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Abstract  

We often encounter cluttered visual scenes and need to identify objects correctly to 

navigate and interact with the world. As text takes the typical form of a human-

designed informative visual object, retrieving texts in both indoor and outdoor environ-

ments is an important step towards providing contextual clues for a wide variety of vi-

sion tasks. Furthermore, it plays an invaluable role for multimedia retrieval and location 

based services. 

  Text detection from clutter background is nevertheless a challenging task because the 

text, being figures in image, can be presented in various ways with lots of  room for un-

certainty such as size, scale, font type, font texture and colour, unpredicted decorative 

elements put on the text, etc. The situation will be even more complicated if the text is 

presented in a clutter background where non-text objects possess similar low-level fea-

tures to text. Further, all these objects are composed of distinct geometric shapes and 

they are similar with the essential composition elements of text objects. Pursuing a ro-

bust text feature descriptor is therefore always difficult because special feature de-

scriptor is only a fragment of text existence. It needs the completely understanding of 

text.  

Regarding the design, understanding, representation and calculating of text as one 

unitary process of text perceiving, we deal with the completely understanding and rep-

resentation of text in image with many kinds of aspects in different levels. Without fol-

lowing the legend feature based solution, this research is motivated by perceptual image 

processing and the observation of painting masters. It will explore a brand new solution 

by investigating the spatial structure of text and the compositional complexity of the 

visual object (i.e. text) in image. The research will present the composition granularity 

indicator and expose novel discriminable attributes embedded inside text objects, which 

can successfully differentiate text regions and non-text regions on clutter backgrounds. 

  As figures in image with the clutter scene, it is merely the physical appearance of text 

which provides the perceptual content and plays a central role for text detection, i.e. lo-

cation and coarse identification. During the view-construction of text, properties of in-

dividual character and textual organization of characters build up the physical appear-
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ance. When observers see text appearance in clutter scene, they describe their feelings 

in terms of crowding effect and clutter. However, the appearance of text still has enough 

saliency to reveal an informative message. Accordingly, text not only has the character-

istics of crowding effect and clutter but also follows the principles of saliency.   

Significantly, the crowding effect of text is derived from the space regularity of in-

built neighbouring letters which have commonalities beside their distinctiveness. In ad-

dition, low-level features of individual letters contribute to the commonalities and dis-

tinctiveness from the moment that the font is designed.   

Therefore, the computational model of text appearance is built up to integrate the 

three-level properties, including features of individual characters (low-level features), 

properties for spatial regularity (i.e. neighbourhood, appearance similarity), and the 

crowding statistics property of space averaged over pooling regions.   

In terms of image processing, if we consider the view construction of text, the fea-

tures of individual characters in image processing are obtained on the basis of the prop-

erties of construction, including mean intensity, local RMS contrast, shape, pixel densi-

ty, edge density, stroke width, straight line ratio, height to width ratio, stroke width to 

height ratio, etc. 

For the purpose of calculating the properties of space regularity and the crowding 

space averaging property, the spatial elements and relations are quantified and these in-

volve space granularity and composition rules.  

If we examine the works of painters, especially impressionists, they use directional 

brushstroke or colour patches as space granularity to represent “formless” visual objects 

in space regularity instead of clear contour shape sketches. The space regularity of 

patches, i.e. repetitive patterns, can offer a compositional format to express an artist’s 

feelings about an object rather than to simply describe it. Secondly, it is the harmonious 

proportions among component parts that bridle component space patches into objects. If 

we consider the painter’s harmonious proportions, the component parts of an object can 

be said to react simultaneously so that they can be seen at one and the same time both 

together and separately.  

Similarly, image is described by a set of grey space patches in multi-grey levels. In 

addition, each space patch groups pixels in position proximity and similarity, in just the 

same way as the colour patch is used by impressionists. The space organisation of them 

is also quantified as the measurement of space relations, especially in terms of the 
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neighbourhood and proportions among component parts. Moreover, the harmonious 

proportions among space patches are captured by the mathematical tool of geometric 

mean. Geometric mean (i.e., GM) is calculated over those space patches which possess 

the same grey level, and considered as the space granularity to form objects. Grey 

patches with the same GM are composed of GM regions, which are enlarged, extended 

kinds of pooling regions. Regions given by clusters which have resulted from similarity 

and neighbourhood are direct, compact pooling regions. Therefore, the statistical prop-

erties of space averaging are calculated over GM regions and image is represented as a 

set of GM regions over which text and other visual objects are analysed by GM indica-

tion.   

Finally, the representation of an image and the three-level computational text model 

are put into practice to develop a new-brand algorithm on the public benchmark dataset 

and to design and implement an automatic processing system on the real big data of the 

bank cheque. The resulting performance of these tools/processes shows that they are 

highly competitive and effective.  
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Chapter 1 

 Introduction  

We often encounter cluttered visual scenes and need to identify objects correctly to nav-

igate and interact with the world. As text is one typical human-designed informative 

visual object, retrieving texts in both indoor and outdoor environments provides contex-

tual clues for a wide variety of vision tasks [14], and plays an invaluable role for multi-

media retrieval and location based services, such as scene understanding, content-based 

image retrieval, object tracking [15], mobile robot navigation, assisting in navigation for 

visually impaired persons [16], and automatic geocoding. Thus, pursuing a robust and 

effective text detection method becomes one important visual search task for the pur-

pose of applications. 

1.1 Previous work 

In the last few decades, there are many kinds of methods to be proposed to extract text. 

And the Optical Character Recognition (OCR) system is closely involved. Accordingly, 

there are OCR-based methods and non-OCR methods. However, most OCR systems are 

restricted to binary images of text or very simple background images, and non-OCR 

methods struggle to pursue reasonable flexibility and performance through one stable 

feature in wide variety of clutter scenes because most solutions are based on fragment 

conception of text properties, whereas they have to deal with the totality of text.   

1.1.1 OCR-based method for text detection

When locations of text characters are approximately predictable and background inter-

ference does not resemble text characters (i.e. with simple background), many OCR-

based algorithms have been developed. Most traditional OCR techniques are restricted 
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to grey-level or binary images of text and many new commercial OCR systems [17] and 

algorithms based on them have been developed.  

Liang et al.[18] have used texture flow analysis to perform geometric rectification of 

the planar and curved documents. Burns et al. [3] have performed a topic-based parti-

tion of the document image to distinguish text, white spaces and figures. Banerjee 

et.al.[19] have exploited the consistency of text characters in different sections to re-

store document images from severe degradation. This has been based on the model of 

Markov Random Field. Lu et al.[20] have proposed a word shape coding scheme 

through three topological features of characters for text recognition in the document im-

age. Chen et al.[21] have used the AdaBoost method to learn image features which 

should be reliable indicators of text and have low entropy. Further, a commercial OCR 

system has been used to read the text or reject it as a non-text region. In  detecting the 

sign, Chen et al. [22] have adapted a hierarchical framework embedding multi-

resolution and multi-scale edge detection, adaptive searching, colour analysis, and af-

fine rectification to normalize the intensity features for the OCR sign reading system. 

All the above algorithms share the same assumption that locations of text characters 

have a clean background. However, clutter scene usually has complex background, 

which arise difficulties for OCR reading. 

1.1.2 Feature-based method 

When there is a background interferences complex, off-the-shelf OCR software cannot 

handle these complicated interferences, since both the colour and edge of text are cor-

rupted by strong spotlight, shadow and reflection meanwhile letter-like visual objects 

co-occurrence with text.  

There are many different algorithms for text detection which can be roughly classi-

fied into two categories. The first category focuses on text region initialization and ex-

tension by directly using the distinct features of text, such as local extreme points (edge 

points), edge segments, stroke width, text-line, and the boundary box. And the other 

category, starting from exploiting the whole image compositional structure, partitions 

the whole image compositional structure to obtain the compositional elements of text, 

then based on these partitioned compositional structures the text region is initialized and 

extended. 



 

3 

In the first category, the distinct features of text characters consist of edge segments, 

stroke width, inner holes and a boundary box, text-line, and a wavelet coefficient repre-

senting text textural features. 

Considering the text regions usually contain denser edges in the image, Shivakumara 

et al. [23] have applied different edge detectors to extract blocks full of the most appar-

ent edges of text characters. However these have failed to remove the background noise 

resulted from pane, building and other objects that also possess high density of edge. 

Phan et al. [24] performed a line-by-line scan in edge images to combine rows and 

columns with a high density of edge pixels into text regions. However, it divides the 

image spatially into blocks of equal size before grouping, and is very likely to break up 

text characters or text strings into fragments which fail to satisfy the texture constraints. 

Pan et. al.[25] learned an over-complete dictionary from the edge segments of isolat-

ed character images by K-SVD and then used it to label the sparse from the given edge 

map of the image to get the text candidate. But the edge information is often corrupted 

by strong light, reflection and perspective distances. And as the K-SVD dictionary is 

designed for coding and de-noising, it can be confused by complex backgrounds with 

text-like areas.  

Notably, recently, by all possible thresholds, local extremes (edge points in extended 

meaning) can be obtained in multi-threshold, and then Maximally Stable Extremal Re-

gions (MSERs) [26] of data-dependent shape can be built by connecting the extremal 

points in a neighbourhood. Because of the excellent characteristics of MSERs MSERs 

are detected and taken as candidate text regions in many recent studies. Based on those 

MSERs, many efficient pruning algorithms can be applied to locate the text. Neumann 

et al. [27-29] modified the original MSER algorithm to take region topology into con-

sideration, leading to superior detection performance. Chen et al. [30] also proposed an 

extension to MSER, in which the boundaries of MSERs are enhanced via canny edge 

detection, to cope with image blur. Yin et al.[31, 32] , and Shi et al.[33] used a pruning 

algorithm to MSERs to get the text candidate to get high performance. But the MSERs 

measurements still need to explore.   

To capture one important discriminative feature of text-constant stroke width Liu et 

al. [34] designed a stroke filter to extract the stroke-like structures; B Epshtein et al [12] 

proposed a stroke width transform to find the value of stroke width for each image pixel, 
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and then generated the text candidate by connected component analysis on the stroke 

map of an image. But the stroke width tends to slightly vary even within the same char-

acter. Parts of characters are often confused with similar looking background parts, such 

as the pane, bar and foliage.  

To extract candidates of text regions, Kasar et al. [35] first assigned a bounding box 

to the boundary of each candidate character in the edge image and then detected text 

characters based on the boundary model (i.e. no more than 2 inner holes in each bound-

ing box of alphabets and letters in English); Hasan et al.[36], Park et al.[37] and Uddin 

et.al[38] have designed robust morphological processing based on edge gratitude and 

edge directions respectively. But there are contrast, colour and size restrictions.   

Kim [39] used SVM to analyse the raw pixels to find activated pixels which are high-

ly related to text, and then a continuously adaptive mean shift algorithm (CAMSHIFT) 

is applied to these pixels with a high score about the text texture to obtain text regions. 

Tran et al.[40] modelled text string as multi-scale ridges representing its centre line and 

the skeletons of characters. By traversing the multi-oriented scene text lines, Shiva-

kumara.P et al [41] proposed the boundary growing method works based on the concept 

of nearest neighbours to extract multi-oriented text.  Kumar et al [42] used the wavelet 

coefficient to model text textual features and obtained characteristic wavelets of pure 

image or text classes, then located the text region. But this method is limited to the clas-

sification number of non-text background and that of text.  

Instead of directly exploiting the distinct features of text, starting from exploiting the 

whole image compositional structure, the second category partitions these structures to 

get the structural elements of letter corps by which the text string is formed and probes 

where the structure form. It also serves to get the location of the letter corps as the text 

region. 

Using colour similarity and colour variations analysis, Socotra et al.[43] combined 

them to generate the text region. However the unexpected background noises might 

share the same colours with text characters. Gao et al.[44] and Suen et al.[45] performed 

heuristic grouping and layout analysis to cluster edges of objects based on similar col-

our, position and size into text regions. Besides, in an image, many different kinds of 

colours are in tune with each other to form an intact picture. Yi et al [13] used the col-

our histogram and weighted K-means clustering to partition the original image into sev-

eral colour layers. And on the main colour layers, combined with gradient-based parti-
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tions, text candidates could be extracted by a set of heuristic rules of properties of text 

such as text-line, stroke width, aspect ratio etc. However, since at least three letters can 

determine a certain text line, this method cannot handle cases where the text includes 

less than three letters. 

In a word, these feature-based methods emphasize one stable specific feature to deal 

with the totality of text in wide variety of background based on intellect conception of 

text. Actually, it is in fragment, and a fragment, however cleverly put together, is still a 

small part of text existence whereas they have to face all kinds of challenges. And when 

we look at what is taking place in text in clutter scene, we begin to understand that it is 

one unitary process, we need the completely understanding and representation of text in 

image from the standpoint of calculating. If we get the completely understanding of text, 

especially, the physical appearance of text, we have a chance to solve the wide variety 

of problems in text detection, which arise from the interactions between text and its var-

ious complex backgrounds.         

1.2 Our motivation and aim 

For the purpose of pursuing the reasonably flexible algorithm of text detection, we have 

to deal with the completely understanding and representation of text in image through 

regarding the design, understanding, representation and calculating of text as one uni-

tary process of text perceiving. It is a whole, and involves view construction, descrip-

tion and calculation of text with many kinds of aspects in different levels.  

Thus, without following the legend feature based solution, our research is motivated 

by perceptual image processing and the observation of painting masters since text is one 

typical human-designed informative high perceptual visual object. It will explore a 

brand new solution by investigating the spatial regularity of text and the composition 

complexity of the visual object (i.e. text) in image. The research will present the compo-

sition granularity indicator of image, and expose novel discriminable attributes embed-

ded inside text object which can successfully differentiate the text region and non-text 

region on a clutter background. 

In an image, text is viewed as figures. Apparently, the physical appearance of text 

plays a central role in its detection, i.e., location and coarse identification. From the 

viewpoint of observation and vision perception, there are three-level constructions for 
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text appearance in image, including features of individual character, letter-centred spa-

tial organization, and object-centred display, shown in Figure 1.1, which work in har-

mony to make text congruent in terms of the ergonomic criteria of legibility, readability 

and conspicuity. 

In an object-centred display, there is the vision feeling of clutter and crowding in a clut-

ter scene. That feeling is associated with the spatial organisation of the image and the 

text itself. For the image, there are too many items in limited space. For text, “it is as if 

there is a pressure on both sides of the word that tends to compress it. Then the stronger, 

i.e. the more salient or dominant letters, are preserved and they ‘squash’ the weaker, i.e. 

the less salient letters, between them.” This is the intrinsic crowding effect of text [46]. 

Meanwhile, text still has enough saliency to show an informative message in image 

with the clutter scene. Thus, text not only has the characteristic of a crowding effect but 

also follows the principles of saliency.  

Significantly, crowding effect is derived from the space regularity of text, i.e., letter-

centred spatial organization. The space regularity refers to the textural-like phenomenon 

showed by the in-built neighbouring letters which have commonalities beside their dis-

tinctiveness. In order to quantify and measure the space regularity, neighbourhood and 

appearance similarity among component parts are involved. The former is related to 

several kinds of spacing in typography design, including letter spacing, word spacing 

and line spacing. And the latter is highly related to the low-level features of individual 

letters. 

   Description     

Object-centred display 

Letter-centred spatial 
organization 

Features of individual 

character in design 

Crowding effect saliency, 
clutter 

Spatial regularity:  

Proportions, Spacing, etc. 

Space averaging  

over pooling region 

Neighbourhood, GM 

Appearance similarity 

Low-level features of 

individual character 

Global level 

Spatial regu-

larity 

Local level 
Local-level consideration 

   Figure 1.1 Three-level construction of text appearance and three-level computational model of text 

 View construction Computation 



 

7 

Through the three-level construction, text is displayed and viewed in an image with a 

complex background. Correspondingly, the computational model of text is established 

to integrate the three-level properties or characteristics, including features of individual 

character (low-level features), properties for spatial regularity (i.e. neighbourhood, ap-

pearance similarity), and crowding statistics property of space averaged over pooling 

regions.   

From the standpoint of calculating in image processing, we get the insight into these 

features from other fields, for instance, type design, crowding effect, clutter, saliency, 

and the way painters represent objects.  From the type design, the functions of character 

features are understood completely, and these change the features for construction rea-

sonably to be attributes in image processing. From the coexistence of crowding effect 

concurrences of clutter and saliency with text, the correlates among them inspire us to 

capture and represent text and image based on them. For the purpose of capturing the 

correlates and quantifying them in image processing, the ways in which painters under-

stand and represent visual objects are mathematically applied, and tools are developed 

for the analysis of the composition of visual objects.        

Gaining clues and inspiration from these fields, the three-level features or properties 

are calculated by an image-based method and integrated to discriminate the text region 

in non-text regions. Using this computation model of text, a brand-new solution is ex-

plored to break down the clutter background so as to detect text. Furthermore, this mod-

el is applied to process the big data of real bank cheques.  

1.3 Methodology 

As text represents the figures in an image, we mathematically dig the properties of text 

appearance in the view construction and description of text as illustrated in Figure 1.1. 

