEDGEMENTS

I would like to express my earnest thanks to my principal supervisor, Dr. Ling Chen,

co-supervisor, Professor Xingquan Zhu, and Dr. Bin Li who have provided tremendous

support and guidance for my research. Their comprehensive guidance has covered all

aspects of my PhD study, including research methodology, research topic selection,

experiments, academic writing skills and thesis writing, and even the sentence structure

and formulas. Their critical comments and suggestions have strengthened my study

significantly. Their strict academic attitude and respectful personality have benefited my

PhD study and will be a great treasure throughout my life. Without their excellent

supervision and continuous encouragement, this research could not have been finished on

time. Thanks to you all for your kind help.

I am grateful to all members of the centre for Quantum Computation and Intelligent

Systems (QCIS) for their careful participation in my presentation and valuable comments

for my research. I especially thank Professor Chengqi Zhang, and PhD students Mr Ting

Guo, Mr Shirui Pan, Mr Meng Fang, Mr Zhibing Hong, Ms Hongshu Chen and Mr Junyu

Xuan, and other students for their contributions and help during my PhD study.

I am grateful to FEIT Travel fund, Vice-Chancellor’s Postgraduate Conference Fund,

and the ARC Discovery Scholarship.

Last but not least, I would like also to thank my family members. Thanks to my

mother and father for their constant encouragement and generous support. Thanks to my

husband for his unconditional support.

iii

TABLE OF CONTENTS

CERTIFICATE OF AUTHORSHIP/ORIGINALITY .. i

ACKNOWLEDGEMENTS .. ii

TABLE OF CONTENTS .. iii

LIST OF FIGURES .. vi

LIST OF TABLES .. viii

ABSTRACT .. ix

CHAPTER 1 Introduction .. 1

1.1 Motivation .. 1

1.2 Problem Statement and Solutions ... 2

1.2.1 Problem Statement and Solutions for Graph Structured Data 2

1.2.2 Problem Statement and Solutions for Text Structured Data .. 5

1.3 Contributions ... 6

1.4 Thesis structure .. 8

1.5 Publications .. 10

CHAPTER 2 Preliminary Concepts and Notations .. 11

2.1 Definitions .. 11

2.1.1 Definitions for Graph Structured Data .. 11

2.1.2 Definitions for Text Structured Data ... 13

2.2 Notations .. 15

CHAPTER 3 Literature Review .. 18

3.1 Hashing ... 18

3.1.1 Hashing Introduction ... 18

3.1.2 Hashing Overview ... 20

3.1.3 Hashing Methods .. 22

iv

3.2 Large-Scale Structured Data Classification based on Hashing ... 33

3.2.1 Graph stream Classification based on Hashing ... 33

3.2.2 Text Classification based on Hashing .. 35

CHAPTER 4 Discriminative Clique Hashing for Fast Graph Stream Classification 38

4.1 Introduction ... 38

4.2 Definitions & Method Framework ... 40

4.2.1 Problem Definition .. 40

4.2.2 Method Framework .. 41

4.3 DICH: DIscriminative Clique Hashing .. 42

4.3.1 Graph Clique Detection ... 42

4.3.2 Graph Clique Hashing .. 45

4.3.3 Clique-based Classifier .. 46

4.4 Experiment ... 47

4.4.1 Effectiveness Evaluation ... 48

4.4.2 Efficiency Evaluation ... 53

4.5 Summary .. 55

CHAPTER 5 Adaptive hashing for Real-time Graph Stream Classification 56

5.1 Introduction ... 56

5.2 Definitions & System Overview.. 59

5.2.1 Problem Definition .. 59

5.2.2 System Overview ... 60

5.3 ARC-GS: Adaptive Real-time Classification for Graph Stream ... 61

5.3.1 Graph Clique Detection ... 62

5.3.2 Differential Graph Clique Hashing ... 62

5.3.3 Clique-based Chunk Classifier ... 64

5.3.4 Weighted Chunk Classifier Ensemble .. 66

5.4 Experiment ... 67

5.4.1 Data Sets ... 68

5.4.2 Effectiveness Evaluation ... 69

5.4.3 Efficiency Evaluation ... 83

5.4.4 Concept Drifts ... 86

v

5.5 Summary .. 95

CHAPTER 6 Context-Preserving Hashing for Fast Text Classification ... 97

6.1 Introduction ... 97

6.2 Preliminaries & Baselines ... 99

6.2.1 Preliminaries ... 99

6.2.2 Baselines .. 101

6.3 RMH: Recursive Min-wise Hashing .. 102

6.3.1 Multi-Level Exchangeable Representations .. 102

6.3.2 Recursive Min-wise Hashing ... 104

6.3.3 Time Complexity Analysis .. 107

6.4 Experiment ... 108

6.4.1 Data Sets ... 109

6.4.2 Compared Methods .. 109

6.4.3 Performance Comparison ... 110

6.4.4 Investigation of Min-hash Size .. 113

6.5 Summary .. 115

CHAPTER 7 Conclusions and Further Study ... 117

7.1 Conclusions .. 117

7.2 Further study .. 118

References.. 120

vi

LIST OF FIGURES

Figure 1.1: Graph classification .. 3
Figure 1.2: Thesis structure .. 8
Figure 3.1: A basic hashing example .. 19
Figure 3.2: The Framework for Categorizing Hashing methods: the contents above the arrows
represent the classification rules; the contents in the dotted box represent different classes of
hashing methods .. 22
Figure 3.3: The classification of data-independent hashing methods: the contents above the
arrows represent the classification rules; the contents in the dotted box represent different
classes of hashing methods ... 23
Figure 3.4: An example of the Min-Hash ... 26
Figure 3.5: The classification for data-dependent hashing methods: the contents above the
arrows represent the classification rules; the contents in the dotted box represent different
classes of hashing methods ... 30
Figure 4.1: The framework of DICH for graph stream classification .. 42
Figure 4.2: Clique detection in a compressed graph ... 43
Figure 4.3: A toy example of frequent and discriminative clique-pattern mining 46
Figure 4.4: Effectiveness evaluation w.r.t. on the DBLP data set (left) and the IBM sensor data
set (right), and .. 49
Figure 4.5: Effectiveness evaluation w.r.t. on the DBLP data set (left) and the IBM sensor data
set (right), and .. 50
Figure 4.6: Effectiveness evaluation w.r.t. the edges compression size on the DBLP data set
(left) and the IBM sensor data set (right), and .. 52
Figure 4.7: Efficiency evaluation (1) w.r.t. , and (left); (2) w.r.t. ,

 and (right); and (3) w.r.t. , , (down), on the DBLP data set
 .. 54
Figure 5.1: The framework of the proposed adaptive real-time hashing for graph stream
classification method ... 60
Figure 5.2: Classification accuracy on the IBM (ensemble size K = 4), and the CNS (ensemble size
K = 6) with different numbers of features M ... 74
Figure 5.3: Average accuracy on the IBM (left, ensemble size K = 4), and the CNS (right,
ensemble size K = 6) with different numbers of features M ... 75

vii

Figure 5.4: Classification accuracy on the IBM (number of features M = 1000), and the CNS
(number of features M = 10000) with different ensemble size K .. 79
Figure 5.5: Average accuracy on the IBM (left, number of features M = 1000), and the CNS (right,
number of features M = 10000) with different ensemble size K ... 80
Figure 5.6: Classification accuracy and average classification accuracy on the IBM (upper row,
number of features M = 1000 and ensemble size K = 4), and the CNS (bottom row, number of
features M = 10000 and ensemble size K = 6) with different hash ratio R 82
Figure 5.7: Average time on the IBM (left, ensemble size K = 4), and the CNS (right, ensemble
size K = 6) with different numbers of features M .. 84
Figure 5.8: Average time on the IBM (left, number of features M = 1000), and the CNS (right,
number of features M = 10000) with different ensemble size K ... 85
Figure 5.9: Classification accuracy on the IBM (ensemble size K = 4) and the GTGraph (ensemble
size K = 4) with different numbers of features M .. 91
Figure 5.10: Classification accuracy on the IBM (number of features M = 1000) and the GTGraph
(number of features M = 5000) with different ensemble size K .. 95
Figure 6.1: Motivation examples. The standard min-wise hashing on bags-of-words (flat-sets)
gives sim (1, 2) > sim (2, 3) while our RMH on nested bags-of-words (nested-sets) gives sim (2,
3) > sim (1, 2) .. 98
Figure 6.2: An illustration of the proposed Recursive Min-wise Hashing (RMH) algorithm on a
nested set ... 107
Figure 6.3: Classification accuracy and CPU time of the compared methods w.r.t. the length of
output fingerprints ... 112
Figure 6.4: Classification accuracy and CPU time of the RMH algorithm with different min-hash
sizes at different levels of the nested sets ... 115

viii

LIST OF TABLES

Table 2.1: Notations used in the thesis .. 15

ix

 ABSTRACT

With the rapid development of the information society and the wide applications of

networks, almost incredibly large numbers bytes of data are generated every day from the

social networks, business transactions and so on. In such cases, hashing technology, if

done successfully, would greatly improve the performance of data management. The goal

of this thesis is to develop hashing methods for large-scale structured data classification.

First of all, this work focuses on categorizing and reviewing the current progress on

hashing from a data classification perspective.

Secondly, new hashing schemes are proposed by considering different data

characteristics and challenges, respectively. Due to the popularity and importance of

graph and text data, this research mainly focuses on these two kinds of structured data:

1) The first method is a fast graph stream classification method using Discriminative

Clique Hashing (DICH). The main idea is to employ a fast algorithm to decompose a

compressed graph into a number of cliques to sequentially extract clique-patterns over

the graph stream as features. Two random hashing schemes are employed to compress

the original edge set of the graph stream and map the unlimitedly increasing clique-

patterns onto a fixed-size feature space, respectively. DICH essentially speeds up the

discriminative clique-pattern mining process and solves the unlimited clique-pattern

expanding problem in graph stream mining;

2) The second method is an adaptive hashing for real-time graph stream classification

(ARC-GS) based on DICH. In order to adapt to the concept drifts of the graph stream, we

partition the whole graph stream into consecutive graph chunks. A differential hashing

scheme is used to map unlimited increasing features (cliques) onto a fixed-size feature

x

space. At the final stage, a chunk level weighting mechanism is used to form an ensemble

classifier for graph stream classification. Experiments demonstrate that our method

significantly outperforms existing methods;

3) The last method is a Recursive Min-wise Hashing (RMH) for text structure. In this

method, this study aims to quickly compute similarities between texts while also

preserving context information. To take into account semantic hierarchy, this study

considers a notion of “multi-level exchangeability”, and employs a nested-set to represent

a multi-level exchangeable object. To fingerprint nested-sets for fast comparison,

Recursive Min-wise Hashing (RMH) algorithm is proposed at the same computational

cost of the standard min-wise hashing algorithm. Theoretical study and bound analysis

confirm that RMH is a highly-concentrated estimator.

PHD Thesis, UTS Chapter 1

1

CHAPTER 1 INTRODUCTION

1.1 MOTIVATION
With the rapid development of information society and the wide applications of

network, almost incredibly large numbers bytes of data are generated every day from the

social networks, business transactions, sensors, and entertainment industry and so on. The

characteristics of these data mainly include large volume, quickly moving, different types

(such as relation data, semi-structured data (XML), images, texts, videos and graphs). It

is called as “big data”.

Nowadays, mining of massive data [114] has become one of the most important

research trends in the era of big data. The “4V” (volume, velocity, variety and veracity)

nature of big data subverts the traditional learning paradigm because, in big data

scenarios, the volume and the dimensionality of instances are usually unpredictable and

increase rapidly. In such cases, even enumerating complete features to compute a

similarity has become an intractable problem. For example, in document similarity

search, the underlying feature space can easily exceed 108 dimensions if 5-shingles (5

continuous characters) are considered [114]; and the feature space can be much higher if

a vocabulary of words as features is considered. Thus, it becomes urgent to develop fast

approximate algorithms to address the storage and computation problems for big data.

 However, due to the limitation of traditional data analysis tools, it is very difficult to

store, process and analyse these big data. For the users, they hope to effectively process

and analyse all available data and get more accurate and timely business intelligence. In

order to meet the needs of users, attempts can be made to better manipulate and control

the data. In such cases, the hashing technology can efficiently compress data for better

PHD Thesis, UTS Chapter 1

2

management. Research on hashing has attracted more and more attention since the idea

of hashing started. Many hashing methods were developed to solve the problems of the

curse of dimension and finding nearest neighbours. The hashing technology can learn

binary-code representation for data in the hash code space and preserve the

neighbourhood structure in the original feature space by mapping similar points in the

original feature space to nearby binary codes in the hash code space. The compact

representation in hashing can effectively save storage and achieve fast query in large

scale data.

1.2 PROBLEM STATEMENT AND SOLUTIONS
 The core goal of this research is to develop a set of effective hashing methods for

large-scale structured data classification. Accordingly, a literature review is first carried

out to survey existing hashing methods. In order to utilize hashing methods for efficient

data management and classification, this research will place an emphasis on graph and

text data, and will propose algorithms for hashing and classifying structured data from

static sets and dynamic streams.

1.2.1 PROBLEM STATEMENT AND SOLUTIONS FOR GRAPH

STRUCTURED DATA

The emergence of complex networks has led to a surge of research in graph data

mining [87]. Graph classification is an important graph data mining task that aims to

learn a discriminative model from training examples to predict class labels of test

examples, where both training and test examples are graphs. Many real-world

applications involve graph-represented data, such as chemical compounds, XML

documents and program flows.

Fig. 1.1 shows an example of graph classification where two sets of compound graphs:

“Known Graphs” and “Unknown Graphs”. In the “Known Graphs” are given as training

examples. In the “Known Graphs” set, there are a graph labelled as “Organic Compound”

and another graph labelled as “Non-organic Compound”. The task of graph classification

PHD Thesis, UTS Chapter 1

3

is to learn classification models, from the training graphs, in order to effectively predict

the unknown graphs, by analysing the features or structures in the known graphs.

Figure 1.1: Graph classification

The essential challenge for graph classification is to extract features from graphs and

represent graph data in instance-feature format to support model training. A variety of

studies on substructure extraction (e.g., walks [88, 89], paths [90], and subtrees [91, 92])

for describing graphs have been proposed in the past decade. However, most of them

only consider the learning problem of graph classification in batch mode (all data are

available for training), which limits their applicability to large-scale and stream scenarios.

In fact, dynamic networked data are often presented with increasing volumes and change

over time in many real-world scenarios. For example, a social network is made up of a

population of individuals, where the interactions among them keep generating,

disappearing, and changing over time. A transportation network is a complex network

made up of numerous interconnected routes, where the traffic flows over them are

generated dynamically over time. Due to the streaming nature of many real-world

Known Graphs Unknown Graphs

Predict

A B

C

D E

A B

D E

A

C E

D

B E

O
rganic Com

pound
N

on-organic Com
pound

PHD Thesis, UTS Chapter 1

4

complex networks, graph stream classification has recently attracted increasing research

interest [93-96]. However, the hashing for graph stream classification on a complex

network with massive nodes is challenging, because

 How to handle data stream: The volumes of graph data are continuously

growing, so graph streams can usually be accessed only once. The hashing for

graph stream classification must be able to tackle dynamically increasing graph

volumes and generate hashing values with high speed.

 How to adapt to the changing feature distributions: The marginal distributions

of subgraph-patterns (features) may continuously change over the graph stream

(that is, the concept-drift problem [96]). The hashing methods are required to

effectively deal with the changing feature space.

 In order to address these challenges, this study proposes a fast graph stream

classification method using DIscriminative Clique Hashing (DICH) to address the

aforementioned challenges. The main idea is to decompose a compressed graph into a

number of cliques (fully connected subgraphs) to sequentially extract clique-patterns over

the graph stream as features. Two random hashing schemes are employed to compress

the original edge set of the graph stream and map the unlimitedly increasing clique-

patterns onto a fixed-size feature space, respectively. The hashed cliques are then used to

update an “in-memory” fixed-size pattern-class table, which will be finally used to

generate a rule-based classifier.

 Meanwhile, motivated by the aforementioned challenges and the limitations of the

existing approaches, in this thesis, there is a further proposal for an adaptive real-time

classification method for graph stream using stochastic learning, differential hashing

techniques and a chunk level weighting mechanism to address these problems. The

detailed solutions for the aforementioned challenges and the limitations are highlighted as

follows:

1. This study proposes an approximate method for fast graph feature extraction by

detecting cliques from the compressed graphs via hashing. The method

PHD Thesis, UTS Chapter 1

5

significantly improves the efficiency of feature extraction and classifier learning

online to satisfy the real-time requirement.

2. This study proposes a graph feature reduction method by mapping unlimitedly

expanding clique patterns onto a fixed-size compatible feature space via

differential hashing. This can avoid a pre-scan of graphs to further speed up the

learning process, satisfying the one-pass requirement and adapting to the

concept drifting.

3. This study adopts the stochastic learning strategy to incrementally train a graph

classifier online, which can satisfy the real-time requirement and achieve

better classification performance than the majority voting used in [95] [18].

Combined with a differential hashing scheme, a chunk level weighting mechanism is

adopted to form a weighted classifier ensemble for graph stream classification, which can

effectively adapt to concept drifting and achieve better performance than instance level

weighting mechanism [103].

1.2.2 PROBLEM STATEMENT AND SOLUTIONS FOR TEXT

STRUCTURED DATA

 There have been a number of approximate algorithms for big data similarity

computation. Since many high-dimensional data can be represented as bags of words,

min-wise hashing [10] has been naturally applied to them for fast approximating set

similarities without scanning and comparing the complete sets. However, all the current

algorithms are based on the bag-of-words representation for its exchangeability that can

facilitate random projection and hashing. A limitation of such flat-set representation is

that context information and semantic hierarchy may be lost. Thus, a more expressive

bag-of-words representation needs to be explored to relieve this problem.

 In this thesis, the aim is to fast compute similarities between bag-of-words represented

objects while also preserving context information inside the objects. The process still

follows the random algorithm approach to this end. Relational learning and structural

PHD Thesis, UTS Chapter 1

6

patterns are not be considered to capture context information which might be unrealistic

in big data scenarios. To take into account semantic hierarchy, a notion of multi-level

exchangeability is considered which can be applied at word-level, sentence-level and

paragraph-level. Then, a nested-set is employed to represent a multi-level exchangeable

object, say “nested bag-of-words”. For example, {{a, b, c, d}, {b, d, e}, {e, f, g}}

represents a paragraph with three sentences, each of which further comprises several

words. In this example, the top-level exchangeable elements are sentences while the

bottom-level exchangeable elements are words. In such nested-set representations,

context information and semantic hierarchy are preserved yet the resulting form is still

simple for random algorithms. To fast compute a similarity between nested-sets, a

Recursive Min-wise Hashing (RMH) algorithm is proposed for sketching nested-sets.

The advantage of RMH is two-fold: 1) it accounts for multiple levels of

exchangeabilities; 2) it enables a probabilistic comparison of sub-sets instead of hard

matching.

1.3 CONTRIBUTIONS
This thesis focuses on exploring, developing and utilizing hashing scheme to solve

large-scale structured data classification problems.

Our contributions to solve these problems are listed below:

 Surveying the hashing methods: a comprehensive overview of hashing methods

is given in this thesis, which is the theoretical basis of our thesis for the large-

scale structured data classification. This comprehensive overview not only

becomes a helpful resource and guidance for further research on hashing methods

and related research fields, but also provides theoretical guidance for the large-

scale structured data classification. Our contributions are as follows:

1: Summarize the development history of hashing and provide the theoretical

background of hashing, which can help us establish a better understanding of the

hashing methods.

PHD Thesis, UTS Chapter 1

7

2: Review the current hashing methods including data-independent hashing and

data-dependent hashing methods, which provide a clear framework of current

popular hashing methods.

3: Introduce the main applications of hashing, including the objective-oriented

applications and data domain-oriented applications, which help us understand the

importance of hashing methods.

 Exploring the hashing scheme for graph structured data classification:

Motivated by the aforementioned challenges and the limitations of the existing

approaches, in-depth research on graph structured data classification is done with

the guidance of hashing theory. Our contributions are as follows:

1: Propose a fast graph stream classification method using DIscriminative Clique

Hashing (DICH) to address the aforementioned challenges.

2: Propose an approximate method for fast graph feature extraction by detecting

cliques from the compressed graphs via hashing. The method significantly

improves the efficiency of feature extraction and classifier learning online to

satisfy the “real-time” requirement.

3: Propose a graph feature reduction method by mapping unlimitedly expanding

clique patterns onto a fixed-size compatible feature space via differential hashing.

This can avoid a pre-scan of graphs to further speed up the learning process,

satisfying the “one-pass” requirement and adapting to the concept drifting.

4: Adopt the stochastic learning strategy to incrementally train a graph classifier

online, which can satisfy the “real-time” requirement and achieve better

classification performance than the majority voting used in [95] [18].

5: Combined with the differential hashing scheme, a chunk level weighting

mechanism is adopted to form a weighted classifier ensemble for graph stream

classification, which can effectively adapt to concept drifting and achieve better

performance than an instance level weighting mechanism [103].

PHD Thesis, UTS Chapter 1

8

 Exploring the hashing scheme for text structured data classification: To fast

compute a similarity for text data, a Recursive Min-wise Hashing (RMH)

algorithm is proposed for sketching nested-sets. By virtue of RMH, two multi-

level exchangeable objects can be compared with the same computational cost of

the standard min-wise hashing algorithm while preserving context information as

a plus. A theoretical bound to RMH is also provided to show it is a highly-

concentrated estimator. Our contributions are as follows:

1: Account for multiple levels of exchangeabilities;

2: Enable a probabilistic comparison of sub-sets instead of hard matching.

