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 ABSTRACT  

With the rapid development of the information society and the wide applications of 

networks, almost incredibly large numbers bytes of data are generated every day from the 

social networks, business transactions and so on. In such cases, hashing technology, if 

done successfully, would greatly improve the performance of data management. The goal 

of this thesis is to develop hashing methods for large-scale structured data classification. 

First of all, this work focuses on categorizing and reviewing the current progress on 

hashing from a data classification perspective.  

Secondly, new hashing schemes are proposed by considering different data 

characteristics and challenges, respectively. Due to the popularity and importance of 

graph and text data, this research mainly focuses on these two kinds of structured data: 

1) The first method is a fast graph stream classification method using Discriminative 

Clique Hashing (DICH). The main idea is to employ a fast algorithm to decompose a 

compressed graph into a number of cliques to sequentially extract clique-patterns over 

the graph stream as features. Two random hashing schemes are employed to compress 

the original edge set of the graph stream and map the unlimitedly increasing clique-

patterns onto a fixed-size feature space, respectively. DICH essentially speeds up the 

discriminative clique-pattern mining process and solves the unlimited clique-pattern 

expanding problem in graph stream mining; 

2) The second method is an adaptive hashing for real-time graph stream classification 

(ARC-GS) based on DICH. In order to adapt to the concept drifts of the graph stream, we 

partition the whole graph stream into consecutive graph chunks. A differential hashing 

scheme is used to map unlimited increasing features (cliques) onto a fixed-size feature 



x 
 

space. At the final stage, a chunk level weighting mechanism is used to form an ensemble 

classifier for graph stream classification. Experiments demonstrate that our method 

significantly outperforms existing methods; 

3) The last method is a Recursive Min-wise Hashing (RMH) for text structure. In this 

method, this study aims to quickly compute similarities between texts while also 

preserving context information. To take into account semantic hierarchy, this study 

considers a notion of “multi-level exchangeability”, and employs a nested-set to represent 

a multi-level exchangeable object. To fingerprint nested-sets for fast comparison, 

Recursive Min-wise Hashing (RMH) algorithm is proposed at the same computational 

cost of the standard min-wise hashing algorithm. Theoretical study and bound analysis 

confirm that RMH is a highly-concentrated estimator. 

 



PHD Thesis, UTS  Chapter 1 

 

1 
 

CHAPTER 1 INTRODUCTION 

1.1 MOTIVATION 
With the rapid development of information society and the wide applications of 

network, almost incredibly large numbers bytes of data are generated every day from the 

social networks, business transactions, sensors, and entertainment industry and so on. The 

characteristics of these data mainly include large volume, quickly moving, different types 

(such as relation data, semi-structured data (XML), images, texts, videos and graphs). It 

is called as “big data”.  

Nowadays, mining of massive data [114] has become one of the most important 

research trends in the era of big data. The “4V” (volume, velocity, variety and veracity) 

nature of big data subverts the traditional learning paradigm because, in big data 

scenarios, the volume and the dimensionality of instances are usually unpredictable and 

increase rapidly. In such cases, even enumerating complete features to compute a 

similarity has become an intractable problem. For example, in document similarity 

search, the underlying feature space can easily exceed 108 dimensions if 5-shingles (5 

continuous characters) are considered [114]; and the feature space can be much higher if 

a vocabulary of words as features is considered. Thus, it becomes urgent to develop fast 

approximate algorithms to address the storage and computation problems for big data. 

    However, due to the limitation of traditional data analysis tools, it is very difficult to 

store, process and analyse these big data. For the users, they hope to effectively process 

and analyse all available data and get more accurate and timely business intelligence. In 

order to meet the needs of users, attempts can be made to better manipulate and control 

the data. In such cases, the hashing technology can efficiently compress data for better 
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management. Research on hashing has attracted more and more attention since the idea 

of hashing started. Many hashing methods were developed to solve the problems of the 

curse of dimension and finding nearest neighbours. The hashing technology can learn 

binary-code representation for data in the hash code space and preserve the 

neighbourhood structure in the original feature space by mapping similar points in the 

original feature space to nearby binary codes in the hash code space. The compact 

representation in hashing can effectively save storage and achieve fast query in large 

scale data.  

1.2 PROBLEM STATEMENT AND SOLUTIONS 
 The core goal of this research is to develop a set of effective hashing methods for 

large-scale structured data classification. Accordingly, a literature review is first carried 

out to survey existing hashing methods. In order to utilize hashing methods for efficient 

data management and classification, this research will place an emphasis on graph and 

text data, and will propose algorithms for hashing and classifying structured data from 

static sets and dynamic streams. 

1.2.1 PROBLEM STATEMENT AND SOLUTIONS FOR GRAPH 

STRUCTURED DATA 

The emergence of complex networks has led to a surge of research in graph data 

mining [87]. Graph classification is an important graph data mining task that aims to 

learn a discriminative model from training examples to predict class labels of test 

examples, where both training and test examples are graphs. Many real-world 

applications involve graph-represented data, such as chemical compounds, XML 

documents and program flows.  

Fig. 1.1 shows an example of graph classification where two sets of compound graphs: 

“Known Graphs” and “Unknown Graphs”. In the “Known Graphs” are given as training 

examples. In the “Known Graphs” set, there are a graph labelled as “Organic Compound” 

and another graph labelled as “Non-organic Compound”. The task of graph classification 
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is to learn classification models, from the training graphs, in order to effectively predict 

the unknown graphs, by analysing the features or structures in the known graphs. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Graph classification  

The essential challenge for graph classification is to extract features from graphs and 

represent graph data in instance-feature format to support model training. A variety of 

studies on substructure extraction (e.g., walks [88, 89], paths [90], and subtrees [91, 92]) 

for describing graphs have been proposed in the past decade. However, most of them 

only consider the learning problem of graph classification in batch mode (all data are 

available for training), which limits their applicability to large-scale and stream scenarios. 

In fact, dynamic networked data are often presented with increasing volumes and change 

over time in many real-world scenarios. For example, a social network is made up of a 

population of individuals, where the interactions among them keep generating, 

disappearing, and changing over time. A transportation network is a complex network 

made up of numerous interconnected routes, where the traffic flows over them are 

generated dynamically over time. Due to the streaming nature of many real-world 
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complex networks, graph stream classification has recently attracted increasing research 

interest [93-96]. However, the hashing for graph stream classification on a complex 

network with massive nodes is challenging, because 

 How to handle data stream: The volumes of graph data are continuously 

growing, so graph streams can usually be accessed only once. The hashing for 

graph stream classification must be able to tackle dynamically increasing graph 

volumes and generate hashing values with high speed. 

 How to adapt to the changing feature distributions: The marginal distributions 

of subgraph-patterns (features) may continuously change over the graph stream 

(that is, the concept-drift problem [96]). The hashing methods are required to 

effectively deal with the changing feature space. 

    In order to address these challenges, this study proposes a fast graph stream 

classification method using DIscriminative Clique Hashing (DICH) to address the 

aforementioned challenges. The main idea is to decompose a compressed graph into a 

number of cliques (fully connected subgraphs) to sequentially extract clique-patterns over 

the graph stream as features. Two random hashing schemes are employed to compress 

the original edge set of the graph stream and map the unlimitedly increasing clique-

patterns onto a fixed-size feature space, respectively. The hashed cliques are then used to 

update an “in-memory” fixed-size pattern-class table, which will be finally used to 

generate a rule-based classifier.  

    Meanwhile, motivated by the aforementioned challenges and the limitations of the 

existing approaches, in this thesis, there is a further proposal for an adaptive real-time 

classification method for graph stream using stochastic learning, differential hashing 

techniques and a chunk level weighting mechanism to address these problems. The 

detailed solutions for the aforementioned challenges and the limitations are highlighted as 

follows: 

1. This study proposes an approximate method for fast graph feature extraction by 

detecting cliques from the compressed graphs via hashing. The method 
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significantly improves the efficiency of feature extraction and classifier learning 

online to satisfy the real-time  requirement. 

2. This study proposes a graph feature reduction method by mapping unlimitedly 

expanding clique patterns onto a fixed-size compatible feature space via 

differential hashing. This can avoid a pre-scan of graphs to further speed up the 

learning process, satisfying the one-pass requirement and adapting to the 

concept drifting. 

3. This study adopts the stochastic learning strategy to incrementally train a graph 

classifier online, which can satisfy the real-time requirement and achieve 

better classification performance than the majority voting used in [95] [18]. 

Combined with a differential hashing scheme, a chunk level weighting mechanism is 

adopted to form a weighted classifier ensemble for graph stream classification, which can 

effectively adapt to concept drifting and achieve better performance than instance level 

weighting mechanism [103].  

1.2.2 PROBLEM STATEMENT AND SOLUTIONS FOR TEXT 

STRUCTURED DATA 

    There have been a number of approximate algorithms for big data similarity 

computation. Since many high-dimensional data can be represented as bags of words, 

min-wise hashing [10] has been naturally applied to them for fast approximating set 

similarities without scanning and comparing the complete sets. However, all the current 

algorithms are based on the bag-of-words representation for its exchangeability that can 

facilitate random projection and hashing. A limitation of such flat-set representation is 

that context information and semantic hierarchy may be lost. Thus, a more expressive 

bag-of-words representation needs to be explored to relieve this problem. 

    In this thesis, the aim is to fast compute similarities between bag-of-words represented 

objects while also preserving context information inside the objects. The process still 

follows the random algorithm approach to this end. Relational learning and structural 
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patterns are not be considered to capture context information which might be unrealistic 

in big data scenarios. To take into account semantic hierarchy, a notion of multi-level 

exchangeability is considered which can be applied at word-level, sentence-level and 

paragraph-level. Then, a nested-set is employed to represent a multi-level exchangeable 

object, say “nested bag-of-words”. For example, {{a, b, c, d}, {b, d, e}, {e, f, g}} 

represents a paragraph with three sentences, each of which further comprises several 

words. In this example, the top-level exchangeable elements are sentences while the 

bottom-level exchangeable elements are words. In such nested-set representations, 

context information and semantic hierarchy are preserved yet the resulting form is still 

simple for random algorithms. To fast compute a similarity between nested-sets, a 

Recursive Min-wise Hashing (RMH) algorithm is proposed for sketching nested-sets. 

The advantage of RMH is two-fold: 1) it accounts for multiple levels of 

exchangeabilities; 2) it enables a probabilistic comparison of sub-sets instead of hard 

matching.  

1.3 CONTRIBUTIONS 
This thesis focuses on exploring, developing and utilizing hashing scheme to solve 

large-scale structured data classification problems.  

Our contributions to solve these problems are listed below: 

 Surveying the hashing methods: a comprehensive overview of hashing methods 

is given in this thesis, which is the theoretical basis of our thesis for the large-

scale structured data classification. This comprehensive overview not only 

becomes a helpful resource and guidance for further research on hashing methods 

and related research fields, but also provides theoretical guidance for the large-

scale structured data classification. Our contributions are as follows: 

1: Summarize the development history of hashing and provide the theoretical 

background of hashing, which can help us establish a better understanding of the 

hashing methods. 
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2: Review the current hashing methods including data-independent hashing and 

data-dependent hashing methods, which provide a clear framework of current 

popular hashing methods.  

3: Introduce the main applications of hashing, including the objective-oriented 

applications and data domain-oriented applications, which help us understand the 

importance of hashing methods. 

  Exploring the hashing scheme for graph structured data classification: 

Motivated by the aforementioned challenges and the limitations of the existing 

approaches, in-depth research on graph structured data classification is done with 

the guidance of hashing theory. Our contributions are as follows: 

1: Propose a fast graph stream classification method using DIscriminative Clique 

Hashing (DICH) to address the aforementioned challenges.  

2: Propose an approximate method for fast graph feature extraction by detecting 

cliques from the compressed graphs via hashing. The method significantly 

improves the efficiency of feature extraction and classifier learning online to 

satisfy the “real-time” requirement. 

3: Propose a graph feature reduction method by mapping unlimitedly expanding 

clique patterns onto a fixed-size compatible feature space via differential hashing. 

This can avoid a pre-scan of graphs to further speed up the learning process, 

satisfying the “one-pass” requirement and adapting to the concept drifting. 

4: Adopt the stochastic learning strategy to incrementally train a graph classifier 

online, which can satisfy the “real-time” requirement and achieve better 

classification performance than the majority voting used in [95] [18]. 

5: Combined with the differential hashing scheme, a chunk level weighting 

mechanism is adopted to form a weighted classifier ensemble for graph stream 

classification, which can effectively adapt to concept drifting and achieve better 

performance than an instance level weighting mechanism [103]. 
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 Exploring the hashing scheme for text structured data classification: To fast 

compute a similarity for text data, a Recursive Min-wise Hashing (RMH) 

algorithm is proposed for sketching nested-sets. By virtue of RMH, two multi-

level exchangeable objects can be compared with the same computational cost of 

the standard min-wise hashing algorithm while preserving context information as 

a plus. A theoretical bound to RMH is also provided to show it is a highly-

concentrated estimator. Our contributions are as follows: 

1:  Account for multiple levels of exchangeabilities; 

2:  Enable a probabilistic comparison of sub-sets instead of hard matching. 

1.4 THESIS STRUCTURE 
The framework of the whole thesis is as follow: 
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The content of each chapter in this thesis is summarized as follows: 

Chapter 2: This chapter provides preliminary concepts and definitions for the 

proposed models. It also summarizes major notations in the thesis. 

Chapter 3: This chapter is a literature review that surveys existing works on hashing 

scheme from a data classification perspective. It summarizes major approaches in the 

field, along with their technical strengths/weaknesses, followed by a simple discussion 

about emerging hashing applications and challenges therein. 

Chapter 4: This chapter presents a discriminative clique hashing for fast graph stream 

classification (DICH). It provides algorithm details, theoretical processes, and 

comparative experiments to valid its superiority to state-of-art methods. 

Chapter 5: This chapter describes an adaptive hashing for real-time graph stream 

classification (ARC-GS) in detail. It explains the motivations and the principles of graph 

stream classification, provides the theoretical basis and interpretations for the proposed 

work, and shows comparative experimental results with baseline methods and benchmark 

data sets. 

Chapter 6: This chapter introduces a context-preserving hashing for fast text 

classification (RMH). It explains the motivations and the principles of fast text 

classification, provides the theoretical basis, interpretations and time complexity for the 

proposed work. Details for the analysis of the comparisons results of experiments 

performed is also presented in this chapter. 

Chapter 7: This chapter concludes this thesis and outlines the direction for future 

work. 
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CHAPTER 2 PRELIMINARY CONCEPTS 
AND NOTATIONS  

2.1 DEFINITIONS 

2.1.1 DEFINITIONS FOR GRAPH STRUCTURED DATA 

    Suppose there exists a complex network which comprises a massive universe of nodes. 

Edges connecting these nodes are denoted by an edge set . The stream of graphs 

 are presented sequentially as the subsets of  (all are connected 

graphs), where the subscript  denotes the receiving order of the graph in the stream. An 

example of such graph streams is a coauthor network. All the papers (graphs of 

connected authors) on the coauthor network with different time-stamps form a graph 

stream. 

    Definition 1. Connected Graph: A graph is represented as  where 

  is the set of vertices,  is the set of edges, and  is the label1 set of 

the vertices and edges. A connected graph is a graph in which there exists a path between 

any pair of vertices. 

Definition 2. Graph Stream: A graph stream  is a 

sequence of graphs which arrive one after another in a stream fashion. 

                                                           
1 Note that the labels of nodes and edges are different notations from the class labels of graphs. 
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Definition 3. Clique: A clique  in a graph  is a subgraph 

that satisfies   and any pair of vertices in  are connected by an edge (i.e., a 

complete graph).  

Clique is widely used as a fundamental unit for structural analysis and knowledge 

discovery in graphs. Although finding maximum clique is NP-complete [104], many 

algorithms for finding cliques have been developed in exponential time and even 

polynomial time for certain type of graphs. Because graphs do not have features available 

for representation, in this thesis, we propose to use cliques as features to represent graphs. 

While many methods exist to represent graphs by using frequent subgraph patterns or 

using whole graphs (e.g., graph kernels). Cliques have the following two major 

advantages for graph representation:  

(1) For dynamic graph streams, frequent subgraph patterns are rapidly changing, 

which makes the feature space exponentially grows and drastically changes. As a result, a 

classifier built from historical graphs might not be used to accurately represent and 

classify future graphs because they have different subgraph feature space. In comparison, 

cliques are basic graph structures remaining relatively stable for graph streams. By using 

cliques as features to represent graphs, historical and future graphs can be ensured to 

have shared common feature space for learning;  

(2) Finding cliques is much more efficient than finding frequent subgraph patterns 

(our clique finding details will be elaborated in the next section), so our method can 

rapidly discover graph features for learning. 

(3) Compared to frequent subgraph patterns or a whole graph, clique is a relatively 

small structure unit, which implies that clique might not be sufficiently accurate for graph 

representation (or incur more information loss). Nevertheless, our research will show that 

although graphs are complex in structures, a graph can often be decomposed into a small 

number of structure units. This allows our research to use a relatively large number of 

small cliques to represent a large set of graphs, without resulting in severe information 

loss. 
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Definition 4. Clique Features: Let  denote a set of clique patterns (or 

clique features). For a graph , a vector  is used to represent 

 in the clique-feature space spanned by , where  is the number of clique pattern 

 found in . 