This enables us to reproduce the techniques that painters use to represent the spatial el-

ements and proportions among component parts, and then we calculate the three-level 

features of text appearance in image processing.   

In type design, the font stylish attributes and textual organisation contribute to the es-

sential functions of text during the construction of appearance. They provide us with a 

comprehensive understanding of the roles of the features of individual character as 

many of them cannot be adequately caught through image processing alone. After in-
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vestigating, we transfer them into image-based reasonable attributes of individual char-

acter and the measure of neighbourhood and appearance similarity of space regularity. 

   The coexistence of the crowding effect, clutter and saliency in text leads us to under-

stand the correlates of them by investigating and summarising the theory, models, prop-

erties, and characteristics of them. It is the correlates that make us focus on the pooling 

region and region-level attributes or salient structure. Indeed, pooling region is related 

to its spatial elements and the relationships among them. Those elements across neigh-

bour filters are tuned to similar orientations and integrated into an association receptive 

field which will become a pooling region or part of a pooling region.  

   For the purpose of capturing spatial elements and their relationships, we gain 

knowledge from painters. The first thing that we find from examining their work is that 

a boundary is merely a mathematical line. The impressionists, in particular, used direc-

tional brushstrokes or colour patches, which are small space patches with space regu-

larity, to represent “formless” visual objects instead of clear contoured shapes. The se-

cond thing that we find is that proportions in all things bridle these space patches into 

different visual objects.  

  Like the painters, we can use a corps of multi-grey patches to represent an image. 

Grouping neighbouring similar pixels generates these. The proportions among the mul-

ti-grey patches bridle them into different visual objects. We then capture the proportions 

by the geometric mean (GM) among the grey patches and make it the indicator of spa-

tial elements or the constitution of visual objects in an image. The spatial elements with 

the same GM form one kind of pooling region, and the statistical property of space av-

eraged over the pooling regions is calculated over the GM regions.   

  After we figure out the calculation of the properties of the three-level computational 

model of text in the field of image processing, we use the model to develop an effective 

algorithm for text detection from the clutter scene on the public bench mark dataset, and 

also put it into practice on real big data i.e. the automatic processing of bank cheques. 

1.4 The framework of our work  

As text represents figures, for the purposes of text detection in image, its physical ap-

pearance plays a critical role. During the view construction of text, the properties of in-

dividual character and textual organisation of characters build up the physical appear-
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ance. When observers see text appearance, they speak of their feelings in terms of the 

crowding effect and saliency from the viewpoint of vision perception. 

Thus, the properties of text appearance involve three-levels: object-centred level, 

space-regularity level, and individual character. The object-centred level properties refer 

to the properties of crowding effect and clutter and saliency. The properties of space-

regularity level show the relationships of the concrete space organisation among spatial 

elements. The properties of individual character suggest those distinctive features of the 

form of characters.  Our work focuses on the calculations of those properties in image 

processing so that we get a reasonable representation of image and three-level computa-

tional text models and then we put them into practice on public benchmark datasets and 

real big data i.e. bank cheques.  

Firstly, the coexistence of crowding and saliency in text reveals two important aspects 

of the properties of text being the space averaging over pooling regions, and region-

level salient structures in the object-centred level.  This brings us to two subtasks: how 

do we capture the pooling regions, and how do we represent the composition of spatial 

elements in order to get salient structures at the region-level? 

 Noticeably, this perceptual feeling is derived from the characters’ commonalities and 

spatial arrangement in regularity, which are inherent properties generated from the mo-

ment of typography design for text legibility, readability and conspicuity. The stylish at-

tributes of fonts determines the characters’ commonalities, including shape, stroke 

width and its related ratio, weight, line, size and its related proportions. In addition, sev-

eral kinds of spacing in layout determine the spatial arrangement, such as letter spacing, 

word spacing and line spacing. While these inherent properties have provided important 

insights into the essential process of text appearance construction, the extent to which 

this understanding holds true in a clutter scene is less clear from the viewpoint of image 

processing. We therefore mathematically explore these properties (e.g. shape based on 

grey patches or edge points, pixel density, edge density, stroke width to height ratio, 

straight line ratio, and local RMS contrast etc) and transfer them into the viewpoint of 

image processing. 

Additionally, focusing on the above subtasks presented by the correlate of crowding, 

clutter and saliency, we employ the ways in which painters represent spatial elements 

and relationships among them in image. Painters, especially impressionists, use direc-

tional brushstroke or colour patches as space granularity to represent visual objects as 
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“formless” in space regularity instead of clear contoured shape sketches. This kind of 

space regularity of colour patches, i.e. repetitive patterns, can offer a compositional 

format to express an artist’s feelings rather than to simply describe an object. Moreover, 

in painters’ harmonious proportions, the component parts of an object react simultane-

ously so that they can be seen at one and the same time both together and separately. It 

is the harmonious proportions among component space patches which serve to bridle 

component space patches in objects.  

Learning from the school of art, we describe image as a set of grey space patches in 

multi-grey levels. Each grey patch group neighbour pixels with similar grey tones just 

like the colour patches or directional brushstrokes used by impressionists.  Further, 

among these space patches, a mathematical tool of geometric mean (GM) is used to im-

plicitly catch the harmonious proportions of the component parts of a visual object.  

Considering the statistical property of space tuning and grey tuning in crowding, GM 

is computed among the space patches containing the same grey level and it is consid-

ered as the space granularity to form objects. For grey tuning together with space tuning, 

greys which work together to form the same object are inclined to have a similar grain 

size so that they can be seen both together as a whole and separately as parts. Therefore, 

GM is regarded as an indicator of the space compositional granularity of an image and 

the image can be represented by several sets of grey patches at certain GM levels. In 

addition, the features of individual characters are extended into GM regions by space 

tuning, i.e. space averaging. 

Clusters resulting from similarity and neighbourhood become the pooling region, 

thereby decreasing, modulating or breaking down the crowding effect. Accordingly, 

visual objects can be analysed at both the component patch level and the higher cluster 

level in certain GM levels. 

Then, we put the representation of image and the three-level computational model of 

text into practice. In the clutter scene, a new solution is developed to detect text by GM 

analysis. For real big data—bank cheque image documents with various forms and 

styles, we discriminate the handwritten scripts from printed ones, and automatically 

read the legal amount and payee content. 

Thus, the framework of our work is illustrated in Figure 1.2, which consists of three 

aspects. The first is about high perceptual related theory which describes the phenome-

non of object-centred display, such as the crowding effect, clutter, saliency, and ergo-
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nomic guidelines. We explore the correlates among them and figure out the related sub-

tasks in text detection, the subtasks are composed of feature of individual characters, the 

representation of spatial elements and the calculation of pooling region.  The second is 

to provide solutions for those subtasks. Learning from the painters, and using the mathe-

matical tool to capture the proportions in all things, we represent the image by a set of 

multi-grey level connected components, and define geometric mean (GM) on these 

components as the indicator of the space granularity of image. The pooling regions are 

regarded as GM regions. Further, features of individual characters, neighbourhood and 

appearance similarity are defined over regions given by the components and extended at 

the GM level. The third is to put the solutions into practice by developing an algorithm 

on the public benchmark dataset and a system over the bank cheque big data. All the 

experiments agree with our expectations and the performances are effective. 

Crowding theory; 

Clutter, Saliency. 
Guideline in Ergonomics: Legi-
bility, readability, conspicuity 

Space regularity& pooling region: 
1) Space granularity; 
2) Composition(adjacent, 
proportion) 

Mathematical Tool: 

 Geometric Mean(GM) 
Properties for text in image  
1) Properties for individual 
character; 
2) Neighbourhood. 

Representation of image: 
1) Grey space patches; 
2) GM indicator; 
3) Clusters on GM 
4)Space averaged attributes in
GM level. 

Text computational model: 
    1) Feature-level; 
    2) Letter-centred; 
    3) Word-centred. 
 

Impressionist drawing: 

1) Colour patches; 

2) Repetitive pattern. 

3) Proportions 

Image-based tools: 
1) Edge detector; 
2) Segmentation; 

3)SVM;  

4)SVD; 

5) OCR. An algorithm of text detection

from clutter scene: 
1) GM based 

2) Benchmark dataset; 

3) f-measure. 

Automatically processing system
of bank cheque (OCR-based): 
1) Signature extraction; 
2) Discrimination of handwritten
cheques from those of machine
printed cheque; 
3) Payee name, legal amount loca-
tion and measure 

Figure 1.2 the framework of the thesis work 
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1.5 Organization of our work 

While text is ‘within-object conjunction’ [8, 47-50] or crowding effect [51-54] among 

built-in letters or words by nature, it nevertheless has salient features or structures to 

make it pop out in a clutter scene. The correlates among crowding, clutter saliency and 

the ergonomics criteria of text instigate our work by providing concrete subtasks of text 

detection. As illustrated in Figure 1.3, our thesis is organised as follows. 

Chapter 1 deals with the problem of our work and introduces our motivation and aim. 

For the purpose of fulfilling our task, it makes clear the methodology and framework of 

text detection and provides the organisation of our work.  

Chapter 2 deals with the concepts and theories related to text, including crowding ef-

fect, clutter, saliency and the ergonomics criteria of text. For the purpose of comprehen-

sively understanding text, we investigate the different aspects of it.  Starting from its 

origin of ergonomics, it transmits messages within the criterions of legibility, readability 

and conspicuity. From the standpoint of human perception, as an informative image fig-

ure, it has the perceptual content and semantic content to convey messages as clearly as 

possible. Thus, it has attention conspicuity and cognitive conspicuity, i.e., multi-level 

saliency from feature-level to object level. Meanwhile, it is a whole visual object as a 

corps of letters in space regularity (or coherence) and naturally leads to the crowding ef-

fect of the physical appearance of text. Especially, when the clutter scene is the backg-

round of text, text in space regularity is more difficult to discriminate from a similar 

background since clutter is tightly associated with space organisation. Therefore, the re-

lated concepts of crowding, saliency clutter and ergonomics criteria are introduced. In 

addition, edge point is the most informative point in image, which is not only important 

for features of individual character but also important for text in a string of letters. 

Therefore, another aim of this chapter is to introduce two kinds of edge operators, one 

with effective orientation, and the other with embedded confidence of location and both 

of them are used in the following chapters.  

Chapter 3 deals with the object-centred properties of text appearance in a clutter sce-

ne, i.e., the globe properties in image. In terms of the informative figures in images, the 

coexistence of crowding effect, saliency, and clutter reveals the textual correlates. In-

deed, the correlates enable us to figure out the concrete subtasks of text detection. As 

they coexist in text, all of their characteristics are shown in the text from the local level 
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to space organisation and the object-centred level. These include 1) statistical space av-

eraging over the pooling region at the object-centred level which represents an im-

portant property of text appearance; 2) distinctive features of text at different levels 

Chapter 1 Introduction 
• Problem, motivation, 

methodology, framework, 
organization. 

Chapter 2 Related works 
• Theories of Crowding effect, 

Clutter, Saliency; Ergonomics 
criteria. 

• Edge operators. 

Chapter 3 Global properties of 

text appearance  
• Correlates among crowding 

effect, Clutter, Saliency; 
• Properties of space averaging 

over pooling regions; 
• Concrete subtasks. 

Chapter 4 Properties of individual 

characters: 

• Mean intensity, Local RMS 
contrast, orientations; 

• Shape, pixel density, edge 
density, stroke width to 
height ratio, height to width 
ratio, straight line ratio, etc. 

Chapter 5 Properties of 

local spatial organization 
• Letter spacing, word 

spacing, line spac-
ing; 

• Neighbour-
hood(intersect, dis-
joint,)  

Chapter 6 Representation of image and three-level text 

model 

• Spatial elements; 
• GM regions;
•  Statistics feature over GM regions; 
• Three-level text computational model 

Chapter 7 Text detection al-

gorithm based on the space 

averaged text model  

• Image partition; 
• Features extraction 
• GM analysis 
• Text location 

Chapter 8 Automatic Pro-

cessing of Bank Cheques 

• Signature detection; 
• Discrimination between 

handwritten and machine 
printed text 

• Payee location 
• Legal amount location. 

Chapter 9 Conclusion 

Figure 1.3 The organisation of the thesis 
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making text possess saliency at the multi-level; and 3) space regularity which plays a 

critical role in relation to inner-letter space coherence. Consequently, we can delineate 

two clear subtasks as follows: 1) to dig the distinctive features from text construction 

and transplant them into image-based features in the area of image processing (i.e. ob-

servation). 2) To represent image by space organisation. 

Chapter 4 deals with the distinctive characteristics of individual characters. From the 

viewpoint of construction, there are many properties for text legibility, readability and 

conspicuity, including luminance, viewing distance, shape, weight, line, stroke width, 

size, and the proportions among these measures. However, from the viewpoint of obser-

vation, some of them cannot be measured or are meaningless and some others need to 

be changed to be used in image processing or they should be kept as close as possible to 

the maximum level so that they can be used directly. Thus, the attributes of individual 

characters consist of mean intensity, local RMS contrast, shape, pixel density, edge den-

sity, stroke width, straight line ratio, height to width ratio, stroke width to height ratio, 

etc. 

Chapter 5 deals with the local spatial organisation properties of text, i.e. the relation-

ships among the letters which form text. The organisation properties include letter spac-

ing, word spacing and line spacing. Letter spacing, word spacing and interline spacing 

are in harmony with each other and organised as a whole in order to keep crowding and 

readability in a good balance. All of them are highly related to the type size, and have a 

practical recommendation ratio respectively. From the viewpoint of image processing, 

all of them contribute to the space relationship of the neighbourhood, which is the most 

important space relation in multi-parts object---text detection. 

Chapter 6 deals with deals with image representation by space organisation and text 

models in crowding. Image is formed by grey levels which are tune with each other. 

The question is how these grey levels form an image which leads to what we feel about 

an object.   

If we consider painters, especially impressionists, they use directional brushstrokes or 

colour patches which are small space patches in space regularity to represent “formless” 

visual objects instead of clear contoured shape sketches. The space regularity of patches 

can offer a compositional format to express an artist’s feelings about an object rather 

than to simply describe it. Secondly, the painter through his harmonious proportions 

makes the component parts of an object react simultaneously so that they can be seen at 
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one and the same time both together and separately i.e. together, as a whole; and sepa-

rately as component parts.  

Similarly, image is described by many grey patches at the multi-grey level. Consider-

ing the crowding statistics property of space tuning, the granularity of the grey patches 

is defined as the average size of grey patches within each grey level. Since only the ge-

ometric mean can correctly capture these proportions among component parts in math-

ematics, the, geometric mean (GM) among grey patches is defined as the indicator of 

the granularity. 

Grey tuning together with space tuning (i.e. greys which work together to form the 

same object) are inclined to have a similar grain sizes so that they can be seen at one 

and the same time both together (as a whole) and separately (as parts). Thus image can 

be mapped into several sets of grey patches in certain grain sizes and based on these sets 

of grey patches, visual objects can be analysed in terms of these grain sizes.  

There is also another question as to how to model the text in image processing. As a 

figure, text is in harmony with painting theory and reveals similar phenomena.  

According to the painting theory of Leonardo da Vinci [55], the object relies on these 

properties of object: volume, colour (or intensity), and shape. In image, the three prop-

erties are turned into space, intensity (or colour), and contour. In addition, when objects 

recede from the eye (or camera), the size of the object decreases. This means the space 

of the object in the image is reduced while the contour is lessened. If the distance is far 

away enough, the contours or boundary of the separated object disappear and the sepa-

rated objects are merged into a whole.  

The above image granularity provides a quantitative clue for text legibility. When the 

text is large enough, even separate letters becomes salient. Further, the text string turns 

out to be a salient object since there is no crowding for large stimuli. However, if the 

text is too small, the separate letters cannot be easily discerned and only the sheet result-

ing from the string of small letters can be distinguished. The granularity can roughly tell 

us whether the size of text is salient enough or not, or if the size is too small to be dis-

cerned as a sheet, or as ordinary sized text.  

Moreover, the regularity of inter-letter spacing plays an important role in determining 

the strength of the crowding of text i.e. the space relations can quantitatively describe 

the regularity. Additionally, “straight line is ungodly” [56], text typically has distinct 

features beside its crowding effects and these are derived from the space regularity. 
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Combining the basic features, straight lines features and space regularity features, and 

then extending them on to different forms of granularity, the text model is built. This 

model represents both the string of text and a single salient letter.    

Chapter 7 deals with the text extraction algorithm based text model in crowding, and 

a highly perceptive solution for text extraction is developed over the GM regions and 

the three-level text models which includes image partition, feature extraction, GM re-

gions generation and GM analysis and text location. In this solution, Multi-Grey Con-

nected Components (MGCC) are used to represent the intricate pattern of an image. 

Based on the GM indicator, we explore the composition theory among component parts, 

and the Geometric Mean (GM) is proposed as a new way to describe the compositional 

complexity of an object across meaningful MGCCs. Without following the legend 

framework based on supervised training, the proposed methods explore the input imag-

es on both pixel-levels through the MGCC and also at the semantic level through GM. 