1.4 THESIS STRUCTURE
The framework of the whole thesis is as follow:

Figure 1.2: Thesis structure

Chapter 2:
Preliminary

and
Notations

Chapter 3:
Literature

Review

Chapter
4, 5, 6:

Technical
Part

Chapter 7:
Conclusions

Thesis

Theoretical
Guidance

Chapter 4:
Discriminative

Clique
Hashing

Chapter 5:
Adaptive
Hashing

Hashing

Data
Classification

based on
Hashing

Emerging
Applications

Chapter 6:
Context-

Preserving
Hashing

Graph Stream
Classification

Text
Classification

Theoretical
Guidance

PHD Thesis, UTS Chapter 1

9

The content of each chapter in this thesis is summarized as follows:

Chapter 2: This chapter provides preliminary concepts and definitions for the

proposed models. It also summarizes major notations in the thesis.

Chapter 3: This chapter is a literature review that surveys existing works on hashing

scheme from a data classification perspective. It summarizes major approaches in the

field, along with their technical strengths/weaknesses, followed by a simple discussion

about emerging hashing applications and challenges therein.

Chapter 4: This chapter presents a discriminative clique hashing for fast graph stream

classification (DICH). It provides algorithm details, theoretical processes, and

comparative experiments to valid its superiority to state-of-art methods.

Chapter 5: This chapter describes an adaptive hashing for real-time graph stream

classification (ARC-GS) in detail. It explains the motivations and the principles of graph

stream classification, provides the theoretical basis and interpretations for the proposed

work, and shows comparative experimental results with baseline methods and benchmark

data sets.

Chapter 6: This chapter introduces a context-preserving hashing for fast text

classification (RMH). It explains the motivations and the principles of fast text

classification, provides the theoretical basis, interpretations and time complexity for the

proposed work. Details for the analysis of the comparisons results of experiments

performed is also presented in this chapter.

Chapter 7: This chapter concludes this thesis and outlines the direction for future

work.

PHD Thesis, UTS Chapter 1

10

1.5 PUBLICATIONS
Below is a list of the refereed international journal and conference papers associated

with my PhD research that have been submitted, accepted and published:

1) Lianhua Chi, Bin Li, Xingquan Zhu: Context-Preserving Hashing for Fast Text

Classification. SDM 2014: 100-108.

2) Lianhua Chi, Bin Li, Xingquan Zhu: Fast Graph Stream Classification Using

Discriminative Clique Hashing. PAKDD (1) 2013: 225-236

3) Ting Guo, Lianhua Chi, Xingquan Zhu: Graph hashing and factorization for fast

graph stream classification. CIKM 2013: 1607-1612

4) Zongmin Cui, Hong Zhu, Lianhua Chi: Lightweight key management on sensitive

data in the cloud. Security and Communication Networks 6(10): 1290-1299

(2013)

5) Zongmin Cui, Hong Zhu, Jie Shi, Lianhua Chi, Ke Yan: Lightweight

Management of Authorization Update on Cloud Data. ICPADS 2013: 456-461

6) Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang: Nested Subtree Hash

Kernels for Large-Scale Graph Classification over Streams. ICDM 2012: 399-408

7) Lianhua Chi, Yucai Feng, Hehua Chi, Ying Huang: Face image recognition based

on time series motif discovery. GrC 2012: 72-77

8) Yucai Feng, Lianhua Chi, Hehua Chi, Chuanlu Liu, Zhuo Liu: QoM: An effective

querying method for time series database. GrC 2012: 129-134

9) Juebo Wu, Hehua Chi, Lianhua Chi: A Cloud Model-based Approach for Facial

Expression Synthesis. Journal of Multimedia 6(2): 217-224 (2011)

10) Lianhua Chi, Hehua Chi, Yucai Feng, Shuliang Wang, Zhongsheng Cao:

Comprehensive and Fast Discovery of Time Series Motifs. Journal of Zhejiang

University SCIENCE C (JZUS-C) 2011.

PHD Thesis, UTS Chapter 2

11

CHAPTER 2 PRELIMINARY CONCEPTS
AND NOTATIONS

2.1 DEFINITIONS

2.1.1 DEFINITIONS FOR GRAPH STRUCTURED DATA

 Suppose there exists a complex network which comprises a massive universe of nodes.

Edges connecting these nodes are denoted by an edge set . The stream of graphs

 are presented sequentially as the subsets of (all are connected

graphs), where the subscript denotes the receiving order of the graph in the stream. An

example of such graph streams is a coauthor network. All the papers (graphs of

connected authors) on the coauthor network with different time-stamps form a graph

stream.

 Definition 1. Connected Graph: A graph is represented as where

 is the set of vertices, is the set of edges, and is the label1 set of

the vertices and edges. A connected graph is a graph in which there exists a path between

any pair of vertices.

Definition 2. Graph Stream: A graph stream is a

sequence of graphs which arrive one after another in a stream fashion.

1 Note that the labels of nodes and edges are different notations from the class labels of graphs.

PHD Thesis, UTS Chapter 2

12

Definition 3. Clique: A clique in a graph is a subgraph

that satisfies and any pair of vertices in are connected by an edge (i.e., a

complete graph).

Clique is widely used as a fundamental unit for structural analysis and knowledge

discovery in graphs. Although finding maximum clique is NP-complete [104], many

algorithms for finding cliques have been developed in exponential time and even

polynomial time for certain type of graphs. Because graphs do not have features available

for representation, in this thesis, we propose to use cliques as features to represent graphs.

While many methods exist to represent graphs by using frequent subgraph patterns or

using whole graphs (e.g., graph kernels). Cliques have the following two major

advantages for graph representation:

(1) For dynamic graph streams, frequent subgraph patterns are rapidly changing,

which makes the feature space exponentially grows and drastically changes. As a result, a

classifier built from historical graphs might not be used to accurately represent and

classify future graphs because they have different subgraph feature space. In comparison,

cliques are basic graph structures remaining relatively stable for graph streams. By using

cliques as features to represent graphs, historical and future graphs can be ensured to

have shared common feature space for learning;

(2) Finding cliques is much more efficient than finding frequent subgraph patterns

(our clique finding details will be elaborated in the next section), so our method can

rapidly discover graph features for learning.

(3) Compared to frequent subgraph patterns or a whole graph, clique is a relatively

small structure unit, which implies that clique might not be sufficiently accurate for graph

representation (or incur more information loss). Nevertheless, our research will show that

although graphs are complex in structures, a graph can often be decomposed into a small

number of structure units. This allows our research to use a relatively large number of

small cliques to represent a large set of graphs, without resulting in severe information

loss.

PHD Thesis, UTS Chapter 2

13

Definition 4. Clique Features: Let denote a set of clique patterns (or

clique features). For a graph , a vector is used to represent

 in the clique-feature space spanned by , where is the number of clique pattern

 found in .

Specifically, the edge set of is denoted by . Each graph has

a class label . Each received graph is represented in the form

of . In this chapter, it is assumed that each edge in a graph has a

numerical weight , where and are the indices of the two vertices of the edge (for

simplicity, edge labels are not considered).

2.1.2 DEFINITIONS FOR TEXT STRUCTURED DATA

Definition 5. Bag-of-Words: A bag of words is the unordered collection of words in a

text .

 It is a simplified representation disregarding the structural information. Due to its

simplicity, bag-of-words has been accepted as a standard model in information retrieval

and text mining, especially in massive data scenarios. For text classification, there are

two commonly used bag-of-words representations:

 (1) Term Frequency (TF), which counts the occurrence of each word in d and let the

count be the value of the corresponding feature dimension. The resulting form is a feature

vector whose dimensions are spanned by terms in a predefined vocabulary. It is

common to use inverse document frequency (IDF) to weight TF for emphasizing

uncommon terms [114].

 (2) (Multi-) Set, which views all words in as a set ; if the same word is allowed to

appear multiple times, it is a multi-set. This representation is easier than TF since no

predefined vocabulary (feature space) is required, hence it is more popular in high-

dimensional data scenarios.

PHD Thesis, UTS Chapter 2

14

Definition 6. Min-wise Hashing: The min-hash scheme [10] is an approximate method

for measuring the similarity of two sets, say and .

 hash functions (random permutations) are applied to the elements in and

min is an min-hash of . An advantageous property of min-hash is that the

probability of and to generate the same min-hash value is exactly the Jaccard

similarity of and :

 (2.1)

where is written as a shorthand. In practice, multiple independent

random permutations are used to generate min-hashes to approach the expected

probability. The similarity between the two sets based on the min-hashes is calculated

by

 (2.2)

where 1(state) = 1, if state is true; and 1(state) = 0, otherwise. As

; that is

 (2.3)

Definition 7. Feature Hashing: Feature hashing [116] provides an unbiased and highly-

concentrated estimator of the inner product of high-dimensional feature vectors. It is

closely related to the random projection [9, 1]. The difference is that the projection

matrix only comprises values in , that is., where is the

original dimensionality and is the new, . A constraint on is that each column is

allowed to have only one non-zero entry. The positions of non-zero entries and its signs

are randomly generated.

Given a feature vector (that is, TF), the hashed feature vector gives

. The intuition of this operation is to randomly partition the features into groups and

sum up the signed features in the same group, where the sign is added to eliminate bias (a

biased version without signs is [115]).

PHD Thesis, UTS Chapter 2

15

 In practice, it is not necessary to explicitly define the projection matrix. Two random

hash functions can be directly applied to the terms in d to calculate the

hashed TF feature vector

 (2.4)

where and are two random hash functions. Due to

its implicit projection property, feature hashing is extremely useful in big data scenarios

where data may have infinite features. It has been adapted to many applications, such as

multi-task learning [116], collaborative filtering [113], and graph stream classification

[17].

Definition 8. Multi-Level Exchangeable Representations: The multi-level exchangeable

representation of a text is a nested set where

 (2.5)

for . denotes a set of words as atomic elements and denotes a

set of the highest-level exchangeable objects (that is, paragraphs).

2.2 NOTATIONS
Major notations used in this thesis are summarized in Table 2.1.

Table 2.1: Notations used in the thesis

Symbols Explanations

the edge set
the stream of graphs
the receiving order in the graph stream
the edge set of
the number of edges in
the class label of
the receiving form of
the test graph
the compressed edge set
the compressed graph

PHD Thesis, UTS Chapter 2

16

the descending order of a number of weight levels
the largest edge weights in
the smallest edge weights in
the in-memory pattern-class table
the indices of hashed clique-patterns
all the classes of the graphs
the clique set of
each clique in
a random hash function
an index of
a threshold parameter of discriminative capability

A graph
the set of vertices
the set of edges
the label of set of the vertices and edges
a clique (complete subgraph) in a graph

a set of clique patterns
the receiving order of the graph in the stream
a representation of in the clique-feature space
spanned by , where is the number of clique
pattern found in
the edge set of
a class label of each graph
the form of each received graph
the weight of each edge in
a subgraph in
the number of chunk classifiers in an ensemble
the range of clique hash values
a ratio value
the new cliques set
the old cliques set
the size of hash space of new cliques
the size of hash space of old cliques
each clique in
each clique in
the feature matrix, where columns correspond
to graphs and rows correspond to hashed
clique patterns.
each feature vector in
the label matrix, where rows correspond to
classes
the weight matrix
the step size
a sequential chunks
a test graph
the class-label distribution vector of

PHD Thesis, UTS Chapter 2

17

a testing chunk
 predicted labels for

min

a text
a feature vector, where is the original
dimensionality
a set
a min-hash of
the projection matrix, where is the original
dimensionality and is the new,
a random hash function
a random hash function
a set of terms (bag-of-words)
a fingerprint
a nested set

the number of levels in a nested set
the number of min-hash functions at each level
the time complexity of the top-level recursion,
where is for the number of reorganized
sets and for min-wise hashing
procedures on

the time complexity of the bottom-level of
recursion, where is for the number
of the bottom-level sets and for min-
wise hashing procedures on .

PHD Thesis, UTS Chapter 3

18

CHAPTER 3
LITERATURE REVIEW

This chapter presents a discussion of relevant work in connection with this research.

Section 3.1 reviews the research on hashing. Section 3.2 reviews the research on how

existing hashing methods classify large-scale structured data. Section 2.3 reviews the

emerging applications of the research. Our main objective is to (1) summarize and

categorize hashing methods to provide a big picture for large-scale structured data

classification; (2) summarize and categorize the large-scale structured data classification

methods based on hashing; and (3) introduce the wide applications of the aforementioned

methods.

3.1 HASHING

3.1.1 HASHING INTRODUCTION

 In the application of databases, the “Key” is often used to uniquely identify a record in

a table. It will be easier and more effective to find a record in the millions of records.

Currently, with the increase of data volumes and complex data structure, large scale data

are waiting to be processed. These data may be extremely larger than the available

memory. In view of this situation, a fundamental research challenge appears: how to

accurately and efficiently retrieve items from a large data collection. Naturally, less

information we will try to use to represent these extremely large data. Under this

requirement, the idea of hashing begins to be proposed. Hashing is the transformation of

a set of data into shorter fixed-length values or bucket addresses that can represent the

original data. This transformation can be achieved by a function . With the help of a

PHD Thesis, UTS Chapter 3

19

hash function, the insertion, deletion, and lookup on the data can be done in almost

constant time. However, some different data will be mapped into the same hashing value.

The collision will be inevitable if there are more data than hashing values (See in Fig.

3.1). So the hashing methods firstly need to face two questions: 1) how to design a better

hash function to minimize the collisions or increase the accuracy on the basis of high

efficiency? 2) When the collisions occur, how to deal with them?

Figure 3.1: A basic hashing example

In the Fig 3.1, the black strings represent different names of people; the numbers

represent the hash values of the grids; the represents the hash function that maps the

black string into corresponding number; and the red “Collision” reflects the phenomenon

that two different strings are mapped into the same grid. From Fig. 3.1, we can also see

an example that how hashing is used for efficient data access. For the strings “Roger”,

”Anna”, ”Lucy”, ”John”, ”Jack”, they are mapped by hash function into a set of

numeric values, and there are corresponding hashing values for these records. When

searching the record containing “Lucy”, we just need to rehash this “Lucy”, and this

directly yields the hashing value “3” to this record, and then we finish searching. It is

much more efficient than searching through all the records till the matching record is

found.

Currently, the hashing methods mainly include data-independent hashing and data-

dependent hashing. If the hashing function set is defined uniquely and independently

from the data to be processed, we can classify it as a data-independent hashing method.

Otherwise, it is classified as a data-dependent hashing method. Among the data-

PHD Thesis, UTS Chapter 3

20

independent hashing methods, one popular hashing method is Locality Sensitive Hashing

(LSH) [1, 3]. With the help of the simple random projections, two objects within a

smaller distance will be more likely to have the same hash code. This good property of

LSH guarantees the collision probability between similar data. Another popular data-

dependent hashing method is Spectral Hashing (SH) [36] which seeks balanced and

uncorrelated compact binary codes of data-points for approximate nearest neighbour

(ANN) search.

Many examples can reflect that the hashing technology can be extremely beneficial

for text classification [19, 86], image search [11, 24, 72], and multimedia search [83~85].

In image search, the goal is to develop efficient image search and fast scene matching

methods with very little memory. However, the actual size of image databases is often

very large, and it is difficult or even impossible to save all this image information

together in memory. On the other hand, the direct comparison between any two images is

time-consuming. If we want to search a certain image in the whole image database, it will

be extremely time-consuming. In such cases, it would be beneficial if we can compress

the size of data and speed up the searching process. The hashing technology can learn

binary-code representation for data in the hash code space and preserve the

neighbourhood structure in the original feature space by mapping similar points in the

original feature space to nearby binary codes in the hash code space. The compact

representation in hashing can effectively save the storage and achieve fast query in large

scale data.

3.1.2 HASHING OVERVIEW

3.1.2.1 KEY TERMINOLOGIES

Hashing Function: any function that can be used to map an arbitrary size of data

to a fixed interval [0,]. Given a dataset containing data points ,

and a hashing function , the can be called

the hash values, hash codes, hash sums, or simply hashes of data points

.

PHD Thesis, UTS Chapter 3

21

One practical use is a data structure called a hash table, which has been widely used

for rapid data lookup.

Hamming Distance: a set of all binary strings of length :

The Hamming distance between two equal length binary strings is the number of

positions for which the bits are different.

Nearest Neighbour (NN): Given a set of data points ,

preprocess and efficiently find a point in closest to a query point .

The Nearest Neighbour Search (NNS) is an optimization problem to find the closest

or the most similar data points. It can also be called a proximity search, similarity search

or closest point search.

Approximate Nearest Neighbour (ANN): Given a set of data points

, preprocess and find a point that is a -approximate nearest

neighbor of the query point in that for all , the distance between

.

Curse of dimensionality: various phenomena that arise when analyzing and

organizing data in high-dimensional spaces (such as hundreds or thousands of

dimensions).

The curse of dimensionality does not occur in low-dimensional settings such as the

two or three-dimensional space. The common problem in high-dimensional spaces is that

when the dimensionality increases, the volume of the space increases very rapidly so that

the available data becomes sparse.

3.1.2.2 THE FRAMEWORK FOR CATEGORIZING HASHING

METHODS

PHD Thesis, UTS Chapter 3

22

We can see the overall classification for hashing methods from Fig. 3.2. According to

the data dependency, we divide the hashing methods into two big classes: Data-

independent hashing and Data-dependent hashing. In the Data-independent hashing

methods, the methods that use a randomized process are classified into three kinds of

classes: Random Hashing, Locality Sensitive Hashing, and Learning for Hashing. The

methods that use deterministic structuring are classified into two kinds of classes: Tree or

Space Filling Curves. In the data-dependent hashing methods, the hashing methods are

classified into three kinds of classes: Unsupervised hashing, Semi-supervised hashing,

and Supervised Hashing according to the properties of the training data.

Figure 3.2: The Framework for Categorizing Hashing methods: the contents above the
arrows represent the classification rules; the contents in the dotted box represent different

classes of hashing methods

3.1.3 HASHING METHODS

Based on the projection dependency of hashing methods, we class all hashing

methods across two main categories: Data-Independent Hashing functions and Data-

Dependent Hashing functions.

PHD Thesis, UTS Chapter 3

23

3.1.3.1 DATA-INDEPENDENT HASHING METHODS

If the hashing function set is defined uniquely and independently from the data to be

processed, we can classify it as a data-independent hashing method. The data

independent hashing functions can be further divided into four classes based on the

projection modes: Random Projection, Locality sensitive projection, Learning for hashing

and Structured Projection. For locality sensitive hashing, we divide these hashing

methods into three classes according to three different similarity metrics: Euclidean

distance, Lp distance, Mahalanobis distance. The Min-hash is another kind of locality

sensitive hashing. In the Structured Projection, the hashing methods mainly use tree and

space filling curves to do the hashing. We can use Fig. 3.3 to summarize these data

independent hashing functions.

Figure 3.3: The classification of data-independent hashing methods: the contents above the
arrows represent the classification rules; the contents in the dotted box represent different

classes of hashing methods

We will first introduce the most simple projection method: Random Projection, and

then advance to the locality sensitive projection to preserve the locality characteristics of

the data. Next, we will introduce learning hashing projection and Structured Projection.

3.1.3.1.1 RANDOM HASHING

PHD Thesis, UTS Chapter 3

24

Random Projection hashing is a general data reduction technique, which randomly

projects the original high-dimensional data into a lower-dimensional subspace. For

example, we set the original data as -dimensional data, and we can get the -

dimensional () subspace after random projection hashing.

According to the record in Kunth [26], the initial random projection hashing method

was originated in 1953 by H. P. Luhn. The basic idea is to use a hash function, called a

random function . In this way, a random value can be generated in domain

 (corresponding to the -dimensional data) and associated with each data in the domain

 (corresponding to the d-dimensional data). In this random projection, a random

function requires bits to represent, which leads to the infeasibility of storing a

randomly chosen function. With the deepening of the research, some researchers began to

use fixed functions in the random projection. In [27], the authors proposed a universal

hashing. The core idea was to choose hashing functions at random from a small family of

functions, not all functions. This point guaranteed a provable performance and achieved

feasible and succinct storage of hash functions. For example, the [6] chose the hash

functions uniformly from some family of hash functions:

 (3.1)

The whole family is defined by the parameters and , and a particular hashing

function is defined by the parameters and .

In this universal hashing, each set of elements (: depending on the setting of a

particular application) in is uniformly projected to random and independent values, and

the corresponding family is -wise independent. In [28], the authors proposed such

function families where a random function can use bits of space to store. For a long

while, the time complexity of all -wise independent families to evaluate a hash function

was when the space usage was nontrivial. However, [29] made an important

breakthrough in time complexity. In [29], the hash families were relatively small and

highly independent which can be evaluated in constant time on a RAM.

PHD Thesis, UTS Chapter 3

25

However, the main drawback of random projection is high instability. In other words,

di erent random hash functions may lead to totally di erent hashing values. On the

other hand, if two elements have a one bit difference, they will be projected to two

completely different random values. We can see that the pure random projection hashing

cannot achieve good performance. In order to preserve the data characteristics in the

original feature space, locality sensitive hashing was introduced.

3.1.3.1.2 LOCALITY SENSITIVE HASHING

The most widely known data-independent method with randomized projection is

locality sensitive hashing (LSH) [1, 3]. This good property of LSH is that it guarantees

the collision probability between similar data points. Despite its advantage, LSH still has

an unavoidable disadvantage and that is the inefficiency of the hash codes. First, the

random generation of hash functions and independency of data in LSH cannot guarantee

the efficiency; second, it usually needs long codes in each hash table to guarantee an

acceptable accuracy, which heavily increases the requirement of storage, especially for

very large scale applications. So, many recent research works focus on how to generate

short compact hash codes, and data dependent hashing methods have attracted attention

recently.