Specifically, the edge set of  is denoted by . Each graph  has 

a class label . Each received graph  is represented in the form 

of . In this chapter, it is assumed that each edge in a graph has a 

numerical weight , where  and  are the indices of the two vertices of the edge (for 

simplicity, edge labels are not considered). 

2.1.2 DEFINITIONS FOR TEXT STRUCTURED DATA 
 

Definition 5. Bag-of-Words: A bag of words is the unordered collection of words in a 

text . 

    It is a simplified representation disregarding the structural information. Due to its 

simplicity, bag-of-words has been accepted as a standard model in information retrieval 

and text mining, especially in massive data scenarios. For text classification, there are 

two commonly used bag-of-words representations: 

     (1) Term Frequency (TF), which counts the occurrence of each word in d and let the 

count be the value of the corresponding feature dimension. The resulting form is a feature 

vector  whose dimensions are spanned by  terms in a predefined vocabulary. It is 

common to use inverse document frequency (IDF) to weight TF for emphasizing 

uncommon terms [114].  

    (2) (Multi-) Set, which views all words in  as a set ; if the same word is allowed to 

appear multiple times, it is a multi-set. This representation is easier than TF since no 

predefined vocabulary (feature space) is required, hence it is more popular in high-

dimensional data scenarios. 
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Definition 6. Min-wise Hashing: The min-hash scheme [10] is an approximate method 

for measuring the similarity of two sets, say  and . 

     hash functions (random permutations)  are applied to the elements in  and 

min  is an min-hash of . An advantageous property of min-hash is that the 

probability of  and  to generate the same min-hash value is exactly the Jaccard 

similarity of  and : 

                                                          (2.1) 

where  is written as a shorthand. In practice, multiple independent 

random permutations are used to generate min-hashes to approach the expected 

probability. The similarity between the two sets based on the  min-hashes is calculated 

by 

                                                                                 (2.2) 

where 1(state) = 1, if state is true; and 1(state) = 0, otherwise. As  

; that is 

                                                                    (2.3) 

Definition 7. Feature Hashing: Feature hashing [116] provides an unbiased and highly-

concentrated estimator of the inner product of high-dimensional feature vectors. It is 

closely related to the random projection [9, 1]. The difference is that the projection 

matrix  only comprises values in , that is., where  is the 

original dimensionality and  is the new,  . A constraint on  is that each column is 

allowed to have only one non-zero entry. The positions of non-zero entries and its signs 

are randomly generated. 

Given a feature vector (that is, TF), the hashed feature vector gives

. The intuition of this operation is to randomly partition the features into groups and 

sum up the signed features in the same group, where the sign is added to eliminate bias (a 

biased version without signs is [115]). 
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 In practice, it is not necessary to explicitly define the projection matrix. Two random 

hash functions can be directly applied to the terms  in d to calculate the 

hashed TF feature vector 

                                                     (2.4) 

where  and  are two random hash functions. Due to 

its implicit projection property, feature hashing is extremely useful in big data scenarios 

where data may have infinite features. It has been adapted to many applications, such as 

multi-task learning [116], collaborative filtering [113], and graph stream classification 

[17]. 

Definition 8. Multi-Level Exchangeable Representations: The multi-level exchangeable   

representation of a text is a nested set  where 

                                                                                       (2.5) 

for .  denotes a set of words as atomic elements and denotes a 

set of the highest-level exchangeable objects (that is, paragraphs). 

2.2 NOTATIONS 
Major notations used in this thesis are summarized in Table 2.1. 

Table 2.1: Notations used in the thesis 

Symbols Explanations 
 

 
 

 
 

 
 

  
 
 

the edge set 
the stream of graphs 
the receiving order in the graph stream 
the edge set of  
the number of edges in  
the class label of  
the receiving form of  
the test graph 
the compressed edge set 
the compressed graph 



PHD Thesis, UTS  Chapter 2 

 

16 
 

 
 
 

 
 
 
 
 
 

 
 

the descending order of a number of weight levels  
the largest edge weights in  
the smallest edge weights in  
the in-memory   pattern-class table 
the indices of hashed clique-patterns 
all the classes of the graphs 
the clique set of  
each clique in  
a random hash function 
an index of  
a threshold parameter of discriminative capability 

 
 

 
 

 
  

 
 

 
 
 

 
 
 

 
 
 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

   
 

 
 

A graph 
the set of vertices 
the set of edges 
the label of set of the vertices and edges 
a clique (complete subgraph) in a graph 

 
a set of clique patterns 
the receiving order of the graph in the stream 
a representation of  in the clique-feature space 
spanned by , where  is the number of clique 
pattern  found in  
the edge set of  
a class label of each graph  
the form of each received graph  
the weight of each edge in  
a subgraph in  
the number of chunk classifiers in an ensemble 
the range of clique hash values 
a ratio value 
the new cliques set 
the old cliques set 
the size of hash space of new cliques  
the size of hash space of old cliques  
each clique in  
each clique in  
the feature matrix, where  columns correspond 
to  graphs and  rows correspond to  hashed 
clique patterns. 
each feature vector in  
the label matrix, where  rows correspond to  
classes 
the weight matrix 
the step size 
a sequential chunks 
a test graph 
the class-label distribution vector of  
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a testing chunk 
 predicted labels for  

 
 

 
 

min  
 

 
 

 
 

 

 

 
 

 
 
 
 

 

 

a text 
a feature vector, where  is the original 
dimensionality 
a set 
a min-hash of  
the projection matrix, where  is the original 
dimensionality and  is the new,  
a random hash function 
a random hash function  
a set of terms (bag-of-words) 
a fingerprint 
a nested set 
 
the number of levels in a nested set 
the number of min-hash functions at each level 
the time complexity of the top-level recursion, 
where  is for the number of reorganized 
sets and  for  min-wise hashing 
procedures on  
 
the time complexity of the bottom-level of 
recursion, where  is for the number 
of the bottom-level sets and  for  min-
wise hashing procedures on . 
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CHAPTER 3                                    
LITERATURE REVIEW 

This chapter presents a discussion of relevant work in connection with this research. 

Section 3.1 reviews the research on hashing. Section 3.2 reviews the research on how 

existing hashing methods classify large-scale structured data. Section 2.3 reviews the 

emerging applications of the research. Our main objective is to (1) summarize and 

categorize hashing methods to provide a big picture for large-scale structured data 

classification; (2) summarize and categorize the large-scale structured data classification 

methods based on hashing; and (3) introduce the wide applications of the aforementioned 

methods. 

3.1 HASHING 

3.1.1 HASHING INTRODUCTION 

    In the application of databases, the “Key” is often used to uniquely identify a record in 

a table. It will be easier and more effective to find a record in the millions of records. 

Currently, with the increase of data volumes and complex data structure, large scale data 

are waiting to be processed. These data may be extremely larger than the available 

memory. In view of this situation, a fundamental research challenge appears: how to 

accurately and efficiently retrieve items from a large data collection. Naturally, less 

information we will try to use to represent these extremely large data. Under this 

requirement, the idea of hashing begins to be proposed. Hashing is the transformation of 

a set of data into shorter fixed-length values or bucket addresses that can represent the 

original data. This transformation can be achieved by a function . With the help of a 
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hash function, the insertion, deletion, and lookup on the data can be done in almost 

constant time. However, some different data will be mapped into the same hashing value.  

The collision will be inevitable if there are more data than hashing values (See in Fig. 

3.1). So the hashing methods firstly need to face two questions: 1) how to design a better 

hash function to minimize the collisions or increase the accuracy on the basis of high 

efficiency? 2) When the collisions occur, how to deal with them? 

 

Figure 3.1: A basic hashing example 

In the Fig 3.1, the black strings represent different names of people; the numbers 

represent the hash values of the grids; the  represents the hash function that maps the 

black string into corresponding number; and the red “Collision” reflects the phenomenon 

that two different strings are mapped into the same grid. From Fig. 3.1, we can also see 

an example that how hashing is used for efficient data access. For the strings “Roger”, 

”Anna”, ”Lucy”, ”John”, ”Jack”, they are mapped by hash function  into a set of 

numeric values, and there are corresponding hashing values for these records. When 

searching the record containing “Lucy”, we just need to rehash this “Lucy”, and this 

directly yields the hashing value “3” to this record, and then we finish searching. It is 

much more efficient than searching through all the records till the matching record is 

found.  

Currently, the hashing methods mainly include data-independent hashing and data-

dependent hashing. If the hashing function set is defined uniquely and independently 

from the data to be processed, we can classify it as a data-independent hashing method. 

Otherwise, it is classified as a data-dependent hashing method.  Among the data-
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independent hashing methods, one popular hashing method is Locality Sensitive Hashing 

(LSH) [1, 3]. With the help of the simple random projections, two objects within a 

smaller distance will be more likely to have the same hash code. This good property of 

LSH guarantees the collision probability between similar data. Another popular data-

dependent hashing method is Spectral Hashing (SH) [36] which seeks balanced and 

uncorrelated compact binary codes of data-points for approximate nearest neighbour 

(ANN) search.  

Many examples can reflect that the hashing technology can be extremely beneficial 

for text classification [19, 86], image search [11, 24, 72], and multimedia search [83~85].  

In image search, the goal is to develop efficient image search and fast scene matching 

methods with very little memory. However, the actual size of image databases is often 

very large, and it is difficult or even impossible to save all this image information 

together in memory. On the other hand, the direct comparison between any two images is 

time-consuming. If we want to search a certain image in the whole image database, it will 

be extremely time-consuming.  In such cases, it would be beneficial if we can compress 

the size of data and speed up the searching process. The hashing technology can learn 

binary-code representation for data in the hash code space and preserve the 

neighbourhood structure in the original feature space by mapping similar points in the 

original feature space to nearby binary codes in the hash code space. The compact 

representation in hashing can effectively save the storage and achieve fast query in large 

scale data. 

3.1.2 HASHING OVERVIEW 

3.1.2.1 KEY TERMINOLOGIES 

Hashing Function: any function that can be used to map an arbitrary size of data 

to a fixed interval [0, ]. Given a dataset containing  data points , 

and a hashing function , the  can be called 

the hash values, hash codes, hash sums, or simply hashes of data points

. 
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One practical use is a data structure called a hash table, which has been widely used 

for rapid data lookup.  

Hamming Distance: a set of all  binary strings of length :  

The Hamming distance between two equal length binary strings is the number of 

positions for which the bits are different.  

 

 

Nearest Neighbour (NN): Given a set of  data points , 

preprocess  and efficiently find a point in  closest to a query point . 

The Nearest Neighbour Search (NNS) is an optimization problem to find the closest 

or the most similar data points. It can also be called a proximity search, similarity search 

or closest point search. 

Approximate Nearest Neighbour (ANN): Given a set of  data points

, preprocess  and find a point  that is a -approximate nearest 

neighbor of the query point  in that for all , the distance between  

. 

Curse of dimensionality: various phenomena that arise when analyzing and 

organizing data in high-dimensional spaces (such as hundreds or thousands of 

dimensions).  

The curse of dimensionality does not occur in low-dimensional settings such as the 

two or three-dimensional space. The common problem in high-dimensional spaces is that 

when the dimensionality increases, the volume of the space increases very rapidly so that 

the available data becomes sparse.  

3.1.2.2 THE FRAMEWORK FOR CATEGORIZING HASHING 

METHODS 
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We can see the overall classification for hashing methods from Fig. 3.2. According to 

the data dependency, we divide the hashing methods into two big classes: Data-

independent hashing and Data-dependent hashing. In the Data-independent hashing 

methods, the methods that use a randomized process are classified into three kinds of 

classes: Random Hashing, Locality Sensitive Hashing, and Learning for Hashing. The 

methods that use deterministic structuring are classified into two kinds of classes: Tree or 

Space Filling Curves. In the data-dependent hashing methods, the hashing methods are 

classified into three kinds of classes: Unsupervised hashing, Semi-supervised hashing, 

and Supervised Hashing according to the properties of the training data. 

 

Figure 3.2: The Framework for Categorizing Hashing methods: the contents above the 
arrows represent the classification rules; the contents in the dotted box represent different 

classes of hashing methods 

3.1.3 HASHING METHODS 

Based on the projection dependency of hashing methods, we class all hashing 

methods across two main categories: Data-Independent Hashing functions and Data-

Dependent Hashing functions. 
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3.1.3.1 DATA-INDEPENDENT HASHING METHODS 

If the hashing function set is defined uniquely and independently from the data to be 

processed, we can classify it as a data-independent hashing method. The data 

independent hashing functions can be further divided into four classes based on the 

projection modes: Random Projection, Locality sensitive projection, Learning for hashing 

and Structured Projection. For locality sensitive hashing, we divide these hashing 

methods into three classes according to three different similarity metrics: Euclidean 

distance, Lp distance, Mahalanobis distance. The Min-hash is another kind of locality 

sensitive hashing.  In the Structured Projection, the hashing methods mainly use tree and 

space filling curves to do the hashing.  We can use Fig. 3.3 to summarize these data 

independent hashing functions.  

 

Figure 3.3: The classification of data-independent hashing methods: the contents above the 
arrows represent the classification rules; the contents in the dotted box represent different 

classes of hashing methods 

We will first introduce the most simple projection method: Random Projection, and 

then advance to the locality sensitive projection to preserve the locality characteristics of 

the data. Next, we will introduce learning hashing projection and Structured Projection. 

3.1.3.1.1 RANDOM HASHING 
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Random Projection hashing is a general data reduction technique, which randomly 

projects the original high-dimensional data into a lower-dimensional subspace.  For 

example, we set the original data as -dimensional data, and we can get the -

dimensional ( ) subspace after random projection hashing. 

According to the record in Kunth [26], the initial random projection hashing method 

was originated in 1953 by H. P. Luhn. The basic idea is to use a hash function, called a 

random function . In this way, a random value  can be generated in domain 

 (corresponding to the -dimensional data) and associated with each data in the domain 

 (corresponding to the d-dimensional data).  In this random projection, a random 

function requires  bits to represent, which leads to the infeasibility of storing a 

randomly chosen function. With the deepening of the research, some researchers began to 

use fixed functions in the random projection. In [27], the authors proposed a universal 

hashing. The core idea was to choose hashing functions at random from a small family of 

functions, not all functions. This point guaranteed a provable performance and achieved 

feasible and succinct storage of hash functions. For example, the [6] chose the hash 

functions uniformly from some family  of hash functions: 

                                        (3.1) 

The whole family is defined by the parameters  and , and a particular hashing 

function is defined by the parameters  and . 

In this universal hashing, each set of  elements ( : depending on the setting of a 

particular application) in  is uniformly projected to random and independent values, and 

the corresponding family  is -wise independent. In [28], the authors proposed such 

function families where a random function can use  bits of space to store. For a long 

while, the time complexity of all -wise independent families to evaluate a hash function 

was  when the space usage was nontrivial. However, [29] made an important 

breakthrough in time complexity. In [29], the hash families were relatively small and 

highly independent which can be evaluated in constant time on a RAM.  
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However, the main drawback of random projection is high instability. In other words, 

di erent random hash functions may lead to totally di erent hashing values.  On the 

other hand, if two elements have a one bit difference, they will be projected to two 

completely different random values.  We can see that the pure random projection hashing 

cannot achieve good performance. In order to preserve the data characteristics in the 

original feature space, locality sensitive hashing was introduced. 

3.1.3.1.2 LOCALITY SENSITIVE HASHING 
  

The most widely known data-independent method with randomized projection is 

locality sensitive hashing (LSH) [1, 3]. This good property of LSH is that it guarantees 

the collision probability between similar data points. Despite its advantage, LSH still has 

an unavoidable disadvantage and that is the inefficiency of the hash codes. First, the 

random generation of hash functions and independency of data in LSH cannot guarantee 

the efficiency; second, it usually needs long codes in each hash table to guarantee an 

acceptable accuracy, which heavily increases the requirement of storage, especially for 

very large scale applications. So, many recent research works focus on how to generate 

short compact hash codes, and data dependent hashing methods have attracted attention 

recently. 

With the help of the simple random projections, two objects within a smaller distance 

will be more likely to have the same hash code in the LSH. For similarity measures in 

LSH, [4, 6, 23, 24, 25] separately extended it to p-norm distances for  [4], 

Mahalanobis distance [6], angular similarity [23, 25] and kernel similarity [24]. The basic 

idea of LSH is to choose a random hyperplane at the outset and use the hyperplane to 

hash input vectors. The hyperplanes are often used to partition the data points into two 

sets in the original data space or a kernel space, and two different binary codes are 

assigned based on the set each data point is assigned to.  For the hyperplane, in order to 

more optimally allocate a variable number of bits per LSH hyperplane, two papers [20, 

21] successively proposed dubbed Neighbourhood Preserving Quantization (NPQ) [20] 

and dubbed Variable Bit Quantisation (VBQ) [21]. The NPQ assigns multiple bits per 

hyperplane based upon adaptively learned thresholds, and the VBQ provides a data-
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driven non-uniform bit allocation across hyperplanes. Based on the randomized 

projection of LSH, [22] proposed a scheme named Distribution-Aware LSH (DALSH) 

which generated a series of data-adaptive projections to address the problem of a lack of 

adaptation to real data.  