In the end, the text regions are located and adjusted by the close regions generated from 

the edge points with embedded confidence. The proposed method sorts out several cases 

which failed when using the existing methods. 

Chapter 8 deals with one practical application of our method.  The representations of 

the image based on space regularity and the three-level computational modelling of text 

in the cluttered scene are put into practice through the automation of bank cheque pro-

cessing. Based on the image partition, the signature can be extracted by the CSSD algo-

rithm which also provides important features for discerning handwritten text from print-

ed text. Meanwhile, based on the OCR, the payee name is found and measured, and the 

legal amount is also revealed through the means of path analysis or the VO string selec-

tion lexicon.  

Finally, Chapter 9 provides the conclusion of our work. 

1.6 Contribution 

Thus, in summary, this thesis mainly contributes to the following aspects: 

1. As text perceiving is a unitary process, which involves view construction, descrip-

tion and calculation of text, we explores the properties of text in local-level, spa-

tial level and global level from the different aspects of text perception, and get the 
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completely understanding of text and formulate these properties into three-level 

computational model of text. 

   As text is figure in image, this computational model of text integrated features 

of individual characters (low-level features), properties of spatial regularity (i.e. 

neighbourhood, proportions among component parts, appearance similarity), and 

the crowding statistics property of space averaged over pooling regions.    

2. Considering the view construction of text, the features of individual characters in 

image processing are obtained on the basis of the properties of construction, in-

cluding mean intensity, local RMS contrast, shape, pixel density, edge density, 

stroke width, straight line ratio, height to width ratio, stroke width to height ratio, 

etc. 

3. For the purpose of calculating the properties of space regularity and the crowding 

space averaging property in an image, learning from the works of painters, spatial 

elements and relations are quantified especially in terms of neighbourhood and 

proportions among component parts, and these involve space granularity and 

composition rules of an image. Further, Geometric Mean among space elements 

with the same grey level is proposed as an indicator of space granularity to cap-

ture the proportions among the component parts of an object. And those grey 

patches with the same GM image are named as GM regions, and image is com-

posed of a set of GM regions. 

4. Crowding pooling regions are built up as two kinds of regions: one is GM regions, 

named as the enlarged extended pooling regions, and the other is the compact 

pooling regions, which are given by clusters resulted from similarity and neigh-

bourhoods. Therefore, the statistical properties of space averaging and those of 

spatial regularity are calculated over both pooling regions, and text and other vis-

ual objects are analysed over GM regions by GM indication.   

5. A new brand algorithm of text detection has been developed based on the space 

crowding averaged model, that is, a highly perceptive solution of text extraction is 

developed over GM regions and the three-level text model. Experiment shows its 

effectiveness.   

6. The computational model of text is used to build up a context-aware saliency 

computational model of document images with complex background, over which 
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the algorithms of handwriting scripts and signature extraction from bank cheques 

are developed.  

7. A system of automatic processing of bank cheques has been developed by appli-

cation of the computational model of text. 
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Chapter 2 

Related Works 

Being figures in image, text appearance in clutter scene give observers a feeling of 

crowding effect, clutter, but still it has salient enough to pop out the informative mes-

sage. In addition, the inner-letters of text have commonalties and distinctiveness from 

the moment of font design, the appearance of text should be congruent with the Ergo-

nomics criterions of legibility, readability and conspicuity.  Therefore, one aim of this 

chapter is to introduce the related concepts of crowding, saliency, and clutter and Ergo-

nomics criteria. 

And in image processing, edge points represent the abundant information of figures, 

which are used to predict crowding and measure clutter, and also get desirable closed 

curves with increasing saliency. Thus, another aim of this chapter is to introduce two 

kinds of reliable edge operators. 

2.1 Guideline in Ergonomics 

Illustrated in Figure 2.1, text is one typical human-designed informative high perceptual 

visual object, including form and content. Form refers to the characters that have been 

arranged in a certain way, and typeface and textual organization are involved, which is 

the responsibility of the typographer. And content refers to the message that the author 

wants to communicate to the reader through its form, which is the responsibility of the 

author.  

Before readers can ponder the ideas of the author, the message content needs to be re-

produced in print. It involves author, type designer, type caster, typographer and com-

positor during the composition of letters into text with the aim of transmitting a message 

as clearly as possible. An important aspect of this process is to stimulate readers to 

search for the underlying structure of the message in order to aid comprehension and 

deeper processing of the information by enhancement of written language. According to 
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three ergonomics criteria of legibility, readability and conspicuity, the well usability re-

quirements of text is determined by three properties of text, including functional proper-

ties, semantic properties and textual organization.  

 

2.1.1 Legibility 

"Legibility is the attribute of alphanumeric characters (letters and numbers) that makes 

it possible for each one to be identifiable from others. This depends on such features as 

stroke width, form of characters" and the amount of space between characters[57].  

Notice, there is a distinction between character legibility and text legibility. Character 

legibility is the ease with which a person can identify an individual character as a par-

ticular letter or number. Legibility of text refers to the ease with which groups of char-

acters are correctly identified as a word, with the result that the reader perceives mean-

ingful sentences, which has high relation with composition of text. 

High legibility is very important for reading-intensive print. And it is affected by lev-

el of illumination, background contrast and reader fatigue. If a text is not very legible, 

this will need more efforts for reader to identify the letters correctly. 

2.1.2 Readability 

"Readability is a quality that makes possible the recognition of the information content 

of material when it is represented by alphanumeric characters in meaningful groupings, 

such as words, sentences, or continuous text... [Readability] depends more on the spac-

Text  

Content   Form  

Typeface 

Functional 
properties 

Semantic 
properties 

Textual organization 

Figure 2.1 the general aspects of text  
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ing of characters and groups of characters, their combination into sentences or other 

forms, the spacing between lines, and margins than on the specific features of the indi-

vidual characters" [57]. Thus, for a high level of readability, the composition of text 

needs to provide easy access to the information that is contained in the words, whose re-

lated science studies will be discussed in details from the different viewpoint in follow-

ing sections. Apart from composition, readability is concerned with author’s expressing 

precisely what one means in an unambiguous manner and will therefore not be dis-

cussed here. 

There are differences between readability and legibility. Readability not only pertains 

to paragraphs of text, but also to tables, footnotes, and other special text formats. When 

a text is of low legibility, its readability is also low. When a text is not very readable, on 

the other hand, it is still possible that it is highly legible. For example, a brochure is 

printed in too small typeface and the characters have such indistinct shapes, that readers 

can hardly distinguish between the ‘i’ and the ‘l’ or the ‘h’ and the ‘b’. In such a case, 

the text is of low legibility. Consequently, the text is not very readable either. Then, the 

brochure is reprinted in a more legible way, the same conditions of easy word distinc-

tion and correspondence between text and illustrations would make a more readable text. 

It is also possible, however, that the text has become highly legible, but that the illustra-

tions are not numbered and are referred to in the text on a different page. In this case, 

readability would still be low. 

2.1.3 Conspicuity 

Conspicuity is the "quality of a character or symbol that makes it separately visible from 

its surroundings" [57]. Usually, the use purpose and requirement determine whether text 

is designed as a more conspicuous object than its surrounding.  

When text is used in logotype or in sign for the purpose of navigation, such as traffic 

signs, hazard signs and billboards, highly conspicuous text receives more attention than 

visual objects, textual or other, which are less conspicuous. As a conspicuous object, 

according to Cole and Jenkins [58], is one that will, for any given background, be seen 

with certainty probability (p>.9) within a short observation time (t<.25 s) regardless of 

the location of the target with respect to the line of sight.  
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Here two kinds of conspicuity [59] get involved: attention conspicuity, which is the 

capacity of the target to attract attention when the observer’s attention is not directed to 

its likelihood of occurrence, and search, cognitive conspicuity, which is defined as the 

accessibility of the target when the observer is explicitly directed to look for the object.  

Attention conspicuity depends upon the prominence of its physical properties com-

pared with its background, which can be reduced by visual clutter[60] Some of varia-

bles affects attention conspicuity, such as font, letter size, spacing, and layout of charac-

ters, luminance and colour contrast with surround, distinctive shapes compared with 

other visual objects, display text content including information arising from the unusual 

or unexpected character of text. However, its computational work will be delta with in 

the following chapters.   

2.2 Crowding effect  

2.2.1 Definition   

Letters are arranged to form text with textual properties. ‘‘It is as if there is a pressure 

on both sides of the word that tends to compress it. Then the stronger, i.e. the more sali-

ent or dominant letters, are preserved and they ‘squash’ the weaker, i.e. the less salient 

letters, between them.” This is Korte’s original, and often referred to, description of 

crowding [46]. And Levi, et al [8] suggests that the reader can experience this phenom-

enon by viewing Figure 2.2. Actually, the term ‘‘crowding” (‘‘Gedra¨nge”) has no 

counterpart in German perception research (including reading) and has been first used 

by Ehlers [61] in 1936. 

  

a b c d 
Figure 2.2 Crowding. After[8]. The reader can experience crowding by fixating the dot, 

and trying to identify one letter: in isolation (a), surrounded by 4 random flanking letters 

(b), surrounded by 2 horizontally placed random flanking letters (c), surrounded by 2 ver-

tically placed random flanking letters (d). 
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Crowding, the deficit in discriminating target when other shapes are nearby, is a form of 

inhibitory interaction in spatial vision efficiency by limiting attention for recognition 

and attention against competition. Crowding impairs not only discrimination of object 

features and contours, but also the ability to recognize and respond appropriately to ob-

jects in clutter. Thus, studying crowding might lead to a better understanding of the pro-

cesses involved in text detection from clutter scene.  

2.2.2 Study objects 

Traditionally, crowding has been studied with letters and numerals as stimuli [49, 62, 

63]. And now there is great diversity in the stimuli used, ranging from letters, words, 

oriented bars, Gabor patches and shapes, faces, letter-like stimuli and natural scenes. 

From Bouma’s highly influential report, it has stated that ‘for complete visual isolation 

of a letter presented at an eccentricity of φ , it follows that no other letters should be 

present (roughly) within 0.5φ  distance.’  

Also, it has been demonstrated with discrimination of simple features like contrast, 

orientation, and spatial frequency [63, 64]. With simple detection, however, the effect 

seems to be much smaller. But recent study suggests that detection and coarse orienta-

tion discrimination are not immune to crowding[65]. And the crowding effects with the-

se tasks depend on the number of flankers-performance, which is worse in the presence 

of more flankers.  

Moreover, crowding effects have been reported to occur in a wide variety of tasks in-

cluding: letter recognition [49] [66-68]; Vernier acuity [68, 69]; orientation discrimina-

tion [63, 70]; stereoacuity[71, 72] and face recognition [50, 54, 72, 73]. Crowding oc-

curs for chromatic stimuli with equiluminant backgrounds, with similar extents to 

crowding in the luminance domain[74]. And crowding also occurs for moving stimuli 

[75].  

Additionally, since natural environments are replete with structure and most of our 

visual field is peripheral, crowding represents the primary limit on vision in the real 

world, Wallis,et.al[76] has examined where crowding occurs in natural scene, revealed 

that target size, eccentricity, local Root-Mean-Squared contrast and edge density can be 

used to make reasonable predictions of the likelihood that an observer will experience 

crowding. 
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As a matter of fact, there is compound crowding[54]: in a given scene, crowding oc-

curs selectively between features[8],  object parts[50] and whole objects[72, 77]. Actu-

ally, object-cantered crowding effects demonstrate compound crowding within the same 

stimulus– crowding between the whole objects, and between the low-level features or 

parts that comprise each whole object –which suggests that crowding operates at multi-

ple stages. These make an all-convergent crowding stage unlikely. Moreover, crowding 

is specific to the similarity between and the configuration of target and flanks. These ev-

idence casts doubt on the idea that crowding is a unitary effect due to a single stage of 

processing, although this is implicitly assumed in most studies on crowding [8, 73], and 

suggest that there is multi-level crowding.  

The emerging consensus from these studies is that crowding is a consequence of spa-

tially pooling features within receptive fields of increasing size: information is averaged 

([78-84] , or not resolved by attention ([85-87]and therefore some is lost. Moreover, 

there are a number of features or hallmarks of crowding and many models for crowding. 

2.3 Saliency 

Kim has proposed that image content can be divided into perceptual content and seman-

tic content[88]. Perceptual content includes attributes such as colour, intensity, shape, 

texture, and their temporal changes, whereas semantic content means objects, events, 

and their relations.  

Since text is one of the typical informative image figures, it has perceptual content 

and semantic content to transmit messages as clearly as possible from author to readers. 

Thus, it has both attention conspicuity and cognitive conspicuity even though it has 

crowding effect by nature. That is to say, it obviously has multi-level saliency from fea-

ture- level to object level.

2.3.1 General definition  

Generally, saliency is defined as what captures human perceptual attention. Here two 

stages of visual processing are involved: first, the parallel, fast, but simple pre-attentive 

process; and then, the serial, slow, but complex attention process. Properties of pre-

attentive processing have been discussed in literatures[89-91], the highly influential fea-
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ture integration theory[89] and Koch’s shifting attention selection[90] explains the visu-

al search strategies. 

2.3.2 Saliency map 

To find the “proto objects”, the attention process is often modelled using a saliency map: 

an internal map calculated by some preattentive mechanism[92] and representing the es-

timated priorities assigned to every location[93]. As a pioneer, Itti et al [94]has pro-

posed a well-known saliency model, in which saliency is based on the centre-surround 

contrast of units modelling simple primary features such as colour, intensity and orien-

tation. Thus visual input is first decomposed into a set of feature maps. Within each map, 

different spatial locations compete for saliency, such that only locations which locally 

stand out from their surroundings can persist. All feature maps feed, in a purely bottom-

up manner, into a master “saliency map”. Since then, the centre-surround scheme has 

been widely exploited in a variety of saliency models, due to its clear interpretation of 

the visual attention mechanism and its concise computational form. However, this sali-

ency model focuses on identifying the fixation points that a human viewer would focus 

on  first [94]. 

Generally, the bottom-up approaches consist of the following three steps [95]: s1) ex-

traction: Multiple low-level visual features are extracted. s2) Saliency computation: us-

ing feature vectors, the saliency of each image pixel is computed and then normalized 

and linear/non s linear is combined to form a master map or a salient map. S3)  A few 

key locations on the saliency map, just like human fixation locations,  are identified by 

winner-take-all, or inhabitation-of return, or other non-linear operation. 

A number of features are fed to the saliency map, including local contrasts of colour, 

orientation, texture and shape features, oriented sub-band decomposition based energy 

[96], ordinal signatures of edge and colour orientation histograms [97], Kullback-

Leibler (KL) divergence between histograms of filter responses [98], local regression 

kernel based self-resemblance [99], and earth mover’s distance (EMD) between the 

weighted histograms [100].  

And the surrounding region of the centre pixel/region is selected as the maximum 

symmetric region [101], and the whole region of the blurred image in the frequency-

tuned saliency model [102].  
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Besides, Mertsching et.al [103] used several region-based features to generate the re-

gion-level saliency map  based on segmented regions. Note that, recently, to deal with 

complicated images, Liu et.al [104] have proposed a saliency tree for an image in a hi-

erarchical saliency representation, in which each leaf node represents a primitive region 

with regional saliency generated by integrating global contrast, spatial sparsity, and ob-

ject prior with regional similarities. Then by exploiting a regional centre-surround 

scheme based on node selection criterion, a systematic saliency tree analysis, a regional 

saliency map and pixel-wise saliency map are obtained.  

2.3.3 Salient structure 

Additionally, detecting salient structures is a basic task in perceptual organization. In a 

given image, image edges are more informative than other image parts, which are de-

tected by the human visual system, and further filtered by the attention process, which is 

effectively able to discriminate the important image edges, known as the “figure,” from 

the less important edges known as the “background.”  

To account for this phenomenon, using a computational theory, Shashua and Ullman 

[105, 106] have proposed a measure denoted saliency, which grows with the length and 

smoothness of the curve on which edge-points lie. And the properties of this saliency 

measure have been considered in [107]. Further, Berengolts A. et.al [108] have modi-

fied this saliency estimation mechanism that is based on probabilistically specified 

grouping cues and on curve length distributions. 

2.3.4 Other computational schemes 

Additionally, there are other formulations for measuring saliency based on different 

theories and principles such as information theory, frequency domain analysis, graph 

theory and supervised learning.  

Within the framework of information theory, saliency refers to rarity represented by 

the self-information of local image features [109], the complexity measured by local en-

tropy [110], and the average transferring information measured by entropy rate [111]. 

According to frequency domain analysis, the saliency map is generated by exploiting 

the spectral residual of the amplitude spectrum of Fourier transform [112], the phase 
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spectrum of quaternion Fourier transform [113], and contrast sensitivity function in the 

frequency domain [114]. Using graph theory, a saliency map is generated at different 

levels by random walks on the weighted graph constructed at pixel level [115] [31] and 

block level [116], and the stochastic graph model is constructed on the basis of region 

segmentation [117]. In supervised learning, under the framework of conditional random 

field [118], a set of features including multi-scale contrast, centre-surround histogram  

and colour spatial distribution are integrated to generate the saliency map. Moreover, 

region feature vectors are mapped to saliency scores across multiple levels to generate 

the saliency map [119].   