With the help of the simple random projections, two objects within a smaller distance

will be more likely to have the same hash code in the LSH. For similarity measures in

LSH, [4, 6, 23, 24, 25] separately extended it to p-norm distances for [4],

Mahalanobis distance [6], angular similarity [23, 25] and kernel similarity [24]. The basic

idea of LSH is to choose a random hyperplane at the outset and use the hyperplane to

hash input vectors. The hyperplanes are often used to partition the data points into two

sets in the original data space or a kernel space, and two different binary codes are

assigned based on the set each data point is assigned to. For the hyperplane, in order to

more optimally allocate a variable number of bits per LSH hyperplane, two papers [20,

21] successively proposed dubbed Neighbourhood Preserving Quantization (NPQ) [20]

and dubbed Variable Bit Quantisation (VBQ) [21]. The NPQ assigns multiple bits per

hyperplane based upon adaptively learned thresholds, and the VBQ provides a data-

PHD Thesis, UTS Chapter 3

26

driven non-uniform bit allocation across hyperplanes. Based on the randomized

projection of LSH, [22] proposed a scheme named Distribution-Aware LSH (DALSH)

which generated a series of data-adaptive projections to address the problem of a lack of

adaptation to real data.

Another LSH-related hashing technique is named Min-Hash. The full name of Min-

Hash is the min-wise independent permutations locality sensitive hashing scheme. It is an

important hashing technique to estimate the similarity between two sets. Here, we use an

example to demonstrate the work process of Min-wise hashing in Fig. 3.4:

Figure 3.4: An example of the Min-Hash

In the last two columns of the tables of Fig 3.4, the “1” or “0” represent that whether

the corresponding element is in the set () or not, and the and represent two

different hash functions. We set ={1,2,4,7}, ={3,4,7}, and two independent random

element permutations =[2,5,7,6,4,3,1] and =[7,3,1,2,5,4,6]. For , the minimum

 hash value is 2, and the minimum hash value is 1. For , the minimum hash

PHD Thesis, UTS Chapter 3

27

value is 7, and the minimum hash value is 1. Lastly we can get that the similarity

between :

This hashing scheme was initially introduced in [9] and firstly used in [10] to detect

duplicate web pages and eliminate them from search results in the AltaVista search

engine. It has also been applied in large-scale clustering documents [9], near duplicate

Image detection [11] and large-scale text classification [19] which proposed a Recursive

Min-wise Hashing (RMH) to preserve the context information. In order to save storage

space, [13, 14, 15, 16] developed this min-hash technique to a b-bit Min-wise hashing by

changing the traditional 64 bits used to store each hashed value in Min-wise hashing

methods.

Another few related random projection hashing techniques include Shift Invariant

Kernel based Hashing (SIKH) [6, 12], Nested Subtree Hashing (NSH) [17] and

Discriminative Clique Hashing (DICH) [18]. In [6, 12], based on random projections,

authors introduced a simple distribution-free encoding scheme, which could relate the

expected Hamming distance between the binary codes of two vectors to the value of a

shift-invariant kernel between the vectors. Then, as many data mining applications

involve networked data with dynamically increasing volumes, [17, 18] respectively

proposed a new hashing scheme to address the problem of large-scale graph classification

over streams. In [17], the authors proposed the Nested Subtree Hashing (NSH) method to

recursively project the multi-resolution subtree patterns of different chunks onto a set of

common low-dimensional feature spaces. In [18], two random hashing schemes were

employed in Discriminative Clique Hashing (DICH) to speed up the discriminative

clique-pattern mining process and address the unlimitedly clique-pattern expanding

problem.

3.1.3.1.3 LEARNING FOR HASHING

In [7] the researchers proposed an algorithm named BoostMap which is a data-

independent machine learning method for the construction of Euclidean embeddings. It is

an efficient approximate nearest-neighbour method, and can be applied to arbitrary

PHD Thesis, UTS Chapter 3

28

distance measure, metric or nonmetric. Before introducing this BoostMap, we first

introduce some basic methods for constructing Euclidean embeddings, such as Lipschitz

embeddings [30], Bourgain embeddings [30, 31], FastMap [32], and MetricMap [33].

The basic idea of Lipschitz embeddings is to embed metric spaces into other ones

with low distortion. In Lipschitz embeddings, an object (a space) is transformed

into an -dimensional vector such that each element corresponds to

the distance of object to a predefined reference set [30]. The Bourgain embeddings

are a special type of Lipschitz embeddings.

The key point of the learning process in BoostMap is to see the embeddings as

classifiers used to estimate the distance of any three data objects, and to use AdaBoost

[34] to combine all previous lower-dimensional embeddings into one higher-dimensional

embeddings for higher accurate similarity rankings. The process is: after identifying a

large family of embeddings based on a reference object or a pair of pivot objects,

we can see each embedding as a continuous output binary classifier and a weak

classifier [34]. Each weak classifier estimates, for triples of objects in , if is

closer to or . The BoostMap will use AdaBoost [34] to combine many

embeddings into a multidimensional embedding that behaves as a strong classifier that

has relatively higher accuracy than a weak classifier. The BoostMap makes full use of

the advantage of machine learning techniques to assemble a higher-accuracy embedding

from many one-dimensional embeddings.

3.1.3.1.4 STRUCTURED PROJECTION

Although there are many effective hashing methods for low-dimensional spaces, their

performance may degrade as the number of dimensions increases which is the

dimensional curse phenomenon. For a similarity search in High-Dimensional Vector

Spaces (HDVSs), the conventional approach to do similarity searches in HDVSs is to use

a multidimensional index structure which needs to do a data space partition.

In the structured projection hashing methods, the data space will be divided along the

defined or predefined lines regardless of data features, and the lines are defined or

predefined by the different selected structures.

PHD Thesis, UTS Chapter 3

29

Based on a deterministic structuring, [2, 5, 8] separately proposed data independent

hashing schemes with structured projection, including tree [2] and space filling curves [5,

8].

In [2], the authors studied the impact of dimensionality on the nearest-neighbour

similarity-search in high-dimensional vector space (HDVSs), and showed that any

partitioning scheme and clustering technique must degenerate to a sequential scan

through all their blocks if the number of dimensions is sufficiently large. In [5, 8], the

authors both studied the content-based copy identification by space filling curves

projection. In [5] the authors mainly proposed a novel strategy dedicated to pseudo-

invariant feature retrieval more specifically for content-based copy identification.

Furthermore, this paper adopted the Hibert curve as the line of projection and directly

mapped the approximate search range onto a Hilbert space-filling curve in order to

establish an efficient access to the database. The advantage of the Hilbert curve is that it

can guarantee that two cells that are neighbours in the index are also neighbours in the

description space [35]. For the Hilbert curve, the disadvantage is that it will be difficult to

compute the key in the index starting from the position in description space for high-

dimensional spaces and higher-order partitioning. In order to simplify the computation of

the keys (cell addresses in the index) and to link it more strongly with a component-wise

search process, [8] replace the Hilbert curve by the space-filling curve and

hierarchically partition the description space into hyper-rectangular cells following the -

curve.

3.1.3.2 DATA-DEPENDENT HASHING METHODS

In the data-dependent hashing method, the hashing function family is defined

uniquely only for a given training dataset and the hash functions usually involve

similarity comparisons with some features of the training dataset. The objective of these

methods is to closely fit the data distribution in the feature space in order to achieve a

better selectivity while preserving locality as much as possible.

We can use Fig. 3.5 to summarize the data dependent hashing functions:

PHD Thesis, UTS Chapter 3

30

Figure 3.5: The classification for data-dependent hashing methods: the contents above the
arrows represent the classification rules; the contents in the dotted box represent different

classes of hashing methods

3.1.3.2.1 UNSUPERVISED HASHING

In the unsupervised hashing methods, the pairwise labels are not available.

Unsupervised hashing methods use just the unlabelled data to generate binary codes for

the given points and try to preserve the similarity in the original feature space.

According to the three forms of hashing functions (Eigenfunctions, Linear functions,

and Non-Linear functions), we divide the unsupervised hashing into three corresponding

types: Spectral Hashing, Linear Hashing, and Non-Linear Hashing.

(1) Spectral Hashing:

The most popular data-dependent unsupervised hashing is Spectral Hashing (SH)

[36]. The SH discusses the problem of learning a code for semantic hashing [38] which

designs compact binary codes for a large number of documents so that semantically

similar documents are mapped to similar codes within a short Hamming distance. In [36],

the authors defined a hard criterion for a good code that is related to graph partitioning

and used a spectral relaxation to obtain an eigenvector solution.

(2) Linear Unsupervised Hashing:

PHD Thesis, UTS Chapter 3

31

Many unsupervised hashing methods use linear functions to do the hashing. There are

some related learning-based hashing methods [37, 39~45, 48~52]. Most of these hashing

algorithms focus on exploiting the spectral properties of the data affinity matrix for

binary coding. Among them, the Anchor Graph Hashing (AGH) [37] is more popular.

The AGH is a graph-based hashing method which automatically discovers the

neighbourhood structure inherent in the data to learn appropriate compact codes, and a

scalable graph-based unsupervised hashing approach which considers the underlying

manifold structure of the data to search for the semantic nearest neighbour.

In order to achieve a satisfactory performance, many existing hashing methods use a

large number of hash tables (long codewords), and the space cost has become a problem.

Some papers [58, 59, 60] had proposed corresponding methods to address this problem.

In [58], the authors consider a hardware-friendly scheme for Minimal Perfect Hashing

(MPH) via counting Bloom filters to reduce the number of memory accesses to just 1 and

also to be space-efficient. In order to perform cost effective and exact pattern matching,

the authors in [59] proposed HashMem architecture to combine hashing and memories by

using hashing to generate a distinct address for each candidate pattern stored in memory.

The authors in [60] developed a hashing algorithm Compressed Hashing (CH) for high

dimensional nearest neighbour search by combining the techniques of sparse coding and

compressed sensing.

Other important linear unsupervised hashing methods include ANN search algorithm

Product Quantization (PQ) [53], Angular Quantization-based Binary Coding (AQBC)

[54] for high-dimensional non-negative data that arises in vision and text applications ,

Spherical Hashing [55] to map more spatially coherent data points into a binary code

compared to hyperplane-based hashing functions, Isotropic Hashing (IsoHash) [56]

firstly to learn projection functions which could produce projected dimensions with

isotropic variances (equal variances), Manhattan hashing (MH) [57] based on Manhattan

distance to deal with the destruction of the neighbourhood structure in the original feature

in Hamming distance based hashing, Predictable Dual-View Hashing (PDH) [61] to

embed proximity of data samples in the original spaces, and Inductive Manifold Hashing

(IMH) [62] to connect manifold learning methods and hash function learning. Most

PHD Thesis, UTS Chapter 3

32

recently, [63] proposed Locally Linear Hashing (LLH) to preserve the locally linear

manifold structures of high-dimensional data in a low-dimensional Hamming space.

Another latest unsupervised hashing method Topology Preserving Hashing (TPH) was

proposed in [64] to preserve neighbourhood relationships and relative neighbourhood

proximities.

(3) Non-Linear Unsupervised Hashing:

In order to accommodate arbitrary kernel functions, some papers [24, 43, 46, 47]

proposed unsupervised kernel-based hashing method. In [24], the authors widened the

accessibility of LSH to generic kernel space and proposed Kernelized LSH (KLSH). The

main idea of the KLSH is to construct a random hyperplane hash function in kernel space

based on a central limit theorem. According to the central limit theorem, under very mild

conditions, the mean of a set of data objects from some underlying distribution will better

follow Gaussian distribution in the limit as the number of data objects in the set increase.

In this central limit theorem, an approximate random vector will be computed by using

data items from the database. Once the random hyperplane hash function is constructed,

the KLSH computes a small set of candidate approximate nearest neighbors by the

method of Charikar, sorts them to yield a list of hashed nearest neighbors by the kernel

function and then uses standard LSH techniques to retrieve nearest neighbors of a query

to the database in sublinear time. In KLSH, there were no assumptions about the data

distribution or input which could help KLSH directly suitable for image search and other

domains.

3.1.3.2.2 SEMI-SUPERVISED HASHING

 In semi-supervised hashing, both labeled data and unlabeled data are used to train the

model. Representative semi-supervised methods include Semi-Supervised Hashing (SSH)

[65, 66], LAbel-regularized Max-margin Partition (LAMP) algorithm [67], Semi-

Supervised Discriminant Hashing (SSDH) [68], Bootstrap Sequential Projection Learning

for Semi-supervised Nonlinear Hashing (Bootstrap-NSPLH) [69], and Semi-Supervised

Topology Preserving Hashing (STPH) [64]. Among these hashing methods, the Semi-

Supervised Hashing (SSH) is most popular.

PHD Thesis, UTS Chapter 3

33

3.1.3.2.3 SUPERVISED HASHING

In supervised hashing, only labelled data, such as similar or dissimilar data, are used

to train the model. The goal of supervised hashing is to respect label-based similarity or

semantic similarity.

Representative supervised methods include Boosting Similarity Sensitive Coding

(BoostSSC) [70], Boltzmann machine based hashing (RBMs) [71], Binary

Reconstructive Embedding (BRE) [73], Minimal Loss Hashing (MLH) [74], Kernel-

based Supervised Hashing (KSH) [75], and Linear Discriminant Analysis based Hashing

(LDAHash) [76]. Most recently, some new supervised methods was proposed which

include Similarity Preserving Hashing (SPH) [77], Two-Step Hashing (TSH) [78],

Multimodal Similarity-Preserving Hashing (MSPH) [79], Semantic Correlation

Maximization (SCM) [80], Latent Factor Hashing (LFH) [81] and FastHash [82].

Overall, compared with unsupervised hashing methods, the main advantages of these

supervised hashing methods are the flexibility and adaptability for real-world

applications. However, the training efficiency is still a big problem.

3.2 LARGE-SCALE STRUCTURED DATA

CLASSIFICATION BASED ON HASHING

3.2.1 GRAPH STREAM CLASSIFICATION BASED ON

HASHING

The surge of real-world networked data, such as chemical compounds, biological

data, XML documents, and program flows, has led to the rise of graph mining research

[87]. Graph classification is an important graph mining task that aims to learn a

discriminative model from training examples to predict class labels of test examples,

PHD Thesis, UTS Chapter 3

34

where both training and test examples are graphs. The essential challenge for graph

classification is to extract features from graphs to represent them in feature vectors to

facilitate classifier training within a generic machine learning framework. A variety of

studies on substructure extraction (e.g., walks [88, 97], paths [89], subtrees [90, 91, 98],

and subgraphs [99]) for describing graphs have been proposed in the past decade.

However, most of them consider the learning problem of graph classification in batch

mode (where all graph data are available for training), which hinders their applicability to

large-scale and stream scenarios.

In fact, dynamic networked data are often presented with increasing volumes and

change over time in many real-world scenarios. For example, a social network is made up

of a population of individuals, where the interactions among them keep generating,

disappearing, and changing over time. A transportation network is a complex network

made up of numerous interconnected routes, where the traffic flows over them are

generated dynamically over time. These evolving networked data can be defined as graph

streams. Graph streams not only inherit the features of static graphs but also possess

special characteristics such as frequent update and necessary real-time response [102]. To

solve these emerging problems, graph stream mining has recently attracted increasing

research interest [92], [93], [94], [95], [17], [18].

However, graph stream classification on a complex network with massive nodes is by

no means an easy problem because of the following challenges:

 Expanding Feature Space: Graph stream is defined on a massive universe of

nodes. The continuously received graphs in the stream would lead to an

increasing number of subgraph patterns. Due to the one-pass nature of the

graph stream, we cannot enumerate all the subgraph-patterns in a pre-scan to

construct the feature space for all the graphs. Thus we need to design a projection

that can map arbitrary subgraph patterns to a fixed-size compatible feature space

for all the graphs in the stream.

 Increasing Graph Volumes: The volume of graph data are continuously growing

with a high speed. Due to the real-time requirement of graph stream

PHD Thesis, UTS Chapter 3

35

classification, we cannot employ any existing subgraph detection method which is

designed for off-line accurate subgraph mining. Thus we need to develop an

approximate subgraph feature extraction method that is fast enough to tackle fast

increasing graph volumes.

In [95], [18], the authors have investigated the graph stream classification problem.

Both of them employ hashing techniques to sketch the graph stream for saving

computational cost and controlling the size of the subgraph-pattern set. The most relevant

work to this topic is [95], which also considers graph stream classification on a complex

network. It employs a 2-D hashing scheme to construct an “in-memory” summary for the

sequentially received graphs. The first random-hash scheme is used to reduce the size of

the edge set. The second min-hash scheme is used to dynamically update a number of

hash-codes (i.e., corresponding to random sorting samples), which is able to summarize

the frequent patterns of co-occurrence edges in the graph stream observed thus far.

Finally, a simple heuristic is used to select a set of most discriminative frequent patterns

to build a rule-based classifier. Although [95] has exhibited promising performance on

graph stream classification, it has two inherent limitations: (1) The selected subgraph-

patterns are composed with disconnected edges, which may have less discriminative

capability than connected subgraph-patterns due to a lack of semantic meaning. (2) The

computational cost is high because an additional frequent pattern mining procedure is

required to perform on the summary table which comprises massive transactions. Our

previous work, DIscriminative Clique Hashing (DICH) [18], has addressed these

limitations to a certain extent by employing a fast clique detection algorithm from hashed

graphs. However, DICH adopts a majority voting classifier whose performance could

degrade as the number of classes becomes large. Another critical shortcoming is that the

DICH cannot adapt to the concept drifting in graph stream classification. To address the

problem of the concept drifting, an instance weighting mechanism has been proposed in

the gSLU [103] to adjust the subgraph feature selection module for emerging concept

drifting graphs. However, this instance weighting mechanism may be too sensitive to

better adapt to the concept drifting.

3.2.2 TEXT CLASSIFICATION BASED ON HASHING

PHD Thesis, UTS Chapter 3

36

There have been a number of approximate algorithms for big data similarity

computation. Since many high-dimensional data can be represented as bags of words,

min-wise hashing [10] has been naturally applied to them for fast approximating set

similarities without scanning and comparing the complete sets. Recently, [114] further

improves the efficiency of min-wise hashing by storing only the lowest b bits of each

hashed value. Random projection [112, 107] was proposed to randomly project high-

dimensional data onto low-dimensional spaces. For sketching streaming data, count-min

sketch [110] was developed to estimate feature occurrences. Recently, feature hashing

[115, 116] was employed to estimate inner products of high-dimensional feature vectors.

All these approximate algorithms have been found very effective in certain big data

problems.

Massive text mining is the most fundamental and essential technology in the era of

big data to support various services in almost every field. Massive data mining

techniques, including learning to hash [36, 73, 37] and approximate algorithms, are

developed rapidly under this circumstance. This work focuses on approximate

algorithms, in particular, random hashing techniques, to improve the text similarity

estimation quality. The classical approach is a family of locality-sensitive hashing (LSH)

algorithms for approximating nearest neighbours in high dimensions [108, 114], in which

the most two typical algorithms are min-wise hashing [10] and random projection [112,

107] aforementioned in Section 1. These LSH algorithms have been extensively applied

to massive text mining applications as the state-of-the-art techniques. Recently, [15, 16]

further improves the efficiency of min-wise hashing by storing only the lowest b bits of

each hashed value. Besides, feature hashing [115, 116] was also proposed to estimate

inner products of high-dimensional feature vectors. The proposed RMH algorithm for

context-preserving hashing can be viewed as a generalization of the standard min-wise

hashing scheme [10] for nested sets.

Since we will takes into account the semantic hierarchy in this thesis, we also review

some hashing techniques considering structural information. A 2-D hashing scheme is

employed in [95] to construct an in-memory summary of sequentially received

graphs, where the first random-hash scheme is used to reduce the size of the edge set

PHD Thesis, UTS Chapter 3

37

while the second min-hash scheme is used to summarize the co-occurrence edges in the

graph stream observed thus far. Recently, [18] proposes to detect clique patterns from a

compressed network obtained through random edge hashing, and the detected clique

patterns are further hashed to a fixed-size feature space [116]. The nested subtree hash

kernel [17] hashes unlimited node labels into a certain amount and the feature space of

the resulting subtree patterns can be constrained. All these methods are aimed to deal

with graphs and cannot be applied to sketching nested sets.

We observe that [111] also proposes a min-hash algorithm for hierarchical data

objects. However, [111] has two significant differences from the proposed RMH

algorithm: 1) Its similarity is based on an assumption that each set is a weighted set and

the weights sum to one; while our similarity is directly derived from the Jaccard

similarity in the recursive case. 2) It simply views lower-level signatures as an element of

the current-level set for min-wise hashing, which will totally discard the similarity

information between lower-level sets; while our RMH algorithm reorganizes lower-level

min-hashes into a number of sampling-sets for min-wise hashing, which can propagate

lower-level similarities to higher levels in probability. This method is mathematically

incompatible to the considered problem in this paper; however we did try it in our

experiments and its results are only slightly above the random guess. Thus we did not

include it in the experimental results.

However, all the aforementioned approximate algorithms are based on the bag-of-

words representation for its exchangeability that can facilitate random projection and

hashing. A limitation of such flat-set representation is that context information and

semantic hierarchy may be lost. Thus, a more expressive bag-of-words representation

needs to be explored to relieve this problem.

PHD Thesis, UTS Chapter 4

38

CHAPTER 4
DISCRIMINATIVE CLIQUE HASHING
FOR FAST GRAPH STREAM
CLASSIFICATION

4.1 INTRODUCTION
In this chapter, we propose to classify large-scale graph streams using hashing

methods.