Another LSH-related hashing technique is named Min-Hash. The full name of Min-

Hash is the min-wise independent permutations locality sensitive hashing scheme. It is an 

important hashing technique to estimate the similarity between two sets. Here, we use an 

example to demonstrate the work process of Min-wise hashing in Fig. 3.4: 

 

Figure 3.4: An example of the Min-Hash 

In the last two columns of the tables of Fig 3.4, the “1” or “0” represent that whether 

the corresponding element is in the set ( ) or not, and the and represent two 

different hash functions. We set ={1,2,4,7}, ={3,4,7}, and two independent random 

element permutations =[2,5,7,6,4,3,1] and  =[7,3,1,2,5,4,6].  For , the minimum 

 hash value is 2, and the minimum hash value is 1. For , the minimum hash 



PHD Thesis, UTS  Chapter 3 

 

27 
 

value is 7, and the minimum hash value is 1. Lastly we can get that the similarity 

between :  

This hashing scheme was initially introduced in [9] and firstly used in [10] to detect 

duplicate web pages and eliminate them from search results in the AltaVista search 

engine. It has also been applied in large-scale clustering documents [9], near duplicate 

Image detection [11] and large-scale text classification [19] which proposed a Recursive 

Min-wise Hashing (RMH) to preserve the context information. In order to save storage 

space, [13, 14, 15, 16] developed this min-hash technique to a b-bit Min-wise hashing by 

changing the traditional 64 bits used to store each hashed value in Min-wise hashing 

methods. 

Another few related random projection hashing techniques include Shift Invariant 

Kernel based Hashing (SIKH) [6, 12], Nested Subtree Hashing (NSH) [17] and 

Discriminative Clique Hashing (DICH) [18]. In [6, 12], based on random projections, 

authors introduced a simple distribution-free encoding scheme, which could relate the 

expected Hamming distance between the binary codes of two vectors to the value of a 

shift-invariant kernel between the vectors. Then, as many data mining applications 

involve networked data with dynamically increasing volumes, [17, 18] respectively 

proposed a new hashing scheme to address the problem of large-scale graph classification 

over streams. In [17], the authors proposed the Nested Subtree Hashing (NSH) method to 

recursively project the multi-resolution subtree patterns of different chunks onto a set of 

common low-dimensional feature spaces. In [18], two random hashing schemes were 

employed in Discriminative Clique Hashing (DICH) to speed up the discriminative 

clique-pattern mining process and address the unlimitedly clique-pattern expanding 

problem. 

3.1.3.1.3 LEARNING FOR HASHING 
 

In [7] the researchers proposed an algorithm named BoostMap which is a data-

independent machine learning method for the construction of Euclidean embeddings. It is 

an efficient approximate nearest-neighbour method, and can be applied to arbitrary 
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distance measure, metric or nonmetric. Before introducing this BoostMap, we first 

introduce some basic methods for constructing Euclidean embeddings, such as Lipschitz 

embeddings [30], Bourgain embeddings [30, 31], FastMap [32], and MetricMap [33].   

The basic idea of Lipschitz embeddings is to embed metric spaces into other ones 

with low distortion.  In Lipschitz embeddings, an object  (a space) is transformed 

into an -dimensional vector  such that each element  corresponds to 

the distance of object  to a predefined reference set [30]. The Bourgain embeddings 

are a special type of Lipschitz embeddings.  

The key point of the learning process in BoostMap is to see the embeddings as 

classifiers used to estimate the distance of any three data objects, and to use AdaBoost 

[34] to combine all previous lower-dimensional embeddings into one higher-dimensional 

embeddings for higher accurate similarity rankings. The process is: after identifying a 

large family of  embeddings  based on a reference object or a pair of pivot objects, 

we can see each  embedding  as a continuous output binary classifier and a weak 

classifier [34]. Each weak classifier estimates, for triples  of objects in , if  is 

closer to  or . The BoostMap will use AdaBoost [34] to combine many  

embeddings  into a multidimensional embedding that behaves as a strong classifier that 

has relatively higher accuracy than a weak classifier.  The BoostMap makes full use of 

the advantage of machine learning techniques to assemble a higher-accuracy embedding 

from many one-dimensional embeddings. 

3.1.3.1.4 STRUCTURED PROJECTION 

Although there are many effective hashing methods for low-dimensional spaces, their 

performance may degrade as the number of dimensions increases which is the 

dimensional curse phenomenon. For a similarity search in High-Dimensional Vector 

Spaces (HDVSs), the conventional approach to do similarity searches in HDVSs is to use 

a multidimensional index structure which needs to do a data space partition. 

In the structured projection hashing methods, the data space will be divided along the 

defined or predefined lines regardless of data features, and the lines are defined or 

predefined by the different selected structures. 
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Based on a deterministic structuring, [2, 5, 8] separately proposed data independent 

hashing schemes with structured projection, including tree [2] and space filling curves [5, 

8]. 

In [2], the authors studied the impact of dimensionality on the nearest-neighbour 

similarity-search in high-dimensional vector space (HDVSs), and showed that any 

partitioning scheme and clustering technique must degenerate to a sequential scan 

through all their blocks if the number of dimensions is sufficiently large. In [5, 8], the 

authors both studied the content-based copy identification by space filling curves 

projection. In [5] the authors mainly proposed a novel strategy dedicated to pseudo-

invariant feature retrieval more specifically for content-based copy identification. 

Furthermore, this paper adopted the Hibert curve as the line of projection and directly 

mapped the approximate search range onto a Hilbert space-filling curve in order to 

establish an efficient access to the database. The advantage of the Hilbert curve is that it 

can guarantee that two cells that are neighbours in the index are also neighbours in the 

description space [35]. For the Hilbert curve, the disadvantage is that it will be difficult to 

compute the key in the index starting from the position in description space for high-

dimensional spaces and higher-order partitioning. In order to simplify the computation of 

the keys (cell addresses in the index) and to link it more strongly with a component-wise 

search process, [8] replace the Hilbert curve by the  space-filling curve and 

hierarchically partition the description space into hyper-rectangular cells following the -

curve.  

3.1.3.2 DATA-DEPENDENT HASHING METHODS 

In the data-dependent hashing method, the hashing function family is defined 

uniquely only for a given training dataset and the hash functions usually involve 

similarity comparisons with some features of the training dataset. The objective of these 

methods is to closely fit the data distribution in the feature space in order to achieve a 

better selectivity while preserving locality as much as possible. 

We can use Fig. 3.5 to summarize the data dependent hashing functions: 
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Figure 3.5: The classification for data-dependent hashing methods: the contents above the 
arrows represent the classification rules; the contents in the dotted box represent different 

classes of hashing methods 

3.1.3.2.1 UNSUPERVISED HASHING 

In the unsupervised hashing methods, the pairwise labels are not available. 

Unsupervised hashing methods use just the unlabelled data to generate binary codes for 

the given points and try to preserve the similarity in the original feature space. 

According to the three forms of hashing functions (Eigenfunctions, Linear functions, 

and Non-Linear functions), we divide the unsupervised hashing into three corresponding 

types: Spectral Hashing, Linear Hashing, and Non-Linear Hashing.   

(1) Spectral Hashing: 

The most popular data-dependent unsupervised hashing is Spectral Hashing (SH) 

[36].  The SH discusses the problem of learning a code for semantic hashing [38] which 

designs compact binary codes for a large number of documents so that semantically 

similar documents are mapped to similar codes within a short Hamming distance. In [36], 

the authors defined a hard criterion for a good code that is related to graph partitioning 

and used a spectral relaxation to obtain an eigenvector solution.  

(2) Linear Unsupervised Hashing:  
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Many unsupervised hashing methods use linear functions to do the hashing. There are 

some related learning-based hashing methods [37, 39~45, 48~52].  Most of these hashing 

algorithms focus on exploiting the spectral properties of the data affinity matrix for 

binary coding. Among them, the Anchor Graph Hashing (AGH) [37] is more popular. 

The AGH is a graph-based hashing method which automatically discovers the 

neighbourhood structure inherent in the data to learn appropriate compact codes, and a 

scalable graph-based unsupervised hashing approach which considers the underlying 

manifold structure of the data to search for the semantic nearest neighbour. 

In order to achieve a satisfactory performance, many existing hashing methods use a 

large number of hash tables (long codewords), and the space cost has become a problem.  

Some papers [58, 59, 60] had proposed corresponding methods to address this problem. 

In [58], the authors consider a hardware-friendly scheme for Minimal Perfect Hashing 

(MPH) via counting Bloom filters to reduce the number of memory accesses to just 1 and 

also to be space-efficient. In order to perform cost effective and exact pattern matching, 

the authors in [59] proposed HashMem architecture to combine hashing and memories by 

using hashing to generate a distinct address for each candidate pattern stored in memory. 

The authors in [60] developed a hashing algorithm Compressed Hashing (CH) for high 

dimensional nearest neighbour search by combining the techniques of sparse coding and 

compressed sensing. 

Other important linear unsupervised hashing methods include ANN search algorithm 

Product Quantization (PQ) [53], Angular Quantization-based Binary Coding (AQBC) 

[54] for high-dimensional non-negative data that arises in vision and text applications , 

Spherical Hashing [55] to map more spatially coherent data points into a binary code 

compared to hyperplane-based hashing functions, Isotropic Hashing (IsoHash) [56] 

firstly to learn projection functions which could produce projected dimensions with 

isotropic variances (equal variances), Manhattan hashing (MH) [57] based on Manhattan 

distance to deal with the destruction of the neighbourhood structure in the original feature 

in Hamming distance based hashing, Predictable Dual-View Hashing (PDH) [61] to 

embed proximity of data samples in the original spaces, and Inductive Manifold Hashing 

(IMH) [62] to connect manifold learning methods and hash function learning. Most 
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recently, [63] proposed Locally Linear Hashing (LLH) to preserve the locally linear 

manifold structures of high-dimensional data in a low-dimensional Hamming space. 

Another latest unsupervised hashing method Topology Preserving Hashing (TPH) was 

proposed in [64] to preserve neighbourhood relationships and relative neighbourhood 

proximities.  

(3) Non-Linear Unsupervised Hashing:  

In order to accommodate arbitrary kernel functions, some papers [24, 43, 46, 47] 

proposed unsupervised kernel-based hashing method. In [24], the authors widened the 

accessibility of LSH to generic kernel space and proposed Kernelized LSH (KLSH). The 

main idea of the KLSH is to construct a random hyperplane hash function in kernel space 

based on a central limit theorem. According to the central limit theorem, under very mild 

conditions, the mean of a set of data objects from some underlying distribution will better 

follow Gaussian distribution in the limit as the number of data objects in the set increase. 

In this central limit theorem, an approximate random vector will be computed by using 

data items from the database. Once the random hyperplane hash function is constructed, 

the KLSH computes a small set of candidate approximate nearest neighbors by the 

method of Charikar, sorts them to yield a list of hashed nearest neighbors by the kernel 

function and then uses standard LSH techniques to retrieve nearest neighbors of a query 

to the database in sublinear time. In KLSH, there were no assumptions about the data 

distribution or input which could help KLSH directly suitable for image search and other 

domains. 

3.1.3.2.2 SEMI-SUPERVISED HASHING 

    In semi-supervised hashing, both labeled data and unlabeled data are used to train the 

model. Representative semi-supervised methods include Semi-Supervised Hashing (SSH) 

[65, 66], LAbel-regularized Max-margin Partition (LAMP) algorithm [67], Semi-

Supervised Discriminant Hashing (SSDH) [68], Bootstrap Sequential Projection Learning 

for Semi-supervised Nonlinear Hashing (Bootstrap-NSPLH) [69], and Semi-Supervised 

Topology Preserving Hashing (STPH) [64]. Among these hashing methods, the Semi-

Supervised Hashing (SSH) is most popular.    
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3.1.3.2.3 SUPERVISED HASHING 

In supervised hashing, only labelled data, such as similar or dissimilar data, are used 

to train the model. The goal of supervised hashing is to respect label-based similarity or 

semantic similarity. 

Representative supervised methods include Boosting Similarity Sensitive Coding 

(BoostSSC) [70], Boltzmann machine based hashing (RBMs) [71], Binary 

Reconstructive Embedding (BRE) [73], Minimal Loss Hashing (MLH) [74], Kernel-

based Supervised Hashing (KSH) [75], and Linear Discriminant Analysis based Hashing 

(LDAHash) [76]. Most recently, some new supervised methods was proposed which 

include Similarity Preserving Hashing (SPH) [77], Two-Step Hashing (TSH) [78], 

Multimodal Similarity-Preserving Hashing (MSPH) [79], Semantic Correlation 

Maximization (SCM) [80], Latent Factor Hashing (LFH) [81] and FastHash [82].  

Overall, compared with unsupervised hashing methods, the main advantages of these 

supervised hashing methods are the flexibility and adaptability for real-world 

applications. However, the training efficiency is still a big problem. 

 

3.2 LARGE-SCALE STRUCTURED DATA 

CLASSIFICATION BASED ON HASHING 
 

3.2.1 GRAPH STREAM CLASSIFICATION BASED ON 

HASHING 

The surge of real-world networked data, such as chemical compounds, biological 

data, XML documents, and program flows, has led to the rise of graph mining research 

[87]. Graph classification is an important graph mining task that aims to learn a 

discriminative model from training examples to predict class labels of test examples, 
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where both training and test examples are graphs. The essential challenge for graph 

classification is to extract features from graphs to represent them in feature vectors to 

facilitate classifier training within a generic machine learning framework. A variety of 

studies on substructure extraction (e.g., walks [88, 97], paths [89], subtrees [90, 91, 98], 

and subgraphs [99]) for describing graphs have been proposed in the past decade. 

However, most of them consider the learning problem of graph classification in batch 

mode (where all graph data are available for training), which hinders their applicability to 

large-scale and stream scenarios. 

In fact, dynamic networked data are often presented with increasing volumes and 

change over time in many real-world scenarios. For example, a social network is made up 

of a population of individuals, where the interactions among them keep generating, 

disappearing, and changing over time. A transportation network is a complex network 

made up of numerous interconnected routes, where the traffic flows over them are 

generated dynamically over time. These evolving networked data can be defined as graph 

streams. Graph streams not only inherit the features of static graphs but also possess 

special characteristics such as frequent update and necessary real-time response [102]. To 

solve these emerging problems, graph stream mining has recently attracted increasing 

research interest [92], [93], [94], [95], [17], [18]. 

However, graph stream classification on a complex network with massive nodes is by 

no means an easy problem because of the following challenges: 

 Expanding Feature Space: Graph stream is defined on a massive universe of 

nodes. The continuously received graphs in the stream would lead to an 

increasing number of subgraph patterns. Due to the one-pass  nature of the 

graph stream, we cannot enumerate all the subgraph-patterns in a pre-scan to 

construct the feature space for all the graphs. Thus we need to design a projection 

that can map arbitrary subgraph patterns to a fixed-size compatible feature space 

for all the graphs in the stream. 

 Increasing Graph Volumes: The volume of graph data are continuously growing 

with a high speed. Due to the real-time  requirement of graph stream 
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classification, we cannot employ any existing subgraph detection method which is 

designed for off-line accurate subgraph mining. Thus we need to develop an 

approximate subgraph feature extraction method that is fast enough to tackle fast 

increasing graph volumes. 

In [95], [18], the authors have investigated the graph stream classification problem. 

Both of them employ hashing techniques to sketch the graph stream for saving 

computational cost and controlling the size of the subgraph-pattern set. The most relevant 

work to this topic is [95], which also considers graph stream classification on a complex 

network. It employs a 2-D hashing scheme to construct an “in-memory” summary for the 

sequentially received graphs. The first random-hash scheme is used to reduce the size of 

the edge set. The second min-hash scheme is used to dynamically update a number of 

hash-codes (i.e., corresponding to random sorting samples), which is able to summarize 

the frequent patterns of co-occurrence edges in the graph stream observed thus far. 

Finally, a simple heuristic is used to select a set of most discriminative frequent patterns 

to build a rule-based classifier. Although [95] has exhibited promising performance on 

graph stream classification, it has two inherent limitations: (1) The selected subgraph-

patterns are composed with disconnected edges, which may have less discriminative 

capability than connected subgraph-patterns due to a lack of semantic meaning. (2) The 

computational cost is high because an additional frequent pattern mining procedure is 

required to perform on the summary table which comprises massive transactions. Our 

previous work, DIscriminative Clique Hashing (DICH) [18], has addressed these 

limitations to a certain extent by employing a fast clique detection algorithm from hashed 

graphs. However, DICH adopts a majority voting classifier whose performance could 

degrade as the number of classes becomes large. Another critical shortcoming is that the 

DICH cannot adapt to the concept drifting in graph stream classification. To address the 

problem of the concept drifting, an instance weighting mechanism has been proposed in 

the gSLU [103] to adjust the subgraph feature selection module for emerging concept 

drifting graphs. However, this instance weighting mechanism may be too sensitive to 

better adapt to the concept drifting. 