Recently, object-level saliency is generated research interest. W.Zhang et.al [120] ex-

ploit GMMs to explicitly construct a salient object/background model. A generic objec-

tiveness measure [121] and object-level closed shape prior are effectively incorporated 

into the saliency models presented in [122] and [123] respectively. Under the frame-

work of low-rank matrix recovery, region segmentation based object prior [124], centre 

prior, colour prior and learnt transform prior[125] are exploited for saliency detection . 

2.4 Clutter scene 

2.4.1 Definition 

Clutter scenes are composed of numerous objects, textures and coloured regions, which 

are arranged in a variety of spatial layouts. And clutter is the state in which excess items, 

or their representation or organization, can cause crowding and lead to a degradation of 

performance at some task [126, 127]. This definition of clutter brings up two key points: 

the association between clutter and the representation or organization of space infor-

mation, and the notion that clutter may depend upon the user’s task. 

Further, there are a number of conspicuous similarities between clutter and crowd-

ing[128]. First, both crowding and clutter increase with information density. Second, 

although they yet cannot be fully explained by acuity lost, both phenomena are most 

prominent in the periphery of the visual field. Third, both of them have closely relations 

to the spatial organization and degrade performance on visual tasks, which involves the 

excessive feature integration over inappropriately large area. Thus, crowding can model 

the clutter based on the analysis of spatial layout, and the measure of clutter can be used 
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to capture and compute the crowding[129].   Inspired by these findings from these visu-

al perception studies, clutter has its basis in visual crowding, and crowding is an im-

portant constituent of clutter. Thus, crowding and clutter may indeed be closely related 

concepts[128].   

2.4.2 Clutter measurement 

Starting from the practical applications of information visualization or display, there are 

strong attempts to quantify something like ‘clutter’, what they call information density.  

In this context, several measures of information density have been proposed. For in-

stance, the number of visual objects, and the number of vertices, the number of elements 

on a web page where an element consist of a word, graphic, or “interest area”, the num-

ber of entries in the source data matrix per unit area, the number of graphic tokens per 

unit area, the number of vectors needed to draw the visualization, the length of the pro-

gram to generate the visualization, the amount of “ink” per unit area as a metric for 

simple black & white maps. Certainly, the amount of clutter has some dependency upon 

the number of objects, graphic tokens, or entries in the source data matrix in the display. 

However, counting the number of objects does not take into account the appearance or 

organization of the objects. 

Since the clutter scene seems to be complex and congested in feature space, and has 

high relations to saliency and colour density, four kinds of measures are proposed to 

represent the different aspects of clutter: edge density, feature congestion, subband en-

tropy, cluster density. Edge density is the space-averaged binary output of the edge de-

tector, where higher values denote more ‘edge’ per unit of area. The feature congestion 

measure captures a bit of space organization as well as the sub-band entropy measure.  

Clutter density explicitly captures the space statistical properties, but still ignores the re-

lationships among the regions.  

Although all of them only capture a limited overview of the perceptual space organi-

zation of clutter, they can inspire us to explore and formulate an appropriate representa-

tion for our particular task. And the following sections will deal with the computational 

details of these measures. 
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A visual pattern is also seen to be complex if its parts are difficult to identify and sepa-

rate from each other. Yet, paradoxically, when the parts are separated or conceptualized 

as a whole the valence of the complexity changes and the pattern becomes simpler [130]. 

This suggests that the perceived complexity of an image also depends on the amount of 

perceptual grouping, a characteristic independent of the quantity of parts that an observ-

er perceives in the scene.  

  Exploring the space organization of clutter, Oliva et al[131] have attempted to de-

termine what factors influence the human representation of ‘complexity’ which is clear-

ly related to that of clutter. And they have suggested that complexity depends upon the 

quantity and variety of objects, detail and colour, as well as upon higher-level, more 

global concepts like the symmetry, organization, and ‘openness’ of the depicted space. 

Since the presence of edges plays an important role in object discrimination in space,  

they have provided edge density[132] to predict subjective judgements of image com-

plexity. The edge density measure attempts to capture the notion of clutter as number of 

objects by calculating the density of edges---the percentage of pixels that are edge pix-

els, as well as a likely correlation of clutter with high frequency content. And it implicit-

ly captures the colour variability since colour variability co-varies to a large extent with 

edge density, when there is a change in object, there is an edge and there also tends to 

be a change in colour. 

From the viewpoint of the visual search in display, the search could be used to deter-

mine basic features of the visual system: search for a target defined by a basic feature 

(“feature search”) would be paralleled, whereas search for a target defined by a combi-

nation of basic features (“conjunction search”) would be serial. Intuitively, complex 

scenes should contain a larger variety of parts and surfaces styles, as well as more rela-

tionships between these regions, and there is less room in feature space to add new sali-

ent items. Rosenholtz et al [9, 126] refer to this condition as feature congestion and pro-

pose that feature congestion is one of the major causes of clutter, shown in Figure 2.3.           
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Increased congestion leads to degraded performance, e.g. in visual searching. Thus they 

present the feature congestion measure of display clutter.  

Moreover, the saliency of an item corresponds qualitatively to the ease of search for 

that item if it were the target, and correlates with the likelihood that a user makes an eye 

movement to that item. And the saliency measures are more versatile for evaluating dis-

plays. In looking for a qualitative measure of the clutter in a display, qualitative 

measures of search performance like saliency measures should suffice. There are rough-

ly two categories of saliency: one based on biologically inspired mechanisms, and the 

other based on a functional rather than biological level.  

In the first types, Itti’s model[94] is perhaps the most popular model of bottom-up 

visual saliency, it starts with linear filters similar to the receptive fields found in the vis-

ual cortex, and then it is applied to a variety of nonlinear neural-like operations. Based 

on the centre-surround contrast of units modelling simply primary features such as col-

our, intensity and orientation, different spatial locations compete for saliency, such that 

only locations which locally stand out from their surroundings can persist. 

In the second types, for example, Rosenholtz's model [133], these utilize the notion 

that the visual system is designed to characterize various statistical aspects of the visual 

display. First, it represents the features of each display element as a point ip  in an ap-

propriate uniform feature space and these features are likely to include such things as 

contrast, colour, orientation, and motion. From the distribution of the features present in 

the display, we compute the mean and covariance of the distractor features, μ  and∑ , 

respectively. The model then defines target saliency as the Mahalanobis distanceΔ , be-

Figure 2.3 After[9]   : Graphical depiction of the Statistical 
Saliency Model. Ellipses represent points of equal salien-
cy. Outer ellipses correspond to greater saliency and easier 
searching.
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tween the target feature vector,T  and the mean of the distractor distribution, where

Δ2 = T −μ( )′∑−1 T −μ( ) . In this equation, T  and μ are vectors, ∑ is a matrix, and the 

prime indicates a vector transpose. The model uses, as the measure of target saliency, 

the number of standard deviations between the target feature vector and the mean dis-

tractor feature vector.  

Essentially, the statistical saliency model represents the local distribution of features 

by a set of covariance ellipsoids in the appropriate feature space, shown in Figure 2.3. 

The volume of the local covariance ellipsoid represented byΔ  therefore gives a measure 

of the local clutter in a display, i.e. of the difficulty of adding a new, salient item to a lo-

cal area of a display. Locally measuring the ellipsoid size, and pooling over the relevant 

display area, gives a measure of clutter for the whole display. A target with a feature 

vector on the σn ellipsoid will have saliency Δ=n. The farther out the target feature 

vector lies on these nested ellipsoids, the easier the predicted search.  

According to the features in Itti’s model[94] and the statistical computation method, 

the implementation of the feature congestion clutter measure involves four stages: 1) 

compute local feature (co)variance at multiple scales, and compute the volume of the 

local co-variance ellipsoid; 2) combine clutter across scale; 3) combine clutter across 

feature types; and 4) pool over space to get a single measure of clutter for each input 

image.     

However, only a bit of perceptual space organization of clutter is captured implicitly 

by the feature congestion measure through looking at feature covariance; it essentially 

captures to some extent the measure of the grouping by similarity + proximity in the 

display. 

To the extent that an image contains redundancy, it can be represented with an efficient 

code while maintaining perceptual image quality. Currently, by making use of the same 

sorts of redundancies as human visual system, sub band image coding methods such as 

JPEG 2000 are efficient and highly successful.  

Based on the notion that clutter is related to the number of bits required for sub band 

(wavelet) image coding, sub-band entropy measure is presented.  A wavelet coder first 
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decomposes the image into a set of sub-bands with different orientations and spatial fre-

quencies. Then, the Shannon entropy within each sub-band is computed as follows: 

 ( )∑−=
i

ii ppH log                                                              (2.1)  

Here, ip is the probability distribution of coefficients in each sub band, and this is es-

timated by binning the sub band coefficients into bins indexed by i  , and computing a 

histogram. And the number of bins is equal to the square root of the number of coeffi-

cients. Finally, the clutter measure is computed as a sum of these sub band entropies, 

Sub band entropy also implicitly deals with certain aspects of perceptual organization 

such as grouping by a combination of proximity and similarity as feature congestion 

measure does.  

In naval navigation display, Lohrenz et al [129, 134-136] have suggested that clutter is a 

function of “colour density” and “saliency”. Saliency refers to how clearly one colour or 

feature “pops out” from the surrounding features in an image, which is estimated by a 

weighted average of colour gradients between adjacent features. Colour density refers to 

how closely-packed are similarly-coloured pixels within the image. And it is computed 

by clustering all the image’s pixels in proximity of location and similarity of colour, 

such that adjacent pixels of similar colours cluster together, and calculating the density 

of pixels in each cluster as the number of clustered features divided by the area of the 

polygon for bounding cluster. 

After clustering all pixels in the image into bounded polygons for a given “seed col-

our” s , a cluster density Dp  is calculated for each cluster polygon p : 

( )∑= ApWcNcDp                                                         (2.2) 

Where:   WC = Weighting factor for colour c   = MEc−1  

                Ec  = Euclidean distance between colours c  and s  in the chosen colour 

space;     

                              e.g., for CIE baL ∗∗  : 

                       = ( ) ( ) ( )[ ]222
scsc bbaaLsLcSQRT −+−+−  

            M  = Maximum distance between colours in chosen colour space 
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                  Nc = Number of pixels of colour c  in the cluster polygon 

                  Ap= Area of cluster polygon p . 

The colour of each pixel in the cluster will be within a colour distance of z from all 

immediately surrounding pixels in the cluster, starting with pixels of colour s. In other 

words, the cluster will “chain” pixels together to form the cluster, starting with each 

pixel of colour s and subsequently including all other pixels within a geospatial distance 

of x, y  and a colour distance of z . If z = 0 , thenDp = Ns / Ap . 

Note that there is an inverse relationship between clutter and “density”: higher densi-

ty tends to predict lower clutter, since density describes how closely-packed like-pixels 

are in the image. 

Furthermore, based on cluster density, both local density sD  and global density ID  are 

defined as the local and global clutter metrics respectively.  

Local density estimates how much an individual seed colour ( s ) contributes to the 

overall clutter of the image. sD is computed as the weighted average of the densities for 

all clusters centred on colour s  

( ) ss AApDpD ∑ ∗=                                                              (2.3) 

Where: Dp=Density of cluster p  mentioned in above paragraph. 

             As  = Sum of areas of all clusters for colour .s  

Global density ( ID ) estimates the clutter for the entire image and it is computed as 

the weighted average of the local clutter densities for all colours in the image: 

DI =
Ds∗As( )∑

AI
                                                                (2.4) 

Where:Ds = Weighted average of clutter densities for all clusters centred on colour s   

            IA  = Sum of all sA ’s for image i . 

Further, local clutter metric is defined as ( )Ds−1 for colours, and global clutter metric 

is defined as ( )ID−1 for image i .  However, the local clutter metric does not account for 

saliency, which might explain why certain features, for instance, red colour, are listed 

with higher clutter values than expected. 

Then, local saliency of a given colour or features is estimated by a weighted average 

of the colour differences between each colour or feature of interest and the immediately 
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adjacent colours or features. And global saliency is estimated as the weighted average of 

the local saliencies for all colours or features in the image. Greater colour distances re-

sult in greater saliency. 

Finally, based on colour density and saliency, the clutter model is proposed as fol-

lows: 

 ( ) 0002.010exp3.6exp115 −⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛−∗−∗−∗= saliencydensitycolourclutter       (2.5) 

Here colour density and saliency are the same as the above mentioned, and use local 

or global values corresponding to the local clutter and global clutter [135] respectively. 

For very low saliencies, clutter remains very low, regardless of colour density. When 

saliency is high, clutter becomes a function of colour density only. 

2.5 Basic edge operators  

Since edge density and orientation are very important to measure or predict crowding, 

clutter, and also edge points are significant to get desirable closed and infinite curves 

with increasing saliency.  Thus, reliable edge operators are required. In our work, the 

Kirsch operator will be used to capture edge density and orientation, and the edge detec-

tor with embedded confidence will be used to obtain the reliable locations of edge 

points. 

2.5.1 Kirsch operator

Edge information for a particular pixel is obtained by exploring the brightness of pixels 

in the neighbourhood of that pixel. If all of the pixels in the neighbourhood have almost 

the same brightness, then there is probably no edge at that point. However, if some of 

the neighbours are much brighter than the others, then there is a probably an edge at that 

point. 

Measuring the relative brightness of pixels in a neighbourhood is mathematically 

analogous to calculating the derivative of brightness. Brightness values are discrete, not 

continuous, so we approximate the derivative function. A Kirsch edge detector algo-

rithm is used to detect edges in 8-bit grey scale images. 
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The Kirsch operator is a non-linear edge detector that finds the maximum edge strength 

in a few predetermined directions. It identifies both the presence of an edge and the di-

rection of the edge, illustrated in Figure 2.4. There are eight possible directions: north, 

northeast, east, southeast, south, southwest, west, and northwest.  

The operator takes a single kernel mask and rotates it in 45 degree increments 

through all eight compass directions: N, NW, W, SW, S, SE, E and NE. For each direc-

tion, Figure 2.4 shows an example of edge, a convolution table, and the encoding of the 

direction. In the image sample, the edge is drawn in white and direction is shown with a 

black arrow. Notice that the direction is perpendicular to the edge. The trick to remem-

ber the edge direction is that the direction points to the brighter side of the edge. The 

eight directions are grouped into four orientations: NE_SW, N_S, E_W, and NW_SE. 

The edge magnitude of the Kirsch operator is calculated as the maximum magnitude 

across all directions: 

( )∑∑
−= −=

++= ⋅=
1

1

1

1
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i j
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Where z enumerates the compass direction kernels, and 
( )zg as shows 

( ) ,
533
503
533

0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−

−−

=g ( ) ,
333
503
553

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−

−

−

=g ( ) ,
333
303
555

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−

−−

+++

=g  

( ) ,
333
305
355

3

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−

−+

−++

=g ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−

−−

=

335
305
335

4g , ( ) ,
355
305
333

5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−−

=g   

( ) ,
555
303
333

6

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−−−

=g ( ) .
553
503
333

7

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−−−

=g  

For a convolution table ( )zg , calculating the presence and direction of an edge is done: 

( ) ;1 IgDerivNE ∗=   ( ) ;5 IgDerivSW ∗= ( ) ;2 IgDerivN ∗=    ( ) ;6 IgDerivS ∗=  

( ) ;0 IgDerivE ∗= ( ) ;4 IgDerivW ∗= ( ) ;3 IgDerivNW ∗= ( ) IgDerivSE ∗= 7

Then, find the value and direction of the maximum derivative, 

=EdgeMax Maximum of eight derivatives;    =DirMax Direction of EdgeMax . 

Notably, the following priority order determines which direction gets picked if more 

than one derivative has the same magnitude. (a) ;DerivW  (b) ;DerivNW (c) ;DerivN  (d)

;DerivNE (e) ;DerivE  (f) ;DerivSE (g) ;DerivS (h) .DerivSW This means that if, for in-

stance,DerivN and DerivE  are equal, DerivN must be picked. Shown in Figure 2.5, the 

edge map is obtained by Kirsch operators with the presence of an edge and the direction 

of the edge.  

 
Figure 2.5 Input image and its Kirsch’s edge map 
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2.5.2 Edge detection with embedded confidence 

Usually, the optimality of an edge detector can only be assessed in the context of a well-

defined task. That is, the quality of the edge map is directly related to the amount of 

supportive information it carries into the subsequent processing stages. Since this in-

formation is extracted after the edge map is generated, a measure of confidence should 

be associated with the bottom-up information stream.  

The paper [2] defined a confidence measure by using information inherently existing 

in the regular sampling lattice, which was not employed in the computation of the gra-

dient magnitude, and proposed an edge detection approach with it.  

An often performed operation in computer vision and image processing is computing 

the weighted average of the data in a ( ) ( )1212 +×+ mm  window sliding over the image. 