The emergence of complex networks has led to a surge of research in graph data

mining [87]. Graph classification is an important graph data mining task that aims to

learn a discriminative model from training examples to predict class labels of test

examples, where both training and test examples are graphs. Many real-world

applications involve graph-represented data, such as chemical compounds, XML

documents, and program flows. The essential challenge for graph classification is to

extract features from graphs and represent graph data in instance-feature format to

support model training. A variety of studies on substructure extraction (e.g., walks [88,

89], paths [90], and subtrees [91, 92]) for describing graphs have been proposed in the

past decade. However, most of them only consider the learning problem of graph

classification in batch mode (all data are available for training), which limits their

applicability to large-scale and stream scenarios.

Due to the streaming nature of many real-world complex networks, such as social

networks and sensor networks, graph stream classification has recently attracted

PHD Thesis, UTS Chapter 4

39

increasing research interest [93-96]. Graph stream classification is defined on a complex

network which comprises a massive universe of nodes, where the stream of graphs is

represented as sets of edges on the underlying network. For example, co-authorships of

research works continuously form graphs on a coauthor network (e.g., DBLP), dynamic

communities of interest continuously form graphs on a social network (e.g., Facebook),

and traffic flows continuously form graphs on a transportation network. Graph stream

classification on a complex network with massive nodes is challenging, because

 Subgraph feature generation: Graph stream is defined on a massive universe of

nodes, enumerating subgraph-patterns from such a large node set as features is

time consuming and memory intensive. We need fast and inexpensive feature

generation method for graph stream classification.

 Increasing stream volumes: The volumes of graph data are continuously

growing, so graph streams can usually be accessed only once. Graph stream

classification must be able to tackle dynamically increasing graph volumes and

generate discriminative model with high speed.

 Changing feature distributions: The marginal distributions of subgraph-patterns

(features) may continuously change over the graph stream (i.e., the concept-drift

problem [96]), a dynamic updating scheme is required to update the

discriminative model.

Few studies have investigated the graph stream classification problem. To the best of

our knowledge, only two works [95, 97] may be applied to the considered problem. Both

of them employ hashing techniques to sketch the graph stream for saving computational

cost and controlling the size of the subgraph-pattern set. In [97], the authors proposed a

hash kernel to project arbitrary graphs onto a compatible feature space for similarity

computing, but it can only be applied to node-attributed graphs. Recently, Aggarwal [95]

proposed a 2-D hashing scheme to construct an in-memory summary for

sequentially presented graphs and used a simple heuristic to select a set of most

discriminative frequent patterns to build a rule-based classifier. Although [95] has

exhibited promising performance on graph stream classification, there are two inherent

PHD Thesis, UTS Chapter 4

40

limitations: (1) The selected subgraph-patterns are composed with disconnected edges,

which may have less discriminative capability than connected subgraph-patterns due to a

lack of semantic meaning; (2) The computational cost is high because an additional

frequent pattern mining procedure is required to perform on the summary table which

comprises massive transactions.

In this chapter, we propose a fast graph stream classification method using

DIscriminative Clique Hashing (DICH) to address the aforementioned challenges. The

main idea is to decompose a compressed graph into a number of cliques (fully connected

subgraphs) to sequentially extract clique-patterns over the graph stream as features. Two

random hashing schemes are employed to compress the original edge set of the graph

stream and map the unlimitedly increasing clique-patterns onto a fixed-size feature space,

respectively. The hashed cliques are then used to update an “in-memory” fixed-size

pattern-class table, which will be finally used to generate a rule-based classifier. Since

DICH adopts connected subgraphs as features and needs no additional frequent pattern

mining procedure, it can achieve very fast training speed for graph stream classification.

The experimental results on two real-world graph stream data sets clearly show that

DICH outperforms the compared state-of-the-art [95] in both classification accuracy and

training efficiency.

The remainder of this chapter is organized as follows. Section 4.2 defines the form of

problem and introduces the system overview. The DICH algorithm details are presented

in Section 4.3. A case study by use of the proposed DICH algorithm to show its

effectiveness is presented in Section 4.4. Finally, the summary is given in Section 4.5.

4.2 DEFINITIONS & METHOD FRAMEWORK

4.2.1 PROBLEM DEFINITION

 Suppose there is a complex network which comprises a massive universe of nodes.

The dynamically generated edges form a sequence of graphs, and those graphs are

independent. The edges connecting these nodes are denoted by the edge set . In

PHD Thesis, UTS Chapter 4

41

particular, the edge set of are denoted by , where denotes the

number of edges in . The stream of graphs are presented

continuously as subsets of , where the subscript denotes the receiving order in the

graph stream. Each graph has a class label . We assume is received in

the form . In this chapter, we assume that each edge has a default weight

1 for simplicity. The underlying graph stream can only be accessed once and our goal is

to learn a discriminative model from at a high efficiency to

accurately predict the class label of a test graph in the future graph stream.

4.2.2 METHOD FRAMEWORK

The corresponding framework, illustrated in Fig. 4.1, comprises three modules. The

graphs in the stream are received and processed one by one. The first module is for clique

detection from each graph in the stream. The incoming edges of are first randomly

hashed to a compressed edge set and then we adopt a fast algorithm to decompose the

compressed graph into a number of cliques (fully connected subgraphs) as the features

of . Since the number of clique-patterns will unlimitedly increase as new graphs are fed

in, the underlying feature space will keep expanding accordingly. Thus, in the second

module, a clique hashing scheme is performed to map the unlimitedly emerged clique-

patterns onto a fixed-size clique-pattern set. In the last module, an in-memory fixed-

size pattern-class table is updated using the clique-pattern and class label information of

; and a rule-based classifier is constructed based on the pattern-class table by

identifying frequent and discriminative clique-patterns associated to each class. To test a

graph in the future graph stream, is processed in the first two modules and the

obtained hashed clique-patterns are input to the rule-based classifier for class label

prediction. The detailed approaches to the three modules are described in the following

section.

PHD Thesis, UTS Chapter 4

42

Figure 4.1: The framework of DICH for graph stream classification

4.3 DICH: DISCRIMINATIVE CLIQUE HASHING

4.3.1 GRAPH CLIQUE DETECTION

As introduced in Section 4.2, a graph in the stream is an edge subset of the complex

network. Since the edge set of the complex network can be extremely large, it may be

infeasible to detect cliques from such a large network in real time. Thus, it is necessary to

sketch the graph stream to accelerate the clique detection (feature extraction) process. To

this end, we first employ a random hashing scheme to compress each graph on the

large network to a small graph :

 (4.1)

where denotes the desired number of vertices in the compressed graph . The graph

hashing operation includes two steps: First, we use a random hash function

 (4.2)

PHD Thesis, UTS Chapter 4

43

to map the indices of the vertices in to as the set of vertices in . Second,

for each edge in , its weight is calculated as follows:

 (4.3)

The above graph compression Eq. (4.1) using random hashing has an obvious

property: if two graphs and on the original network have a same subgraph , the

compressed graphs and also have a same subgraph . This property implies that, if

two original graphs are similar in terms of subgraphs, the compressed graphs are also

similar. We may have collisions that different subgraph patterns in the original graphs get

the same subgraph pattern in the compressed graphs. But the probabilities of such cases

are very low since the collided edges in the compressed graphs are unlikely to form a

connected graph-recall that we only extract cliques as features which are fully connected

subgraphs. The leftmost two columns in Fig. 4.2 illustrate this operation.

Figure 4.2: Clique detection in a compressed graph

After obtaining the compressed graph , we will employ a fast algorithm to detect

cliques in . We adapt the graphlet basis estimation algorithm used in [100] to this end.

The first step for clique detection is to threshold the compressed graph at a number of

weight levels in descending order , say , where and

PHD Thesis, UTS Chapter 4

44

 denote the largest and the smallest edge weights in , respectively. We define

this graph thresholding operation as

 (4.4)

where denotes an indicator function, which sets the weight of an edge in to be

1, i.e., , if . We use the Bron-Kerbosch algorithm [101] to identify all the

cliques from at each threshold. The Bron-Kerbosch is an algorithm for finding

maximal cliques in an undirected graph. The union set of the cliques found in

 is represented as the clique set for . This procedure is detailed in

Algorithm 1.

Algorithm 1 Graph Clique Detection

Input: : a graph in the graph stream; : given number of vertices in

Output: : the clique set detected from

1: ;

2: ;

3: for

4: ;

5: ;

6:

7: end for

An example of clique detection is illustrated in Fig 4.2. After graph hashing, we

obtain the compressed graph of (the 2nd column). Then, four weight thresholds

 are set to generate three graphs (the 3rd column). Note that

 is an empty graph which is not shown. The Bron-Kerbosch algorithm is applied to

detect a set of cliques from each graph (the 4th column). Finally, the cliques detected at

PHD Thesis, UTS Chapter 4

45

the all weight thresholds are merged to form the clique set for as its feature

representation (the 5th column).

4.3.2 GRAPH CLIQUE HASHING

As aforementioned, the cliques extracted from each graph are used to represent its

features. To learn a classifier from the graph stream, it is required to make the features of

all graphs be in the same feature space. In other words, we should count the occurrences

of the same set of clique-patterns in all graphs in the stream. Since the number of clique-

patterns will increase as new graphs are continuously fed in, the induced feature space

will keep expanding accordingly. To address this problem, we adopt a feature hashing

scheme to randomly map the unlimitedly emerged clique-patterns onto a fixed-size set. In

particular, we use an in-memory pattern-class table , which can be

dynamically updated, to count clique-pattern and class label information from the graph

stream. In , rows correspond to the indices of hashed clique-patterns while columns

correspond to all the classes of the graphs.

Given in the graph stream, we first use Algorithm 1 to collect the clique set .

Then, for each clique in , say , we apply a random hash function to the string of

ordered edges in to generate an index . If a clique with class label

is hashed to an index , we add 1 to the entry , which means clique-pattern

 has a contribution to class . This fixed-size pattern-class table is continuously

updated as new cliques are detected over the graph stream. This procedure is detailed in

Algorithm 2.

Algorithm 2 Clique Hashing

Input: : the clique set detected from

Output: : pattern-class table

1: for

2: ;

3: ;

PHD Thesis, UTS Chapter 4

46

4: end for

4.3.3 CLIQUE-BASED CLASSIFIER

Given the “in-memory” pattern-class table , we can construct a rule-based classifier

by identifying frequent yet discriminative clique-patterns from . To identify frequent

clique-patterns, we first sum up the counts in each row of and divide them by the

number of graphs received thus far. The result for each row indicates the occurrence

frequency of a set of cliques with the same hash value in the graph stream. Then we sort

them in a descending order and set a threshold parameter to select the clique-patterns

whose frequencies . These selected cliques are frequent clique-patterns which are also

the candidates for the subsequent discriminative clique-pattern selection.

Next we can determine whether a frequent clique-pattern is also a discriminative one

by comparing its occurrence ratios on the classes (corresponding to the columns

in). For a candidate clique-pattern, the ratio in column represents the probability that

the clique-pattern belongs to class . A higher probability on a certain class indicates a

better discriminative capability. Similarly, we can set a threshold parameter to select

the clique-patterns whose maximum ratios . Fig. 4.3 gives a toy example for selecting

the frequent and discriminative clique-patterns from a pattern-class table .

Figure 4.3: A toy example of frequent and discriminative clique-pattern mining

 In Fig. 4.3, (a) a pattern-class table with 10 clique-patterns and 3

classes . (b) the sums of individual clique-patterns in rows and the

corresponding occurrence frequencies (i.e., the sums divided by the number of graphs,

PHD Thesis, UTS Chapter 4

47

say 10 here). (c) the selected frequent clique-patterns whose frequencies are larger than

the frequent pattern threshold . (d) the occurrence ratios of the selected clique-

patterns on the classes. (e) the selected discriminative clique-patterns whose maximum

ratios are larger than the discriminative pattern threshold .

Finally, based on the selected clique-patterns, we can classify a test graph using

majority voting based on the detected cliques in the test graph. In particular, given a test

graph , we detect its cliques using Algorithm 1 and hash its cliques

 to index its clique-patterns. Each clique corresponding to a

discriminative clique-pattern will contributes a class label

. The class label of the test graph is determined by the majority of

class labels . This procedure is detailed in Algorithm 3.

Algorithm 3 Graph Classification

Input: : a test graph

Output: : the predicted label of

1:

2: for

2: ;

3: ;

4: end for

5: ;

4.4 EXPERIMENT
In this section, we will test the proposed DICH method for graph stream classification

on two real-world data sets. In particular, we will evaluate the effectiveness and

efficiency of DICH by comparing it with the 2-D hash compressed stream classifier [95],

PHD Thesis, UTS Chapter 4

48

which is the only state-of-the-art method applicable to graph stream classification. We

use the following data sets in our experiments.

 DBLP Data Set2: In this data set, authors are nodes and co-authorship forms

edges, and a graph is constituted by the co-authors of a paper. There are three

classes in the data set: 1) Database related conferences, 2) Data mining related

conferences, and 3) All remaining conferences. Our goal is to classify a test paper

into one of three classes. The final data set contains over authors,

 edges, and different graphs as the training data. We divide the

data set into five splits and choose four splits as the training data and the

remaining split as the test data.

 IBM Sensor Data Set3: This data set records the information from local traffic

constituted by each graph on a sensor network. The IP-addresses are nodes and

local traffic flows are edges. Each graph is associated with a particular intrusion

type and there are over 300 different intrusion types (classes) in the data set. Our

goal is to classify a traffic flow pattern into one of intrusion types. Because the

number of classes is extremely large (), we expect the overall accuracy to

be relatively low. The data set contains more than graphs. We choose

90% of the data as the training data and the remaining 10% as the test data.

4.4.1 EFFECTIVENESS EVALUATION

 In this experiment, we evaluate the effectiveness of DICH by comparing it with the 2-

D hash compressed stream classifier proposed in [95]. We will investigate the

classification performance and sensitivity of the two methods by varying 1) the frequent

pattern threshold , 2) the discriminative pattern threshold , and 3) the size of the

compressed edge set .

2 http://www.charuaggarwal.net/dblpcl/
3 http://www.charuaggarwal.net/sens1/gstream.txt

PHD Thesis, UTS Chapter 4

49

Figure 4.4: Effectiveness evaluation w.r.t. on the DBLP data set (left) and the IBM sensor
data set (right), and

PHD Thesis, UTS Chapter 4

50

Figure 4.5: Effectiveness evaluation w.r.t. on the DBLP data set (left) and the IBM sensor
data set (right), and

PHD Thesis, UTS Chapter 4

51

First, we adjust the frequent pattern threshold4 for performance evaluation and fix

the other two parameters by setting and . Fig. 4.4 plots the

classification accuracy curves (-axis) w.r.t. (-axis) on the two data sets. We can see

that the classification performance of DICH is much higher than the 2-D hash

compressed stream classifier on both data sets and in all values of . The performance of

both classifiers trends to decline as becomes larger since more graph features will be

eliminated and such information loss will affect classification performance. By

comparing the curve slopes of two classifiers, the 2-D hash compressed stream classifier

is more sensitive to . In the case of , the classification accuracy of the 2-D hash

compressed stream classifier is much lower. From this experiment, we can validate the

effectiveness of DICH, which can clearly outperform the 2-D hash compressed stream

classifier and is more insensitive to the frequent pattern threshold.

Second, we adjust the discriminative pattern threshold for performance evaluation

and fix the other two parameters by setting and . Fig. 4.5 plots the

classification accuracy curves (-axis) w.r.t. (-axis) on the two data sets. On the

DBLP data set, DICH was significantly superior to the 2-D hash compressed classifier in

classification accuracy. The classification performance of both methods was insensitive

to , which may be due to the fact that the two classes (Database related conferences and

Data mining related conferences) in DBLP data are extremely rare, the identified frequent

patterns have already had relatively high discriminative capability. On the IBM sensor

data set, although DICH is somewhat more sensitive to than the 2-D hash compressed

classifier, it has much higher classification accuracy in all cases. This experiment further

demonstrates that DICH has higher effectiveness than the 2-D hash compressed classifier

in terms of the discriminative pattern threshold.

4 In [95], the frequent pattern threshold is used to screen out subgraph patterns.

PHD Thesis, UTS Chapter 4

52

Figure 4.6: Effectiveness evaluation w.r.t. the edges compression size on the DBLP data
set (left) and the IBM sensor data set (right), and

PHD Thesis, UTS Chapter 4

53

Third, we adjust the size of the compressed edge set for performance evaluation

and fix the other two parameters by setting and . Intuitively, the

classification performance of both classifiers will increase at the expense of more space.

Fig. 4.6 plots the classification accuracy curves (-axis) w.r.t. (-axis) on the two

data sets. We can see that the 2-D hash compressed classifier is very sensitive to ,

especially on the DBLP data set; while DICH is steadier on the DBLP data set but no

clear performance improvement can be observed as becomes larger. On the IBM

sensor data set, the performance of both classifiers is improved as becomes larger.

Again, DICH outperforms the 2-D hash compressed classifier in all cases.

4.4.2 EFFICIENCY EVALUATION

In this experiment, we evaluate the efficiency of the two compared methods on the

DBLP data set by adjusting the frequent pattern threshold , the discriminative pattern

threshold , and the size of the compressed edge set . The settings of these parameters

are the same as those in the above effectiveness evaluation. All the experiments are

conducted on a Linux Cluster which comprises 24 nodes with 3.33GHz Intel Xeon CPU

(64bit). Both DICH and the 2-D hash compressed stream classifiers are implemented

using R studio.

PHD Thesis, UTS Chapter 4

54

Figure 4.7: Efficiency evaluation (1) w.r.t. , and (left); (2) w.r.t. ,
 and (right); and (3) w.r.t. , , (down), on the

DBLP data set

PHD Thesis, UTS Chapter 4

55

Fig. 4.7 plots the training time curves of the two compared methods w.r.t. , , and

on the DBLP data set. We can see that the training time of DICH is significantly less than

the compressed hash-based classifier in all cases. The computational cost of the 2-D hash

compressed classifier is much higher because it requires an additional frequent pattern

mining procedure to perform on the edge co-occurrence table which comprises massive

transactions. In contrast, DICH employs a fast clique detection algorithm, which can

directly find cliques (connected subgraphs) from the graph stream as features for

classifier construction, such that no additional frequent pattern mining procedure is

required to find connected subgraph patterns. This experiment shows that DICH clearly

outperforms the 2-D hash compressed classifier in not only classification accuracy but

also training efficiency.

4.5 SUMMARY
This chapter focused on graph structured data and proposes a DIscriminative Clique

Hashing (DICH) for fast graph stream classification. The main idea is to employ a fast

algorithm to decompose a compressed graph into a number of cliques to sequentially

extract clique-patterns over the graph stream as features. Two random hashing schemes

are employed to speed up the discriminative clique-pattern mining process and address

the unlimitedly clique-pattern expanding problem. The hashed cliques are used to update

an “in-memory” fixed-size pattern-class table, which is finally used to construct a rule-

based classifier. We test DICH on two real-world graph stream data sets. Because DICH

directly extracts cliques (connected subgraphs) from the graph stream as features for

classifier training, rather than mining unconnected co-occurrence edge sets as that in the

compared state-of-the-art method [8], DICH can significantly outperform [8] in both

classification accuracy and learning efficiency.

PHD Thesis, UTS Chapter 5

56

CHAPTER 5
ADAPTIVE HASHING FOR REAL-TIME
GRAPH STREAM CLASSIFICATION

5.1 INTRODUCTION
In this Chapter, in order to further improve the performance of the graph stream

classification algorithm based on hashing (DICH) in the Chapter 4 and make the graph

stream classification algorithm more adaptive in the streaming situation, we do further

research on the graph stream classification based on hashing in this chapter.

Graph stream classification on a complex network with massive nodes is by no means

an easy problem because of the following challenges:

 Expanding Feature Space: Graph stream is defined on a massive universe of

nodes. The continuously received graphs in the stream would lead to an

increasing number of subgraph patterns. Due to the “one-pass” nature of the graph

stream, we cannot enumerate all the subgraph-patterns in a pre-scan to construct

the feature space for all the graphs. Thus we need to design a projection that can

map arbitrary subgraph patterns to a size-fixed compatible feature space for all

the graphs in the stream.

 Increasing Graph Volumes: The volume of graph data are continuously growing

with a high speed. Due to the “real-time” requirement of graph stream

classification, we cannot employ any existing subgraph detection method which is

designed for off-line accurate subgraph mining. Thus we need to develop an

PHD Thesis, UTS Chapter 5

57

approximate subgraph feature extraction method that is fast enough to tackle fast

increasing graph volumes.

 Concept Drifts: As challenging as the increasing data volumes and expanding

feature space, however, is the concept drifting in the graph stream, which implies

that the data distributions and the decisions for classification may continuously

evolve and change. Accordingly, graph stream classification needs to ensure that

classification models can quickly discover changes in the stream, and adapt to the

changes for accurate classification.

In [95], [18], the authors have investigated the graph stream classification problem.