3.2.2 TEXT CLASSIFICATION BASED ON HASHING 
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There have been a number of approximate algorithms for big data similarity 

computation. Since many high-dimensional data can be represented as bags of words, 

min-wise hashing [10] has been naturally applied to them for fast approximating set 

similarities without scanning and comparing the complete sets. Recently, [114] further 

improves the efficiency of min-wise hashing by storing only the lowest b bits of each 

hashed value. Random projection [112, 107] was proposed to randomly project high-

dimensional data onto low-dimensional spaces. For sketching streaming data, count-min 

sketch [110] was developed to estimate feature occurrences. Recently, feature hashing 

[115, 116] was employed to estimate inner products of high-dimensional feature vectors. 

All these approximate algorithms have been found very effective in certain big data 

problems. 

Massive text mining is the most fundamental and essential technology in the era of 

big data to support various services in almost every field. Massive data mining 

techniques, including learning to hash [36, 73, 37] and approximate algorithms, are 

developed rapidly under this circumstance. This work focuses on approximate 

algorithms, in particular, random hashing techniques, to improve the text similarity 

estimation quality. The classical approach is a family of locality-sensitive hashing (LSH) 

algorithms for approximating nearest neighbours in high dimensions [108, 114], in which 

the most two typical algorithms are min-wise hashing [10] and random projection [112, 

107] aforementioned in Section 1. These LSH algorithms have been extensively applied 

to massive text mining applications as the state-of-the-art techniques. Recently, [15, 16] 

further improves the efficiency of min-wise hashing by storing only the lowest b bits of 

each hashed value. Besides, feature hashing [115, 116] was also proposed to estimate 

inner products of high-dimensional feature vectors. The proposed RMH algorithm for 

context-preserving hashing can be viewed as a generalization of the standard min-wise 

hashing scheme [10] for nested sets. 

Since we will takes into account the semantic hierarchy in this thesis, we also review 

some hashing techniques considering structural information. A 2-D hashing scheme is 

employed in [95] to construct an in-memory  summary of sequentially received 

graphs, where the first random-hash scheme is used to reduce the size of the edge set 
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while the second min-hash scheme is used to summarize the co-occurrence edges in the 

graph stream observed thus far. Recently, [18] proposes to detect clique patterns from a 

compressed network obtained through random edge hashing, and the detected clique 

patterns are further hashed to a fixed-size feature space [116]. The nested subtree hash 

kernel [17] hashes unlimited node labels into a certain amount and the feature space of 

the resulting subtree patterns can be constrained. All these methods are aimed to deal 

with graphs and cannot be applied to sketching nested sets. 

We observe that [111] also proposes a min-hash algorithm for hierarchical data 

objects. However, [111] has two significant differences from the proposed RMH 

algorithm: 1) Its similarity is based on an assumption that each set is a weighted set and 

the weights sum to one; while our similarity is directly derived from the Jaccard 

similarity in the recursive case. 2) It simply views lower-level signatures as an element of 

the current-level set for min-wise hashing, which will totally discard the similarity 

information between lower-level sets; while our RMH algorithm reorganizes lower-level 

min-hashes into a number of sampling-sets for min-wise hashing, which can propagate 

lower-level similarities to higher levels in probability. This method is mathematically 

incompatible to the considered problem in this paper; however we did try it in our 

experiments and its results are only slightly above the random guess. Thus we did not 

include it in the experimental results. 

However, all the aforementioned approximate algorithms are based on the bag-of-

words representation for its exchangeability that can facilitate random projection and 

hashing. A limitation of such flat-set representation is that context information and 

semantic hierarchy may be lost. Thus, a more expressive bag-of-words representation 

needs to be explored to relieve this problem. 
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CHAPTER 4                                                     
DISCRIMINATIVE CLIQUE HASHING 
FOR FAST GRAPH STREAM 
CLASSIFICATION 

4.1 INTRODUCTION 
In this chapter, we propose to classify large-scale graph streams using hashing 

methods.  

The emergence of complex networks has led to a surge of research in graph data 

mining [87]. Graph classification is an important graph data mining task that aims to 

learn a discriminative model from training examples to predict class labels of test 

examples, where both training and test examples are graphs. Many real-world 

applications involve graph-represented data, such as chemical compounds, XML 

documents, and program flows. The essential challenge for graph classification is to 

extract features from graphs and represent graph data in instance-feature format to 

support model training. A variety of studies on substructure extraction (e.g., walks [88, 

89], paths [90], and subtrees [91, 92]) for describing graphs have been proposed in the 

past decade. However, most of them only consider the learning problem of graph 

classification in batch mode (all data are available for training), which limits their 

applicability to large-scale and stream scenarios. 

Due to the streaming nature of many real-world complex networks, such as social 

networks and sensor networks, graph stream classification has recently attracted 
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increasing research interest [93-96]. Graph stream classification is defined on a complex 

network which comprises a massive universe of nodes, where the stream of graphs is 

represented as sets of edges on the underlying network. For example, co-authorships of 

research works continuously form graphs on a coauthor network (e.g., DBLP), dynamic 

communities of interest continuously form graphs on a social network (e.g., Facebook), 

and traffic flows continuously form graphs on a transportation network. Graph stream 

classification on a complex network with massive nodes is challenging, because 

 Subgraph feature generation: Graph stream is defined on a massive universe of 

nodes, enumerating subgraph-patterns from such a large node set as features is 

time consuming and memory intensive. We need fast and inexpensive feature 

generation method for graph stream classification. 

 Increasing stream volumes: The volumes of graph data are continuously 

growing, so graph streams can usually be accessed only once. Graph stream 

classification must be able to tackle dynamically increasing graph volumes and 

generate discriminative model with high speed. 

 Changing feature distributions: The marginal distributions of subgraph-patterns 

(features) may continuously change over the graph stream (i.e., the concept-drift 

problem [96]), a dynamic updating scheme is required to update the 

discriminative model. 

Few studies have investigated the graph stream classification problem. To the best of 

our knowledge, only two works [95, 97] may be applied to the considered problem. Both 

of them employ hashing techniques to sketch the graph stream for saving computational 

cost and controlling the size of the subgraph-pattern set. In [97], the authors proposed a 

hash kernel to project arbitrary graphs onto a compatible feature space for similarity 

computing, but it can only be applied to node-attributed graphs. Recently, Aggarwal [95] 

proposed a 2-D hashing scheme to construct an in-memory  summary for 

sequentially presented graphs and used a simple heuristic to select a set of most 

discriminative frequent patterns to build a rule-based classifier. Although [95] has 

exhibited promising performance on graph stream classification, there are two inherent 
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limitations: (1) The selected subgraph-patterns are composed with disconnected edges, 

which may have less discriminative capability than connected subgraph-patterns due to a 

lack of semantic meaning; (2) The computational cost is high because an additional 

frequent pattern mining procedure is required to perform on the summary table which 

comprises massive transactions. 

In this chapter, we propose a fast graph stream classification method using 

DIscriminative Clique Hashing (DICH) to address the aforementioned challenges. The 

main idea is to decompose a compressed graph into a number of cliques (fully connected 

subgraphs) to sequentially extract clique-patterns over the graph stream as features. Two 

random hashing schemes are employed to compress the original edge set of the graph 

stream and map the unlimitedly increasing clique-patterns onto a fixed-size feature space, 

respectively. The hashed cliques are then used to update an “in-memory” fixed-size 

pattern-class table, which will be finally used to generate a rule-based classifier. Since 

DICH adopts connected subgraphs as features and needs no additional frequent pattern 

mining procedure, it can achieve very fast training speed for graph stream classification. 

The experimental results on two real-world graph stream data sets clearly show that 

DICH outperforms the compared state-of-the-art [95] in both classification accuracy and 

training efficiency. 

The remainder of this chapter is organized as follows. Section 4.2 defines the form of 

problem and introduces the system overview. The DICH algorithm details are presented 

in Section 4.3. A case study by use of the proposed DICH algorithm to show its 

effectiveness is presented in Section 4.4. Finally, the summary is given in Section 4.5. 

4.2 DEFINITIONS & METHOD FRAMEWORK 

4.2.1 PROBLEM DEFINITION 

    Suppose there is a complex network which comprises a massive universe of nodes. 

The dynamically generated edges form a sequence of graphs, and those graphs are 

independent. The edges connecting these nodes are denoted by the edge set . In 
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particular, the edge set of  are denoted by , where  denotes the 

number of edges in . The stream of graphs  are presented 

continuously as subsets of , where the subscript  denotes the receiving order in the 

graph stream. Each graph  has a class label . We assume  is received in 

the form . In this chapter, we assume that each edge has a default weight 

1 for simplicity. The underlying graph stream can only be accessed once and our goal is 

to learn a discriminative model from  at a high efficiency to 

accurately predict the class label of a test graph  in the future graph stream. 

4.2.2 METHOD FRAMEWORK 

The corresponding framework, illustrated in Fig. 4.1, comprises three modules. The 

graphs in the stream are received and processed one by one. The first module is for clique 

detection from each graph in the stream. The incoming edges of  are first randomly 

hashed to a compressed edge set and then we adopt a fast algorithm to decompose the 

compressed graph into a number of cliques (fully connected subgraphs) as the features 

of . Since the number of clique-patterns will unlimitedly increase as new graphs are fed 

in, the underlying feature space will keep expanding accordingly. Thus, in the second 

module, a clique hashing scheme is performed to map the unlimitedly emerged clique-

patterns onto a fixed-size clique-pattern set. In the last module, an in-memory  fixed-

size pattern-class table is updated using the clique-pattern and class label information of 

; and a rule-based classifier is constructed based on the pattern-class table by 

identifying frequent and discriminative clique-patterns associated to each class. To test a 

graph  in the future graph stream,  is processed in the first two modules and the 

obtained hashed clique-patterns are input to the rule-based classifier for class label 

prediction. The detailed approaches to the three modules are described in the following 

section. 
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Figure 4.1: The framework of DICH for graph stream classification 

 

4.3 DICH: DISCRIMINATIVE CLIQUE HASHING  

4.3.1 GRAPH CLIQUE DETECTION 

As introduced in Section 4.2, a graph in the stream is an edge subset of the complex 

network. Since the edge set of the complex network can be extremely large, it may be 

infeasible to detect cliques from such a large network in real time. Thus, it is necessary to 

sketch the graph stream to accelerate the clique detection (feature extraction) process. To 

this end, we first employ a random hashing scheme to compress each graph on the 

large network to a small graph : 

                                                                              (4.1) 

where denotes the desired number of vertices in the compressed graph . The graph 

hashing operation includes two steps: First, we use a random hash function 

                                                                              (4.2) 
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to map the indices of the vertices in  to  as the set of vertices in . Second, 

for each edge in , its weight  is calculated as follows: 

                                                                                         (4.3) 

The above graph compression Eq. (4.1) using random hashing has an obvious 

property: if two graphs  and on the original network have a same subgraph , the 

compressed graphs  and  also have a same subgraph . This property implies that, if 

two original graphs are similar in terms of subgraphs, the compressed graphs are also 

similar. We may have collisions that different subgraph patterns in the original graphs get 

the same subgraph pattern in the compressed graphs. But the probabilities of such cases 

are very low since the collided edges in the compressed graphs are unlikely to form a 

connected graph-recall that we only extract cliques as features which are fully connected 

subgraphs. The leftmost two columns in Fig. 4.2 illustrate this operation. 

 

Figure 4.2: Clique detection in a compressed graph 

After obtaining the compressed graph , we will employ a fast algorithm to detect 

cliques in . We adapt the graphlet basis estimation algorithm used in [100] to this end. 

The first step for clique detection is to threshold the compressed graph  at a number of 

weight levels in descending order , say , where  and 
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 denote the largest and the smallest edge weights in , respectively. We define 

this graph thresholding operation as  

                                                                                          (4.4) 

where  denotes an indicator function, which sets the weight of an edge in  to be 

1, i.e., , if . We use the Bron-Kerbosch algorithm [101] to identify all the 

cliques from  at each threshold. The Bron-Kerbosch is an algorithm for finding 

maximal cliques in an undirected graph. The union set of the cliques found in 

 is represented as the clique set for . This procedure is detailed in 

Algorithm 1. 

Algorithm 1 Graph Clique Detection 

Input: : a graph in the graph stream; : given number of vertices in  

Output: : the clique set detected from  

1: ; 

2: ; 

3: for  

4:       ; 

5:       ; 

6:        

7: end for  

An example of clique detection is illustrated in Fig 4.2. After graph hashing, we 

obtain the compressed graph of  (the 2nd column). Then, four weight thresholds 

 are set to generate three graphs  (the 3rd column). Note that 

 is an empty graph which is not shown. The Bron-Kerbosch algorithm is applied to 

detect a set of cliques from each graph (the 4th column). Finally, the cliques detected at 
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the all weight thresholds are merged to form the clique set  for as its feature 

representation (the 5th column). 

4.3.2 GRAPH CLIQUE HASHING 

As aforementioned, the cliques extracted from each graph are used to represent its 

features. To learn a classifier from the graph stream, it is required to make the features of 

all graphs be in the same feature space. In other words, we should count the occurrences 

of the same set of clique-patterns in all graphs in the stream. Since the number of clique-

patterns will increase as new graphs are continuously fed in, the induced feature space 

will keep expanding accordingly. To address this problem, we adopt a feature hashing 

scheme to randomly map the unlimitedly emerged clique-patterns onto a fixed-size set. In 

particular, we use an in-memory   pattern-class table , which can be 

dynamically updated, to count clique-pattern and class label information from the graph 

stream. In ,  rows correspond to the indices of hashed clique-patterns while  columns 

correspond to all the classes of the graphs. 

Given  in the graph stream, we first use Algorithm 1 to collect the clique set . 

Then, for each clique in , say , we apply a random hash function  to the string of 

ordered edges in  to generate an index . If a clique with class label  

is hashed to an index , we add 1 to the entry , which means clique-pattern 

 has a contribution to class . This fixed-size pattern-class table is continuously 

updated as new cliques are detected over the graph stream. This procedure is detailed in 

Algorithm 2. 

Algorithm 2 Clique Hashing 

Input: : the clique set detected from  

Output: :  pattern-class table  

1: for  

2:       ; 

3:       ; 
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4: end for  

4.3.3 CLIQUE-BASED CLASSIFIER 

Given the “in-memory” pattern-class table , we can construct a rule-based classifier 

by identifying frequent yet discriminative clique-patterns from . To identify frequent 

clique-patterns, we first sum up the counts in each row of  and divide them by the 

number of graphs received thus far. The result for each row indicates the occurrence 

frequency of a set of cliques with the same hash value in the graph stream. Then we sort 

them in a descending order and set a threshold parameter  to select the clique-patterns 

whose frequencies . These selected cliques are frequent clique-patterns which are also 

the candidates for the subsequent discriminative clique-pattern selection. 

Next we can determine whether a frequent clique-pattern is also a discriminative one 

by comparing its occurrence ratios on the  classes (corresponding to the  columns 

in ). For a candidate clique-pattern, the ratio in column  represents the probability that 

the clique-pattern belongs to class . A higher probability on a certain class indicates a 

better discriminative capability. Similarly, we can set a threshold parameter  to select 

the clique-patterns whose maximum ratios . Fig. 4.3 gives a toy example for selecting 

the frequent and discriminative clique-patterns from a pattern-class table . 

 

Figure 4.3: A toy example of frequent and discriminative clique-pattern mining 

     In Fig. 4.3, (a) a pattern-class table with 10 clique-patterns  and 3 

classes . (b) the sums of individual clique-patterns in rows and the 

corresponding occurrence frequencies (i.e., the sums divided by the number of graphs, 
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say 10 here). (c) the selected frequent clique-patterns whose frequencies are larger than 

the frequent pattern threshold . (d) the occurrence ratios of the selected clique-

patterns on the  classes. (e) the selected discriminative clique-patterns whose maximum 

ratios are larger than the discriminative pattern threshold . 

Finally, based on the selected clique-patterns, we can classify a test graph using 

majority voting based on the detected cliques in the test graph. In particular, given a test 

graph , we detect its cliques  using Algorithm 1 and hash its cliques 

 to index its clique-patterns. Each clique corresponding to a 

discriminative clique-pattern will contributes a class label

. The class label of the test graph  is determined by the majority of 

class labels . This procedure is detailed in Algorithm 3. 

Algorithm 3 Graph Classification 

Input: : a test graph 

Output: : the predicted label of  

1:  

2: for  

2:       ; 

3:       ; 

4: end for  

5: ; 

 

4.4 EXPERIMENT 
In this section, we will test the proposed DICH method for graph stream classification 

on two real-world data sets. In particular, we will evaluate the effectiveness and 

efficiency of DICH by comparing it with the 2-D hash compressed stream classifier [95], 
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which is the only state-of-the-art method applicable to graph stream classification. We 

use the following data sets in our experiments. 

 DBLP Data Set2: In this data set, authors are nodes and co-authorship forms 

edges, and a graph is constituted by the co-authors of a paper. There are three 

classes in the data set: 1) Database related conferences, 2) Data mining related 

conferences, and 3) All remaining conferences. Our goal is to classify a test paper 

into one of three classes. The final data set contains over  authors, 

 edges, and  different graphs as the training data. We divide the 

data set into five splits and choose four splits as the training data and the 

remaining split as the test data. 