The data { }ija and the weights { }ijw , mmji ,,0,,, ……−=  are combined to obtain  

 ∑∑
−= −=

=
m

mi

m

mj
ijijawoutput                                                   (2.7) 

And the output is associated with the centre of the window, i.e., the location on the 

sampling lattice corresponding to the window coordinates i = j = 0.  

Using ija  or ijw  as the element on the ith  row and jth column, the ( ) ( )1212 +×+ mm da-

Figure 2.6 a) Window operators as elements in a vector space, and b)  . After[2] 

a)                                                                          b) 



 

38 

ta A  and weight Wmatrices can be defined. The latter is the mask applied by the win-

dow operator. Written as a matrix inner product (2.7) becomes 

                                        (2.8) 

Where the invariance properties of the trace are used, See Appendix A for a short 

compendium on matrices. The output of the window operator can be also written as a 

vector inner product, where the vectors ]vec[A=a  and ]vec[W=w  are obtained by 

stacking up the columns of the corresponding matrices 

waaw TT ==output                                                          (2.9) 

In R 2m+1( )2  the vector w  defines a one-dimensional subspace and let w⊥ be its 

2m+1( )2 −1⎡
⎣

⎤
⎦ -dimensional orthogonal complement. Since for any b ∈ w⊥  the output of 

the window operator is 0, such data is “invisible” to the window operator. As a direct 

consequence we have 

( ) awbaw TT =+=output                                                 (2.10) 

Showing that a very large number of data vectors (image neighbourhoods) yield the 

same response.  This fact is well-known in the vision literature. For example, it is often 

observed that the gradient operator can give a large spurious response in an apparently 

unstructured neighbourhood. Actually, by approaching the window operation in ( )212 +mR  

it is possible to predict such behaviour. In practice a low-level computer vision task re-

quires combining the output of several window operators. For example, the gradient is 

estimated using two differentiation masks. The two differentiation masks define a hy-

per-plane in R 2m+1( )2 .  Let w⊥  be the 2m+1( )2 − 2⎡
⎣

⎤
⎦ -dimensional orthogonal comple-

ment of this plane, illustrated in Figure 2.6a. w⊥ is the null space of the gradient opera-

tor. The projector onto the subspace (plane) of the gradient operator is the

2m+1( )2 × 2m+1( )2matrix  

2
T
2

T
22

1
T

T
1

ww
ww

ww
wwp +=
1

1

                                                            (2.11) 

]trace[]trace[ TT WAAW ==output
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Without loss of generality it can be assumed that the data is normalized to a unit vec-

tor, .1=a  Its projection onto the plane of the gradient operator is the vectorPa . The 

definition of 1w  and 2w  implies that the orientation of Pa in the plane is the estimated 

orientation of the gradientθ̂ . An ideal edge template t , with the same estimated gradient 

orientation θ̂  can now be defined. Thus, the unit vector t is always located in the plane 

Paa, somewhere outside of the subspace of the gradient operator (Figure 2.6a)). Since 

only the estimated gradient orientation was used to define t , only the pattern of the data 

was taken into account. Inspecting Figure 2.6a, the definition of a simple measure of 

confidence for the presence of an edge in the data processed by the gradient operator is 

as thus: 

atT=η                                                            (2.12) 

Both t anda being unit vectors, η  is the absolute value of the cosine of their angle in

R 2m+1( )2 . Interpreted in the image domain, η is the absolute value of the correlation coef-

ficient between the normalized data and the template. Moreover, the template is defined 

using onlyPa , i.e., the information contained in the subspace of the gradient, while η is 

computed based on t andawhich are vectors in R 2m+1( )2 .The confidence measure incor-

porates information from both the data and the template which is not in the gradient 

subspace and, thus, is not used to determine θ̂ . Therefore, η provides an independent 

estimate for the presence of the assumed edge model in the processing window. 

In the discrete domain, only the samples ( )jif ,  are available and the two partial deriva-

tives have to be computed by numerical differentiation. A possible approach is to ap-

proximate the local structure of ( )yxf ,  by a polynomial surface which takes the value

( )jif , at the sampling points. The polynomial coefficients are then estimated by least-

squares and the partial derivatives are analytical expressions in these coefficients. If or-

thogonal polynomials defined over a discrete interval are employed, all the computa-

tional steps can be replaced by an a priori computed differentiation mask.  
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  A large family of differentiation masks are separable, the weights being obtained 

from the outer product of two one-dimensional sequences ( )is  and ( )jd ,

i, j = −m,…, 0,…,m.  these masks can be written as 
TsdW =                                                              (2.13) 

The following properties are always satisfied for i, j = −m,…, 0,…,m   

                                          ( ) ( )ii −= ss   ( ) ( )iss ≥0   ( ) 1=∑
−=

m

mi
is         

( ) ( )jdjd −=  ( ) 00 =d   ( ) 0=∑
−=

m

mj
jd                                 (2.14) 

The two sequences are orthogonal since 

( ) ( ) ( ) ( ) ( ) ( ) 0
1

1

=+== ∑∑∑
=

−

−=−=

m

imi

m

mi
idisidisidisdsT

                         (2.15) 

Their symmetry properties yield a four-fold symmetry/anti-symmetry for the mask 

W  defined in (2.13) 

( ) ( ) ( ) ( )jiwjiwjiwjiw −−=−−−=−= ,,,,  ( ) 00, =iw  .,,0,,, mmji ……−=            (2.16) 

The maskW performs numerical differentiation along the rows of the data followed 

by smoothing of the results. 

Indeed, 

[ ] [ ] ( )∑
−=

−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

====
m

mi
i

T
i

T
m

T
m

ads
da

da
output TTTT sAdsAdsAW tracetrace     (2.17) 

where ai
T are the rows of the data matrix A , thus W implements∂ ∂x.Differentiation 

along the columns followed by smoothing, implementing∂ ∂y,    is obtained with the 

maskWT = dsT.  This definition corresponds to the usual window coordinates, i.e., the 

positive x − axis  points toward the right and the positive y− axis downward. Note that 

the relations between the two differentiation masks and their corresponding vectors is 
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( ) ( )T21 WwWw vecvec ==                                             (2.18) 

The Frobenius norm of W  

[ ]( ) [ ]( ) dssddsWWW TTT ⋅===
2121 tracetrace

F
                     (2.19) 

is the product of the vector norms of smoothing and differentiation sequences. The 

matrix W having rank one, its Frobenius norm is also equal to the sole nonzero singular 

value (A.7). Both masks are nilpotent since  

( ) OsdsdsdsdWW TTTT ===                                                 (2.20) 

based on (2.13). As expected, the mean value of the data matrix A  

( ) ∑∑
−= −=+

=
m

mi

m

mj
ijam

a ,
12

1
2

                                                    (2.21) 

is discarded when the differentiation masks are applied. The estimated gradient mag-

nitude is  

[ ] [ ]( ) 2122 tracetrace WAAWT +=g                                     (2.22) 

and the estimated gradient orientation is  

[ ]
[ ] .trace

tracetanˆ 1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

AW
WA
Tθ                                                  (2.23) 

After gradient estimation, with the equation (2.22) and (2.23), every pixel in the im-

age is associated with an edge (gradient) magnitude ĝ  and an edge orientationθ̂e .  
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Instead of the magnitudes it is more convenient to use their empirical cumulative distri-

bution function.  Let [ ] [ ] [ ]kggg ˆˆˆ 21 ≤≤≤ …  be the ordered set of distinct magnitudes val-

ues. Then, for a pixel its edge magnitude [ ]kĝ  is replaced with the probability  

[ ][ ]kk gg ˆˆProb <=ρ                                                            (2.24) 

  Note that kρ is the percentile of the cumulative gradient magnitude distribution. Eve-

ry pixel is now associated with two values between 0 and 1, ρ andη . The former char-

acterizes the estimated gradient magnitude, the latter the confidence in the presence of 

an edge pattern oriented according to the estimated gradient orientation. These two 

numbers define a point in the diagram,−ρη  illustrated in Figure 2.6 b). And in the con-

text of diagram,−ρη  nonmaxima suppression and hysteresis thresholding can be de-

fined.  

 
  Let ( ) 0, =ηρf be the implicit equation of a curve in the ηρ − plane. With a “point 

in polygon” algorithm from computational geometry, both nonmaxima suppression and 

Figure 2.7 a) Original image. b) Traditional (Sobel) edge map. c)  Kirsch edge 
detector; d) Edge map with embedded confidence

a)                                                                       b)                                             

 c)                                                                          d) 
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hysteresis thresholding are used to determine if the point is inside or outside of the pol-

ygon defined by ( )ηρ,f  and they calculate the coordinates of edge points with the em-

bedded confidence .η    

Since this edge detector embedded in confidence fills in most missed corners in the 

hysteresis thresholding step, for example, the edge map shown in Figure 2.7d), it can 

help us to obtain the contour or shape to the object and have access to the global infor-

mation. 

2.6 Summary  

In term of function, text is congruent with Ergonomics criterion of legibility, readability, 

and conspicuity to transmit informative message to observers from the moment of con-

struction of its appearance. And in object-centred display, its physical appearance 

makes observer feel crowding and clutter, meanwhile it’s still salient enough to be per-

ceived. Thus, these related concepts show different dimensions of text. Thus, the char-

acteristics of all these aspects coexist in text and provide insights or complete under-

standing for text detection.  

Additionally, edge points are very important to predict crowding or measure clutter or 

get salient structure, and also very significant to get desirable closed and infinite curves 

with increasing saliency. Two kinds of reliable edge operators are introduced, including 

Kirsch operator, and edge detector with embedded confidence. The former provides the 

edge orientation and edge point direction, and the latter provides the confident locations 

of edge points. Both of them will be applied to our task to get features in region-levels. 
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Chapter 3  

Global Properties of Text Appearance 

Text is corps of letters with in-built spatial coherence which makes text show a natural 

crowding effect. Meanwhile saliency is maintained by the salient structures originating 

from its design and construction.  The coexistence of crowding, clutter and saliency re-

veals the different dimensions of text appearance in more global manner, and the char-

acteristics in these dimensions describe the global properties of text figures in image.   

For the purpose of breaking down, or at least decreasing the crowding effect to make 

the target “pop out” in the clutter scene, this chapter deals with the theories, characteris-

tics and computational models of crowding, which also reveals the properties of text 

appearance in more global manner. And also, the correlates of crowding, saliency and 

clutter are discussed to help us understand the text figure completely, and figure out the 

concrete subtasks of text detection from image with clutter scene in computational way. 

3.1 Characteristics of Crowding  

Levi has summarized a number of features or hallmarks of crowding that are widely 

considered to be ‘‘true”. Some of these represent the ‘‘facts” that have to be explained 

by any viable theory of crowding [8, 54].  

These “facts” tells us several key points:  1) Critical spacing is proportional to the 

signal size, there is an association between spacing and target size, just like letter spac-

ing to letter size in type design; 2) Anisotropy means there is a different crowding effect 

on different orientations, and a stronger effect in horizontal orientations; 3) Different 

positions have different effects, this means that relative position is another significant 

factor. 4) Similarity between objects determines the crowding effect. The more similari-

ty there is, the stronger crowding effect there is. 5) Averaging of signals. This connotes 

the statistical average of features of component stimuli. 
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3.1.1 Crowding, eccentricity and space density of objects  

Crowding depends on the eccentricity of a target object and how densely spaced the sur-

rounding objects are. At a given eccentricity, identification of a crowded target im-

proves as the distance between the target and flankers increases.  

In 1970, Bouma[49] has stated ‘for complete visual isolation of a letter presented at 

an eccentricity ofφ  , it follows that no other letters should be present (roughly) within 

0.5φ distance.’ This gives rise to the notion of a critical spacing that is proportional to 

eccentricity. While Bouma’s proportionality is constant, b varies across studies, depend-

ing on how it is both measured and computed, but it is widely reported to be approxi-

mately 0.4–0.5. Also several recent studies have shown that the extent of peripheral 

crowding is more or less invariant to target size. So if the entire stimulus (including fix-

ation) is scaled, i.e., the critical spacing of crowding scales with eccentricity, perfor-

mance is unchanged. Outside the fovea, the critical spacing is surprisingly large, typi-

cally equal to about 1/3 the eccentricity, but at the fovea, estimates of critical spacing 

are quite small, 1/10th of a degree or less [67, 137].  

The strength and extent of peripheral crowding are much greater than the strength and 

extent of masking [63, 138], so that in peripheral vision, the suppressive spatial interac-

tions due to nearby flanks are not likely to be a consequence of simple contrast masking. 

Moreover, the threshold versus contrast function for crowding is quite unlike that for 

ordinary masking [139]. 

However, near the limit of resolution [140] in the normal fovea, the extent of ‘‘crowd-

ing” is proportional to stimulus size and cannot easily be distinguished from ordinary 

masking [141]. For instance, with letters, crowding and masking may get confused in 

the fovea because of the effects of blur, so that what looks like crowding is actually 

partly masking.  

With Gaussian or Gabor targets, the extent of ‘‘crowding” is also proportional to 

stimulus size [141, 142]and is over a more than 50-fold range of target sizes. Over this 

large range, foveal ‘‘crowding” is scale-invariant. Moreover, Polat et.al [143] have re-

ported that threshold elevation for orientation discrimination is very similar to  the de-

tection of a Gabor patch among Gabor flankers, which has been ascribed to lateral 

masking.  
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These studies demonstrate that the critical spacing is proportional to the signal size, 

keeping the signal at the same eccentricity (zero), and both the strength and extent of 

foveal ‘‘crowding” can be predicted directly by the strength and extent of masking 

[141].  

Note that, with Vernier targets, which are small and impervious to blur, crowding is 

qualitatively similar in foveal and peripheral vision [144].  

3.1.2 Anisotropy 

Crowding in peripheral vision is not isotropic. There is a very substantial radial-

tangential anisotropy. 

 On average, crowding extends from about 0.1×  the target eccentricity in the tangen-

tial direction to ×≈ 5.0 the target eccentricity in the radial direction [67]. And there is 

also a horizontal vertical asymmetry in crowding. In all four quadrants of visual space, 

crowding is significantly stronger when the target and distractors are horizontally rather 

than vertically arranged[145].  

The extent of crowding is also reported to be field dependent. It is stronger when the 

distractors and target are within the same visual field than in separate visual fields, de-

spite equal retinal distance [146]. Since flankers have a stronger effect on orientation 

discrimination (i.e., they reduce percentage correct responses more [85], and the ‘‘reso-

lution of attention” (the minimum spacing at which observers can select individual 

items) [147] which is coarser in the upper visual field than in the lower field, crowding 

is stronger in the upper field than in the lower field. 

3.1.3 Asymmetry 

Peripheral crowding is asymmetric. Bouma has noted that two flankers (one on each 

side of the target letter) are much more potent than one, and that crowding is stronger 

with a single flanker at an eccentric locus greater than the target compared to a single 

flanker at an eccentric locus nearer to the fovea (at the same angular separation from the 

target) [49]. This inner–outer asymmetry occurs for recognition of letters [148], the 

identification Gabor patch orientation [149] and face recognition [77]. 
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Motter and Simoni [150] have provided a very simple explanation for this asymmetry 

in terms of cortical geometry: ‘although the angular separations for near and far flankers 

are the same in visual space, the far flanker is actually closer to the target than the near 

flanker after mapping to cortical space”. But we still know of no similar explanation for 

the large radial–tangential anisotropy. 

3.1.4 Crowding depends strongly on target/flanker similarity  

Targets and flankers, as stimuli, are usually defined by changes in some properties, and 

called first-order stimuli and second-orders stimuli respectively. Here, stimuli which are 

defined by changes in luminance are first-order stimuli, and second-order stimuli are de-

fined via contrast, texture, colour and motion. When targets and flankers are similar, 

they are likely to be grouped, and when they are dissimilar, they are ungrouped and the 

target ‘pops out’, i.e., salience. Thus, crowding will be stronger and more extensive 

when the target and flankers are similar in a number of dimensions. These dimensions 

include shape and size [151, 152], orientation [63, 142, 153], polarity [151, 154], spatial 

frequency [155] , depth [151] , colour [151, 156-158], synesthetic colour to some degree 

[159], motion [160]  and  order (first- vs. second- order [161].   

Temporal grouping and spacing regularity also modulate crowding [162]. Crowding is 

maximal when targets and flankers are presented nearly simultaneously; presentation of 

targets before or after the flankers (by≈  150ms) is sufficient to break crowding [163, 

164].  

And the strength of crowding depends monotonically on the target: flank contrast 

ratio [155]. Identical target and flank contrasts result in the strongest crowding from the 

simple grouping by contrast hypothesis. Importantly, at any target-to-flank spacing, the 

threshold and saturation contrasts of the flanks  affecting the signal are the same [139].  

Similarly, when a target and flanker seem to have a regular texture, it is difficult to 

make judgments about the target and crowding is strong. The regularity of inter-element 

spacing plays an important role in determining the strength of crowding: regular spacing 

leads to the perception of a single, coherent, texture-like stimulus, making judgments 

about the individual elements difficult [52]. For instance, the remarkably similar word 

crowding effect irrespective of the flanker configurations suggest that word crowding 

arises as a consequence of the  interaction between low-level letter features [47].  
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Tuning along many of those dimensions would be expected based on low-level con-

siderations and also on the basis of grouping. A set of seemingly “high-level” object-

centred crowding effects can arise from “low-level” interactions between the features of 

letter-like elements[79].  The strong contrast polarity tuning [151, 165] has provided an 

important piece of evidence used to support both low-level and high-level explanations 

for crowding. Under certain conditions, increasing the size or number of flanking rings 

results in a paradoxical decrease in the magnitude of crowding—i.e., the bigger or more 

numerous the flanks, the smaller the crowding [162].  