Both of them employ hashing techniques to sketch the graph stream for saving

computational cost and controlling the size of the subgraph-pattern set. Aggarwal [95]

proposed a 2-D hashing scheme to construct an “in-memory” summary for sequentially

presented graphs and used a simple heuristic to select a set of most discriminative

frequent patterns to build a rule-based classifier. Although [95] has exhibited promising

performance on graph stream classification, it has two inherent limitations: (1) The

selected subgraph-patterns are composed of disconnected edges, which may have less

discriminative capability than connected subgraph-patterns due to a lack of semantic

meaning. (2) The computational cost is high because an additional frequent pattern

mining procedure is required to perform on the summary table which comprises massive

transactions. Our previous work, DIscriminative Clique Hashing (DICH) [18], has

addressed these limitations to a certain extent by employing a fast clique detection

algorithm from hashed graphs. However, DICH also has two major disadvantage in

handling graph stream: (1) the hashing space of DICH is fixed, so it cannot adapt to

changing nodes and structures in the graph streams; (2) the prediction of decision DICH

is based on simple decision rules, which makes it inefficient in handling concept drift in

the graph streams. To address the problem of the concept drifting, an instance weighting

mechanism has been proposed in the gSLU [103] to adjust the subgraph feature selection

module for emerging concept drifting graphs. However, gSLU is based on a frequent

subgrpah pattern mining based framework, so it cannot achieve real-time response for

graph stream classification. In addition, the instance weighting module employed in

PHD Thesis, UTS Chapter 5

58

gSLU is too time consuming for graph streams, because it needs to iteratively tune the

weight values for each single graph.

Motivated by the aforementioned challenges and the limitations of the existing

approaches, in this chapter we propose an adaptive real-time classification method for

graph stream using stochastic learning, differential hashing techniques and a chunk level

weighting mechanism to address these problems. In particular, for better adapting to

concept drifting, the whole graph stream is partitioned into a number of non-overlapping

graph chunks each containing the same number of graphs. For each chunk, we employ a

random hashing scheme to compress the original node set of the graph stream for fast

feature detection. To tackle the concept drifting, a differential hashing scheme is used to

map unlimitedly increasing features (cliques) onto a size- fixed feature space. The

distribution of the hashed cliques in each received graph is used as a feature vector for

stochastic learning of the real-time chunk classifier. Then, a chunk level weighting

mechanism is used to form an ensemble for graph stream classification. The proposed

method substantially speeds up the graph feature extraction process, solves the unlimited

graph feature expanding problem, and effectively adapts to the concept drifting in graph

stream classification. The contributions of this chapter are highlighted as follows:

1. We propose an approximate method for fast graph feature extraction by detecting

cliques from the compressed graphs via hashing. The method significantly

improves the efficiency of feature extraction and classifier learning online to

satisfy the “real-time” requirement.

2. We propose a graph feature reduction method by mapping unlimitedly expanding

clique patterns onto a fixed-size compatible feature space via differential hashing.

This can avoid a pre-scan of graphs to further speed up the learning process,

satisfying the “one-pass” requirement and adapting to the concept drifting.

3. We adopt the stochastic learning strategy to incrementally train a graph classifier

online, which can satisfy the “real-time” requirement and achieve better

classification performance than the majority voting used in [95] [18].

PHD Thesis, UTS Chapter 5

59

4. Combined with differential hashing scheme, we adopt a chunk level weighting

mechanism to form a weighted classifier ensemble for graph stream classification,

which can effectively adapt to the concept drifting and achieve better performance

than instance level weighting mechanism [103].

We conduct extensive experiments on two real-world graph stream data sets and one

synthetic graph stream data set. The experimental results demonstrate that the proposed

method can clearly outperform the compared state-of-the-arts [95], [18], [103] in

classification accuracy, training efficiency and concept drifting.

The remainder of the chapter is organized as follows. Section 5.2 presents problem

definition and system overview. The ARC-GS algorithm (Adaptive Real-time

Classification for Graph Stream) is proposed in Section 5.3. The approach has been tested

using two real-world graph streams and one synthetic graph stream. The experimental

evaluations and results are given in Section 5.4. Finally, the summary is given in Section

5.5.

5.2 DEFINITIONS & SYSTEM OVERVIEW

5.2.1 PROBLEM DEFINITION

Suppose there exists a complex network which comprises a massive universe of

nodes. The edges connecting these nodes are denoted by the edge set . The stream of

graphs are presented sequentially as the subsets of (all are

connected graphs), where the subscript denotes the receiving order of the graph in the

stream. An example of such graph streams is a coauthor network. All the papers (graphs

of connected authors) on the coauthor network with different time-stamps form a graph

stream.

Specifically, the edge set of is denoted by . Each graph

has a class label . We represent each received graph in the form

of . In this chapter, we assume that each edge in a graph has a numerical

PHD Thesis, UTS Chapter 5

60

weight , where and are the indices of the two vertices of the edge (for simplicity,

we don’t consider edge labels).

Our goal is to learn a graph classification model from the graphs

 observed from the stream thus far, in an efficient way, to

accurately predict the class label of a test graph in the future graph

stream.

5.2.2 SYSTEM OVERVIEW

The framework of our method for graph stream classification is shown in Fig. 5.1,

which includes four modules: graph clique detection, differential graph clique hashing,

clique-based chunk classifier learning, and weighted chunk classifier ensemble. The

graphs in the stream are received one by one. Each received graph is fed into the

pipeline in each chunk for processing in the following stages:

Figure 5.1: The framework of the proposed adaptive real-time hashing for graph stream
classification method

1. Graph Clique Detection. Each received graph from the stream is first

compressed into a small graph using a random hashing scheme. Then we

PHD Thesis, UTS Chapter 5

61

employ a fast algorithm to decompose the compressed graph into a number of

cliques as the features of .

2. Differential Graph Clique Hashing. Since the number of clique patterns

(features) will unlimitedly increase as new graphs are fed in, the underlying

feature space will keep expanding accordingly. Thus, in this stage, a clique

hashing scheme is performed to map the unlimitedly emerged clique patterns onto

a fixed-size clique-pattern set, denoted by . Now all the graphs in

the stream can be represented in this compatible space, for , we have

.

3. Clique-based Chunk Classifier Learning. For each chunk, the hashed clique-

pattern representation of each received graph and its corresponding class label

 are used to incrementally update the underlying chunk classifier online, using a

stochastic learning algorithm.

4. Weighted Chunk Classifier Ensemble. In order to adapt to the concept-drifting in

graph streams, we propose the weighted chunk classifier ensemble to reduce the

impact of concept drifting on the classification performance. In this module,

multiple weighted chunk classifiers are adopted to form an ensemble to predict

future graph stream. Combined with the differential hashing scheme, we design

this ensemble to make our method more adaptive.

To classify a test graph in the future graph stream, is processed in the first

two modules and the obtained hashed clique-pattern representation is input to the

ensemble classifier for class label prediction. The detailed approaches used in the four

modules are introduced as follows.

5.3 ARC-GS: ADAPTIVE REAL-TIME

CLASSIFICATION FOR GRAPH STREAM

PHD Thesis, UTS Chapter 5

62

We now discuss technical details on adaptive real-time classification for graph

stream.

5.3.1 GRAPH CLIQUE DETECTION

This section is the same as the Section 4.3.1.

5.3.2 DIFFERENTIAL GRAPH CLIQUE HASHING

The cliques extracted from the compressed graph are used to represent the features of

the corresponding original graph. To learn a graph classifier, it is required to make the

features of all the graphs to be in the same feature space. Since the number of clique

patterns (features) will unlimitedly increase as new graphs are fed in over the stream, the

underlying feature space will keep expanding accordingly. Meanwhile, in a certain period

of time, there may be some abnormal or entirely different feature information called as

“concept drifting” [105]. To address these problems, we use the “new clique” and “old

clique” to distinguish the new cliques from the existing cliques, and adopt differential

feature hashing to constraint the dimensionality of the feature space. Both the “new and

old cliques” and “differential feature hashing” can help the algorithm adapt to the

changes in the streams and reduce the impact of the concept drifting.

The differential clique hashing scheme is applied on the new and old cliques. The

differential clique hashing not only help us control the feature space, but also identify the

abnormal features in good time. We can differentially process them and address the

concept drifting. Next, we first introduce how to define the “new clique” and “old

clique”.

The whole stream is partitioned into a set of sequential chunks. The ultimate goal is

to constantly train an ensemble classifier to predict the class label of each test graph

in the future test chunk. An ensemble includes a certain number of weighted chunk

classifiers. We set the ensemble size as which represents the number of chunk

classifiers in an ensemble. When detecting a clique from each graph in current chunk, we

will check this clique in the previous chunks. It this clique appears in the previous

PHD Thesis, UTS Chapter 5

63

chunks, we set this clique as an “old clique”, and otherwise we set it as a “new clique”.

These chunks will vary according to the current chunk, so the “old” or “new” is a

relative concept.

The following differential clique hashing scheme is performed to map the unlimitedly

emerged clique patterns onto a fixed-size clique-pattern set, denoted by

(is the range of clique hash values). In order to distinguish new cliques from old

cliques in the clique-pattern set, we set a ratio value as . For the new cliques, the hash

space is ; for the old cliques, the hash space is . The differential clique

hashing scheme will map the new and old cliques onto corresponding fixed-size clique-

pattern subset.

Given a graph received from the graph stream, we first use Algorithm 1 to detect

its new clique set and old clique set . Then, for each new clique in

and each old clique in , we differentially apply a random hash function to

 and to generate corresponding index and

 as follows

 (5.5)

 (5.6)

where denotes the string of the ordered node indices of and

constraints the range of hash values in ; the denotes the string

of the ordered node indices of and constraints the range of hash

values in . We use a vector to represent a

graph , where is the frequency of cliques in whose indices are based on the

clique hash function Eq. (5.5) and Eq. (5.6). This procedure is detailed in Algorithm 2.

Thus far, all the graphs in the stream can be represented in an -dimensional compatible

space.

Algorithm 2 Differential Graph Clique Hashing

PHD Thesis, UTS Chapter 5

64

Input: : the all clique set detected from ; : the new clique set detected from
; : the old clique set detected from

Output: : the feature vector of

1: ;

2: ;

3: for

4: ;

5: if

6:

7: end if

8: end for

9: for

10:

11: if

12:

13: end if

14: end for

15:

5.3.3 CLIQUE-BASED CHUNK CLASSIFIER

In the chunk classifier learning stage, we first construct a feature vector

 for each received graph in the graph stream using the method

introduced above. Then, we will use these continuously obtained feature vectors to learn

a chunk classifier for each chunk. This procedure has become straightforward now since

we have converted complex graph structures into the same representations, which can be

learned using a generic online learning algorithm.

PHD Thesis, UTS Chapter 5

65

Suppose there are graphs in the entire stream (may approach infinity). As each

feature vector is -dimensional, we assume the entire data set for training is a

feature matrix , where columns correspond to graphs and rows

correspond to hashed clique patterns. We also construct an label matrix for

supervised learning, where rows correspond to classes; if belong to the th

class, ; otherwise .

As the feature vector of actually describes a distribution of the clique

patterns, we thus adopt a regularized ridge regression model to fit the label distribution of

 (5.7)

where is the weight matrix. We aim to minimize the following objective to

estimate

 (5.8)

which is a linear least-squares problem.

Many methods can be used to solve Eq. (5.8), such as gradient descent and Newton’s

method. The standard (or “batch”) gradient descent method will perform the following

iterations

 (5.9)

where is the step size (i.e., learning rate) and

 (5.10)

where and are the th columns of and , differentially.

However, in our problem setting, these training pairs of graphs are obtained one by

one in sequence, for , rather than in batch. We cannot simply use

the standard gradient descent method to optimize . Thus, we resort to the stochastic

PHD Thesis, UTS Chapter 5

66

(incremental) gradient descent method to solve this problem, which updates using a

single example at each iteration, for

 (5.11)

where

 (5.12)

Based on the iteration function (Eq. (5.12)), the linear regression model is updated

online at the arrival of each new graph in the stream. In the beginning of the graph

stream, can be initialized based on a chunk of cached graphs using the standard

gradient descend method. Every time after finishing updating for the last graph in a

chunk, we use the current as current chunk classifier. In fact, the real-time update for

 can be stopped at any time for testing tasks.

5.3.4 WEIGHTED CHUNK CLASSIFIER ENSEMBLE

Based on the aforementioned modules, we can get the classifier of each chunk. When

we predict the label of each graph in the test chunk, we adopt a weighted chunk classifier

ensemble.

In our algorithm, we use to represent sequential chunks, which

comprise the same number of graphs. The is the most up-to-date chunk. For each

chunk , we use the to represent the chunk classifier. We set the ensemble

size as . For the current testing chunk , we will use the previous weighted chunk

classifiers as an ensemble to predict the class label of each graph in current testing chunk

 separately. The process is as follows:

1. First, a weight is assigned to each individual chunk classifier

.

2. Second, each chunk classifier is used to predict the class label of a graph,

and then predicted labels for the graph in chunk are generated.

PHD Thesis, UTS Chapter 5

67

3. Third, each of predicted labels for the graph is assigned the same weight as that

of each corresponding chunk classifier ,

4. Fourth, we sum up all the weight values of each same label and choose the label

with the largest weight as the final label of this graph.

Next, we will introduce how to predict the class label of a graph and assign the

weight value for the classifier:

In particular, given a test graph , we first detect its cliques using Algorithm 1,

and then differentially hash its cliques to construct the clique-pattern feature vector

using Algorithm 2. At last, we calculate its class-label distribution vector using

 (5.13)

according to which the class label of is predicted by

 (5.14)

where are the values of the dimensions of .

For current testing chunk , according to the hash space ratio for new and old

cliques, the weight value of previous classifiers

 are . The rule is: the closer to

the current testing chunk , the larger the weight is. Suppose the corresponding

predicted labels is , we will sum up all the weight values of the same

predicted label and choose the predicted label with the largest weight as the final label of

this graph.

5.4 EXPERIMENT
In this section, we will empirically test the proposed classifier ARC-GS standing for

Adaptive Real-time Classification for Graph Stream on two real-world graph streams and

one synthetic graph stream. In particular, we will evaluate the effectiveness and

efficiency of ARC-GS by comparing it with three baselines: 2-D hash compressed stream

PHD Thesis, UTS Chapter 5

68

classifier [95] which is a rule-based classifier using a simple heuristic to select a set of

most discriminative frequent patterns; gSLU [103] which is a classifier using unique

measures to discover informative subgraph features with minimum redundancy and use

an instance weighting mechanism for emerging concept drifting graphs; and our previous

work DICH [18] which is a majority voting classifier adopting a fast clique detection

algorithm from hashed graphs. Then, we will compare the impact of the concept drifts on

classification effectiveness of four classifiers. We aim to evaluate the capability of the

proposed classifier in handling concept drifting in graph streams, compared with 2-D,

gSLU and DICH classifiers. We do each set of experiments three times for each data set,

and all the classification results in our experiments are the average performance over

these three generated results. The four compared classifiers are implemented in Matlab

and all the experiments are conducted on a node of Linux Cluster with 2.90GHz Intel

Xeon CPU.

5.4.1 DATA SETS

We use the following graph streams in our experiments.

 IBM Sensor Data Stream (IBM)5: This data stream records the information

from local traffic on a sensor network. The IP-addresses are nodes and local

traffic flows are edges. Each graph is associated with a particular intrusion type

and there are over 300 different intrusion types (classes) in the data set. Our goal

is to classify a traffic flow pattern into one of intrusion types. Because the number

of classes is extremely large (), and many of them are rarely observed, we

select 50 relative dense classes in our experiments for multi-class classification.

The data set contains nodes, edges, which generate a

stream of graphs over time.

 Citation Network Stream (CNS)6: In this Citation Network, each node is a paper

associated with rich attributes information (e.g., abstract, title, authors, etc.). In

our experiment, we select 16,000 papers with authors and references attribute

5 http://www.charuaggarwal.net/sens1/gstream.txt
6 http://arnetminer.org/citation

PHD Thesis, UTS Chapter 5

69

information from two research areas, artificial intelligence (AI) and computer

vision (CV), to generate a graph stream for binary classification. The edges are

citations between papers and coauthorships between authors. Our goal is to

predict which class a test paper in the stream belongs to. The final data stream

contains nodes, edges, and graphs.

 GTGraph Stream (GTGraph) 7 : This data stream is a synthetic data set

generated by the graph generator GTGraph based on R-MAT model [106]. We

choose default values of parameters suggested by the authors during network

generation. Our GTGraph network contains nodes and

edges, and the edges from the same node are used as a graph for experimental

evaluation, which generate a stream of graphs over time.

All the streams are divided into 25 non-overlapping chunks. For the Citation Network

Stream (CNS), each of chunk comprises 640 graphs; for the IBM Sensor Data Stream

(IBM), each of chunk comprises 20000 graphs; for the GTGraph Stream (GTGraph),

each of chunk comprises 4000 graphs.

5.4.2 EFFECTIVENESS EVALUATION

In the following, we evaluate the effectiveness of our ARC-GS classifier by

comparing it with the 2-D, gSLU and DICH classifiers on the IBM and CNS data sets.

We investigate the classification accuracy of the four methods in terms of 1) the number

of features and 2) the ensemble size . In the ARC-GS classifier, we set the hash ratio

as 0.2. At the end of this section, we separately investigate the classification accuracy

of our ARC-GS classifier in terms of hash ratio .

For the number of features : in the ARC-GS and DICH classifiers, the represents

the fixed size of hashed clique-pattern set; in the 2-D classifier, the represents the

number of discriminative patterns in the underlying graph with the use of a 2-dimensional

hashing scheme; in the gSLU classifier, the represents the number of minimum-

redundancy subgraph features.

7 http://www.cse.psu.edu/ madduri/software/GTgraph/

PHD Thesis, UTS Chapter 5

70

For the ensemble size : if current testing chunk is , our ARC-GS classifier will

use the most recent weighted chunk classifiers as an ensemble to

predict graphs in ; the gSLU classifier will built an ensemble of classifier from the

most recent chunks to predict graphs in the ; the 2-D and DICH classifiers will

combine the most recent chunks as traning data to train a

classifier and predict graphs in .

For the hash ratio : in our ARC-GS classifier, the represents the proportion to

allocate the feature spaces for the new cliques and the old cliques.

Results w.r.t. the number of features : In this experiment, we fix the ensemble

size (for the IBM, and for the CNS) and adjust the number of features

for effectiveness evaluation. For the IBM, we investigate the number of features

in ; for the CNS, we investigate the in .

Fig. 5.2 plots the classification accuracy curves (-axis) w.r.t. the Chunk ID (-axis)

in the IBM and CNS Sensor streams by using different numbers of features. The average

classification accuracy over the entire streams is reported separately in Fig. 5.3. We can

see that the overall classification performance of the ARC-GS classifier is the best among

the four compared methods on the two graph streams under different settings of across

the whole stream. Especially in the IBM, the accuracy of the ARC-GS classifier is always

higher than the 2-D, gSLU and DICH classifiers at all chunk IDs. In the CNS, we can see

that our classification accuracy is more stable than the other classifiers, especially than

the gSLU as the increase. The reason is that the stochastic learning strategy adopted in

our classifier can better satisfy the real-time requirement and achieve better classification.

This experiment implies that our ARC-GS classifier can achieve significantly improved

accuracy.

Fig. 5.3 further validates that our ARC-GS classifier outperforms the 2-D, gSLU and

DICH classifiers especially in the IBM. Among these classifiers, the effectiveness of the

2-D classifier is the worst. The reason is that the selected subgraph-patterns with

disconnected edges may have less discriminative capability than connected subgraph-

patterns in the gSLU, DICH and ARC-GS due to a lack of semantic meaning. For the

PHD Thesis, UTS Chapter 5

71

DICH and gSLU classifiers, the DICH classifier outperforms the gSLU classifier in the

CNS, otherwise in the IBM. The reason is that the DICH is a majority voting classifier

whose performance could degrade as the number of classes becomes large, and the IBM

has more number of classes than the CNS. An interesting observation is that a larger

number of features can help improve the accuracies of ARC-GS and DICH classifiers in

both streams. The reason is that a relatively large number of features would have stronger

discriminative capability to classify the graphs. We also find that the increase rate of

average accuracy becomes smaller with respect to the increase of the number of features.

In the IBM, when the number of features reaches 1000, all the four classifiers almost

have enough discriminative capability to classify graphs, and the lager number of features

will not significantly help improve the accuracy. For gSLU classifier, in the CNS, when

the number of features reaches 10000, the average accuracy falls sharply. The reason is

that those selected features are not beneficial and even misleading the classifier. For the

2-D classifier, in the IBM and CNS, when the number of features reaches 300 and 5000

respectively, it already has enough discriminative capability to classify graphs.

Results w.r.t. the ensemble size : In this experiment, we fix the number of features

 (for the IBM and for the CNS) and adjust the ensemble size

for effectiveness evaluation. For the IBM, we investigate the ensemble size in ;

for the CNS, we investigate the ensemble size in .

Fig. 5.4 plots the classification accuracy curves (-axis) w.r.t. the Chunk ID (-axis)

in all these four streams by using different ensemble sizes. The average classification

accuracy over the entire streams is reported separately in Fig. 5.5. We can see that the

overall classification performance of the ARC-GS classifier is still the best among the

four compared classifiers on both two streams under all settings of . This experiment

further implies that our ARC-GS classifier can significantly improve the classification

accuracy, compared with the 2-D, gSLU and DICH classifiers.

PHD Thesis, UTS Chapter 5

72

PHD Thesis, UTS Chapter 5

73

PHD Thesis, UTS Chapter 5

74

Figure 5.2: Classification accuracy on the IBM (ensemble size K = 4), and the CNS
(ensemble size K = 6) with different numbers of features M

PHD Thesis, UTS Chapter 5

75

Figure 5.3: Average accuracy on the IBM (left, ensemble size K = 4), and the CNS (right,
ensemble size K = 6) with different numbers of features M

PHD Thesis, UTS Chapter 5

76

The average performance over the entire IBM and CNS in Fig. 5.5 further

demonstrates that our ARC-GS classifier always outperform the DICH and gSLU

classifiers and significantly outperform the 2-D hash compressed stream classifier,

especially in the IBM Sensor stream. The reason is that a larger number of classes in the

IBM can more obviously distinguish the performance of the classifiers than in the CNS.

Hence, the results in the IBM can make the advantages of the ARC-GS more convincing.