 IBM Sensor Data Set3: This data set records the information from local traffic 

constituted by each graph on a sensor network. The IP-addresses are nodes and 

local traffic flows are edges. Each graph is associated with a particular intrusion 

type and there are over 300 different intrusion types (classes) in the data set. Our 

goal is to classify a traffic flow pattern into one of intrusion types. Because the 

number of classes is extremely large ( ), we expect the overall accuracy to 

be relatively low. The data set contains more than  graphs. We choose 

90% of the data as the training data and the remaining 10% as the test data. 

4.4.1 EFFECTIVENESS EVALUATION 

     In this experiment, we evaluate the effectiveness of DICH by comparing it with the 2-

D hash compressed stream classifier proposed in [95]. We will investigate the 

classification performance and sensitivity of the two methods by varying 1) the frequent 

pattern threshold , 2) the discriminative pattern threshold , and 3) the size of the 

compressed edge set . 

                                                           
2 http://www.charuaggarwal.net/dblpcl/ 
3 http://www.charuaggarwal.net/sens1/gstream.txt 
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Figure 4.4: Effectiveness evaluation w.r.t.  on the DBLP data set (left) and the IBM sensor 
data set (right),  and  
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Figure 4.5: Effectiveness evaluation w.r.t.  on the DBLP data set (left) and the IBM sensor 
data set (right),  and  
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First, we adjust the frequent pattern threshold4  for performance evaluation and fix 

the other two parameters by setting  and . Fig. 4.4 plots the 

classification accuracy curves ( -axis) w.r.t.  ( -axis) on the two data sets. We can see 

that the classification performance of DICH is much higher than the 2-D hash 

compressed stream classifier on both data sets and in all values of . The performance of 

both classifiers trends to decline as  becomes larger since more graph features will be 

eliminated and such information loss will affect classification performance. By 

comparing the curve slopes of two classifiers, the 2-D hash compressed stream classifier 

is more sensitive to . In the case of , the classification accuracy of the 2-D hash 

compressed stream classifier is much lower. From this experiment, we can validate the 

effectiveness of DICH, which can clearly outperform the 2-D hash compressed stream 

classifier and is more insensitive to the frequent pattern threshold. 

Second, we adjust the discriminative pattern threshold  for performance evaluation 

and fix the other two parameters by setting  and . Fig. 4.5 plots the 

classification accuracy curves ( -axis) w.r.t.  ( -axis) on the two data sets. On the 

DBLP data set, DICH was significantly superior to the 2-D hash compressed classifier in 

classification accuracy. The classification performance of both methods was insensitive 

to , which may be due to the fact that the two classes (Database related conferences and 

Data mining related conferences) in DBLP data are extremely rare, the identified frequent 

patterns have already had relatively high discriminative capability. On the IBM sensor 

data set, although DICH is somewhat more sensitive to  than the 2-D hash compressed 

classifier, it has much higher classification accuracy in all cases. This experiment further 

demonstrates that DICH has higher effectiveness than the 2-D hash compressed classifier 

in terms of the discriminative pattern threshold. 

                                                           
4 In [95], the frequent pattern threshold  is used to screen out subgraph patterns. 
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Figure 4.6: Effectiveness evaluation w.r.t. the edges compression size  on the DBLP data 
set (left) and the IBM sensor data set (right),  and  
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Third, we adjust the size of the compressed edge set  for performance evaluation 

and fix the other two parameters by setting  and . Intuitively, the 

classification performance of both classifiers will increase at the expense of more space. 

Fig. 4.6 plots the classification accuracy curves ( -axis) w.r.t.  ( -axis) on the two 

data sets. We can see that the 2-D hash compressed classifier is very sensitive to , 

especially on the DBLP data set; while DICH is steadier on the DBLP data set but no 

clear performance improvement can be observed as  becomes larger. On the IBM 

sensor data set, the performance of both classifiers is improved as  becomes larger. 

Again, DICH outperforms the 2-D hash compressed classifier in all cases. 

4.4.2 EFFICIENCY EVALUATION 

In this experiment, we evaluate the efficiency of the two compared methods on the 

DBLP data set by adjusting the frequent pattern threshold , the discriminative pattern 

threshold , and the size of the compressed edge set . The settings of these parameters 

are the same as those in the above effectiveness evaluation. All the experiments are 

conducted on a Linux Cluster which comprises 24 nodes with 3.33GHz Intel Xeon CPU 

(64bit). Both DICH and the 2-D hash compressed stream classifiers are implemented 

using R studio. 
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Figure 4.7: Efficiency evaluation (1) w.r.t. ,  and  (left); (2) w.r.t. , 
 and  (right); and (3) w.r.t. , ,  (down), on the 

DBLP data set 
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Fig. 4.7 plots the training time curves of the two compared methods w.r.t. , , and  

on the DBLP data set. We can see that the training time of DICH is significantly less than 

the compressed hash-based classifier in all cases. The computational cost of the 2-D hash 

compressed classifier is much higher because it requires an additional frequent pattern 

mining procedure to perform on the edge co-occurrence table which comprises massive 

transactions. In contrast, DICH employs a fast clique detection algorithm, which can 

directly find cliques (connected subgraphs) from the graph stream as features for 

classifier construction, such that no additional frequent pattern mining procedure is 

required to find connected subgraph patterns. This experiment shows that DICH clearly 

outperforms the 2-D hash compressed classifier in not only classification accuracy but 

also training efficiency. 

4.5 SUMMARY 
This chapter focused on graph structured data and proposes a DIscriminative Clique 

Hashing (DICH) for fast graph stream classification. The main idea is to employ a fast 

algorithm to decompose a compressed graph into a number of cliques to sequentially 

extract clique-patterns over the graph stream as features. Two random hashing schemes 

are employed to speed up the discriminative clique-pattern mining process and address 

the unlimitedly clique-pattern expanding problem. The hashed cliques are used to update 

an “in-memory” fixed-size pattern-class table, which is finally used to construct a rule-

based classifier. We test DICH on two real-world graph stream data sets. Because DICH 

directly extracts cliques (connected subgraphs) from the graph stream as features for 

classifier training, rather than mining unconnected co-occurrence edge sets as that in the 

compared state-of-the-art method [8], DICH can significantly outperform [8] in both 

classification accuracy and learning efficiency. 
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CHAPTER 5                                                            
ADAPTIVE HASHING FOR REAL-TIME 
GRAPH STREAM CLASSIFICATION 

5.1 INTRODUCTION 
In this Chapter, in order to further improve the performance of the graph stream 

classification algorithm based on hashing (DICH) in the Chapter 4 and make the graph 

stream classification algorithm more adaptive in the streaming situation, we do further 

research on the graph stream classification based on hashing in this chapter.  

Graph stream classification on a complex network with massive nodes is by no means 

an easy problem because of the following challenges: 

 Expanding Feature Space: Graph stream is defined on a massive universe of 

nodes. The continuously received graphs in the stream would lead to an 

increasing number of subgraph patterns. Due to the “one-pass” nature of the graph 

stream, we cannot enumerate all the subgraph-patterns in a pre-scan to construct 

the feature space for all the graphs. Thus we need to design a projection that can 

map arbitrary subgraph patterns to a size-fixed compatible feature space for all 

the graphs in the stream. 

 Increasing Graph Volumes: The volume of graph data are continuously growing 

with a high speed. Due to the “real-time” requirement of graph stream 

classification, we cannot employ any existing subgraph detection method which is 

designed for off-line accurate subgraph mining. Thus we need to develop an 
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approximate subgraph feature extraction method that is fast enough to tackle fast 

increasing graph volumes. 

 Concept Drifts: As challenging as the increasing data volumes and expanding 

feature space, however, is the concept drifting in the graph stream, which implies 

that the data distributions and the decisions for classification may continuously 

evolve and change. Accordingly, graph stream classification needs to ensure that 

classification models can quickly discover changes in the stream, and adapt to the 

changes for accurate classification. 

In [95], [18], the authors have investigated the graph stream classification problem. 

Both of them employ hashing techniques to sketch the graph stream for saving 

computational cost and controlling the size of the subgraph-pattern set. Aggarwal [95] 

proposed a 2-D hashing scheme to construct an “in-memory” summary for sequentially 

presented graphs and used a simple heuristic to select a set of most discriminative 

frequent patterns to build a rule-based classifier. Although [95] has exhibited promising 

performance on graph stream classification, it has two inherent limitations: (1) The 

selected subgraph-patterns are composed of disconnected edges, which may have less 

discriminative capability than connected subgraph-patterns due to a lack of semantic 

meaning. (2) The computational cost is high because an additional frequent pattern 

mining procedure is required to perform on the summary table which comprises massive 

transactions. Our previous work, DIscriminative Clique Hashing (DICH) [18], has 

addressed these limitations to a certain extent by employing a fast clique detection 

algorithm from hashed graphs. However, DICH also has two major disadvantage in 

handling graph stream: (1) the hashing space of DICH is fixed, so it cannot adapt to 

changing nodes and structures in the graph streams; (2) the prediction of decision DICH 

is based on simple decision rules, which makes it inefficient in handling concept drift in 

the graph streams. To address the problem of the concept drifting, an instance weighting 

mechanism has been proposed in the gSLU [103] to adjust the subgraph feature selection 

module for emerging concept drifting graphs. However, gSLU is based on a frequent 

subgrpah pattern mining based framework, so it cannot achieve real-time response for 

graph stream classification. In addition, the instance weighting module employed in 
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gSLU is too time consuming for graph streams, because it needs to iteratively tune the 

weight values for each single graph. 

Motivated by the aforementioned challenges and the limitations of the existing 

approaches, in this chapter we propose an adaptive real-time classification method for 

graph stream using stochastic learning, differential hashing techniques and a chunk level 

weighting mechanism to address these problems. In particular, for better adapting to 

concept drifting, the whole graph stream is partitioned into a number of non-overlapping 

graph chunks each containing the same number of graphs. For each chunk, we employ a 

random hashing scheme to compress the original node set of the graph stream for fast 

feature detection. To tackle the concept drifting, a differential hashing scheme is used to 

map unlimitedly increasing features (cliques) onto a size- fixed feature space. The 

distribution of the hashed cliques in each received graph is used as a feature vector for 

stochastic learning of the real-time chunk classifier. Then, a chunk level weighting 

mechanism is used to form an ensemble for graph stream classification. The proposed 

method substantially speeds up the graph feature extraction process, solves the unlimited 

graph feature expanding problem, and effectively adapts to the concept drifting in graph 

stream classification. The contributions of this chapter are highlighted as follows: 

1. We propose an approximate method for fast graph feature extraction by detecting 

cliques from the compressed graphs via hashing. The method significantly 

improves the efficiency of feature extraction and classifier learning online to 

satisfy the “real-time” requirement. 

2. We propose a graph feature reduction method by mapping unlimitedly expanding 

clique patterns onto a fixed-size compatible feature space via differential hashing. 

This can avoid a pre-scan of graphs to further speed up the learning process, 

satisfying the “one-pass” requirement and adapting to the concept drifting. 

3. We adopt the stochastic learning strategy to incrementally train a graph classifier 

online, which can satisfy the “real-time” requirement and achieve better 

classification performance than the majority voting used in [95] [18]. 
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4. Combined with differential hashing scheme, we adopt a chunk level weighting 

mechanism to form a weighted classifier ensemble for graph stream classification, 

which can effectively adapt to the concept drifting and achieve better performance 

than instance level weighting mechanism [103]. 

We conduct extensive experiments on two real-world graph stream data sets and one 

synthetic graph stream data set. The experimental results demonstrate that the proposed 

method can clearly outperform the compared state-of-the-arts [95], [18], [103] in 

classification accuracy, training efficiency and concept drifting. 

The remainder of the chapter is organized as follows. Section 5.2 presents problem 

definition and system overview. The ARC-GS algorithm (Adaptive Real-time 

Classification for Graph Stream) is proposed in Section 5.3. The approach has been tested 

using two real-world graph streams and one synthetic graph stream. The experimental 

evaluations and results are given in Section 5.4. Finally, the summary is given in Section 

5.5. 

5.2 DEFINITIONS & SYSTEM OVERVIEW 

5.2.1 PROBLEM DEFINITION 

Suppose there exists a complex network which comprises a massive universe of 

nodes. The edges connecting these nodes are denoted by the edge set . The stream of 

graphs  are presented sequentially as the subsets of  (all are 

connected graphs), where the subscript  denotes the receiving order of the graph in the 

stream. An example of such graph streams is a coauthor network. All the papers (graphs 

of connected authors) on the coauthor network with different time-stamps form a graph 

stream. 

Specifically, the edge set of  is denoted by . Each graph  

has a class label . We represent each received graph  in the form 

of . In this chapter, we assume that each edge in a graph has a numerical 
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weight , where  and  are the indices of the two vertices of the edge (for simplicity, 

we don’t consider edge labels). 

Our goal is to learn a graph classification model from the graphs 

 observed from the stream thus far, in an efficient way, to 

accurately predict the class label of a test graph  in the future graph 

stream. 

5.2.2 SYSTEM OVERVIEW 

The framework of our method for graph stream classification is shown in Fig. 5.1, 

which includes four modules: graph clique detection, differential graph clique hashing, 

clique-based chunk classifier learning, and weighted chunk classifier ensemble. The 

graphs in the stream are received one by one. Each received graph  is fed into the 

pipeline in each chunk for processing in the following stages: 

 

Figure 5.1: The framework of the proposed adaptive real-time hashing for graph stream 
classification method 

1. Graph Clique Detection. Each received graph  from the stream is first 

compressed into a small graph  using a random hashing scheme. Then we 
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employ a fast algorithm to decompose the compressed graph into a number of 

cliques as the features of . 

2. Differential Graph Clique Hashing. Since the number of clique patterns 

(features) will unlimitedly increase as new graphs are fed in, the underlying 

feature space will keep expanding accordingly. Thus, in this stage, a clique 

hashing scheme is performed to map the unlimitedly emerged clique patterns onto 

a fixed-size clique-pattern set, denoted by . Now all the graphs in 

the stream can be represented in this compatible space, for , we have

. 

3. Clique-based Chunk Classifier Learning. For each chunk, the hashed clique-

pattern representation  of each received graph and its corresponding class label 

 are used to incrementally update the underlying chunk classifier online, using a 

stochastic learning algorithm. 

4. Weighted Chunk Classifier Ensemble. In order to adapt to the concept-drifting in 

graph streams, we propose the weighted chunk classifier ensemble to reduce the 

impact of concept drifting on the classification performance. In this module, 

multiple weighted chunk classifiers are adopted to form an ensemble to predict 

future graph stream. Combined with the differential hashing scheme, we design 

this ensemble to make our method more adaptive. 

To classify a test graph  in the future graph stream,  is processed in the first 

two modules and the obtained hashed clique-pattern representation  is input to the 

ensemble classifier for class label prediction. The detailed approaches used in the four 

modules are introduced as follows. 

5.3 ARC-GS: ADAPTIVE REAL-TIME 

CLASSIFICATION FOR GRAPH STREAM 
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We now discuss technical details on adaptive real-time classification for graph 

stream. 

5.3.1 GRAPH CLIQUE DETECTION 

This section is the same as the Section 4.3.1.  

5.3.2 DIFFERENTIAL GRAPH CLIQUE HASHING  

The cliques extracted from the compressed graph are used to represent the features of 

the corresponding original graph. To learn a graph classifier, it is required to make the 

features of all the graphs to be in the same feature space. Since the number of clique 

patterns (features) will unlimitedly increase as new graphs are fed in over the stream, the 

underlying feature space will keep expanding accordingly. Meanwhile, in a certain period 

of time, there may be some abnormal or entirely different feature information called as 

“concept drifting” [105]. To address these problems, we use the “new clique” and “old 

clique” to distinguish the new cliques from the existing cliques, and adopt differential 

feature hashing to constraint the dimensionality of the feature space. Both the “new and 

old cliques” and “differential feature hashing” can help the algorithm adapt to the 

changes in the streams and reduce the impact of the concept drifting. 

The differential clique hashing scheme is applied on the new and old cliques. The 

differential clique hashing not only help us control the feature space, but also identify the 

abnormal features in good time. We can differentially process them and address the 

concept drifting. Next, we first introduce how to define the “new clique” and “old 

clique”. 

The whole stream is partitioned into a set of sequential chunks. The ultimate goal is 

to constantly train an ensemble classifier to predict the class label of each test graph  

in the future test chunk. An ensemble includes a certain number of weighted chunk 

classifiers. We set the ensemble size as  which represents the number of chunk 

classifiers in an ensemble. When detecting a clique from each graph in current chunk, we 

will check this clique in the previous  chunks. It this clique appears in the previous 
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chunks, we set this clique as an “old clique”, and otherwise we set it as a “new clique”. 

These  chunks will vary according to the current chunk, so the “old” or “new” is a 

relative concept. 

The following differential clique hashing scheme is performed to map the unlimitedly 

emerged clique patterns onto a fixed-size clique-pattern set, denoted by  

(  is the range of clique hash values). In order to distinguish new cliques from old 

cliques in the clique-pattern set, we set a ratio value as . For the new cliques, the hash 

space is ; for the old cliques, the hash space is . The differential clique 

hashing scheme will map the new and old cliques onto corresponding fixed-size clique-

pattern subset. 