3.1.5 Statistical properties-average 

The widely held notion is that crowded signals undergo a form of compulsory pooling 

or an averaging of signals.  

The earliest reliable report by Parkes et al. [81] suggests the average ensemble orien-

tation. It has elegantly demonstrated that although observers are unable to correctly re-

port the orientation of an individual patch under conditions of crowding, they can relia-

bly report the average ensemble orientation, which suggests that the local orientation 

signals are combined rather than lost.  

This finding has been demonstrated throughout the crowding studies under a variety 

of different conditions and forms the basis of the faulty integration theory. 

3.2 Theories of Crowding 

There are many kinds of theories for crowding that range from the low-level receptive 

field to high-level attention from the different viewpoints comprised of optical physical 

proposals, neuronal proposals, attention proposals, and computational proposals [8].  

These theories suggest several key points: 1) The association between crowding and 

shift select, and no crowding in large stimuli; 2) The distance over which spatial interac-

tion occurs is related to the size of the receptive fields that are most sensitive to the tar-

get. This means that the target size, distance among spatial items have close relations to 

the size of the receptive field, and the crowding pooling region is related to the receptive 

field. Also, 3) Crowding is specific to the attentional selection region. 
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Thus the computational proposals are given, such as averaging position, coherent tex-

ture derived from spatial averaging, grouping. 

3.2.1 Optical proposals 

In foveal vision, the “crowding effect” has a strong relationship with both the eye’s 

point spread function and stimulus’ physical properties, such as the size and distance 

from the eyes. 

Crowding is a consequence of the ‘‘physics” of the stimulus [166]. When the letters 

are small and closely spaced, the fovea “crowding effect” appears to be the omission of 

an interior letter and the merging of two neighbouring letters; neither spatial uncertainty 

nor split attention can explain this conduct.  

However, the foveal “crowding” effect has, at least in part, been ascribed to the effect 

of the eye’s point spread function [167, 168]. It has also been argued that in foveal vi-

sion nearby flanks displace the ‘‘critical spatial frequency band” used to detect the ori-

entation of the gap (horizontal vs. vertical) in a Landolt C, to higher spatial frequencies, 

thereby reducing the visibility of the cue [165]. 

Near the limit of visual acuity, the optical explanation suggests that crowding only 

occurs for small targets and does not occur for large blurred stimuli. Chung and Tjan 

[169] have found a shift in peak spatial frequency for all letter sizes, but only at the 

smallest letter separation. Although the shift is tiny, this provides a piece of important 

evidence that the human visual system shifts its sensitivity toward a higher (object) spa-

tial-frequency channel when identifying letters in the presence of nearby letters. 

3.2.2 Neuronal proposals 

From the standpoint of the neuron, there are several kinds of explanations of crowding 

comprised of large receptive fields (spatial –scale shift), perceptive hyper-columns, 

long-range horizontal connections and contrast masking.  
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When the target and flank overlap within the same neural unit, for instance when both 

fall within a single receptive field, crowding occurs. This means that crowding will oc-

cur over a range of target sizes, rather than just at the acuity limit, and that the flanking 

distance will be proportional to the target size.  

In 1963, Flom et al [66]  suggested that the distance over which spatial interaction 

occurs is related to the size of the receptive fields that are most sensitive to the target. 

Since peripheral vision is characterized by reduced visual acuity, larger receptive fields 

will be engaged, and this ‘‘scale shift” will result in proportionally larger crowding dis-

tances. The scale shift hypothesis can predict the fovea crowding effect. Actually, the 

extent of ‘‘crowding” does indeed depend on target size over a 50-fold range of target 

sizes [141]. In peripheral vision, with broadband stimuli (e.g. letters), the spatial extent 

of crowding will scale with the uncrowded acuity. Indeed, for Vernier acuity [68, 144] 

the spatial extent of crowding appears to scale with the unflanked Vernier acuity in both 

amblyopic and peripheral vision. 

However, scale-shift hypothesis is not reasonable in peripheral vision with stimuli 

composed of narrow-band features. Actually, with narrow-band stimuli, crowding is 

largely independent of stimulus size in the periphery, depending only on eccentricity, 

and peripheral crowding extends over a greater distance even when tested with the same 

size (and spatial frequency) stimuli as the fovea [138]. 

Directly starting from the eccentricity dependence (φ ) of crowding, in peripheral vi-

sion, the extent of crowding for letters is φ×≈ 5.0 in the radial direction as mentioned 

above. And for Vernier acuity, crowding extends approximately 0.1φ   at all eccentrici-

ties, about the size of a hyper-column in the primate visual cortex, leading to the sug-

gestion that the extent of crowding corresponds to a fixed spacing on the cortex, and 

that crowding occurs when competing stimuli fall within the same (or an adjacent) 

‘‘perceptive hyper-column” as the target [68]. 

This notion can predict both the eccentricity dependence and the relative target size 

independence [74]. Moreover, it does not treat the fovea as a ‘‘special case”. A foveal 
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perceptive hypercolumn is min4arc≈ , about the size of a just recognizable letter in the 

fovea and the distance over which flanks interfere with foveal Vernier acuity [68, 69]. 

 A recent study suggests that the switch from assimilation (crowding) to repulsion (sali-

ence, or making different stimuli pop out) [170] depends on cortical distances [171]. 

The cortical distances refer to the distance (up to 1-2mm) with which long-range hori-

zontal connections between neurons extend in primate area, which translate to approxi-

mately 0.1–0.2φ  in peripheral vision [172].  

Thus long-range horizontal inhibitory connections have approximately the requisite 

length to account for the extent of ≈0.1–0.2φ   of peripheral crowding (at least for Ver-

nier acuity).  However, the fixed cortical distance of long-range connections predicts in-

teractions over a fixed retinal distance, rather than interactions that are related to the 

target size in the fovea. 

3.2.3 Attention proposals 

In the visual search task, even when items are easy to resolve visually, there are addi-

tional spatial constraints that may limit our ability to select and scrutinize individual 

items. Our attention will have the finest scale to operate on the spatial details of an indi-

vidual item. Intriligator and Cavanagh[147] refer to this as ‘‘attentional resolution”.  

Objects spaced more finely than this limit are beyond the limit of attentional resolu-

tion and thus cannot be selected individually for further processing based only on their 

location. He et al.[85] have argued that peripheral crowding results from limitations set 

by attentional resolution. In Cavanagh & Holcombe’s experiment, in the fixed location 

condition, both target and flankers appear to flicker in place, and a flickering test letter 

is flanked and crowded by flickering distractors.  

However in the moving attention condition, the target appears to move, while the 

flankers don’t, therefore the test letter has no distractors along the target’s radial arm. 

Attention to a single location is revealed. Thus, Cavanagh et al [173] have suggested 

that crowding is specific to the attentional selection region and does not occur outside it. 

When attention moves with the guide, crowding is greatly diminished. Accordingly, 
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crowding is specific to the arrangement of distractors within a moving attentional fo-

cus—and not set by the arrangement of distractors in retinotopic coordinates. 

Notably, crowding is reduced when target and flankers differ in colour [151, 152] or 

when the target and flankers are the same colour, but the target appears on a different 

coloured background blob [174]. Po˜der has explained this on the basis that ‘‘exoge-

nously controlled attention is attracted to the location of a salient colour singleton (ei-

ther a target itself or a coloured blob), and [this] facilitates visual processing in that lo-

cation”. He argues further that the coloured blob experiment rules out a non-spatial 

colour based selection.  

3.2.4 Computational proposals 

Most crowding tasks require that the observer not only detects the features, but  also 

isolates and localises them. One of core tasks of the visual system is to bind the features 

into a single percept (of object); however, feature binding can fail resulting in the expe-

rience of illusory conjunctions of physically disjunct features [175, 176].  

Pelli et al.[139]suggest that both illusory conjunctions and crowding may be symp-

toms of excessive feature integration because small integration fields are absent from 

the periphery, leading to inappropriate feature integration by large peripheral integration 

fields. The process of inappropriate feature integration must also somehow suppress the 

detection of valid features [86], as might occur if the process of feature integration is a 

competitive one like the association field model [177] which integrates information 

across neighbouring filters tuned to similar orientations.  

In Nandy and Tjan’experiments, the classification images added to the Gaussian 

noise fields contain sufficient information to reveal the second-order correlation struc-

tures of sub-template features, enabling us to infer the shape of the putative features 

used by the human observer and to compare them to features used by an ideal-observer 

model. The comparison provides a metric for feature validity. During crowding, they 

found a decrease in feature validity, consistent with the prediction of inappropriate fea-

ture integration and they also found a decrease in the number of valid features, which is 

not predicted by spurious feature integration.  
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And  in letter identification,  the crowding effects results from the inappropriate pool-

ing of target and flanker features and that this integration is more likely to match a re-

sponse template at a subsequent decision stage with similar rather than dissimilar flank-

ers [51]. 

In crowded displays, observers frequently mistakenly report a flanker rather than the 

target. This substitution-like effect of crowding reflects positional uncertainty. However, 

when required to report all the letters without correct order, the proportion of correct 

target responses is much higher. Clearly, some information about the target is preserved, 

but the location information is lost. A number of studies suggest this crowding effect.  

Greenwood et al ‘s computational modelling  [82] reveals that the perceived position 

in the presence of flankers follows a weighted average of noisy target- and flanker-line 

positions, rather than a substitution of flanker-features into the target. Together, the ex-

perimental results suggest that crowding is a pre-attentive process that uses averaging to 

regularise the noisy representation of position in the periphery.  

In the presence of nearby distracting clutter-works for complex letter-like stimuli, a 

set of seemingly “high-level” object-centred crowding effects  can arise from “low-level” 

interactions between the features of letter-like elements [79]. And a model based on the 

probabilistic weighted averaging of the feature positions within contours  accounts for 

these experimental results.  

And early in 2005, Strasburger [87] and Popple [178] have respectively found that 

the proportion of confusions between neighbouring positions is higher than that predict-

ed by chance performance. Thus, ‘in a large part of the region where crowding occurs, 

the recognition of a character, irrespective of where in a string it is, is nearly as good as 

that of a singular character.” And the errors might be attributed directly to a noisy stim-

ulus representation, with both object and positional uncertainty under crowded condi-

tions. 
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Crowding occurrences explain the texture  we see when object recognition fails [73].  

Some reveal when the features of one or more objects encroach on the receptive field in 

which the object of interest (e.g. a letter) falls. The object then is difficult or impossible 

to see, and becomes part of a coherent texture. The implication is that the information 

kept consists of summary statistics, comprising information about distributions of fea-

ture values rather than localized feature maps.  

Parkes et al. [81] have found that in peripheral vision, crowding in an orientation dis-

crimination task is distinct from masking. Importantly, the orientation signals are pooled 

rather than being lost through masking. They have concluded that crowding reflects 

compulsory averaging of signals (e.g. image features), i.e. they form a texture.  

For the natural image, J. Freeman and Simoncelli (2011) have developed a crowding 

model based on a texture synthesis algorithm so that spatial structure is synthesized 

within regions whose size scales with eccentricity. To test the model, this scale factor is 

varied to produce a set of naturalistic stimuli that are progressively ‘‘texturized’’ with 

eccentricity. Wallis et al [76] have examined where crowding occurs in natural images, 

requiring observers to identify which of four locations contains a patch of “dead leaves’’ 

(synthetic, naturalistic contour structure) which are embedded into natural images. The 

results suggest that crowding models are based on the spatial averaging of features in 

the early stages of the visual system.  

In peripheral vision, there is a predilection to perceptually group elements and features 

into a Gestalt. Banks et al. [179] accounts for the inner/outer asymmetry on the basis 

that multi-element flankers group together separately from the target, reducing the cause 

of the crowding and thus the asymmetry. Livne and Sagi [180] provide strong evidence 

for configural effects in peripheral crowding. They arrange Eight Gabor patches to sur-

round a central one in a way that creates several global configurations and allows for the 

Orientation discrimination and contrast detection of the central Gabor to be measured. 

These measurements reveal differences in the magnitude of crowding produced by the 

different configurations. They find that the crowding effect is stronger when random 
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configurations are used and is reduced considerably when a smooth one is used. Further, 

there are configural effects in the object-level. Specifically, recognition of an upright 

target face is more strongly impaired when surrounded by a crowd of nearby upright 

faces, than by a crowd of inverted faces [72]. 

3.3 Models of crowding 

Although many aspects of crowding have been studied, few are computational or make 

specific quantitative predictions. The large number of different models can be roughly 

classified into three basic types [54] : (i) masking, (ii) pooling (either of low-level fea-

tures or by attention). Because of pooling, features of the target and the flankers are in-

tegrated, and, thus, feature identification is lost. (iii) substitution, in substitution models.  

Because of positional uncertainty or limited attentional resolution, features of the target 

and flankers are mislocalized or not “accessible” by attention. These models are largely 

descriptive and have been reviewed [8]. There are a few quantitative models of crowd-

ing as per the following. 

Wilkinson et al. [64] have proposed a model incorporating spatial summation by 

complex cells and reciprocal inhibition between simple and complex cells. In this model, 

isolated visual contours are processed by simple cells, which suppress weak complex 

cell responses. However, in the presence of nearby similarly oriented flanking contours 

in a small area, complex cells respond vigorously because of spatial pooling, and they 

then suppress simple cell activity within their receptive field area. Notably, the pooling 

parameter of this texture model is based on simulations with the best fit to the data ra-

ther than on physiology or some other principled approach. Based on the principles of 

population coding, van den Berg et al [181] present a quantitative and physiologically 

plausible model for spatial integration of orientation signals.  

Dayan and Solomon[182] take a very different approach, in which spatial selection of 

a target among flankers emerges through a process of Bayesian inference in a computa-

tional form and they build upon Parkes et al.’s proposal that ensemble properties are en-

coded in peripheral vision. Expanding upon the set of statistical features under consid-

eration, Benjamin Balas et al [78] represent peripheral stimuli by the joint statistics of 

responses of cells sensitive to different positions, phases, orientation, and scale. This 

“textural” representation by summary-statistics predicts the subjective “jumble” of fea-
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tures often associated with crowding. And this representation can be widened to encom-

pass a much wider range of inputs.  

3.4 Breaking crowding 

According to many aspects of crowding (as summarised above), under certain circum-

stances, crowding might be reduced or released completely [54]. 

• When targets and flankers are similar, they are likely to be grouped, and when they 

are dissimilar they are ungrouped and the target “pops out”.  

• In multi-element flankers, when the flankers are grouped separately from the target, 

crowding can be reduced. Meanwhile when the target seems to be distinct from the 

flankers, crowding is weak or absent. 

• When flankers are suppressed from visual awareness, crowding is released.  

• Since Object-centred crowding effects adhere to all of the diagnostic criteria for 

crowding and are not due to masking, object-level crowding is released when there 

are similarity effects or groupings of low-level features. 

3.5 Correlates among crowding, clutter and saliency 

3.5.1 Saliency – “pop-up” in crowding 

In pre-attentive stage, simply primary features such as colour, intensity and orientation, 

and certain low-level features such as, edges, or salient structure[105, 106] can “pop up” 

automatically. When an element becomes conspicuous by having a simple distinguish-

ing property, the local saliency of the element occurs.  

However, sometime the local elements are not salient in isolation as in simple proper-

ties case, instead the arrangement of the elements is what makes the corps of these ele-

ments unique and salient, and this saliency is defined as structural saliency, which oc-

curs when the structure is perceived in a more global manner[105].  

Moreover, in many case, this saliency is a property of the structure as a whole, i.e. 

parts of the structure are not salient in isolation. Salient structures appear to play a use-
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ful role in segmentation and recognition, since they allow us to immediately concentrate 

on objects of interest in the image. 

Indeed, attention can be tied to objects, object parts, or groups of objects [183, 184]. 

Rensink has provides evidence for the view that rapid visual search cannot access the 

primitive elements formed at the earliest stages of visual processing; rather, it can ac-

cess only higher level, more ecologically relevant structures [185-187]. Account for ap-

parent blindness of observers, Rensink has introduced the notion of proto-objects, which 

are volatile units of visual information that can be bound into a coherent and stable ob-

ject when accessed by focused attention.  

Notably, Felisbert et al[170] suggest that salience has, at best, modest effects on 

crowding. When targets and flankers are dissimilar in crowding, they are ungrouped and 

the target “pop out”, i.e., which increase the salience of target. 

3.5.2 Crowding in clutter 

Clutter focuses on capturing the space organization — grouping by similarity + proxim-

ity — in three kinds of viewpoints, including saliency, space averaged attributes and en-

tropy. By saliency, feature congestion is proposed and measured, and by space averaged 

attributes, edge density and colour density are considered as measurement factors of 

clutter. The feature congestion measure captures a bit of space organization as well as 

the sub-band entropy measure.  