In the two streams especially in the CNS, for the ARC-GS and the DICH classifiers, we

can find that a larger ensemble size can help improve the average classification accuracy.

The reason may be that a larger ensemble size will make the ARC-GS and the DICH

classifiers have more training graphs to generate more discriminative capability to

classify graphs especially for the initial classification. However, for the 2-D classifier in

the two streams, the fixed number of features may be insufficient for more training

graphs to classify graphs, and a larger ensemble size can decrease the average accuracy.

For the gSLU classifier in the CNS, the average accuracy is unstable under different

ensemble size. The reason should be that the selected features in the gSLU are not stable

for the training of new ensemble chunks.

PHD Thesis, UTS Chapter 5

77

PHD Thesis, UTS Chapter 5

78

PHD Thesis, UTS Chapter 5

79

Figure 5.4: Classification accuracy on the IBM (number of features M = 1000), and the CNS
(number of features M = 10000) with different ensemble size K

PHD Thesis, UTS Chapter 5

80

Figure 5.5: Average accuracy on the IBM (left, number of features M = 1000), and the CNS
(right, number of features M = 10000) with different ensemble size K

Based on the overall effectiveness evaluation results, we can conclude that the

proposed ARC-GS classifier can outperform the DICH and gSLU classifiers and

significantly outperform the 2-D hash compressed stream classifier in classification

accuracy.

Results w.r.t. the hash ratio : In this experiment, for only ARC-GS classifier, we

fix the number of features (for the IBM, and for the CNS) and

the ensemble size (for the IBM, for the CNS), and adjust the hash ratio

for effectiveness evaluation. For both IBM and CNS, we investigate the hash Ratio

in .

PHD Thesis, UTS Chapter 5

81

PHD Thesis, UTS Chapter 5

82

Figure 5.6: Classification accuracy and average classification accuracy on the IBM (upper
row, number of features M = 1000 and ensemble size K = 4), and the CNS (bottom row,

number of features M = 10000 and ensemble size K = 6) with different hash ratio R

PHD Thesis, UTS Chapter 5

83

Fig. 5.6 plots the classification accuracy curves (-axis) w.r.t. the Chunk ID (-axis)

and average classification accuracy over the entire streams under different hash ratios.

We can see that when the hash ratio increases to 0.2 or 0.3, the overall classification

performance of the ARC-GS classifier in the two streams is the best. Then, the

classification accuracies will slightly decrease as becomes larger especially in the IBM.

Overall, the classification performance of the ARC-GS classifier is relatively stable for

various hash ratios.

5.4.3 EFFICIENCY EVALUATION

In the following, we evaluate the efficiency of the four compared methods: the ARC-

GS classifier, the DICH classifier, the gSLU classifier and the 2-D hash compressed

stream classifier on the IBM and CNS streams.

Results w.r.t. the number of features : In this experiment, we fix the ensemble

size (for the IBM, for the CNS) and adjust the number of features for

the efficiency evaluation. The experimental settings are the same as those in Fig. 5.7.

PHD Thesis, UTS Chapter 5

84

Figure 5.7: Average time on the IBM (up, ensemble size K = 4), and the CNS (down,
ensemble size K = 6) with different numbers of features M

The average system runtime performance over the two streams is reported in Fig. 5.7.

We see that the average time of both ARC-GS and DICH classifiers are less than the

gSLU classifier and significantly less than the 2-D classifier. The reason is that an

additional frequent pattern mining procedure in the 2-D is required to perform on the

summary table which comprises massive transactions, and subgraph search process itself

in the gSLU is slower than the clique search process in both ARC-GS and DICH

classifiers. As the number of features increases, the average time of the four classifiers

also increase accordingly. This is because that the learning process need take more time

to manage more types of features. In the two streams, the overall average time of the

ARC-GS classifier is close to the DICH classifier. As the number of features increases,

the average time of the ARC-GS classifier increases more slowly than the DICH

especially in the IBM stream. When the in the IBM and the in

the CNS, the average time of the ARC-GS classifier is less than DICH classifier. We can

PHD Thesis, UTS Chapter 5

85

get that our ARC-GS classifier have better efficiency than the DICH classifier as the

number of features increases. The reason is that the incremental stochastic learning

strategy in the ARC-GS avoids the majority voting process that reduces the classification

efficiency.

Figure 5.8: Average time on the IBM (up, number of features M = 1000), and the CNS
(down, number of features M = 10000) with different ensemble size K

PHD Thesis, UTS Chapter 5

86

Results w.r.t. the ensemble size : In this experiment, we fix the number of features

 (for the IBM and for the IBM) and adjust the ensemble size

for the efficiency evaluation. The experimental settings are the same as those in Fig. 5.8.

Fig. 5.8 reports the average system runtime performance of the four classifiers over

the two streams. Compared to the 2-D classifier, the ARC-GS, DICH and gSLU

classifiers require significantly less time. We can see that the average time of the four

classifiers increases as the ensemble size increases. This is because a larger ensemble size

would result in more training graphs, which increase the training time accordingly. In the

two streams, the overall average time of the ARC-GS classifier is close to the DICH

classifier. As the ensemble size increases, the average time of the ARC-GS classifier

increases more slowly than the DICH. Especially in the IBM stream, the overall average

time of the ARC-GS classifier is always less than the DICH classifier. When the

in the CNS, the average time of the ARC-GS classifier is less than the DICH classifier.

As the increases, the average time of the ARC-GS classifier is much less than the

DICH classifier. Therefore, our ARC-GS classifier has more stable and better efficiency

than the DICH classifier as the ensemble size increases.

Overall, our ARC-GS classifier has the best efficiency among the four compared

classifiers.

5.4.4 CONCEPT DRIFTS

In order to simulate the concept drifting, we consider adding the concept drifting

chunks in our experimental graph stream. In this experiment, we use the IBM and

GTGraph streams to compare the impact of the concept drifts on classification

effectiveness of four classifiers. In the IBM stream, we change the class distribution in

the concept drifting chunk to simulate the concept drifting. In the GTGraph stream, we

simulate concept drifts through a parameter used to label the graphs in the stream.

 The IBM Stream: we select 50 different classes (1~50) of graphs from the whole

IBM Sensor stream with 250 classes as our experimental data. In our IBM

experimental stream, there are also total 25 chunks, and each of which comprises

PHD Thesis, UTS Chapter 5

87

20000 graphs. In the chunks 1~14 and chunks 18~25, the graphs are randomly

selected from the IBM experimental data, and contains 50 classes. After analysing

the overall class distribution in the chunks 1~14 and chunks 18~25, we insert the

abrupt concept drift in the chunk 15 by designing a highly different class

distribution. There are only two classes (5, 15) in the chunk 15, and the

distribution ratio of these two classes is 1:1 (Class 5: 10000 graphs; Class 15:

10000 graphs). Then, we gradually changing the concept drift in the chunk 16 and

chunk 17. In the chunk 16, there are two classes (1, 5), and the distribution ratio

of these two classes is 1:1; in the chunk 17, there are three classes (1, 5, 15), and

the distribution ratio of these three classes is 1:1:1.

 The GTGraph Stream: we create the synthetic GTGraph stream with drifting

concepts through a parameter used to label the graphs in the stream. In the

GTGraph network, we divide all nodes into classes (-dimensional space) and

establish a hyperplane in -dimensional space by equation:

 (5.15)

In this equation, the denotes the feature weight, and denotes the number of

nodes in the feature in a graph. The feature weights are randomly

initialized by the values in the range of [0, 1]. The is chose to cut the graphs into two

parts, that is, . Thus, roughly half of graphs are labeled as positive, and the

others are labeled as negative.

If the graph satisfies , we label the graphs as positive; if the graph

satisfy , we label the graphs as negative. We simulate the concept drifts

through the parameter . In our examination, we set the as 10, and insert the abrupt

concept drift in the chunk 15 (the total number of chunks is 25) by adjusting the value of

 greatly, and then gradually adjust the value of to insert the gradual concept drifts in

the chunk 16~18.

PHD Thesis, UTS Chapter 5

88

We also investigate the impact of the concept drifts on classification effectiveness of

four classifiers in terms of 1) the number of features and 2) the ensemble size . In the

ARC-GS classifier, we set the hash Ratio as 0.2.

Results w.r.t. the number of features : In this experiment, we fix the ensemble

size (for both IBM and GTGraph) and adjust the number of features for

impact evaluation. For the IBM, we investigate the number of features

in ; for the GTGraph, we investigate the number of features

in .

PHD Thesis, UTS Chapter 5

89

PHD Thesis, UTS Chapter 5

90

PHD Thesis, UTS Chapter 5

91

Figure 5.9: Classification accuracy on the IBM (ensemble size K = 4) and the GTGraph
(ensemble size K = 4) with different numbers of features M

Fig. 5.9 plots the classification accuracy curves (-axis) w.r.t. the Chunk ID (-axis)

in the IBM and GTGraph streams by using different numbers of features. We can see that

there are noticeable concept drifting from chunks 14~19 in the GTGraph and chunks

14~18 in the IBM (marked by the rectangle boxes). As a result, all four classifiers

experience performance loss. From chunks 14~15, in the GTGraph and IBM streams, all

four classifiers experience large performance loss because there is an abrupt concept drift

in the chunk 15. Then, except gSLU classifier, the performance loss becomes smaller

because of the next gradual concept drifts. In the gSLU classifier, there exists larger

performance loss after the concept-drifting chunks. The reason is that the instance

weighting mechanism may be too sensitive to better adapt to the concept drifting, and the

training results in the concept-drifting chunks mislead the classification of the following

chunks. In all classifiers, our ARC-GS classifier receives less loss than the 2-D, gSLU

and DICH classifiers especially in the IBM. We can see that the overall impact of the

PHD Thesis, UTS Chapter 5

92

concept drifts on the classification performance of the ARC-GS classifier is minimal

among the four compared classifiers on both two streams. As the number of features

increases, the impact of the concept drifts on the classification performance of the ARC-

GS classifier becomes less. However, for the DICH and 2-D classifiers, the impact

almost remains the same. This experiment implies that our ARC-GS classifier can

effectively handle the concept drifts.

Results w.r.t. the ensemble size : In this experiment, we fix the number of features

 (for the IBM, for the GTGraph) and adjust the ensemble size

for impact evaluation of concept drifts. For the IBM and GTGraph, we investigate the

ensemble size in .

Fig. 5.10 plots the classification accuracy curves (-axis) w.r.t. the Chunk ID (-

axis) in the IBM and GTGraph streams by using different ensemble sizes. We also can

observe that there are noticeable concept drifting from chunks 14~19 in the GTGraph and

chunks 14~18 in the IBM (marked by the rectangle boxes). That is, all four classifiers

experience performance loss. In all classifiers, we also can see that the overall impact of

the concept drifts on the classification performance of the ARC-GS classifier is still

minimal among the four compared classifiers on both two streams.

PHD Thesis, UTS Chapter 5

93

PHD Thesis, UTS Chapter 5

94

PHD Thesis, UTS Chapter 5

95

Figure 5.10: Classification accuracy on the IBM (number of features M = 1000) and the
GTGraph (number of features M = 5000) with different ensemble size K

5.5 SUMMARY
This chapter proposes an adaptive real-time classification method for graph stream

using two hashing schemes, incremental stochastic learning strategy and chunk level

weighting mechanism to address the “real-time”, “one-pass” and “concept drifting”

challenges. In particular, we propose an approximate method for fast graph feature

extraction by detecting cliques from the compressed graphs via hashing, which can

significantly improve the efficiency of feature extraction to satisfy the “real-time”

requirement. We also propose a graph feature reduction method by mapping unlimitedly

expanding clique patterns onto corresponding fixed-size compatible feature spaces via

differential hashing, which can avoid a pre-scan of graphs to address the “one-pass” and

“concept drifting” challenges. Thanks to the clique hashing approach, the stream of

graphs can be converted into feature vectors without additional parsing so that we can

directly adopt a stochastic learning strategy to train a graph classifier online. Then, a

PHD Thesis, UTS Chapter 5

96

chunk level weighting mechanism is adopted to address “concept drifting” challenge. The

experimental results on two real-world and one synthetic graph streams demonstrate that

the proposed method can outperform the state-of-the-art method [9, 11, 12] in both

classification accuracy and training efficiency; it also has an obvious advantage in

handling concept drifting.

PHD Thesis, UTS Chapter 6

97

CHAPTER 6
CONTEXT-PRESERVING HASHING
FOR FAST TEXT CLASSIFICATION

6.1 INTRODUCTION
In this chapter, we focus on the other popular and important structured data: text.

Mining of massive data [114] has become one of the most important research trends

in the era of big data. The “3V” (volume, velocity and variety) nature of big data subverts

the traditional learning paradigm because, in big data scenarios, the volume and the

dimensionality of instances are usually unpredictable and increase rapidly. In such cases,

even enumerating complete features to compute a similarity has become an intractable

problem. For example, in document similarity search, the underlying feature space can

easily exceed 108 dimensions if we consider 5-shingles (5 continuous characters) [114];

and the feature space can be much higher if we consider a vocabulary of words as

features. Thus, it becomes urgent to develop fast approximate algorithms to address the

storage and computation problems for big data.

There have been a number of approximate algorithms for big data similarity

computation. Since many high-dimensional data can be represented as bags of words,

min-wise hashing [10] has been naturally applied to them for fast approximating set

similarities without scanning and comparing the complete sets. Recently, [114] further

improves the efficiency of min-wise hashing by storing only the lowest b bits of each

hashed value. Random projection [112, 107] was proposed to randomly project high-

dimensional data onto low-dimensional spaces. For sketching streaming data, count-min

PHD Thesis, UTS Chapter 6

98

sketch [110] was developed to estimate feature occurrences. Recently, feature hashing

[115, 116] was employed to estimate inner products of high-dimensional feature vectors.

All these approximate algorithms have been found very effective in certain big data

problems.

However, all the aforementioned approximate algorithms are based on the bag-of-

words representation for its exchangeability that can facilitate random projection and

hashing. A limitation of such flat-set representation is that context information and

semantic hierarchy may be lost. For example, in Fig. 6.1, the second text is an abstract of

a paper on transfer learning, which first introduces an application background (including

Web media terms) and states the underlying learning problem next (including machine

learning terms). If we represent the abstract as a flat set, it will resemble the first text,

which is a technical blog also comprising Web media and some technical terms, but in

different context. Thus, a more expressive bag-of-words representation needs to be

explored to relieve this problem.

Figure 6.1: Motivation examples. The standard min-wise hashing on bags-of-words (flat-
sets) gives sim (1, 2) > sim (2, 3) while our RMH on nested bags-of-words (nested-sets) gives

sim (2, 3) > sim (1, 2)

In this chapter, we aim to fast compute similarities between bag-of-words represented

objects while also preserving context information inside the objects. We still follow the

random algorithm approach to this end. We don’t consider relational learning or

structural patterns to capture context information which might be unrealistic in big data

PHD Thesis, UTS Chapter 6

99

scenarios. To take into account semantic hierarchy, we consider a notion of multi-level

exchangeability which can be applied at word-level, sentence-level, paragraph-level, etc.

We employ a nested-set to represent a multi-level exchangeable object, say “nested bag-

of-words”. For example, we can let {{a, b, c, d}, {b, d, e}, {e, f, g}} represent a

paragraph with three sentences, each of which further comprises several words. In this

example, the top-level exchangeable elements are sentences while the bottom-level

exchangeable elements are words. In such nested-set representations, context information

and semantic hierarchy are preserved yet the resulting form is still simple for random

algorithms.

To fast compute a similarity between nested-sets, we propose a Recursive Min-wise

Hashing (RMH) algorithm for sketching nested-sets. The advantage of RMH is two-fold:

1) Account for multiple levels of exchangeabilities; 2) Enable a probabilistic comparison

of sub-sets instead of hard matching. By virtue of RMH, we can compare two multi-level

exchangeable objects with the same computational cost of the standard min-wise hashing

algorithm while preserving context information as a plus. We also provide a theoretical

bound to RMH to show it is a highly-concentrated estimator. We conduct empirical

studies on three real-world text data sets (DBLP paper abstracts, IMDB movie reviews,

and Amazon product reviews). The experimental results from three text classification

tasks show that the proposed context-preserving hashing method can significantly

outperform both min-wise hashing [10] and feature hashing [116] in accuracy at the same

(even less) computational cost.

The remainder of the chapter is organised as follows. The preliminary knowledge and

baselines are introduced in Section 6.2. The RMH algorithm (Recursive Min-wise

Hashing) is presented in Section 6.3. A case study is then given in Section 6.4 to test our

RMH algorithm. Finally, a summary of this chapter is given in Section 6.5.

6.2 PRELIMINARIES & BASELINES

6.2.1 PRELIMINARIES

PHD Thesis, UTS Chapter 6

100

 Bag-of-Words: A bag of words is the unordered collection of words in a text . It

is a simplified representation disregarding the structural information. Due to its

simplicity, bag-of-words has been accepted as a standard model in information

retrieval and text mining, especially in massive data scenarios. For text

classification, there are two commonly used bag-of-words representations: (1)

Term Frequency (TF), which counts the occurrence of each word in and let the

counting be the value of the corresponding feature dimension. The resulting form

is a feature vector whose dimensions are spanned by terms in a

predefined vocabulary. It is common to use inverse document frequency (IDF) to

weight TF for emphasizing uncommon terms [114]. (2) (Multi-) Set, which views

all words in as a set ; if a same word is allowed to appear multiple times, it is a

multi-set. This representation is easier than TF since no predefined vocabulary

(feature space) is required, hence it is more popular in high-dimensional data

scenarios.

 Min-wise Hashing: The min-hash scheme [10] is an approximate method for

measuring the similarity of two sets, say and . hash functions (random

permutations) are applied to the elements in and we say min

is a min-hash of . A nice property of min-hash is that the probability of and

 to generate the same min-hash value is exactly the Jaccard similarity of and

:

 (6.1)

where we write as a shorthand. In practice, multiple

independent random permutations are used to generate min-hashes to approach

the expected probability. The similarity between the two sets based on the min-

hashes is calculated by

 (6.2)

PHD Thesis, UTS Chapter 6

101

where 1(state) = 1, if state is true; and 1(state) = 0, otherwise. As

; that is

 (6.3)

The proposed Recursive Min-wise Hashing algorithm in Section 4 can be viewed

as a generalization of the min-hash scheme [10] for sketching nested sets.

 Feature Hashing: Feature hashing [116] provides an unbiased and highly-

concentrated estimator of the inner product of high-dimensional feature vectors. It

is closely related to the random projection [112, 107]. The difference is that the

projection matrix only comprises values in , i.e., , where

 is the original dimensionality and is the new, . A constraint on is

that each column is allowed to have only one non-zero entry. The positions of

non-zero entries and its signs are randomly generated. Given a feature vector

(e.g., TF), the hashed feature vector gives . The intuition of

this operation is to randomly partition the features into groups and sum up the

signed features in the same group, where the sign is added to eliminate bias (a

biased version without signs is [115]).

In practice, it is not necessary to explicitly define the projection matrix. Two

random hash functions can be directly applied to the terms in to

calculate the hashed TF feature vector

 (6.4)

where and are two random hash functions.

Due to its implicitly projection property, feature hashing is extremely useful in

big data scenarios where data may have infinite features. It has been adapted to

many applications, such as multi-task learning [116], collaborative filtering [113],

and graph stream classification [17].

6.2.2 BASELINES

PHD Thesis, UTS Chapter 6

102

Three baseline methods based on the above building blocks are listed below as the

compared methods in the experiment section.

 TF: Each text is represented as a feature vector , whose components are

term frequencies (TF). A linear classifier is applied to .

 FHTF: This method uses the feature hashing technique [116] introduced above to

implicitly map to . Then a linear classifier is applied to

.

 MinHash: This method represents each text as a set of terms (bag-of-words)

and uses the min-wise hashing scheme [10] introduced above to hash into a

fingerprint . A classifier based on Hamming distance is applied to

.

6.3 RMH: RECURSIVE MIN-WISE HASHING
The main components of the RMH are described in detail as follows.

6.3.1 MULTI-LEVEL EXCHANGEABLE REPRESENTATIONS

As aforementioned, bag-of-words is widely accepted for representing a text due to its

simplicity and conciseness. However, a flat enumeration of words might be inappropriate

because: (1) Context information and semantic hierarchy are lost due to the shuffling of

words from different parts of a text. (2) Some minor semantic parts of a text may be

overlooked if the random samples are not sufficient to cover the entire text.

We propose an alternative way to represent a text using a nested set. A nested set is a

set that contains non-trivial sets as elements, in contrast to a flat set that only contains

atomic elements. For example, is a nested set where the

top-level set comprises three non-trivial sets corresponding to three sentences; and each

bottom-level set contains several words as atomic elements. If we represent the same text

in a flat set, we get with seven words as atomic elements. Based on

requirements, the nested-set representation for a text can have multiple levels of

PHD Thesis, UTS Chapter 6

103

exchangeabilities, where the bottom-level sets comprise words, the second-level sets

comprise sentences, the third-level sets comprise paragraphs and so the fourth. In doing

so, we can roughly preserve the context information and avoid missing samples in minor

semantic parts.

To use a nested set to represent a text, we first need to customize the considered

exchangeable levels, for example, paragraph-level, sentence-level, and word-level, where

paragraph is the highest level and word is the lowest level. Then we recursively construct

the nested set using lower-level set-elements until reaching the words as atomic elements.

Definition 6.1 (Multi-Level Exchangeable Representations) The multi-level

exchangeable representation of a text is a nested set where

 (6.5)

for . denotes a set of words as atomic elements and denotes a

set of the highest-level exchangeable objects (e.g., paragraphs).