Given a graph  received from the graph stream, we first use Algorithm 1 to detect 

its new clique set  and old clique set . Then, for each new clique  in  

and each old clique  in , we differentially apply a random hash function  to 

 and  to generate corresponding index  and 

 as follows 

               (5.5) 

               (5.6) 

where  denotes the string of the ordered node indices of  and  

constraints the range of hash values in ; the  denotes the string 

of the ordered node indices of  and  constraints the range of hash 

values in . We use a vector  to represent a 

graph , where  is the frequency of cliques in  whose indices are  based on the 

clique hash function Eq. (5.5) and Eq. (5.6). This procedure is detailed in Algorithm 2. 

Thus far, all the graphs in the stream can be represented in an -dimensional compatible 

space. 

Algorithm 2 Differential Graph Clique Hashing 
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Input: : the all clique set detected from ; : the new clique set detected from 
; : the old clique set detected from  

Output: : the feature vector of  

1: ; 

2: ; 

3: for  

4:       ; 

5:      if   

6:           

7:     end if 

8: end for 

9: for  

10:      

11:     if   

12:         

13:     end if 

14: end for 

15:  

5.3.3 CLIQUE-BASED CHUNK CLASSIFIER  

In the chunk classifier learning stage, we first construct a feature vector 

 for each received graph  in the graph stream using the method 

introduced above. Then, we will use these continuously obtained feature vectors to learn 

a chunk classifier for each chunk. This procedure has become straightforward now since 

we have converted complex graph structures into the same representations, which can be 

learned using a generic online learning algorithm. 
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Suppose there are  graphs in the entire stream (  may approach infinity). As each 

feature vector  is -dimensional, we assume the entire data set for training is a 

feature matrix , where  columns correspond to  graphs and  rows 

correspond to  hashed clique patterns. We also construct an label matrix  for 

supervised learning, where  rows correspond to  classes; if  belong to the th 

class, ; otherwise . 

As the feature vector  of  actually describes a distribution of the  clique 

patterns, we thus adopt a regularized ridge regression model to fit the label distribution of 

 

               (5.7) 

where  is the weight matrix. We aim to minimize the following objective to 

estimate  

                                       (5.8) 

which is a linear least-squares problem. 

Many methods can be used to solve Eq. (5.8), such as gradient descent and Newton’s 

method. The standard (or “batch”) gradient descent method will perform the following 

iterations 

             (5.9) 

where  is the step size (i.e., learning rate) and 

                               (5.10) 

where  and  are the th columns of  and , differentially. 

However, in our problem setting, these training pairs of graphs are obtained one by 

one in sequence,  for , rather than in batch. We cannot simply use 

the standard gradient descent method to optimize . Thus, we resort to the stochastic 
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(incremental) gradient descent method to solve this problem, which updates  using a 

single example at each iteration, for  

                                                                     (5.11) 

where 

                             (5.12) 

Based on the iteration function (Eq. (5.12)), the linear regression model  is updated 

online at the arrival of each new graph in the stream. In the beginning of the graph 

stream,  can be initialized based on a chunk of cached graphs using the standard 

gradient descend method. Every time after finishing updating  for the last graph in a 

chunk, we use the current  as current chunk classifier. In fact, the real-time update for 

 can be stopped at any time for testing tasks. 

5.3.4 WEIGHTED CHUNK CLASSIFIER ENSEMBLE  

Based on the aforementioned modules, we can get the classifier of each chunk. When 

we predict the label of each graph in the test chunk, we adopt a weighted chunk classifier 

ensemble. 

In our algorithm, we use  to represent sequential chunks, which 

comprise the same number of graphs. The is the most up-to-date chunk. For each 

chunk , we use the  to represent the chunk classifier. We set the ensemble 

size as . For the current testing chunk , we will use the previous  weighted chunk 

classifiers as an ensemble to predict the class label of each graph in current testing chunk 

 separately. The process is as follows: 

1. First, a weight  is assigned to each individual chunk classifier

. 

2. Second, each chunk classifier  is used to predict the class label of a graph, 

and then  predicted labels for the graph in chunk  are generated. 
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3. Third, each of  predicted labels for the graph is assigned the same weight as that 

of each corresponding chunk classifier , 

4. Fourth, we sum up all the weight values of each same label and choose the label 

with the largest weight as the final label of this graph. 

Next, we will introduce how to predict the class label of a graph and assign the 

weight value for the classifier: 

In particular, given a test graph , we first detect its cliques using Algorithm 1, 

and then differentially hash its cliques to construct the clique-pattern feature vector  

using Algorithm 2. At last, we calculate its class-label distribution vector  using 

                                                                             (5.13) 

according to which the class label of  is predicted by 

                                             (5.14) 

where  are the values of the  dimensions of . 

For current testing chunk , according to the hash space ratio  for new and old 

cliques, the weight value  of previous classifiers 

 are . The rule is: the closer to 

the current testing chunk , the larger the weight is. Suppose the corresponding  

predicted labels is , we will sum up all the weight values of the same 

predicted label and choose the predicted label with the largest weight as the final label of 

this graph. 

5.4 EXPERIMENT 
In this section, we will empirically test the proposed classifier ARC-GS standing for 

Adaptive Real-time Classification for Graph Stream on two real-world graph streams and 

one synthetic graph stream. In particular, we will evaluate the effectiveness and 

efficiency of ARC-GS by comparing it with three baselines: 2-D hash compressed stream 
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classifier [95] which is a rule-based classifier using a simple heuristic to select a set of 

most discriminative frequent patterns; gSLU [103] which is a classifier using unique 

measures to discover informative subgraph features with minimum redundancy and use 

an instance weighting mechanism for emerging concept drifting graphs; and our previous 

work DICH [18] which is a majority voting classifier adopting a fast clique detection 

algorithm from hashed graphs. Then, we will compare the impact of the concept drifts on 

classification effectiveness of four classifiers. We aim to evaluate the capability of the 

proposed classifier in handling concept drifting in graph streams, compared with 2-D, 

gSLU and DICH classifiers. We do each set of experiments three times for each data set, 

and all the classification results in our experiments are the average performance over 

these three generated results. The four compared classifiers are implemented in Matlab 

and all the experiments are conducted on a node of Linux Cluster with 2.90GHz Intel 

Xeon CPU. 

5.4.1 DATA SETS 

We use the following graph streams in our experiments. 

 IBM Sensor Data Stream (IBM)5: This data stream records the information 

from local traffic on a sensor network. The IP-addresses are nodes and local 

traffic flows are edges. Each graph is associated with a particular intrusion type 

and there are over 300 different intrusion types (classes) in the data set. Our goal 

is to classify a traffic flow pattern into one of intrusion types. Because the number 

of classes is extremely large ( ), and many of them are rarely observed, we 

select 50 relative dense classes in our experiments for multi-class classification. 

The data set contains  nodes,  edges, which generate a 

stream of  graphs over time. 

 Citation Network Stream (CNS)6: In this Citation Network, each node is a paper 

associated with rich attributes information (e.g., abstract, title, authors, etc.). In 

our experiment, we select 16,000 papers with authors and references attribute 
                                                           
5 http://www.charuaggarwal.net/sens1/gstream.txt 
6 http://arnetminer.org/citation 
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information from two research areas, artificial intelligence (AI) and computer 

vision (CV), to generate a graph stream for binary classification. The edges are 

citations between papers and coauthorships between authors. Our goal is to 

predict which class a test paper in the stream belongs to. The final data stream 

contains  nodes,  edges, and  graphs. 

 GTGraph Stream (GTGraph) 7 : This data stream is a synthetic data set 

generated by the graph generator GTGraph based on R-MAT model [106]. We 

choose default values of parameters suggested by the authors during network 

generation. Our GTGraph network contains  nodes and  

edges, and the edges from the same node are used as a graph for experimental 

evaluation, which generate a stream of  graphs over time. 

All the streams are divided into 25 non-overlapping chunks. For the Citation Network 

Stream (CNS), each of chunk comprises 640 graphs; for the IBM Sensor Data Stream 

(IBM), each of chunk comprises 20000 graphs; for the GTGraph Stream (GTGraph), 

each of chunk comprises 4000 graphs. 

5.4.2 EFFECTIVENESS EVALUATION 

In the following, we evaluate the effectiveness of our ARC-GS classifier by 

comparing it with the 2-D, gSLU and DICH classifiers on the IBM and CNS data sets. 

We investigate the classification accuracy of the four methods in terms of 1) the number 

of features  and 2) the ensemble size . In the ARC-GS classifier, we set the hash ratio 

as 0.2. At the end of this section, we separately investigate the classification accuracy 

of our ARC-GS classifier in terms of hash ratio . 

For the number of features : in the ARC-GS and DICH classifiers, the  represents 

the fixed size of hashed clique-pattern set; in the 2-D classifier, the  represents the 

number of discriminative patterns in the underlying graph with the use of a 2-dimensional 

hashing scheme; in the gSLU classifier, the  represents the number of minimum-

redundancy subgraph features. 
                                                           
7 http://www.cse.psu.edu/ madduri/software/GTgraph/ 
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For the ensemble size : if current testing chunk is , our ARC-GS classifier will 

use the most recent  weighted chunk classifiers  as an ensemble to 

predict graphs in ; the gSLU classifier will built an ensemble of classifier from the 

most recent  chunks to predict graphs in the ; the 2-D and DICH classifiers will 

combine the most recent  chunks  as traning data to train a 

classifier and predict graphs in . 

For the hash ratio : in our ARC-GS classifier, the  represents the proportion to 

allocate the feature spaces for the new cliques and the old cliques. 

Results w.r.t. the number of features : In this experiment, we fix the ensemble 

size  (  for the IBM, and  for the CNS) and adjust the number of features  

for effectiveness evaluation. For the IBM, we investigate the number of features  

in ; for the CNS, we investigate the  in . 

Fig. 5.2 plots the classification accuracy curves ( -axis) w.r.t. the Chunk ID ( -axis) 

in the IBM and CNS Sensor streams by using different numbers of features. The average 

classification accuracy over the entire streams is reported separately in Fig. 5.3. We can 

see that the overall classification performance of the ARC-GS classifier is the best among 

the four compared methods on the two graph streams under different settings of  across 

the whole stream. Especially in the IBM, the accuracy of the ARC-GS classifier is always 

higher than the 2-D, gSLU and DICH classifiers at all chunk IDs. In the CNS, we can see 

that our classification accuracy is more stable than the other classifiers, especially than 

the gSLU as the  increase. The reason is that the stochastic learning strategy adopted in 

our classifier can better satisfy the real-time requirement and achieve better classification. 

This experiment implies that our ARC-GS classifier can achieve significantly improved 

accuracy. 

Fig. 5.3 further validates that our ARC-GS classifier outperforms the 2-D, gSLU and 

DICH classifiers especially in the IBM. Among these classifiers, the effectiveness of the 

2-D classifier is the worst. The reason is that the selected subgraph-patterns with 

disconnected edges may have less discriminative capability than connected subgraph-

patterns in the gSLU, DICH and ARC-GS due to a lack of semantic meaning. For the 
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DICH and gSLU classifiers, the DICH classifier outperforms the gSLU classifier in the 

CNS, otherwise in the IBM. The reason is that the DICH is a majority voting classifier 

whose performance could degrade as the number of classes becomes large, and the IBM 

has more number of classes than the CNS. An interesting observation is that a larger 

number of features can help improve the accuracies of ARC-GS and DICH classifiers in 

both streams. The reason is that a relatively large number of features would have stronger 

discriminative capability to classify the graphs. We also find that the increase rate of 

average accuracy becomes smaller with respect to the increase of the number of features. 

In the IBM, when the number of features reaches 1000, all the four classifiers almost 

have enough discriminative capability to classify graphs, and the lager number of features 

will not significantly help improve the accuracy. For gSLU classifier, in the CNS, when 

the number of features reaches 10000, the average accuracy falls sharply. The reason is 

that those selected features are not beneficial and even misleading the classifier. For the 

2-D classifier, in the IBM and CNS, when the number of features reaches 300 and 5000 

respectively, it already has enough discriminative capability to classify graphs. 

Results w.r.t. the ensemble size : In this experiment, we fix the number of features 

 (  for the IBM and  for the CNS) and adjust the ensemble size  

for effectiveness evaluation. For the IBM, we investigate the ensemble size  in ; 

for the CNS, we investigate the ensemble size  in . 

Fig. 5.4 plots the classification accuracy curves ( -axis) w.r.t. the Chunk ID ( -axis) 

in all these four streams by using different ensemble sizes. The average classification 

accuracy over the entire streams is reported separately in Fig. 5.5. We can see that the 

overall classification performance of the ARC-GS classifier is still the best among the 

four compared classifiers on both two streams under all settings of . This experiment 

further implies that our ARC-GS classifier can significantly improve the classification 

accuracy, compared with the 2-D, gSLU and DICH classifiers. 
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Figure 5.2: Classification accuracy on the IBM (ensemble size K = 4), and the CNS 
(ensemble size K = 6) with different numbers of features M 
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Figure 5.3: Average accuracy on the IBM (left, ensemble size K = 4), and the CNS (right, 
ensemble size K = 6) with different numbers of features M 
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The average performance over the entire IBM and CNS in Fig. 5.5 further 

demonstrates that our ARC-GS classifier always outperform the DICH and gSLU 

classifiers and significantly outperform the 2-D hash compressed stream classifier, 

especially in the IBM Sensor stream. The reason is that a larger number of classes in the 

IBM can more obviously distinguish the performance of the classifiers than in the CNS. 

Hence, the results in the IBM can make the advantages of the ARC-GS more convincing. 

In the two streams especially in the CNS, for the ARC-GS and the DICH classifiers, we 

can find that a larger ensemble size can help improve the average classification accuracy. 

The reason may be that a larger ensemble size will make the ARC-GS and the DICH 

classifiers have more training graphs to generate more discriminative capability to 

classify graphs especially for the initial classification. However, for the 2-D classifier in 

the two streams, the fixed number of features may be insufficient for more training 

graphs to classify graphs, and a larger ensemble size can decrease the average accuracy. 

For the gSLU classifier in the CNS, the average accuracy is unstable under different 

ensemble size. The reason should be that the selected features in the gSLU are not stable 

for the training of new ensemble chunks. 
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Figure 5.4: Classification accuracy on the IBM (number of features M = 1000), and the CNS 
(number of features M = 10000) with different ensemble size K 
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Figure 5.5: Average accuracy on the IBM (left, number of features M = 1000), and the CNS 
(right, number of features M = 10000) with different ensemble size K 

Based on the overall effectiveness evaluation results, we can conclude that the 

proposed ARC-GS classifier can outperform the DICH and gSLU classifiers and 

significantly outperform the 2-D hash compressed stream classifier in classification 

accuracy. 

Results w.r.t. the hash ratio : In this experiment, for only ARC-GS classifier, we 

fix the number of features  (  for the IBM, and  for the CNS) and 

the ensemble size  (  for the IBM,  for the CNS), and adjust the hash ratio  

for effectiveness evaluation. For both IBM and CNS, we investigate the hash Ratio  

in . 
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Figure 5.6: Classification accuracy and average classification accuracy on the IBM (upper 
row, number of features M = 1000 and ensemble size K = 4), and the CNS (bottom row, 

number of features M = 10000 and ensemble size K = 6) with different hash ratio R  
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Fig. 5.6 plots the classification accuracy curves ( -axis) w.r.t. the Chunk ID ( -axis) 

and average classification accuracy over the entire streams under different hash ratios. 

We can see that when the hash ratio  increases to 0.2 or 0.3, the overall classification 

performance of the ARC-GS classifier in the two streams is the best. Then, the 

classification accuracies will slightly decrease as  becomes larger especially in the IBM. 

Overall, the classification performance of the ARC-GS classifier is relatively stable for 

various hash ratios. 

5.4.3 EFFICIENCY EVALUATION 

In the following, we evaluate the efficiency of the four compared methods: the ARC-

GS classifier, the DICH classifier, the gSLU classifier and the 2-D hash compressed 

stream classifier on the IBM and CNS streams. 

Results w.r.t. the number of features : In this experiment, we fix the ensemble 

size  (  for the IBM,  for the CNS) and adjust the number of features  for 

the efficiency evaluation. The experimental settings are the same as those in Fig. 5.7. 
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Figure 5.7: Average time on the IBM (up, ensemble size K = 4), and the CNS (down, 
ensemble size K = 6) with different numbers of features M 

The average system runtime performance over the two streams is reported in Fig. 5.7. 

We see that the average time of both ARC-GS and DICH classifiers are less than the 

gSLU classifier and significantly less than the 2-D classifier. The reason is that an 

additional frequent pattern mining procedure in the 2-D is required to perform on the 

summary table which comprises massive transactions, and subgraph search process itself 

in the gSLU is slower than the clique search process in both ARC-GS and DICH 

classifiers. As the number of features increases, the average time of the four classifiers 

also increase accordingly. This is because that the learning process need take more time 

to manage more types of features. In the two streams, the overall average time of the 

ARC-GS classifier is close to the DICH classifier. As the number of features increases, 

the average time of the ARC-GS classifier increases more slowly than the DICH 

especially in the IBM stream. When the  in the IBM and the  in 

the CNS, the average time of the ARC-GS classifier is less than DICH classifier. We can 
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get that our ARC-GS classifier have better efficiency than the DICH classifier as the 

number of features increases. The reason is that the incremental stochastic learning 

strategy in the ARC-GS avoids the majority voting process that reduces the classification 

efficiency. 