Although the amount of clutter has some dependency on the edge density, the edge 

density measurement does not take into account the appearance or organization of the 

objects. Clutter density explicitly captures the space statistical properties, but still ig-

nores the relationships among the regions.  

However, they still can inspire us to explore and formulate an appropriate representa-

tion for our particular task, especially the region-level features. 

In the cluttered image, spatial distortions could be detected, but sensitivity decreased 

as edge density is increased in real and random phase images [188]. This demonstrates 

that spatial discrimination is impaired in the cluttered image and the presence of edges 

plays an important role in spatial discriminations. Since crowding depends on visual 

features such as edges, this suggests that crowding also plays a critical role in the pe-

ripheral vision in the cluttered image.  
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As it is well known, crowding undergoes compulsory pooling or averaging, averaging 

models are able to account for crowding effects across a range of stimuli, from oriented 

gratings [81] and simple objects[78, 79, 82, 84, 181] to real cluttered images. And 

crowding can be broken by grouping. Similarly, image grouping processes can mini-

mize the effects of crowding in cluttered images, for instance, crowding can be attenu-

ated when flanks can be grouped together and/or segmented from a central target [180, 

189-191]. Moreover, identification of objects containing internal structure is relatively 

less affected by crowding than for object silhouettes or for letters [192], for example, 

facial expression can be recognized even though facial features are crowded [193].  

Given real image, several researchers [78, 80] have proposed that crowding may be 

an emergent property of statistical averaging among image features. Balas et al [78] 

have proposed that the visual system locally represents peripheral stimuli by the joint 

statistics of responses of cells sensitive to different position, phase, orientation, and 

scale. This "textural" representation by summary statistics predicts the subjective "jum-

ble" of features often associated with crowding. Within a single pooling region, the dif-

ficulty of performing an identification task is correlated with peripheral identification 

performance under conditions of crowding. And within regions whose size scales with 

eccentricity, spatial structure can be synthesized by the crowding model based on a tex-

ture synthesis algorithm [80, 194].    

Additionally, there are good estimates of the statistical distribution of luminance, 

contrast [195, 196] and edges [188, 197] in cluttered images. Specially, in real cluttered 

images, since those images are composed of a broad range of spatial and temporal struc-

tures, the standard contrast sensitivity function is a poor indicator of sensitivity to struc-

ture in cluttered scenes. And the sensitivity to spatial structure depends on the distribu-

tion of local edges as well as the local amplitude spectrum. Furthermore, for the purpose 

of examining where crowding occurs in arbitrary images, reverse correlation is used to 

analyse and determine local image statistics that correlate with task performance [76].  

In this analysis, seven image statistics are concentrated, including luminance, RMS 

contrast, edge density, orientation, orientation variance, local amplitude spectrum slope, 

and the maximum moment of phase congruence [198].  

Luminance corresponds to pixel intensity; RMS contrast is the variation in pixel in-

tensity over space. Edge density is the space-averaged binary output of the edge detector, 

where higher values denote more “edge” pixels per unit of area. Orientation variance is 



 

59 

the variability in orientation over space, bounded [0 1]. Local amplitude spectrum slope 

is the log-log local slope of the Fourier amplitude spectrum at every point in the image, 

where more negative slopes correspond to greater power at low spatial frequencies than 

higher, indicating that the image is more blurred. 

And the experiment result reveals that target size, eccentricity, and local RMS (root 

mean square) contrast and edge density can be used to make reasonable predictions of 

the likelihood that an observer will experience crowding. 

The above investigation of crowding in the cluttered image shows that the averaging 

property of crowding is still reasonable, and can be broken or minimized by grouping. 

Further, local image statistics such as target size, eccentricity, local RMS contrast and 

edge density, can reasonably predict where crowding occurs.   

3.5.3 Four basic psychological principals 

As it is well known, considering the context awareness, saliency follows four basic psy-

chological principles [10]. In term of perception, considering the spatial organization or 

space regularity of in-built spatial elements, crowding and clutter also follows the four 

basic psychological principles of human visual attention as thus:   

i) Local low-level considerations, including factors such as local contrast, orientation, 

and colour. 

ii) Global considerations, which suppress frequently occurring features, while main-

taining features that deviate from the norm. Or it will pop out proto-objects resulted 

from salient structures. 

iii) Visual organization rules, which state that visual forms may possess one or several 

centres of gravity about which the form is organized. This is associated with space regu-

larity in spatial elements. 

iv) High-level factors, such as human faces. 

Being the coexistence of crowding, clutter and saliency in text, these psychological 

principals are reasonable for text understanding and detection. 

In global consideration, for text in a complex background, crowding and saliency are 

just like two sides of one coin. For crowding, it reveals that there is too much similarity 

among target and non-targets, statistic property of space averaging makes target be dif-

ficult to pop up; for saliency, it emphasis on salient structure or proto-objects derived. 
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For clutter, there are too many items in limited space in term of information density. 

However, all of them have close relations with space organization— grouping by simi-

larity + proximity in objected-centred level, and statistic property of averaging is still 

effective over the groups. And saliency is required to pop out the target or to measure 

clutter. 

Van’s  study[128] suggests that crowding places a limit on visual search performance 

in cluttered environments. But salience has, at best, modest effects on crowding[170], 

when targets and flankers are dissimilar in crowding, they are ungrouped and the target 

“pops out”, i.e., which increases the salience of the target. And accordingly, clutter can 

be measured based on saliency, such as feature congestion.  

In low local-level considerations, such as local contrast, orientation, they usually re-

flect the informative locations. Moreover, in the clutter scene, local image statistics such 

as target size, eccentricity, local RMS contrast and edge density, can reasonably predict 

where crowding occurs.  

Similarly, the saliency map need to be fed a number features, including local con-

trasts of colour, orientation, texture and shape features, oriented sub-band decomposi-

tion based energy, ordinal signatures of edge, colour orientation histograms, Kullback-

Leibler (KL)divergence between histograms of filter responses, local regression kernel 

based self-resemblance, and earth mover’s distance (EMD) between the weighted histo-

grams, salient structure, and region-based features.  

In visual organization, reasonable regions and features over them are significant for 

calculation of saliency, crowding effect and clutter. Through visual or space organiza-

tion, salient structures are obtained, space regularity--the cause of crowding effect---is 

generated, and visual clusters are formed. Consequently, attention pooling regions are 

revealed. Clutter associates the region with “interested area”, and crowding is specific to 

the attentional selection region which is indeed “interested area” too. Moreover, the 

pooling region of crowding has tight relations to the size of the receptive field, critical 

spacing and target size. Accordingly, space organization— grouping by similarity + 

proximity—plays a critical role in these sorts of region’s formation and generation. 

In high level, distinctive features of text contribute to saliency through low local-level 

properties and local textual organization. Crowding depends on similarity among fea-

ture vector of target and that of distractors; clutter is measured by the distance between 

feature vector of target and that of distractor, the farther, the more salient and easier to 



 

61 

search and less clutter. Thus, features and the similarity or dissimilarity over them are 

significant for crowding, saliency and clutter. The high-level factors or properties of in-

dividual characters and textual organization over them should be calculated.  

  As text is a corps of letters in space regularity, in which crowding and saliency co-

exists. The correlates among crowding clutter and saliency inspires us to computational-

ly dig the distinctive features of text which contribute to saliency through low local-

level properties and local textual organization, and also quantify the space organization 

to obtain the pooling region over which region-level features about clutter and crowding 

are captured. 

3.6 Summary 

The investigation of crowding theory and characteristics brings up several key points to 

the global property of text appearance: 1) The association between crowding and shift 

select, and no crowding in large stimuli; 2) The distance over which spatial interaction 

occurs is related to the size of the receptive fields that are most sensitive to the target. 

This notes that, target size, distance among spatial items have close relations to the size 

of receptive field, and the crowding pooling region is related to the receptive field. And 

also, 3) Crowding is specific to the attentional selection region.  

Meanwhile, the characteristics of crowding tell us: 1) critical spacing is proportional 

to the signal size, there is an association between spacing and target size, just like letter 

spacing to letter size in text in type design; 2) Anisotropy means a different effect on 

different orientation discrimination; 3) different positions have different effects, this 

notes that relative position is another significant factor. 4) Similarity between objects. 

The more similar, the stronger the crowding effect is. 5) Averaging of signals.  

Additionally, both crowding and clutter increase with information density,  crowding 

can model the clutter based on the analysis of spatial layout, and the measure of clutter 

can be used to compute the crowding [129]. In the clutter scene, local image statistics 

such as target size, eccentricity, local RMS contrast and edge density, can reasonably 

predict where crowding occurs. And also, increasing saliency by curve formed by edge 

points is required to break down the crowding or clutter.  Thus, for text detection in the 

clutter scene, both the local image statistics and text discriminative features need to be 

calculated to make text salient or pop out.  
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The correlation among crowding, clutter and saliency, brings up to two necessary 

subtasks: 1) for the purpose of the calculation of low-level properties, computationally 

track the discriminative features for text legibility, readability and conspicuity; 2) Guid-

ed by the characteristics and theories of crowding, interested regions or pooling regions 

need to be generated or formed to break down, or at least decrease crowding to make 

our target pop out, i.e., to represent image based on the spatial layout analysis of the 

space organization. 
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Chapter 4 

Properties of Individual Character  

The correlates among crowding, clutter and saliency, bring us one subtask to computa-

tionally track the discriminative features of individual character for text legibility, read-

ability and conspicuity. 

 Firstly, individual characters must be distinctive, yet related, in their form and con-

struction. Within a font, type designers constrain the shape of individual letters so that 

they are related in terms of the stylistic attributes of letters. And letters of the same font 

use a similar systematic reference frame type to create a family of objects for identifica-

tion. The similar reference connotes that the letters have shared properties (commonali-

ties) in addition to distinctiveness.  

Those shared properties are significant not only for an independent individual charac-

ter to be identified, but also for calculations of the statistical features of words or texts 

with word superiority effect. In addition, it also affects the strength of crowding. 

Accordingly, this chapter deals with the properties of independent individual charac-

ters for text legibility, and introduces the relations between the legibility and attributes 

of letter form, and the view distance and luminance contrast [4, 199, 200] from the 

standpoint of the design and construction of text.  

Most investigations of text legibility from the literature have used simplified stimuli 

and these have been presented on otherwise featureless backgrounds, a situation quite 

unlike the typical real world. While these studies have provided important insights into 

the essential process of crowding, the extent to which this understanding holds true in 

natural vision is less clear. Given that natural images are cluttered, this implies that 

most of the time, we are unable to restore the viewing distance or luminance to that of 

the viewpoint of design. Thus, in relation to the public benchmark dataset ICDAR 2003 

for text detection in a natural scene, another aim of this chapter is to computationally 

explore character properties and their relations to text legibility.   
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4.1 Aspects of text in typography 

With regard to legibility, readability and conspicuity, the aspects of typography deter-

mine the usability of text, including functional properties, semantic properties and tex-

tual organization.  

 
Figure 4.1 Functional Properties of text 

With regard to the shape of a type, two kinds of properties should be distinguished 

[201]: functional and semantic properties.  The functional properties of type allow the 

characters to be identified as a letter, illustrated in Figure 4.1, including general shape, 

case, boldness, and size. These terms will each be defined and discussed separately 

in the following sections. Of particular importance, the general shape involves character 

width, stroke width, serifs and Italic type, and these attributes attract significant research 

interest in terms of the computation work about text.   

Figure 4.2 Textual organization of type of text 

Textual organization indicates the spatial arrangement of words, text lines, and graph-

ic illustrations (such as photographs) on the printing surface, which means the use of 

space and the composition of letters, in the way that letters are arranged to form text, il-

lustrated in Figure 4.2. 

All these spatial features of text consist of letter spacing, word spacing, alignment, 

line width, and leading. All of them contribute to the crowding effect which exists in 

letters [49] and this has significant implications for our work. Accordingly, we will deal 

with them in chapter 5. 

Functional Properties  

General shape Case  Boldness  Size   

Character 
Width 

Stroke 
Width 

Serifs Italic type 

Textual organization   

Letter spacing Word spacing Alignment  Line Width   Leading 
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The semantic properties of a letter or word trigger a cognitive or emotional response 

in the reader. These properties include the meanings attributed by aesthetics and the 

meaning attributed by association. For instance, the shape reveals, or rather suggests 

some sort of meaning because it is associated with a certain intellectual or emotional 

value. This is an important factor in the design of signs and advertisements. However, it 

is more of a craft than an objective selection process and therefore will not be discussed 

in this thesis. 

4.2 The anatomy of type of text 

The actual form of a letter depends on the type face, or font. The anatomy of type is 

demonstrated clearly in Figure 4.3. All the properties are named in the figure and con-

tribute to the character’s typeface, which are highly related to both legibility and reada-

bility. They are composed of the ascender, descender, bowl, counter, capital height, serif, 

stem, and X-height. The capital height and x-height usually are used to label type or text 

size, and the stem contributes to the line model of letter perception since it is a straight 

vertical stroke or the main straight diagonal stroke. However, from the viewpoint of 

computation, the truly distinctive features of type form are important to look for in order 

to make the character ‘a’–sound when seeing the ‘a’-form. 

 

Figure 4.3 The Anatomy of type: after[202-204] 

While the functional properties refer to the effect of these properties on legibility, some 

properties also relate to conspicuity. Owing to this, their effect on this criterion will also 

be discussed here. Not all of the separate features appearing in Figure 4.3 have been in-

vestigated, only those properties which have been studied in isolation will be discussed.  

An investigation will also be conducted in terms of the conventions and assumptions 

that exist in practical design and computation in science. Where possible, a comparison 
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will be made of these views and the results of research. This overview will proceed 

from aspects of general shape, through line, stroke, case, weight and size.  As well as 

this investigation, we will also explore them in images with the clutter scene in the pub-

lic text detection benchmark dataset.   

4.3 General shape  

“The simplest forms (shapes) . . . preserve the characteristic structure, distinctiveness, 

and proportions of each individual letter” [205]. Letter form is therefore critical for op-

timal legibility and recognition.  

4.3.1 Simple shapes 

Firstly, the problem of shapes for letter-identity has received a large degree of attention 

from typographers, ergonomist and computer scientists. 

When designing a set of characters, two issues must be addressed. First, the design of 

a character must match the reader's expectation as to how that character should appear. 

Second, the characters should be designed so that they can be easily discriminated from 

one another. Further, it is evident that a letter needs to be recognizable to convey mean-

ing to a reader. An ‘a’ should therefore be identifiable otherwise it does not truly belong 

to the ‘a’-category. It should not only be clear that it is a letter, but it also should be 

readily identifiable from other letter forms based on its feature map and letter map.  

Following the lines of model of object recognition, based on  crucial data from brain-

damaged subjects, three levels of representation on prior to lexical access have been 

proposed [206], as illustrated in Figure 4.4: the first level of representation consists of a 

retinocentric, feature map; the second level consists of a stimulus-centred, letter-shape 

map; and the third level consists of a word- or object-centred, grapheme description.  

 



 

67 

 
Figure 4.4 Schematic representation of a model of early stages of the word-recognition process: af-

ter [206] 

 
Figure 4.5 “Bouma” shape 

 

For object identification, shape effects occur earlier than function effects[207].On the 

basis of colour and shape rather than luminance, infants more readily identify objects 

[208]. In addition, when focusing on identification of words or a string of letters, the 

word shape in Figure 4.5,  i.e. “bouma shape” is an important variable [209]. However, 

identification of words written in Chinese characters doesn’t rely on word-shape cues 

since Chinese characters are different from smoothing scripts (Alphabetic letters) [210]. 

Besides its importance in terms of the shape in individual letter identification, its fea-

ture map [211, 212] usually plays a determinative role and contains properties which  

share all the other letters in the same family. For the feature map, we need to dig com-

putationally into the different dimensions of the functional properties of character in the 

following sections. 

4.3.2 Representation of shape 

As is well known, a representation of a shape consists of four independent components. 

A representation of a shape consists of four independent components [213, 214]: a set of 

primitives, a reference frame, a vocabulary of relations for within the reference frame, 

and the binding of elements to one another and to their locations and/or relations.  

Retino-centric feature map 

Visual input 

Stimulus-centred letter shape map 

Word-centred grapheme description 

Orthographic input lexicon Orthography-phonology conversion
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A set of primitives refers to a vocabulary of basic elements that can be put together to 

describe a shape, for instance, pixels  in the case of a raw image, simple image features 

such as lines and vertices [215, 216], more complex features such as volumetric 

parts[217] , and approximations of volumetric parts [218].   

A reference frame refers to a coordinate system that serves as the basis for specifying 

the arrangement of an object's features or parts, which means location and orientation. 

A vocabulary of relations specifies how an object's features or parts are arranged 

within the reference frame. The most direct approach is simply coordinate-based coding 

the distance to representing the relations among computational models/parts of object 

recognition. An alternative to direct coordinate-based coding is to represent an object's 

features or parts in terms of their relations to one another. The resulting representation is 

referred to as a "structural description." Representing relations explicitly affords tre-

mendous flexibility in the vocabulary and form of the relations expressed. In addition to 

expressing relative location, elements can be represented in terms of their relative size, 

orientation, etc [219].  