We take the first example in Fig. 6.1 to illustrate the concept of multi-level

exchangeable representation: The text is a short segment of a blog, which is partitioned

into three (incomplete) sentences by “...”. We consider two levels of exchangeabilities,

word and sentence, to construct a nested set for the text. It is first represented as a set of

sentences as , each set-element of which is further represented as a

set of words. The steps of this nested-set construction procedure are listed in Algorithm 1

(Lines 1–5). The argument in means that the hash keys are sufficient

to avoid collisions. The obtained nested set is fed into the recursive min-wise

hashing procedure introduced in the next section.

Algorithm 1 Context-Preserving Fingerprinting

Input: : a text; : hash functions (random permutations) at the th

level, where is the number of levels in the nested set.

Output: : the fingerprint of .

PHD Thesis, UTS Chapter 6

104

1: for do

2: ;

3: ;

4: end for

5: ;

6:

6.3.2 RECURSIVE MIN-WISE HASHING

After obtaining the nested-set representation of a text, the next key step is to design

an approximate algorithm to sketch the nested set for fast comparison. The nested-set

sketching algorithm is expected to have the same properties as the min-wise hashing

algorithm: 1) efficient in both time and space for massive data mining, 2) compact to

represent an object with enormous features, and 3) locality-preserving such that the

estimated similarity is consistent with the value computed by direct comparing nested-

sets.

In the following, we propose a Recursive Min-wise Hashing (RMH) algorithm to

estimate the similarity between nested sets. In contrast to the hard matching of elements

in the standard min-hash scheme, a similarity metric that can measure a soft matching of

set-elements (i.e., non-atomic elements in a nested set) is required. We require “soft

matching” here since set-elements may have overlaps and we cannot simply view them

unmatched if only a fraction of its elements (which may also be set-elements) are

different. The similarity metric is expected to satisfy the following two requirements:

R.6.1 Set-elements in nested sets can be compared in probability instead of hard

matching.

R.6.2 Probabilistic similarities of lower-level sets can be propagated to higher-level

sets.

PHD Thesis, UTS Chapter 6

105

One possible way to measuring similarity between two nested sets, and , is to

first hash each lower-level set as a fingerprint , which has dimensions. We

can rewrite Eq. (6.5) as

 (6.6)

Here we use because the equation only holds as Now we have represented

a nested set as a set of -dimensional fingerprints. Suppose these fingerprints are

obtained through a min-hash-style algorithm on multiple random permutations, the

similarity between any pair of fingerprints is the proportion of matched digits between

 and . If we only consider one permutation sample, is a single digit

and becomes a flat set. We can thus estimate the similarity between and

using the standard min-wise hashing algorithm. However, a good estimator requires a

higher dimensionality (larger) to approach the real Jaccard similarity as For

, we can consider each dimension of separately, say , to

approximately represent as its sampling-sets and the th sampling-set is

 (6.7)

Now the fingerprint of , say , can be obtained using min-wise hashing

and the final fingerprint of is the concatenation of the sampling-set fingerprints,

that is, . This direct concatenation is reasonable since min-hash

fingerprints are unordered and digit-wise compared.

The detail of the RMH algorithm is summarized in Algorithm 2. is

a recursive procedure: If has reached the lowest level , a min-hash procedure

is applied to , whose elements are tokens of words (Line 2). If , each element of

, say , is input to a nested procedure which returns the fingerprint of

 (Line 5). The -dimensional fingerprints are reorganized into L separate sampling-

PHD Thesis, UTS Chapter 6

106

sets (Line 10), each of which is input to a procedure to obtain its

fingerprint (Line 11). Finally, the sampling-set fingerprints are concatenated to form

the fingerprint of .

Algorithm 2 Recursive Min-wise Hashing (RMH)

Input: : a nested set at the th level; : hash functions (random

permutations) at the th level.

Output: : the fingerprint of .

1: if then

2: ;

3: else

4: for do

5:

6: end for

7:

8:

9: for do

10:

11:

12: end for

13: ;

14: end if

PHD Thesis, UTS Chapter 6

107

An example of the RMH algorithm is illustrated in Fig. 6.2: The min-wise hashing is

performed on the three bottom-level sets (elements are terms) and we obtain three

fingerprints, each of which has 4 min-hashes. We reorganize the three fingerprints into

four separate sets by combining the th min-hashes from the three fingerprints to form the

th sampling-set (shown in different colors in Fig 6.2). The min-wise hashing is

performed on the second-level sets, and the obtained fingerprints are concatenated to

form the final fingerprint of the input text.

Figure 6.2: An illustration of the proposed Recursive Min-wise Hashing (RMH) algorithm
on a nested set

6.3.3 TIME COMPLEXITY ANALYSIS

We finally analyse the computational complexity of the RMH algorithm. Let be the

number of levels in a nested set (i.e., the depth of recursive procedures), be the number

of min-hash functions at each level, and be the number of set-elements in the top-

set. According to Algorithm 2, the time complexity of the top-level recursion is

PHD Thesis, UTS Chapter 6

108

, in which is for the number of reorganized sets and for

min-wise hashing procedures on . The time complexity of the bottom-level of

recursion is , in which is for the number of the bottom-

level sets and for min-wise hashing procedures on . Now it is easy to see

that the time complexity for the th level is

 (6.8)

It is worth noting that the orders of the two parts in Eq. (6.8), and

, sum to a constant .

THEOREM 6.1. Suppose the sizes of all the nested sets in are smaller than a

constant , that is , for any nested set at the th level, Eq. (6.8) is upper

bounded by . Thus, the time complexity of Algorithm 2 over all the

recursions is at most

 (6.9)

In practice, we normally consider two- or three-level nested sets, that is, ,

 and are in , therefore the overall practical time complexity is for

computing a context-preserving fingerprint for a text.

6.4 EXPERIMENT
In this section, we empirically test the proposed context-preserving hashing method

on three real-world text data sets. In particular, we investigate the effectiveness and

efficiency of our method and the compared methods for text classification. We aim to

show that the proposed method is able to 1) significantly improve the classification

accuracy and 2) remain the same (or less) computational cost, compared to the baselines.

The classification performance of different methods on the derived fingerprints or feature

vectors is evaluated using LIBSVM [109]. All the results in our experiments are the

average performance over five random data splits. The four compared methods are

PHD Thesis, UTS Chapter 6

109

implemented in Matlab and all the experiments are conducted on a node of Linux Cluster

with 2.90GHz Intel Xeon CPU.

6.4.1 DATA SETS

We study three text classification tasks based on real-world text data sets:

 Paper Abstract Classification (DBLP): There are 1,632,442 papers in the

downloaded raw data package. We consider a binary classification task: Artificial

Intelligence (AI) vs. Computer Vision (CV). We define the papers in {IJCAI,

AAAI, NIPS, UAI, COLT, ACL, KR, ICML, ECML, IJCNN} as the AI category

and {CVPR, ICCV, ECCV, ICIP, ICPR, ACM Multimedia, ICME} as the CV

category. We extract the abstracts from the resulting 15,195 papers as the data set

for our text classification task. Review Polarity Classification (IMDB): This is a

data set for binary sentiment classification with 25,000 highly polar movie

reviews for training and 25,000 for testing. We samples 20,000 reviews with

balanced positive and negative samples for our text classification task.

 Review Polarity Classification (IMDB): This is a data set for binary sentiment

classification with 25,000 highly polar movie reviews for training and 25,000 for

testing. We samples 20,000 reviews with balanced positive and negative samples

for our text classification task.

 Review Category Classification (Amazon): This data set contains a large number

of reviews in different product categories. We randomly sample 10,000 examples

from Books and 10,000 from Music to form a binary review-category

classification task.

6.4.2 COMPARED METHODS

The three baseline methods are introduced in Section 2: (1) Term Frequency (TF): the

most basic method; (2) Feature Hashing on Term Frequency (FHTF): applying feature

hashing [116] to TF; (3) Min-wise Hashing (MinHash) [10]: the proposed RMH

algorithm can be viewed as the generalization of MinHash. (4) Recursive Min-wise

PHD Thesis, UTS Chapter 6

110

Hashing (RMH): the proposed method. We will investigate different configurations of

RMH, such as RMH (2 levels) and RMH (3 levels), in the experiments.

6.4.3 PERFORMANCE COMPARISON

We first investigate the classification performance and CPU time of the compared

methods (FHTF, MinHash, and two RMH configurations) in terms of the length of output

fingerprints (). TF is based on the real size of its vocabulary so it has only one result.

We investigate (i.e.,

) for RMH (2 levels), which considers words and sentences; and

we investigate (i.e.,) for

RMH (3 levels), which considers words, sub-sentences (commas separated), and

sentences. The length range of the fingerprints for FHTF and the number of the hashed

dimensions for MinHash is varied in .

PHD Thesis, UTS Chapter 6

111

PHD Thesis, UTS Chapter 6

112

Figure 6.3: Classification accuracy and CPU time of the compared methods w.r.t. the length
of output fingerprints

In Fig. 6.3, we can find that the two RMH methods achieve the best overall

performance on all the data sets. As expected, RHM (3 levels) performs slightly better

than RMH (2 levels) due to a more expressive representation for semantic hierarchy. The

performance gain of RMH over MinHash becomes more significant as the length of the

fingerprints increases; and all the three min-hash based methods can significantly

outperform FHTF at all lengths. It is worth noting that, since , RMH starts to

outperform TF which is based on the full vocabularies; and the performance gain keeps

increasing afterwards. This experiment indicates that context-preserving hashing is able

PHD Thesis, UTS Chapter 6

113

to acquire extra useful information from texts (because RMH can significantly

outperform TF while MinHash can only approaches the performance of TF as its

fingerprint length approaches the size of the vocabulary).

Fig. 6.3 also plots the CPU time comparison. TF has a computational cost two orders

of magnitude larger than the other methods since it is based on the full vocabularies.

FHTF is slightly faster than the three min-hash based methods because of a different

hashing scheme. The two RMH methods consume slightly less CPU time than MinHash

does; RMH (2 levels) is slightly faster than RMH (3 levels). This experiment implies that

context-preserving hashing can achieve significantly improved accuracy without

additional computational cost.

6.4.4 INVESTIGATION OF MIN-HASH SIZE

In the previous experiment, we assume that the number of min-hashes (hash

functions) is same for all the levels of a nested set. Indeed, we can vary the number of

min-hashes for different levels of a nested set. In this experiment, we investigate the

performance of RMH (2 levels) by varying min-hash sizes. In particular, we fix the

length of output fingerprints and consider three

min-hash size configurations: “1x-4x” (the number of min-hashes at word-level is a

quarter of that at sentence-level), “2x-2x” (equal size), and 4x-1x (the number of min-

hashes at word-level is four times of that at sentence-level). For example, for ,

“1x-4x” means 10 min-hashes at the word-level and 40 min-hashes at the sentence-level.

PHD Thesis, UTS Chapter 6

114

PHD Thesis, UTS Chapter 6

115

Figure 6.4: Classification accuracy and CPU time of the RMH algorithm with different min-
hash sizes at different levels of the nested sets

In Fig. 6.4, we can find that RMH (4x-1x) slightly outperforms RMH (2x-2x), which

further slightly outperforms RMH (1x-4x). This result is reasonable because the word-

level sets are larger than sentence-level sets in size such that more min-hashes are

required to produce a better estimation.

The CPU time comparison in Fig. 6.4 shows that RMH (4x-1x) consumes more time

than the other two configurations. This is because it has more hash functions performed

on word-level sets which have bigger sizes than sentence-level sets. RMH (2x-2x) is

slightly slower than RMH (1x-4x) for the same reason.

6.5 SUMMARY

PHD Thesis, UTS Chapter 6

116

In this chapter, we focus on the text structured data and propose a context-preserving

fingerprinting method for fast estimating similarity between texts to relieve the loss of

context information. We first represent a text as a nested set based on the notion of multi-

level exchangeability at words, sentences, paragraphs, etc., and then propose a Recursive

Min-wise Hashing (RMH) algorithm to fingerprint the obtained nested set for fast

comparison. The empirical studies on three real-world text classification tasks show that

our context-preserving hashing method, as a generalization and improvement of the

standard min-hash scheme, is able to not only significantly outperform min-wise hashing

and feature hashing in accuracy but also maintain the same (even less) computational

cost.

PHD Thesis, UTS Chapter 7

117

CHAPTER 7
CONCLUSIONS AND FURTHER
STUDY

This chapter concludes the whole thesis and provides some further research directions

of the topic.

7.1 CONCLUSIONS
In this thesis, we focus on exploring new hashing scheme in different data

classification scenarios. We aim to explore new hashing methods from different views

and utilize them to boost classification performance in different data tasks. We first do a

literature review that surveys existing works on hashing from data classification

perspective. Then, we focus on exploring the new hashing methods on the graph

structured data classification and text structured data classification:

Firstly, we propose a DIscriminative Clique Hashing (DICH) for fast graph stream

classification. The main idea is to employ a fast algorithm to decompose a compressed

graph into a number of cliques to sequentially extract clique-patterns over the graph

stream as features. Two random hashing schemes are employed to speed up the

discriminative clique-pattern mining process and address the unlimitedly clique-pattern

expanding problem. The hashed cliques are used to update an “in-memory” fixed-size

pattern-class table, which is finally used to construct a rule-based classifier. We test

DICH on two real-world graph stream data sets. Because DICH directly extracts cliques

(connected subgraphs) from the graph stream as features for classifier training, rather

than mining unconnected co-occurrence edge sets as that in the compared state-of-the-art

PHD Thesis, UTS Chapter 7

118

method, DICH can significantly outperform the baseline method in both classification

accuracy and learning efficiency.

Secondly, we further improve the DICH and propose an adaptive hashing for real-

time classification. In this method, we use two hashing schemes, incremental stochastic

learning strategy and chunk level weighting mechanism to address the “real-time”, “one-

pass” and “concept drifting” challenges. In particular, we propose an approximate

method for fast graph feature extraction by detecting cliques from the compressed graphs

via hashing, which can significantly improve the efficiency of feature extraction to satisfy

the “real-time” requirement. We also propose a graph feature reduction method by

mapping unlimitedly expanding clique patterns onto corresponding fixed-size compatible

feature spaces via differential hashing, which can avoid a pre-scan of graphs to address

the “one-pass” and “concept drifting” challenges. Thanks to the clique hashing approach,

the stream of graphs can be converted into feature vectors without additional parsing so

that we can directly adopt a stochastic learning strategy to train a graph classifier online.

Then, a chunk level weighting mechanism is adopted to address “concept drifting”

challenge. The experimental results on two real-world and one synthetic graph streams

demonstrate that the proposed method can outperform the state.

Finally, we focus on text structured data and propose a context-preserving

fingerprinting method for fast estimating similarity to relieve the loss of context

information. We first represent a text as a nested set based on the notion of multi-level

exchangeability at words, sentences, paragraphs, etc., and propose a Recursive Min-wise

Hashing (RMH) algorithm to fingerprint the obtained nested set for fast comparison. The

empirical studies on three real-world text classification tasks show that our context-

preserving hashing method, as a generalization and improvement of the standard min-

hash scheme, is able to not only significantly outperform min-wise hashing and feature

hashing in accuracy but also maintain the same (even less) computational cost.

7.2 FURTHER STUDY

PHD Thesis, UTS Chapter 7

119

In this thesis, we have studied hashing scheme from the view of large-scale structured

data classification. This study is commonly applied to large-scale data sets. However,

applying hashing algorithms to extremely large scale and streaming problems still poses

challenges: (1) how to find an more effective representation for a high-dimensional large-

scale data, so as to fit in memory, (2) how to better improve the efficiency of hashing

method, including the classification accuracy and time and (3) how to flexibly apply the

new hashing scheme into different structured data. In our future work, we focus on

designing hashing algorithms and approaches that are faster, data efficient and less

demanding in computational resources to achieve scalable algorithms for extremely large

scale and streaming problems.

In addition, two extensions of the proposed context-preserving fingerprinting method

can be considered in the future work: First, we can directly apply the b-bit min-hash

algorithm [12] to our method to improve its efficiency. Second, our method can be

naturally applied to visual features to capture contexts in images.

PHD Thesis, UTS References

120

REFERENCES

1 Indyk, P., and Motwani, R.: ‘Approximate nearest neighbors: towards removing

the curse of dimensionality’, in Editor (Ed.)^(Eds.): ‘Book Approximate nearest

neighbors: towards removing the curse of dimensionality’ (ACM, 1998, edn.), pp.

604-613

2 Weber, R., Schek, H.-J., and Blott, S.: ‘A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces’, in Editor

(Ed.)^(Eds.): ‘Book A quantitative analysis and performance study for similarity-

search methods in high-dimensional spaces’ (1998, edn.), pp. 194-205

3 Gionis, A., Indyk, P., and Motwani, R.: ‘Similarity search in high dimensions via

hashing’, in Editor (Ed.)^(Eds.): ‘Book Similarity search in high dimensions via

hashing’ (1999, edn.), pp. 518-529

4 Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V.S.: ‘Locality-sensitive

hashing scheme based on p-stable distributions’, in Editor (Ed.)^(Eds.): ‘Book

Locality-sensitive hashing scheme based on p-stable distributions’ (ACM, 2004,

edn.), pp. 253-262

5 Joly, A., Frélicot, C., and Buisson, O.: ‘Feature statistical retrieval applied to

content based copy identification’, in Editor (Ed.)^(Eds.): ‘Book Feature

statistical retrieval applied to content based copy identification’ (IEEE, 2004,

edn.), pp. 681-684

6 Shakhnarovich, G.: ‘Learning Task-Specific Similarity’, MASSACHUSETTS

INSTITUTE OF TECHNOLOGY, 2005

PHD Thesis, UTS References

121

7 Shakhnarovich, G., Indyk, P., and Darrell, T.: ‘Nearest-neighbor methods in

learning and vision: theory and practice’ (2006. 2006)

8 Poullot, S., Buisson, O., and Crucianu, M.: ‘Z-grid-based probabilistic retrieval

for scaling up content-based copy detection’, in Editor (Ed.)^(Eds.): ‘Book Z-

grid-based probabilistic retrieval for scaling up content-based copy detection’

(ACM, 2007, edn.), pp. 348-355

9 Broder, A.Z.: ‘On the resemblance and containment of documents’, in Editor

(Ed.)^(Eds.): ‘Book On the resemblance and containment of documents’ (IEEE,

1997, edn.), pp. 21-29

10 Broder, A.Z., Charikar, M., Frieze, A.M., and Mitzenmacher, M.: ‘Min-wise

independent permutations’, Journal of Computer and System Sciences, 2000, 60,

(3), pp. 630-659

11 Chum, O., Philbin, J., and Zisserman, A.: ‘Near Duplicate Image Detection: min-

Hash and tf-idf Weighting’, in Editor (Ed.)^(Eds.): ‘Book Near Duplicate Image

Detection: min-Hash and tf-idf Weighting’ (2008, edn.), pp. 812-815

12 Raginsky, M., and Lazebnik, S.: ‘Locality-Sensitive Binary Codes from Shift-

Invariant Kernels’, 2009

13 Li, P., Konig, A., and Gui, W.: ‘b-Bit minwise hashing for estimating three-way

similarities’, in Editor (Ed.)^(Eds.): ‘Book b-Bit minwise hashing for estimating

three-way similarities’ (2010, edn.), pp. 1387-1395

14 Li, P., and König, C.: ‘b-Bit minwise hashing’, in Editor (Ed.)^(Eds.): ‘Book b-

Bit minwise hashing’ (ACM, 2010, edn.), pp. 671-680

15 Li, P., and König, A.C.: ‘Theory and applications of b-bit minwise hashing’,

Communications of the ACM, 2011, 54, (8), pp. 101-109

PHD Thesis, UTS References

122

16 Li, P., Shrivastava, A., Moore, J.L., and König, A.C.: ‘Hashing algorithms for

large-scale learning’, in Editor (Ed.)^(Eds.): ‘Book Hashing algorithms for large-

scale learning’ (2011, edn.), pp. 2672-2680

17 Li, B., Zhu, X., Chi, L., and Zhang, C.: ‘Nested Subtree Hash Kernels for Large-

Scale Graph Classification over Streams’, in Editor (Ed.)^(Eds.): ‘Book Nested

Subtree Hash Kernels for Large-Scale Graph Classification over Streams’ (IEEE

Computer Society, 2012, edn.), pp. 399-408

18 Chi, L., Li, B., and Zhu, X.: ‘Fast graph stream classification using discriminative

clique hashing’: ‘Advances in Knowledge Discovery and Data Mining’ (Springer,

2013), pp. 225-236

19 Chi, L., Li, B., and Zhu, X.: ‘Context-Preserving Hashing for Fast Text

Classification’, 2014

20 Moran, S., Lavrenko, V., and Osborne, M.: ‘Neighbourhood preserving

quantisation for lsh’, in Editor (Ed.)^(Eds.): ‘Book Neighbourhood preserving

quantisation for lsh’ (ACM, 2013, edn.), pp. 1009-1012

21 Moran, S., Lavrenko, V., and Osborne, M.: ‘Variable Bit Quantisation for LSH’,

in Editor (Ed.)^(Eds.): ‘Book Variable Bit Quantisation for LSH’ (2013, edn.), pp.

753-758

22 Zhang, L., Zhang, Y., Zhang, D., and Tian, Q.: ‘Distribution-Aware Locality

Sensitive Hashing’: ‘Advances in Multimedia Modeling’ (Springer, 2013), pp.