 

 

Figure 5.8: Average time on the IBM (up, number of features M = 1000), and the CNS 
(down, number of features M = 10000) with different ensemble size K 
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Results w.r.t. the ensemble size : In this experiment, we fix the number of features 

 (  for the IBM and  for the IBM) and adjust the ensemble size  

for the efficiency evaluation. The experimental settings are the same as those in Fig. 5.8. 

Fig. 5.8 reports the average system runtime performance of the four classifiers over 

the two streams. Compared to the 2-D classifier, the ARC-GS, DICH and gSLU 

classifiers require significantly less time. We can see that the average time of the four 

classifiers increases as the ensemble size increases. This is because a larger ensemble size 

would result in more training graphs, which increase the training time accordingly. In the 

two streams, the overall average time of the ARC-GS classifier is close to the DICH 

classifier. As the ensemble size increases, the average time of the ARC-GS classifier 

increases more slowly than the DICH. Especially in the IBM stream, the overall average 

time of the ARC-GS classifier is always less than the DICH classifier. When the  

in the CNS, the average time of the ARC-GS classifier is less than the DICH classifier. 

As the  increases, the average time of the ARC-GS classifier is much less than the 

DICH classifier. Therefore, our ARC-GS classifier has more stable and better efficiency 

than the DICH classifier as the ensemble size increases. 

Overall, our ARC-GS classifier has the best efficiency among the four compared 

classifiers. 

5.4.4 CONCEPT DRIFTS 

In order to simulate the concept drifting, we consider adding the concept drifting 

chunks in our experimental graph stream. In this experiment, we use the IBM and 

GTGraph streams to compare the impact of the concept drifts on classification 

effectiveness of four classifiers. In the IBM stream, we change the class distribution in 

the concept drifting chunk to simulate the concept drifting. In the GTGraph stream, we 

simulate concept drifts through a parameter used to label the graphs in the stream. 

 The IBM Stream: we select 50 different classes (1~50) of graphs from the whole 

IBM Sensor stream with 250 classes as our experimental data. In our IBM 

experimental stream, there are also total 25 chunks, and each of which comprises 
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20000 graphs. In the chunks 1~14 and chunks 18~25, the graphs are randomly 

selected from the IBM experimental data, and contains 50 classes. After analysing 

the overall class distribution in the chunks 1~14 and chunks 18~25, we insert the 

abrupt concept drift in the chunk 15 by designing a highly different class 

distribution. There are only two classes (5, 15) in the chunk 15, and the 

distribution ratio of these two classes is 1:1 (Class 5: 10000 graphs; Class 15: 

10000 graphs). Then, we gradually changing the concept drift in the chunk 16 and 

chunk 17. In the chunk 16, there are two classes (1, 5), and the distribution ratio 

of these two classes is 1:1; in the chunk 17, there are three classes (1, 5, 15), and 

the distribution ratio of these three classes is 1:1:1. 

 The GTGraph Stream: we create the synthetic GTGraph stream with drifting 

concepts through a parameter used to label the graphs in the stream. In the 

GTGraph network, we divide all nodes into  classes ( -dimensional space) and 

establish a hyperplane in -dimensional space by equation: 

                                                                                                    (5.15) 

In this equation, the  denotes the feature weight, and  denotes the number of 

nodes in the  feature in a graph. The feature weights  are randomly 

initialized by the values in the range of [0, 1]. The  is chose to cut the graphs into two 

parts, that is, . Thus, roughly half of graphs are labeled as positive, and the 

others are labeled as negative. 

If the graph satisfies , we label the graphs as positive; if the graph 

satisfy , we label the graphs as negative. We simulate the concept drifts 

through the parameter . In our examination, we set the  as 10, and insert the abrupt 

concept drift in the chunk 15 (the total number of chunks is 25) by adjusting the value of 

 greatly, and then gradually adjust the value of  to insert the gradual concept drifts in 

the chunk 16~18. 
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We also investigate the impact of the concept drifts on classification effectiveness of 

four classifiers in terms of 1) the number of features  and 2) the ensemble size . In the 

ARC-GS classifier, we set the hash Ratio as 0.2. 

Results w.r.t. the number of features : In this experiment, we fix the ensemble 

size  (  for both IBM and GTGraph) and adjust the number of features  for 

impact evaluation. For the IBM, we investigate the number of features  

in ; for the GTGraph, we investigate the number of features  

in . 
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Figure 5.9: Classification accuracy on the IBM (ensemble size K = 4) and the GTGraph 
(ensemble size K = 4) with different numbers of features M 

Fig. 5.9 plots the classification accuracy curves ( -axis) w.r.t. the Chunk ID ( -axis) 

in the IBM and GTGraph streams by using different numbers of features. We can see that 

there are noticeable concept drifting from chunks 14~19 in the GTGraph and chunks 

14~18 in the IBM (marked by the rectangle boxes). As a result, all four classifiers 

experience performance loss. From chunks 14~15, in the GTGraph and IBM streams, all 

four classifiers experience large performance loss because there is an abrupt concept drift 

in the chunk 15. Then, except gSLU classifier, the performance loss becomes smaller 

because of the next gradual concept drifts. In the gSLU classifier, there exists larger 

performance loss after the concept-drifting chunks. The reason is that the instance 

weighting mechanism may be too sensitive to better adapt to the concept drifting, and the 

training results in the concept-drifting chunks mislead the classification of the following 

chunks. In all classifiers, our ARC-GS classifier receives less loss than the 2-D, gSLU 

and DICH classifiers especially in the IBM. We can see that the overall impact of the 
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concept drifts on the classification performance of the ARC-GS classifier is minimal 

among the four compared classifiers on both two streams. As the number of features 

increases, the impact of the concept drifts on the classification performance of the ARC-

GS classifier becomes less. However, for the DICH and 2-D classifiers, the impact 

almost remains the same. This experiment implies that our ARC-GS classifier can 

effectively handle the concept drifts. 

Results w.r.t. the ensemble size : In this experiment, we fix the number of features 

 (  for the IBM,  for the GTGraph) and adjust the ensemble size  

for impact evaluation of concept drifts. For the IBM and GTGraph, we investigate the 

ensemble size  in . 

Fig. 5.10 plots the classification accuracy curves ( -axis) w.r.t. the Chunk ID ( -

axis) in the IBM and GTGraph streams by using different ensemble sizes. We also can 

observe that there are noticeable concept drifting from chunks 14~19 in the GTGraph and 

chunks 14~18 in the IBM (marked by the rectangle boxes). That is, all four classifiers 

experience performance loss. In all classifiers, we also can see that the overall impact of 

the concept drifts on the classification performance of the ARC-GS classifier is still 

minimal among the four compared classifiers on both two streams. 
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Figure 5.10: Classification accuracy on the IBM (number of features M = 1000) and the 
GTGraph (number of features M = 5000) with different ensemble size K 

5.5 SUMMARY 
This chapter proposes an adaptive real-time classification method for graph stream 

using two hashing schemes, incremental stochastic learning strategy and chunk level 

weighting mechanism to address the “real-time”, “one-pass” and “concept drifting” 

challenges. In particular, we propose an approximate method for fast graph feature 

extraction by detecting cliques from the compressed graphs via hashing, which can 

significantly improve the efficiency of feature extraction to satisfy the “real-time” 

requirement. We also propose a graph feature reduction method by mapping unlimitedly 

expanding clique patterns onto corresponding fixed-size compatible feature spaces via 

differential hashing, which can avoid a pre-scan of graphs to address the “one-pass” and 

“concept drifting” challenges. Thanks to the clique hashing approach, the stream of 

graphs can be converted into feature vectors without additional parsing so that we can 

directly adopt a stochastic learning strategy to train a graph classifier online. Then, a 
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chunk level weighting mechanism is adopted to address “concept drifting” challenge. The 

experimental results on two real-world and one synthetic graph streams demonstrate that 

the proposed method can outperform the state-of-the-art method [9, 11, 12] in both 

classification accuracy and training efficiency; it also has an obvious advantage in 

handling concept drifting. 
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CHAPTER 6                                            
CONTEXT-PRESERVING HASHING 
FOR FAST TEXT CLASSIFICATION 

6.1 INTRODUCTION  
In this chapter, we focus on the other popular and important structured data: text. 

Mining of massive data [114] has become one of the most important research trends 

in the era of big data. The “3V” (volume, velocity and variety) nature of big data subverts 

the traditional learning paradigm because, in big data scenarios, the volume and the 

dimensionality of instances are usually unpredictable and increase rapidly. In such cases, 

even enumerating complete features to compute a similarity has become an intractable 

problem. For example, in document similarity search, the underlying feature space can 

easily exceed 108 dimensions if we consider 5-shingles (5 continuous characters) [114]; 

and the feature space can be much higher if we consider a vocabulary of words as 

features. Thus, it becomes urgent to develop fast approximate algorithms to address the 

storage and computation problems for big data. 

There have been a number of approximate algorithms for big data similarity 

computation. Since many high-dimensional data can be represented as bags of words, 

min-wise hashing [10] has been naturally applied to them for fast approximating set 

similarities without scanning and comparing the complete sets. Recently, [114] further 

improves the efficiency of min-wise hashing by storing only the lowest b bits of each 

hashed value. Random projection [112, 107] was proposed to randomly project high-

dimensional data onto low-dimensional spaces. For sketching streaming data, count-min 
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sketch [110] was developed to estimate feature occurrences. Recently, feature hashing 

[115, 116] was employed to estimate inner products of high-dimensional feature vectors. 

All these approximate algorithms have been found very effective in certain big data 

problems. 

However, all the aforementioned approximate algorithms are based on the bag-of-

words representation for its exchangeability that can facilitate random projection and 

hashing. A limitation of such flat-set representation is that context information and 

semantic hierarchy may be lost. For example, in Fig. 6.1, the second text is an abstract of 

a paper on transfer learning, which first introduces an application background (including 

Web media terms) and states the underlying learning problem next (including machine 

learning terms). If we represent the abstract as a flat set, it will resemble the first text, 

which is a technical blog also comprising Web media and some technical terms, but in 

different context. Thus, a more expressive bag-of-words representation needs to be 

explored to relieve this problem. 

 

Figure 6.1: Motivation examples. The standard min-wise hashing on bags-of-words (flat-
sets) gives sim (1, 2) > sim (2, 3) while our RMH on nested bags-of-words (nested-sets) gives 

sim (2, 3) > sim (1, 2)   

In this chapter, we aim to fast compute similarities between bag-of-words represented 

objects while also preserving context information inside the objects. We still follow the 

random algorithm approach to this end. We don’t consider relational learning or 

structural patterns to capture context information which might be unrealistic in big data 
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scenarios. To take into account semantic hierarchy, we consider a notion of multi-level 

exchangeability which can be applied at word-level, sentence-level, paragraph-level, etc. 

We employ a nested-set to represent a multi-level exchangeable object, say “nested bag-

of-words”. For example, we can let {{a, b, c, d}, {b, d, e}, {e, f, g}}  represent a 

paragraph with three sentences, each of which further comprises several words. In this 

example, the top-level exchangeable elements are sentences while the bottom-level 

exchangeable elements are words. In such nested-set representations, context information 

and semantic hierarchy are preserved yet the resulting form is still simple for random 

algorithms. 

To fast compute a similarity between nested-sets, we propose a Recursive Min-wise 

Hashing (RMH) algorithm for sketching nested-sets. The advantage of RMH is two-fold: 

1) Account for multiple levels of exchangeabilities; 2) Enable a probabilistic comparison 

of sub-sets instead of hard matching. By virtue of RMH, we can compare two multi-level 

exchangeable objects with the same computational cost of the standard min-wise hashing 

algorithm while preserving context information as a plus. We also provide a theoretical 

bound to RMH to show it is a highly-concentrated estimator. We conduct empirical 

studies on three real-world text data sets (DBLP paper abstracts, IMDB movie reviews, 

and Amazon product reviews). The experimental results from three text classification 

tasks show that the proposed context-preserving hashing method can significantly 

outperform both min-wise hashing [10] and feature hashing [116] in accuracy at the same 

(even less) computational cost. 

The remainder of the chapter is organised as follows. The preliminary knowledge and 

baselines are introduced in Section 6.2. The RMH algorithm (Recursive Min-wise 

Hashing) is presented in Section 6.3. A case study is then given in Section 6.4 to test our 

RMH algorithm. Finally, a summary of this chapter is given in Section 6.5. 

6.2 PRELIMINARIES & BASELINES 

6.2.1 PRELIMINARIES 
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 Bag-of-Words: A bag of words is the unordered collection of words in a text . It 

is a simplified representation disregarding the structural information. Due to its 

simplicity, bag-of-words has been accepted as a standard model in information 

retrieval and text mining, especially in massive data scenarios. For text 

classification, there are two commonly used bag-of-words representations: (1) 

Term Frequency (TF), which counts the occurrence of each word in  and let the 

counting be the value of the corresponding feature dimension. The resulting form 

is a feature vector  whose dimensions are spanned by  terms in a 

predefined vocabulary. It is common to use inverse document frequency (IDF) to 

weight TF for emphasizing uncommon terms [114]. (2) (Multi-) Set, which views 

all words in  as a set ; if a same word is allowed to appear multiple times, it is a 

multi-set. This representation is easier than TF since no predefined vocabulary 

(feature space) is required, hence it is more popular in high-dimensional data 

scenarios. 

 Min-wise Hashing: The min-hash scheme [10] is an approximate method for 

measuring the similarity of two sets, say  and .  hash functions (random 

permutations)  are applied to the elements in  and we say min  

is a min-hash of . A nice property of min-hash is that the probability of  and 

 to generate the same min-hash value is exactly the Jaccard similarity of  and 

: 

                                                          (6.1) 

where we write  as a shorthand. In practice, multiple 

independent   random permutations are used to generate min-hashes to approach 

the expected probability. The similarity between the two sets based on the  min-

hashes is calculated by 

                                                                                (6.2) 
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where 1(state) = 1, if state is true; and 1(state) = 0, otherwise. As  

; that is 

                                                                   (6.3) 

The proposed Recursive Min-wise Hashing algorithm in Section 4 can be viewed 

as a generalization of the min-hash scheme [10] for sketching nested sets. 

 Feature Hashing: Feature hashing [116] provides an unbiased and highly-

concentrated estimator of the inner product of high-dimensional feature vectors. It 

is closely related to the random projection [112, 107]. The difference is that the 

projection matrix  only comprises values in , i.e., , where 

 is the original dimensionality and  is the new,  . A constraint on  is 

that each column is allowed to have only one non-zero entry. The positions of 

non-zero entries and its signs are randomly generated. Given a feature vector 

(e.g., TF), the hashed feature vector gives . The intuition of 

this operation is to randomly partition the features into groups and sum up the 

signed features in the same group, where the sign is added to eliminate bias (a 

biased version without signs is [115]). 

In practice, it is not necessary to explicitly define the projection matrix. Two 

random hash functions can be directly applied to the terms  in  to 

calculate the hashed TF feature vector 

                                                     (6.4) 

where  and  are two random hash functions. 

Due to its implicitly projection property, feature hashing is extremely useful in 

big data scenarios where data may have infinite features. It has been adapted to 

many applications, such as multi-task learning [116], collaborative filtering [113], 

and graph stream classification [17].  

6.2.2 BASELINES 
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Three baseline methods based on the above building blocks are listed below as the 

compared methods in the experiment section. 

 TF: Each text is represented as a feature vector  , whose components are 

term frequencies (TF). A linear classifier is applied to . 

 FHTF: This method uses the feature hashing technique [116] introduced above to 

implicitly map  to  . Then a linear classifier is applied to 

. 

 MinHash: This method represents each text as a set of terms (bag-of-words)  

and uses the min-wise hashing scheme [10] introduced above to hash  into a 

fingerprint . A classifier based on Hamming distance is applied to 

. 

6.3 RMH: RECURSIVE MIN-WISE HASHING 
The main components of the RMH are described in detail as follows.  

6.3.1 MULTI-LEVEL EXCHANGEABLE REPRESENTATIONS 

As aforementioned, bag-of-words is widely accepted for representing a text due to its 

simplicity and conciseness. However, a flat enumeration of words might be inappropriate 

because: (1) Context information and semantic hierarchy are lost due to the shuffling of 

words from different parts of a text. (2) Some minor semantic parts of a text may be 

overlooked if the random samples are not sufficient to cover the entire text. 

We propose an alternative way to represent a text using a nested set. A nested set is a 

set that contains non-trivial sets as elements, in contrast to a flat set that only contains 

atomic elements. For example,  is a nested set where the 

top-level set comprises three non-trivial sets corresponding to three sentences; and each 

bottom-level set contains several words as atomic elements. If we represent the same text 

in a flat set, we get  with seven words as atomic elements. Based on 

requirements, the nested-set representation for a text can have multiple levels of 
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exchangeabilities, where the bottom-level sets comprise words, the second-level sets 

comprise sentences, the third-level sets comprise paragraphs and so the fourth. In doing 

so, we can roughly preserve the context information and avoid missing samples in minor 

semantic parts. 

To use a nested set to represent a text, we first need to customize the considered 

exchangeable levels, for example, paragraph-level, sentence-level, and word-level, where 

paragraph is the highest level and word is the lowest level. Then we recursively construct 

the nested set using lower-level set-elements until reaching the words as atomic elements. 

Definition 6.1 (Multi-Level Exchangeable Representations) The multi-level 

exchangeable   representation of a text is a nested set  where 

                                                                                      (6.5) 

for .  denotes a set of words as atomic elements and denotes a 

set of the highest-level exchangeable objects (e.g., paragraphs). 

We take the first example in Fig. 6.1 to illustrate the concept of multi-level 

exchangeable representation: The text is a short segment of a blog, which is partitioned 

into three (incomplete) sentences by “...”. We consider two levels of exchangeabilities, 

word and sentence, to construct a nested set for the text. It is first represented as a set of 

sentences as , each set-element of which is further represented as a 

set of words. The steps of this nested-set construction procedure are listed in Algorithm 1 

(Lines 1–5). The argument in  means that the hash keys are sufficient 

to avoid collisions. The obtained nested set  is fed into the recursive min-wise 

hashing procedure introduced in the next section. 

Algorithm  1 Context-Preserving Fingerprinting 

Input: : a text; :  hash functions (random permutations) at the th 

level, where  is the number of levels in the nested set. 

Output: : the fingerprint of . 



PHD Thesis, UTS  Chapter 6 

 

104 
 

1: for  do 

2:       ; 

3:       ; 

4: end for  

5:  ; 

6:      

6.3.2 RECURSIVE MIN-WISE HASHING 

After obtaining the nested-set representation of a text, the next key step is to design 

an approximate algorithm to sketch the nested set for fast comparison. The nested-set 

sketching algorithm is expected to have the same properties as the min-wise hashing 

algorithm: 1) efficient in both time and space for massive data mining, 2) compact to 

represent an object with enormous features, and 3) locality-preserving such that the 

estimated similarity is consistent with the value computed by direct comparing nested-

sets. 

In the following, we propose a Recursive Min-wise Hashing (RMH) algorithm to 

estimate the similarity between nested sets. In contrast to the hard matching of elements 

in the standard min-hash scheme, a similarity metric that can measure a soft matching of 

set-elements (i.e., non-atomic elements in a nested set) is required. We require “soft 

matching” here since set-elements may have overlaps and we cannot simply view them 

unmatched if only a fraction of its elements (which may also be set-elements) are 

different. The similarity metric is expected to satisfy the following two requirements: 

R.6.1 Set-elements in nested sets can be compared in probability instead of hard 

matching. 

R.6.2 Probabilistic similarities of lower-level sets can be propagated to higher-level 

sets. 
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One possible way to measuring similarity between two nested sets,  and , is to 

first hash each lower-level set as a fingerprint , which has  dimensions. We 

can rewrite Eq. (6.5) as 

                                                                                       (6.6) 

Here we use  because the equation only holds as  Now we have represented 

a nested set as a set of -dimensional fingerprints. Suppose these fingerprints are 

obtained through a min-hash-style algorithm on multiple random permutations, the 

similarity between any pair of fingerprints is the proportion of matched digits between 

 and . If we only consider one permutation sample, is a single digit 

and  becomes a flat set. We can thus estimate the similarity between and 

using the standard min-wise hashing algorithm. However, a good estimator requires a 

higher dimensionality (larger ) to approach the real Jaccard similarity as  For 

, we can consider each dimension of  separately, say , to 

approximately represent as its  sampling-sets and the th sampling-set is 

                                                                                   (6.7) 

Now the fingerprint of , say , can be obtained using min-wise hashing 

and the final fingerprint of  is the concatenation of the  sampling-set fingerprints, 

that is, . This direct concatenation is reasonable since min-hash 

fingerprints are unordered and digit-wise compared. 

The detail of the RMH algorithm is summarized in Algorithm 2.   is 

a recursive procedure: If  has reached the lowest level , a min-hash procedure 

is applied to , whose elements are tokens of words (Line 2). If , each element of 

, say , is input to a nested  procedure which returns the fingerprint of 

 (Line 5). The -dimensional fingerprints are reorganized into L separate sampling-
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sets  (Line 10), each of which is input to a  procedure to obtain its 

fingerprint (Line 11). Finally, the  sampling-set fingerprints are concatenated to form 

the fingerprint of .  

Algorithm  2 Recursive Min-wise Hashing (RMH) 

Input: : a nested set at the th level; :  hash functions (random 

permutations) at the th level. 

Output: : the fingerprint of . 

1: if  then 

2:    ; 

3: else 

4:     for  do 

5:            

6:     end for 

7:      

8:      

9:     for  do 

10:          

11:          

12:   end for  

13:     ; 

14: end if      
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An example of the RMH algorithm is illustrated in Fig. 6.2: The min-wise hashing is 

performed on the three bottom-level sets (elements are terms) and we obtain three 

fingerprints, each of which has 4 min-hashes. We reorganize the three fingerprints into 

four separate sets by combining the th min-hashes from the three fingerprints to form the 

th sampling-set (shown in different colors in Fig 6.2). The min-wise hashing is 

performed on the second-level sets, and the obtained fingerprints are concatenated to 

form the final fingerprint of the input text. 

 

Figure 6.2: An illustration of the proposed Recursive Min-wise Hashing (RMH) algorithm 
on a nested set 

6.3.3 TIME COMPLEXITY ANALYSIS 

We finally analyse the computational complexity of the RMH algorithm. Let  be the 

number of levels in a nested set (i.e., the depth of recursive procedures),  be the number 

of min-hash functions at each level, and  be the number of set-elements in the top-

set. According to Algorithm 2, the time complexity of the top-level recursion is 
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, in which  is for the number of reorganized sets and  for  

min-wise hashing procedures on . The time complexity of the bottom-level of 

recursion is , in which  is for the number of the bottom-

level sets and  for  min-wise hashing procedures on . Now it is easy to see 

that the time complexity for the th level is 

                                                                                      (6.8) 

It is worth noting that the orders of the two parts in Eq. (6.8),  and 

, sum to a constant . 

THEOREM 6.1. Suppose the sizes of all the nested sets in  are smaller than a 

constant , that is , for any nested set at the th level, Eq. (6.8) is upper 

bounded by . Thus, the time complexity of Algorithm 2 over all the 

recursions is at most 

                                                                                                  (6.9) 

In practice, we normally consider two- or three-level nested sets, that is, , 

 and  are in , therefore the overall practical time complexity is  for 

computing a context-preserving fingerprint for a text. 

6.4 EXPERIMENT 
In this section, we empirically test the proposed context-preserving hashing method 

on three real-world text data sets. In particular, we investigate the effectiveness and 

efficiency of our method and the compared methods for text classification. We aim to 

show that the proposed method is able to 1) significantly improve the classification 

accuracy and 2) remain the same (or less) computational cost, compared to the baselines. 

The classification performance of different methods on the derived fingerprints or feature 

vectors is evaluated using LIBSVM [109]. All the results in our experiments are the 

average performance over five random data splits. The four compared methods are 
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implemented in Matlab and all the experiments are conducted on a node of Linux Cluster 

with 2.90GHz Intel Xeon CPU. 

6.4.1 DATA SETS 

We study three text classification tasks based on real-world text data sets: 

 Paper Abstract Classification (DBLP): There are 1,632,442 papers in the 

downloaded raw data package. We consider a binary classification task: Artificial 

Intelligence (AI) vs. Computer Vision (CV). We define the papers in {IJCAI, 

AAAI, NIPS, UAI, COLT, ACL, KR, ICML, ECML, IJCNN} as the AI category 

and {CVPR, ICCV, ECCV, ICIP, ICPR, ACM Multimedia, ICME} as the CV 

category. We extract the abstracts from the resulting 15,195 papers as the data set 

for our text classification task. Review Polarity Classification (IMDB): This is a 

data set for binary sentiment classification with 25,000 highly polar movie 

reviews for training and 25,000 for testing. We samples 20,000 reviews with 

balanced positive and negative samples for our text classification task. 

 Review Polarity Classification (IMDB): This is a data set for binary sentiment 

classification with 25,000 highly polar movie reviews for training and 25,000 for 

testing. We samples 20,000 reviews with balanced positive and negative samples 

for our text classification task. 

 Review Category Classification (Amazon): This data set contains a large number 

of reviews in different product categories. We randomly sample 10,000 examples 

from Books and 10,000 from Music to form a binary review-category 

classification task. 

6.4.2 COMPARED METHODS 

The three baseline methods are introduced in Section 2: (1) Term Frequency (TF): the 

most basic method; (2) Feature Hashing on Term Frequency (FHTF): applying feature 

hashing [116] to TF; (3) Min-wise Hashing (MinHash) [10]: the proposed RMH 

algorithm can be viewed as the generalization of MinHash. (4) Recursive Min-wise 
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Hashing (RMH): the proposed method. We will investigate different configurations of 

RMH, such as RMH (2 levels) and RMH (3 levels), in the experiments. 

6.4.3 PERFORMANCE COMPARISON 

We first investigate the classification performance and CPU time of the compared 

methods (FHTF, MinHash, and two RMH configurations) in terms of the length of output 

fingerprints ( ). TF is based on the real size of its vocabulary so it has only one result. 

We investigate  (i.e.,

) for RMH (2 levels), which considers words and sentences; and 

we investigate  (i.e., ) for 

RMH (3 levels), which considers words, sub-sentences (commas separated), and 

sentences. The length range of the fingerprints for FHTF and the number of the hashed 

dimensions for MinHash is varied in . 
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Figure 6.3: Classification accuracy and CPU time of the compared methods w.r.t. the length 
of output fingerprints 

In Fig. 6.3, we can find that the two RMH methods achieve the best overall 

performance on all the data sets. As expected, RHM (3 levels) performs slightly better 

than RMH (2 levels) due to a more expressive representation for semantic hierarchy. The 

performance gain of RMH over MinHash becomes more significant as the length of the 

fingerprints increases; and all the three min-hash based methods can significantly 

outperform FHTF at all lengths. It is worth noting that, since , RMH starts to 

outperform TF which is based on the full vocabularies; and the performance gain keeps 

increasing afterwards. This experiment indicates that context-preserving hashing is able 
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to acquire extra useful information from texts (because RMH can significantly 

outperform TF while MinHash can only approaches the performance of TF as its 

fingerprint length approaches the size of the vocabulary). 

Fig. 6.3 also plots the CPU time comparison. TF has a computational cost two orders 

of magnitude larger than the other methods since it is based on the full vocabularies. 

FHTF is slightly faster than the three min-hash based methods because of a different 

hashing scheme. The two RMH methods consume slightly less CPU time than MinHash 

does; RMH (2 levels) is slightly faster than RMH (3 levels). This experiment implies that 

context-preserving hashing can achieve significantly improved accuracy without 

additional computational cost. 

6.4.4 INVESTIGATION OF MIN-HASH SIZE 

In the previous experiment, we assume that the number of min-hashes (hash 

functions) is same for all the levels of a nested set. Indeed, we can vary the number of 

min-hashes for different levels of a nested set. In this experiment, we investigate the 

performance of RMH (2 levels) by varying min-hash sizes. In particular, we fix the 

length of output fingerprints  and consider three 

min-hash size configurations: “1x-4x” (the number of min-hashes at word-level is a 

quarter of that at sentence-level), “2x-2x” (equal size), and 4x-1x (the number of min-

hashes at word-level is four times of that at sentence-level). For example, for , 

“1x-4x” means 10 min-hashes at the word-level and 40 min-hashes at the sentence-level. 
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Figure 6.4: Classification accuracy and CPU time of the RMH algorithm with different min-
hash sizes at different levels of the nested sets 

In Fig. 6.4, we can find that RMH (4x-1x) slightly outperforms RMH (2x-2x), which 

further slightly outperforms RMH (1x-4x). This result is reasonable because the word-

level sets are larger than sentence-level sets in size such that more min-hashes are 

required to produce a better estimation. 

The CPU time comparison in Fig. 6.4 shows that RMH (4x-1x) consumes more time 

than the other two configurations. This is because it has more hash functions performed 

on word-level sets which have bigger sizes than sentence-level sets. RMH (2x-2x) is 

slightly slower than RMH (1x-4x) for the same reason. 

6.5 SUMMARY 
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In this chapter, we focus on the text structured data and propose a context-preserving 

fingerprinting method for fast estimating similarity between texts to relieve the loss of 

context information. We first represent a text as a nested set based on the notion of multi-

level exchangeability at words, sentences, paragraphs, etc., and then propose a Recursive 

Min-wise Hashing (RMH) algorithm to fingerprint the obtained nested set for fast 

comparison. The empirical studies on three real-world text classification tasks show that 

our context-preserving hashing method, as a generalization and improvement of the 

standard min-hash scheme, is able to not only significantly outperform min-wise hashing 

and feature hashing in accuracy but also maintain the same (even less) computational 

cost. 
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CHAPTER 7                                   
CONCLUSIONS AND FURTHER 
STUDY 

This chapter concludes the whole thesis and provides some further research directions 

of the topic. 

7.1 CONCLUSIONS  
In this thesis, we focus on exploring new hashing scheme in different data 

classification scenarios. We aim to explore new hashing methods from different views 

and utilize them to boost classification performance in different data tasks. We first do a 

literature review that surveys existing works on hashing from data classification 

perspective. Then, we focus on exploring the new hashing methods on the graph 

structured data classification and text structured data classification: 

Firstly, we propose a DIscriminative Clique Hashing (DICH) for fast graph stream 

classification. The main idea is to employ a fast algorithm to decompose a compressed 

graph into a number of cliques to sequentially extract clique-patterns over the graph 

stream as features. Two random hashing schemes are employed to speed up the 

discriminative clique-pattern mining process and address the unlimitedly clique-pattern 

expanding problem. The hashed cliques are used to update an “in-memory” fixed-size 

pattern-class table, which is finally used to construct a rule-based classifier. We test 

DICH on two real-world graph stream data sets. Because DICH directly extracts cliques 

(connected subgraphs) from the graph stream as features for classifier training, rather 

than mining unconnected co-occurrence edge sets as that in the compared state-of-the-art 
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method, DICH can significantly outperform the baseline method in both classification 

accuracy and learning efficiency. 

Secondly, we further improve the DICH and propose an adaptive hashing for real-

time classification. In this method, we use two hashing schemes, incremental stochastic 

learning strategy and chunk level weighting mechanism to address the “real-time”, “one-

pass” and “concept drifting” challenges. In particular, we propose an approximate 

method for fast graph feature extraction by detecting cliques from the compressed graphs 

via hashing, which can significantly improve the efficiency of feature extraction to satisfy 

the “real-time” requirement. We also propose a graph feature reduction method by 

mapping unlimitedly expanding clique patterns onto corresponding fixed-size compatible 

feature spaces via differential hashing, which can avoid a pre-scan of graphs to address 

the “one-pass” and “concept drifting” challenges. Thanks to the clique hashing approach, 

the stream of graphs can be converted into feature vectors without additional parsing so 

that we can directly adopt a stochastic learning strategy to train a graph classifier online. 

Then, a chunk level weighting mechanism is adopted to address “concept drifting” 

challenge. The experimental results on two real-world and one synthetic graph streams 

demonstrate that the proposed method can outperform the state. 

Finally, we focus on text structured data and propose a context-preserving 

fingerprinting method for fast estimating similarity to relieve the loss of context 

information. We first represent a text as a nested set based on the notion of multi-level 

exchangeability at words, sentences, paragraphs, etc., and propose a Recursive Min-wise 

Hashing (RMH) algorithm to fingerprint the obtained nested set for fast comparison. The 

empirical studies on three real-world text classification tasks show that our context-

preserving hashing method, as a generalization and improvement of the standard min-

hash scheme, is able to not only significantly outperform min-wise hashing and feature 

hashing in accuracy but also maintain the same (even less) computational cost. 

7.2 FURTHER STUDY 
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In this thesis, we have studied hashing scheme from the view of large-scale structured 

data classification. This study is commonly applied to large-scale data sets. However, 

applying hashing algorithms to extremely large scale and streaming problems still poses 

challenges: (1) how to find an more effective representation for a high-dimensional large-

scale data, so as to fit in memory, (2) how to better improve the efficiency of hashing 

method, including the classification accuracy and time and (3) how to flexibly apply the 

new hashing scheme into different structured data. In our future work, we focus on 

designing hashing algorithms and approaches that are faster, data efficient and less 

demanding in computational resources to achieve scalable algorithms for extremely large 

scale and streaming problems.  

In addition, two extensions of the proposed context-preserving fingerprinting method 

can be considered in the future work: First, we can directly apply the b-bit min-hash 

algorithm [12] to our method to improve its efficiency. Second, our method can be 

naturally applied to visual features to capture contexts in images.  
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