395-406

23 Charikar, M.S.: ‘Similarity estimation techniques from rounding algorithms’, in

Editor (Ed.)^(Eds.): ‘Book Similarity estimation techniques from rounding

algorithms’ (ACM, 2002, edn.), pp. 380-388

PHD Thesis, UTS References

123

24 Kulis, B., and Grauman, K.: ‘Kernelized locality-sensitive hashing for scalable

image search’, in Editor (Ed.)^(Eds.): ‘Book Kernelized locality-sensitive hashing

for scalable image search’ (IEEE, 2009, edn.), pp. 2130-2137

25 Ji, J., Li, J., Yan, S., Zhang, B., and Tian, Q.: ‘Super-bit locality-sensitive

hashing’, in Editor (Ed.)^(Eds.): ‘Book Super-bit locality-sensitive hashing’

(2012, edn.), pp. 108-116

26 D. E. Knuth, Sorting and Searching, 2nd ed., Art of Computer Programming 3,

Addison-Wesley, Reading, MA, 1998.

27 J. L. Carter and M. N. Wegman, Universal classes of hash functions, J. Comput.

System Sci., 18 (1979), pp. 143-154.

28 M. N. Wegman and J. L. Carter, New hash functions and their use in

authentication and set equality, J. Comput. System Sci., 22 (1981), pp. 265-279.

29 A. Siegel, On universal classes of extremely random constant-time hash functions,

SIAM J. Comput., 33 (2004), pp. 505 543.

30 G.R. Hjaltason and H. Samet. Properties of embedding methods for similarity

searching in metric spaces. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25(5):530–549, 2003.

31 J. Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert space.

Israel Journal of Mathematics, 52:46–52, 1985.

32 C. Faloutsos and K.I. Lin. FastMap: A fast algorithm for indexing, data-mining and

visualization of traditional and multimedia datasets. In ACM SIGMOD

International Conference on Management of Data, pages 163–174, 1995.

33 X. Wang, J.T.L. Wang, K.I. Lin, D. Shasha, B.A. Shapiro, and K. Zhang. An index

structure for data mining and clustering. Knowledge and Information Systems,

2(2):161–184, 2000.

PHD Thesis, UTS References

124

34 R.E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated

predictions. Machine Learning, 37(3):297–336, 1999.

35 Jagadish, H.V. Analysis of the Hilbert curve for representing twodimensional space,

Inf. Process. Lett., 1997, 62, (1), pp. 17-22

36 Weiss, Y., Torralba, A., and Fergus, R.: ‘17 Spectral hashing’, in Editor

(Ed.)^(Eds.): ‘Book Spectral hashing’ (2009, edn.), pp. 1753-1760

37 Liu, W., Wang, J., Kumar, S., and Chang, S.-F.: ‘Hashing with graphs’, in Editor

(Ed.)^(Eds.): ‘Book Hashing with graphs’ (2011, edn.), pp. 1-8

38 Salakhutdinov, R., and Hinton, G.: ‘Semantic hashing’, International Journal of

Approximate Reasoning, 2009, 50, (7), pp. 969-978

39 Brandt, J.: ‘Transform coding for fast approximate nearest neighbor search in

high dimensions’, in Editor (Ed.)^(Eds.): ‘Book Transform coding for fast

approximate nearest neighbor search in high dimensions’ (IEEE, 2010, edn.), pp.

1815-1822

40 Zhang, D., Wang, J., Cai, D., and Lu, J.: ‘Laplacian co-hashing of terms and

documents’: ‘Advances in Information Retrieval’ (Springer, 2010), pp. 577-580

41 Zhang, D., Wang, J., Cai, D., and Lu, J.: ‘Self-taught hashing for fast similarity

search’, in Editor (Ed.)^(Eds.): ‘Book Self-taught hashing for fast similarity

search’ (ACM, 2010, edn.), pp. 18-25

42 Gong, Y., and Lazebnik, S.: ‘Iterative quantization: A procrustean approach to

learning binary codes’, in Editor (Ed.)^(Eds.): ‘Book 19 Iterative quantization: A

procrustean approach to learning binary codes’ (IEEE, 2011, edn.), pp. 817-824

43 Joly, A., and Buisson, O.: ‘Random maximum margin hashing’, in Editor

(Ed.)^(Eds.): ‘Book Random maximum margin hashing’ (IEEE, 2011, edn.), pp.

873-880

PHD Thesis, UTS References

125

44 Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., and Yu, N.: ‘Complementary hashing

for approximate nearest neighbor search’, in Editor (Ed.)^(Eds.): ‘Book

Complementary hashing for approximate nearest neighbor search’ (IEEE, 2011,

edn.), pp. 1631-1638

45 Wang, X.-J., Zhang, L., Jing, F., and Ma, W.-Y.: ‘Annosearch: Image auto-

annotation by search’, in Editor (Ed.)^(Eds.): ‘Book Annosearch: Image auto-

annotation by search’ (IEEE, 2006, edn.), pp. 1483-1490

46 He, J., Liu, W., and Chang, S.-F.: ‘Scalable similarity search with optimized

kernel hashing’, in Editor (Ed.)^(Eds.): ‘Book Scalable similarity search with

optimized kernel hashing’ (ACM, 2010, edn.), pp. 1129-1138

47 Liu, X., He, J., Liu, D., and Lang, B.: ‘Compact kernel hashing with multiple

features’, in Editor (Ed.)^(Eds.): ‘Book Compact kernel hashing with multiple

features’ (ACM, 2012, edn.), pp. 881-884

48 Wang, J., Kumar, S., and Chang, S.-F.: ‘Sequential projection learning for

hashing with compact codes’, in Editor (Ed.)^(Eds.): ‘Book Sequential projection

learning for hashing with compact codes’ (2010, edn.), pp. 1127-1134

49 Kang, Y., Kim, S., and Choi, S.: ‘Deep Learning to Hash with Multiple

Representations’, in Editor (Ed.)^(Eds.): ‘Book Deep Learning to Hash with

Multiple Representations’ (2012, edn.), pp. 930-935

50 Xu, Z., Kersting, K., and Bauckhage, C.: ‘Efficient Learning for Hashing

Proportional Data’, in Editor (Ed.)^(Eds.): ‘Book Efficient Learning for Hashing

Proportional Data’ (2012, edn.), pp. 735-744

51 Zhen, Y., and Yeung, D.-Y.: ‘A probabilistic model for multimodal hash function

learning’, in Editor (Ed.)^(Eds.): ‘Book A probabilistic model for multimodal

hash function learning’ (ACM, 2012, edn.), pp. 940-948

PHD Thesis, UTS References

126

52 He, K., Wen, F., and Sun, J.: ‘K-means hashing: an affinity-preserving

quantization method for learning binary compact codes’, in Editor (Ed.)^(Eds.):

‘Book K-means hashing: an affinity-preserving quantization method for learning

binary compact codes’ (IEEE, 2013, edn.), pp. 2938-2945

53 Jegou, H., Douze, M., and Schmid, C.: ‘Product quantization for nearest neighbor

search’, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011,

33, (1), pp. 117-128

54 Gong, Y., Kumar, S., Verma, V., and Lazebnik, S.: ‘Angular quantization-based

binary codes for fast similarity search’, in Editor (Ed.)^(Eds.): ‘Book Angular

quantization-based binary codes for fast similarity search’ (2012, edn.), pp. 1196-

1204

55 Heo, J.-P., Lee, Y., He, J., Chang, S.-F., and Yoon, S.-E.: ‘Spherical hashing’, in

Editor (Ed.)^(Eds.): ‘Book 80 Spherical hashing’ (IEEE, 2012, edn.), pp. 2957-

2964

56 Kong, W., and Li, W.-J.: ‘Isotropic hashing’, in Editor (Ed.)^(Eds.): ‘Book

Isotropic hashing’ (2012, edn.), pp. 1646-1654

57 Kong, W., Li, W.-J., and Guo, M.: ‘Manhattan hashing for large-scale image

retrieval’, in Editor (Ed.)^(Eds.): ‘Book Manhattan hashing for large-scale image

retrieval’ (ACM, 2012, edn.), pp. 45-54

58 Lu, Y., Prabhakar, B., and Bonomi, F.: ‘Perfect hashing for network applications’,

in Editor (Ed.)^(Eds.): ‘Book Perfect hashing for network applications’ (IEEE,

2006, edn.), pp. 2774-2778

59 Kontak, V., Srbljic, S., and Skvorc, D.: ‘Hashing scheme for space-efficient

detection and localization of changes in large data sets’, in Editor (Ed.)^(Eds.):

‘Book Hashing scheme for space-efficient detection and localization of changes

in large data sets’ (IEEE, 2012, edn.), pp. 1496-1501

PHD Thesis, UTS References

127

60 Lin, Y., Jin, R., Cai, D., Yan, S., and Li, X.: ‘Compressed hashing’, in Editor

(Ed.)^(Eds.): ‘Book Compressed hashing’ (IEEE, 2013, edn.), pp. 446-451

61 Rastegari, M., Choi, J., Fakhraei, S., Hal, D., and Davis, L.: ‘Predictable Dual-

View Hashing’, in Editor (Ed.)^(Eds.): ‘Book Predictable Dual-View Hashing’

(2013, edn.), pp. 1328-1336

62 Shen, F., Shen, C., Shi, Q., Van Den Hengel, A., and Tang, Z.: ‘Inductive hashing

on manifolds’, in Editor (Ed.)^(Eds.): ‘Book Inductive hashing on manifolds’

(IEEE, 2013, edn.), pp. 1562-1569

63 Irie, G., Li, Z., Wu, X.-M., and Chang, S.-F.: ‘Locally Linear Hashing for

Extracting Non-Linear Manifolds’, 2014

64 Zhang, L., Zhang, Y., Gu, X., Tang, J., and Tian, Q.: ‘Scalable Similarity Search

with Topology Preserving Hashing’, 2014

65 Wang, J., Kumar, S., and Chang, S.-F.: ‘Semi-supervised hashing for scalable

image retrieval’, in Editor (Ed.)^(Eds.): ‘Book Semi-supervised hashing for

scalable image retrieval’ (IEEE, 2010, edn.), pp. 3424-3431

66 Wang, J., Kumar, S., and Chang, S.-F.: ‘Semi-supervised hashing for large-scale

search’, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2012,

34, (12), pp. 2393-2406

67 Mu, Y., Shen, J., and Yan, S.: ‘Weakly-supervised hashing in kernel space’, in

Editor (Ed.)^(Eds.): ‘Book Weakly-supervised hashing in kernel space’ (IEEE,

2010, edn.), pp. 3344-3351

68 Kim, S., and Choi, S.: ‘Semi-supervised discriminant hashing’, in Editor

(Ed.)^(Eds.): ‘Book Semi-supervised discriminant hashing’ (IEEE, 2011, edn.),

pp. 1122-1127

PHD Thesis, UTS References

128

69 Wu, C., Zhu, J., Cai, D., Chen, C., and Bu, J.: ‘Semi-supervised nonlinear hashing

using bootstrap sequential projection learning’, Knowledge and Data Engineering,

IEEE Transactions on, 2013, 25, (6), pp. 1380-1393

70 Shakhnarovich, G., Viola, P., and Darrell, T.: ‘Fast pose estimation with

parameter-sensitive hashing’, in Editor (Ed.)^(Eds.): ‘Book Fast pose estimation

with parameter-sensitive hashing’ (IEEE, 2003, edn.), pp. 750-757

71 Salakhutdinov, R., and Hinton, G.E.: ‘Learning a nonlinear embedding by

preserving class neighbourhood structure’, in Editor (Ed.)^(Eds.): ‘Book Learning

a nonlinear embedding by preserving class neighbourhood structure’ (2007, edn.),

pp. 412-419

72 Torralba, A., Fergus, R., and Weiss, Y.: ‘Small codes and large image databases

for recognition’, in Editor (Ed.)^(Eds.): ‘Book Small codes and large image

databases for recognition’ (IEEE, 2008, edn.), pp. 1-8

73 Kulis, B., and Darrell, T.: ‘Learning to hash with binary reconstructive

embeddings’, in Editor (Ed.)^(Eds.): ‘Book Learning to hash with binary

reconstructive embeddings’ (2009, edn.), pp. 1042-1050

74 Norouzi, M., and Blei, D.M.: ‘Minimal loss hashing for compact binary codes’, in

Editor (Ed.)^(Eds.): ‘Book Minimal loss hashing for compact binary codes’ (2011,

edn.), pp. 353-360

75 Liu, W., Wang, J., Ji, R., Jiang, Y.-G., and Chang, S.-F.: ‘Supervised hashing

with kernels’, in Editor (Ed.)^(Eds.): ‘Book Supervised hashing with kernels’

(IEEE, 2012, edn.), pp. 2074-2081

76 Strecha, C., Bronstein, A.M., Bronstein, M.M., and Fua, P.: ‘LDAHash: Improved

matching with smaller descriptors’, Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 2012, 34, (1), pp. 66-78

PHD Thesis, UTS References

129

77 Breitinger, F.: ‘Similarity Preserving Hashing’, in Editor (Ed.)^(Eds.): ‘Book

Similarity Preserving Hashing’ (2013, edn.), pp. 17

78 Lin, G., Shen, C., Suter, D., and Hengel, A.v.d.: ‘A general two-step approach to

learning-based hashing’, in Editor (Ed.)^(Eds.): ‘Book A general two-step

approach to learning-based hashing’ (IEEE, 2013, edn.), pp. 2552-2559

79 Masci, J., Bronstein, M., Bronstein, A., and Schmidhuber, J.: ‘Multimodal

similarity-preserving hashing’, 2013

80 Zhang, D., and Li, W.-J.: ‘Large-Scale Supervised Multimodal Hashing with

Semantic Correlation Maximization’, in Editor (Ed.)^(Eds.): ‘Book Large-Scale

Supervised Multimodal Hashing with Semantic Correlation Maximization’ (2014,

edn.), pp.

81 Zhang, P., Zhang, W., Li, W.-J., and Guo, M.: ‘Supervised Hashing with Latent

Factor Models’, in Editor (Ed.)^(Eds.): ‘Book Supervised Hashing with Latent

Factor Models’ (SIGIR, 2014, edn.), pp.

82 Lin, G., Shen, C., Shi, Q., Hengel, A.v.d., and Suter, D.: ‘Fast Supervised

Hashing with Decision Trees for High-Dimensional Data’, arXiv preprint

arXiv:1404.1561, 2014

83 Zhu, X., Huang, Z., Cheng, H., Cui, J., and Shen, H.T.: ‘Sparse hashing for fast

multimedia search’, ACM Transactions on Information Systems (TOIS), 2013, 31,

(2), pp. 9

84 Zhu, X., Huang, Z., Shen, H.T., and Zhao, X.: ‘Linear cross-modal hashing for

efficient multimedia search’, in Editor (Ed.)^(Eds.): ‘Book Linear cross-modal

hashing for efficient multimedia search’ (ACM, 2013, edn.), pp. 143-152

85 Song, J.: ‘Effective Hashing for Searching Large-scale Multimedia Databases’,

2014

PHD Thesis, UTS References

130

86 Xu, Y., Ma, L., Liu, Z., and Chao, H.J.: ‘A multi-dimensional progressive perfect

hashing for high-speed string matching’, in Editor (Ed.)^(Eds.): ‘Book A multi-

dimensional progressive perfect hashing for high-speed string matching’ (IEEE,

2011, edn.), pp. 167-177

87 Aggarwal, C.C., Wang, H.: Managing and Mining Graph Data. Springer, New

York (2010)

88 Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled

graphs. In: ICML. (2003) 321–328

89 Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: ICDM.

(2005) 74–81

90 Mah´e, P., Vert, J.P.: Graph kernels based on tree patterns for molecules.

Machine Learning 75(1) (2009) 3–35

91 Shervashidze, N., Borgwardt, K.: Fast subtree kernels on graphs. In: NIPS.

(2009) 1660–1668

92 Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances

in the data-stream model. SIAM Journal on Computing 38(5) (2008) 1709–1727

93 Aggarwal, C.C., Zhao, Y., Yu, P.S.: On clustering graph streams. In: SDM.

(2010) 478–489

94 Aggarwal, C.C., Li, Y., Yu, P.S., Jin, R.: On dense pattern mining in graph

streams. In: PVLDB. (2010) 975–984

95 Aggarwal, C.C.: On classification of graph streams. In: SDM. (2011) 652–663

96 Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams

using ensemble classifiers. In: KDD. (2003) 226–235

97 Vishwanathan, S., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph

kernels. Journal of Machine Learning Research 11 (2010) 1201–1242

PHD Thesis, UTS References

131

98 Hido, S., Kashima, H.: A linear-time graph kernel. In: ICDM. (2009) 179–188

99 Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: ICDM.

(2002) 721–724

100 Soufiani, H.A., Airoldi, E.: Graphlet decomposition of a weighted network.

Journal of Machine Learning Research – Proceedings Track 22 (2012) 54–63

101 Bron, C., Kerbosch, J.: Algorithm 457: Finding all cliques of an undirected

graph. Communications of the ACM 16(9) (1973) 575–577

102 L. Chen and C. Wang, “Continuous subgraph pattern search over certain and

uncertain graph streams,” IEEE Transactions on Knowledge and Data

Engineering, vol. 22, no. 8, pp. 1093–1109, 2010.

103 S. Pan, X. Zhu, C. Zhang, and P. S. Yu, “Graph stream classification using

labeled and unlabeled graphs,” in ICDE, 2013, pp. 398–409.

104 U. Feige, S. Goldwasser, L. Lov´asz, S. Safra, and M. Szegedy,

“Approximating clique is almost NP-complete (preliminary version),” in Proc.

32th FOCS, 1991, pp. 2–12.

105 A. Tsymbal, “The problem of concept drift: definitions and related work,” The

University of Dublin, Trinity College, Department of Computer Science, Tech.

Rep., 2004.

106 D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for

graph mining,” in SDM, 2004, pp. 442–446.

107 D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss

with binary coins, Journal of Computer and System Sciences, 66(1) (2003), pp.

671–687.

PHD Thesis, UTS References

132

108 A. Andoni and P. Indyk, Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions, Communications of the ACM, 51 (2008), pp.

117–122.

109 C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines,

ACM Trans. on Intelligent Systems and Technology, 2 (2011), pp. 27:1–27:27.

110 G. Cormode and S. Muthukrishnan, An improved data stream summary: the

count-min sketch and its applications, Journal of Algorithm, 55(1) (2005), pp. 5–

75.

111 S. Gollapudi and R. Panigrahy, The power of two min-hashes for similarity

search among heirarchical data objects, PODS, (2008), pp. 211–219.

112 P. Indyk, Stable distributions, pseudorandom generators, embeddings and data

stream computation, Journal of the ACM, 53(3) (2006), pp. 307–323.

113 A. Karatzoglou, A. J. Smola, M. Weimer, Collaborative filtering on a budget,

Journal of Machine Learning Research - Proceedings Track, 9 (2010), pp. 389–

396.

114 A. Rajaraman and J. D, Ullman, Finding similar items, in Mining of Massive

Datasets, Cambridge University Press, New York, 2012.

115 Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan,

Hash kernels for structured data, Journal of Machine Learning Research, 10

(2009), pp. 2615–2637.

116 K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg, Feature

hashing for large scale multitask learning, ICML, (2009), pp. 1113–1120.

	Title Page
	Certificate of Authorship/Originality
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Problem Statement and Solutions
	1.2.1 Problem Statement and Solutions for Graph Structured Data
	1.2.2 Problem Statement and Solutions for Text Structured Data

	1.3 Contributions
	1.4 Thesis structure
	1.5 Publications

	Chapter 2 Preliminary Concepts and Notations
	2.1 Definitions
	2.1.1 Definitions for Graph Structured Data
	2.1.2 Definitions for Text Structured Data

	2.2 Notations

	Chapter 3 Literature Review
	3.1 Hashing
	3.1.1 Hashing Introduction
	3.1.2 Hashing Overview
	3.1.3 Hashing Methods

	3.2 Large-Scale Structured Data Classification based on Hashing
	3.2.1 Graph stream Classification based on Hashing
	3.2.2 Text Classification based on Hashing

	Chapter 4 Discriminative Clique Hashing for Fast Graph Stream Classification
	4.1 Introduction
	4.2 Definitions & Method Framework
	4.2.1 Problem Definition
	4.2.2 Method Framework

	4.3 DICH: DIscriminative Clique Hashing
	4.3.1 Graph Clique Detection
	4.3.2 Graph Clique Hashing
	4.3.3 Clique-based Classifier

	4.4 Experiment
	4.4.1 Effectiveness Evaluation
	4.4.2 Efficiency Evaluation

	4.5 Summary

	Chapter 5 Adaptive hashing for Real-time Graph Stream Classification
	5.1 Introduction
	5.2 Definitions & System Overview
	5.2.1 Problem Definition
	5.2.2 System Overview

	5.3 ARC-GS: Adaptive Real-time Classification for Graph Stream
	5.3.1 Graph Clique Detection
	5.3.2 Differential Graph Clique Hashing
	5.3.3 Clique-based Chunk Classifier
	5.3.4 Weighted Chunk Classifier Ensemble

	5.4 Experiment
	5.4.1 Data Sets
	5.4.2 Effectiveness Evaluation
	5.4.3 Efficiency Evaluation
	5.4.4 Concept Drifts

	5.5 Summary

	Chapter 6 Context-Preserving Hashing for Fast Text Classification
	6.1 Introduction
	6.2 Preliminaries & Baselines
	6.2.1 Preliminaries
	6.2.2 Baselines

	6.3 RMH: Recursive Min-wise Hashing
	6.3.1 Multi-Level Exchangeable Representations
	6.3.2 Recursive Min-wise Hashing
	6.3.3 Time Complexity Analysis

	6.4 Experiment
	6.4.1 Data Sets
	6.4.2 Compared Methods
	6.4.3 Performance Comparison
	6.4.4 Investigation of Min-hash Size

	6.5 Summary

	Chapter 7 Conclusions and Further Study
	7.1 Conclusions
	7.2 Further study

	References