The binding of elements to one another and to their locations and/or relations [218], 

is closely related to the issue of relations, but they are importantly quite different: The 

latter refers to the vocabulary of relations used to express the configuration of an ob-

ject's features or parts; the former refers to the manner in which elements or properties 

are conjoined with one another and with their locations and/or relations. 

For shape of text, we have two methods to capture it. One is by connected component 

pixels in the raw image, which forms the “inked area” of a letter, shown in Figure4.6 b). 

And the other is by contour in the confident edge map, shown in Figure 4.6 c), which 

connects the component edge point of contour. Based on them, locations are bounded 

and the structure or space relations can be quantified. The detail will be dealt with in the 

following chapters. 

 
Figure 4.6 a) input image; b) Shape is formed by "inked area"; c) Shape is obtained by contour. 

               a)                                                 b)                                                   c)  
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4.4 Width and relative dimension of character                               

The term character width refers to the distance between the most leftward part and the 

most rightward part of the letter, excluding any attached space, shown in Figure 4.7. 

Usually, character width is expressed in its relation to character height since character 

height indicates the type size of a letter.  

 
Figure 4.7 Width and relative dimension of character 

Expressing width of a character in points is just for the purposes of determining the 

reader’s perception of how large a letter is. Consequently, the most useful measurement 

is the height and height-to width ratio.  

4.4.1 Height 

Character height has the greatest impact on the distance at which a sign can be read and 

is the most obvious characteristic to be changed to improve large format legibility [220]. 

The best way to achieve visible displays for older drivers may be to increase letter 

height rather than increase luminance levels [221], although instrument panel size con-

straints may then become a factor. 
Table 4.1 letter height (in centimeters) for various stroke widths-to height ratios at various dis-

tances 

  When space limitations are a consideration, letters should be made as large as possible 

up to the point of very nearly filling the available space (margin less than the stroke 

width of the letters), in order to permit discrimination at a maximum distance. In this 

case, unlike any other variable, increased character height improves legibility at a dis-

tance; character height is limited only by the size of the sign. But still, there is the rec-

ommended letter height at various distances in Table 4.1. 

Sw 

Height    Dis 

Sw:H 

Distance 
70cm 3m 6m 30.5m 305m 

1:6 0.25 cm 1.06 cm 2.12 cm 10.60 cm 106.0 cm 
1 : 8 0.33 cm 1.41 cm 2.83 cm 14.15 cm 141.5 cm 

1 : 10 0.41 cm 1.77 cm 3.54 cm 17.68 cm 176.8 
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Since different fonts have different character heights, fonts become another factor in 

relation to character height. In a laboratory setting, Bank Gothic Light and Dutch Regu-

lar are the most legible and readable fonts in large format display [222]. For instance, if 

contrast and lighting are equal, Commercial Script Regular is only legible when it is 4 

times the size of Bank Gothic Light and Dutch Regular, therefore requiring a far larger 

sign so that it may be read at the same distance.  

Based on experimental work on letter height for the legibility of text on display, there 

are several practical calculations in the literature for application design which consider 

the various factors, such as viewing distance [223-226], height to stroke width ratio 

[225], luminance [226, 227] and contrast [227].  

However, in an image with the clutter scene, most of the time the luminance and view 

distance are unable to restore and we don’t know the original design. Further, they must 

be locally matched to the image. Thus, local luminance and contrast will be important 

factors. Also in terms of image, intensity can be used to represent luminance, and local 

RMS contrast can serve to describe the local contrast. We will explore the relations 

among height, width to height ratio, intensity and local RMS.   

Although the height depends on the size of sign in design,  the height Pareto curve as 

a visual object in image suggests that there might be some limits set on it, as illustrated 

in Figure 4.8. 

 

 
Figure 4.8 Height Pareto 

 

Inspecting the figure, nearly 80% (79.27%) of the characters have their height in the 

range of [11, 90] pixels, and about 13% of the characters have their height in the range 

of [91,150] pixels, and 5% of the characters have their height in the range of [151,300] 
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pixels, and about 3% of the characters have their height in the range of [301, 1000] pix-

els, and only about 0.2% of the characters have their height at less than 10 pixels. 

Thus, paralleling the recommended height in Table 4.1, the height of the letter in digi-

tal images in the clutter scene still has some distribution, and can be divided into five 

ranges: [1, 10] pixels, [11, 90] pixels, [91, 150] pixels, [151,300] pixels and [301, 1000] 

pixels. All of these correspond to small fonts, common size fonts, medium size big fonts, 

big fonts and large fonts respectively.   

4.4.2 Height and mean intensity, local contrast 

In the clutter scene, local contrast has an effect on the legibility of text embedded within 

the scene. We need to explore the relations among letter height, mean intensity and local 

contrast. 

Without loss of generality, a region
QQ NMQ ×  given by the tight rectangular boundary 

box of a letter, i.e. “Bouma” shape, over which the local RMS contrast can be computed 

by mean intensity QI of the local region and its standard differences Qσ as follows:  
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The relation between height and mean intensity is demonstrated in Figure 4.9. In-

specting especially Figure 4.9 c), the trend line is polynomial curve at the small slope 

with a linear intercept of 118.01; this suggests that mean intensity seems to have a very 

slight interaction with height. For the large letters, which are big enough to be individu-

al salient visual objects, the relationship between their heights and mean intensity, as 

shown in Figure 9 a), suggests that mean intensity seems to have a bit more interaction 

with height. But when the heights become smaller, i.e. for big characters, the interaction 

is minimal. Further, for the various height characters, the mean intensity seems to have 

very little effect on them, oscillating as it does around 118. This finding leads us to ex-

plore the mean intensity distribution in the following section.  
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Figure 4.9 Relations between height and mean intensity 
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The relations between height and local RMS contrast are illustrated in Figure 4.10. In-

specting it, these are similar to those of mean intensity e.g. the trend line of local RMS 

contrast is a linear line on a very small slope with the linear intercept of 0.4973 as the 

height becomes smaller. This suggests that the local contrast does not seem to have an 

interaction with the height.  

Even though both mean intensity and local RMS contrast do not seem to have an in-

teraction with height, they have a similar shape in terms of trends lines as the height be-

comes small. We must explore the relations between mean intensity and local RMS 

contrast. 

Firstly, mean intensity has its own distribution, which is revealed in its histogram and 

Pareto curve, as shown in Figure 4.11. Inspecting it, about 80% of the characters have 

their mean intensity in the range of [80,170], and 10% of the characters have their inten-

sity in the range of [61-80] and [171,180], and another 10% of the characters have their 

mean intensity in the range of [181,255] and [31,60]. Thus, the mean intensity can be 

divided into three intervals, such as [1, 80], [81,170], [171,255] which corresponds to 

nearly 10%, 80% and 10% of the characters.  

Figure 4.10 Relations between height and local RMS contrast 
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When mean intensity is in the range of [1, 80] as illustrated in Figure 4.12 a), 85% of 

the local RMS contrast are in the range of (0.3, 1.2), 90% of them are in the range of 

(0.2, 1.2], nearly 10% of them are in the range of (1.2, 1.9], and nearly 1% are in the 

range of (0.1, 0.2].  

When mean intensity is in the range of (80,170] as is manifest in Figure 4.12 b) nearly 

80% of local RMS contrast are in the range of (0.2, 0.6], and about 10% of local con-

trast are in the range of (0.6, 0.9], that is, about 90% of local RMS contrast are in the 

range of (0.2, 0.9]. Further, nearly 10% of local RMS contrast is less than 0.2, and only 

about 1% of the local RMS contrast is bigger than 0.9.and less than 1.3. 

 

Figure 4.11 Mean intensity Pareto curve 
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When mean intensity is in the range of (170,255] as is displayed in Figure 4.12 c) all of 

the RMS contrast are less than 0.6,  about 80% of them are in the range of (0.1, 0.4], 

about 13% of them are less than 0.1, and about 5% of them are larger than 0.4. Consid-

ering this analysis, it suggests that the bigger the mean intensity, the smaller the local 

contrast.  

 
Further, there is an inverse relationship between the mean intensity and the local RMS 

for various heights of letters, as is illustrated in Figure 4.13 and Figure 4.14. Inspecting 

Figure 4.13, when mean intensity is in the relatively small range, the trends line of the 

local RMS contrast decreases quickly, and then goes down slowly as the mean intensity 

goes up. In addition, the trends line of local RMS can be roughly modelled as one pow-

er function line when the mean intensity goes up. According to the trends lines of them, 

when mean intensity is small, there is an intersection between the local RMS contrast 

and mean intensity, and the intersection occurs when the mean intensity is around less 

Figure 4.12 Local RMS contrast distribution at different mean intensity 

Figure 4.13 the inverse relations between mean intensity and local 
RMS contrast 
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than 80. Moreover, we can make the inverse relationship clear by the large characters, 

as shown in Figure 4.14.   

 

 

4.4.3 Height-to-width ratio 

Height-to-width ratio has mainly been studied for applications other than books. After 

all, the commonly used ratio in many book-typefaces seems to meet the criterion of leg-

ibility quite well.  

For most applications, the width to height ratio is recommended at 3:5, that is, five is 

the maximum number of elements in the height of letters and three is the maximum 

number of elements in width. However, width to height ratio needs to be decided as per 

the particular situation. In aircraft cockpit displays, for all luminance levels, l a WH :

ratio of 1:1 in general seems to be optimum [3], and it can improve the legibility dis-

tance [220], as is illustrated in Figure 4.15. For instance, translucent letters require a 

width to height ratio of 1:1[228] and for uniform stroke width capital letters, a marked 

loss in legibility is found when the letter width is narrower than 32 of the height.  

Additionally, Wourms et al. [229] have recommended that the width-to-height ratio 

ranges from 3:5 to 4:5. According to the U.S. ADAAG (Americans with Disabilities 

Act Accessibility Guidelines for Buildings and Facilities), the width-to-height ratio is 

recommended to be from 5:7 to 1:1. 

Beyond that, with regard to dot matrix characters, 75× dot matrix characters are 

identified as being “acceptable”, 97×  are recommended, and 139× are considered to 

Figure 4.14 the inverse relations between mean intensity and local 
RMS contrast for large characters 
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offer improved performance [230]. For easy reading, the character matrix should be at 

least 97× and with 119× preferred [231]. And for VMS, 5×7 character matrix fonts are 

recommended to be employed [220], since  a width-to-height ratio 5:7 matrix is slightly 

more legible than a 4:7 matrix [232]. Additionally, optimal legibility can be attained at 

the height of 9 pixels [233]. 
 

 

 
For text in the document image with the clutter scene, the height-to-width distribution 

is shown in the histogram in Figure 4.16 and the Pareto curve in Figure 4.17. Further, its 

descriptive table is shown in Table 4.2. Inspecting them, the mean is 1.4483, the median 

is 1.225, and the mode is 1 which means that the height to width ratio of 1:1 occurs the 

most frequently, and this finding agrees with the recommended optimal ratio for legibil-

ity in the original design. Inspecting Figure 17, 80% of the height to width ratios are in 

the range of (0.4, 1.8], with 10% of them being in (1.8, 3], around 7% of them being in 

(3, 8], and approximately another 3% being under the 0.4.  

Figure 4.16 Height to width ratio histogram 

 

Mean 1.448393009 
Standard Error 0.01842031 
Median 1.259095 
Mode 1 
Standard 
Deviation 0.876466129 
Confidence 
Level(95.0%) 0.036122463 

Table1. Descriptive statistics 

Figure 4.15 After Brown 1953[3] 

1. De4.2  
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4.5 Stroke width and contrast 

Stroke width is the thickness of the stroke of a letter. It is usually expressed in terms of 

its relation to character height; the smaller the stroke width-to-height ratio, the skinnier 

the letters appear. Early in 1941, Uhlaner et al examined the stroke width of three-inch 

block letters (height equals width) as a factor in the legibility of highway signs. This 

study indicates that the optimal stroke width is 18% of the letter height.  

Since the stroke width to height ratio captures the intrinsic construction of the letters, 

we can assume that it will achieve the maximum possibility when taking pictures, thus 

we can directly apply them as prior knowledge to roughly filter the non-text region in 

our work.  

4.5.1 Stroke width-to-height ratio 

As described in Buckler’s study, the stroke width-to-height ratio can vary from 1:6 to 

1:10 with no significant loss in legibility and the stroke width-to-height range is best 

achieved  from 1:6 to 1:8 [229].Typically, the stroke width-to-height ratio of 1:6 can be 

found in many display situations.  

For the phenomenon of radiation, or sparkle in white characters, different luminance 

has a different effect on the white-on-black text and black-on-white text [234]. The op-

timal legibility for black characters is obtained for height-to-stroke width ratios at great-

er than 6:1, and the optimal legibility for white characters is obtained for height-to-

stroke width ratios at greater than 12:1. After averaging many legibility factors, it is 

Figure 4.17 Height to width ratio Histogram and Pareto curve 
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found that legibility is best for white-on-black characters except under conditions of 

high luminance [199]. Considering typeface, setting text in Times or Univers is more 

likely to result in consistent legibility rather than setting it in Baskerville, Rockwell 

[235]. 

In simple and complex systems, for black letters on a white background, under good 

illumination, the optimal stroke width-to-height ratio is from 1:6 to 1:8 (0.167 to 0.125); 

and for white letters on a black background, it is from 1:8 to 1:10(0.125 to 0.1). With 

reduced illumination, a lower ratio (higher proportion) is required to maintain the same 

level of legibility; bold type with a ratio of 1:5 (0.2) is suggested for low levels of illu-

mination [228]. When the letters are transilluminated, the ratio can be set at 1:12 to 1:20 

(0.083 to 0.05) [57]. 

With the use of a computer screen, Tahoma has a ratio of stroke width to height in the 

range from 1:5 to 1:8, and letter width to height near the recommended 3:5, that makes 

it highly legible [57, 226, 236] in the computer screen, especially for Power Point de-

sign [237].  

4.5.2 Background colour, luminance contrast 

When discussing the optimal stroke width-to-height ratio, the effect of background con-

trast and illumination should be considered. Background contrast is created by variation 

of colour, luminance and background material. 

At background luminance levels greater than 3.77 2m/cd (1.1fL), red and green legi-

bility data compare well. In terms of legibility, blue and green backgrounds also per-

form almost equally as well [238, 239]. In addition, white, yellow, and orange back-

grounds produce similar legibility results, and have maximum legibility for luminance 

in the range of 3.4 to 34 2cd/m (1 to 9.9fL). It appears that colour luminance contrast ef-

fects become inoperative at levels between 0.3 and 0.33 2cd/m .  

For signs with light (white, orange or yellow) backgrounds and black legends, the 

recommended optimal figure-to-background contrast is 12:1, the minimum luminance is 

2.4 2cd/m (0.7fL). At night, legend luminance contrast is the most important variable in 

sign legibility, and the maximum legibility is achieved at a contrast of 30 to 60:1. And 

the recommended minimum luminance applied to white legends with dark (green, blue, 
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red, or brown) backgrounds is 0.4 2cd/m (0.12fL). And 30 cd/m2 is suggested for night 

time luminance and 1000 cd/m2  for bright daytime viewing [220]. Further, as visual 

acuity decreases, more light is needed to achieve equivalent performance, and improved 

daytime legibility for VMS will level off between 8% and 20% contrast [240].  

For static traffic signs, the recommended  luminance contrast ratio is 12:1 [241]. Un-

der low ambient illumination, increasing the contrast ratio above 4:1 will have a mini-

mal effect on detection performance especially for self-paced tasks. For the random-

scan CRT[242], it can be superior for both threshold and comfort cases in both the 1.2:1 

and 1.5:1 contrast ratio conditions. According to the guidelines, fully reflectorized signs 

should have a figure/background contrast ratio of 12:1[241]. 

For the dynamic variable message sign in traffic control [232], the recommended lu-

minance contrast ratio between 8:1 and 12:1 should be used for light emitting technolo-

gies and 40% daytime and 50% night time contrast for light reflecting technologies for 

VMS. In addition, night time luminance should range from 30 to 230 cd/m2.. 

4.6 Weight 

Weight of a style of type refers to the volume of white space its letters replace with ink 

within a contained area.   

From the viewpoint of design, the weight of the lines in a type style may vary from 

“light” to “medium” to “ultra bold”, as shown in Figure 4.18, which is a family of dif-

ferent weights of the same typeface. Inspecting it, we can see the subtle differences 

within the same typeface of characters. 

Thus, from the viewpoint of image processing, weight can also reveal the subtle intra-

class differences. Indeed, it will be an important factor to determine the different types, 

such as handwritten script and machine-print characters. It also has close relations to 

different type fonts in the design field, for instance, italic type, serifs, boldness and case. 

Figure 4.18 font weights 
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4.6.1 Intra-class difference: different type font 

Italic type: Compared to regular upright characters, italics are narrower and spaced 

closer together. They are preferred over both bold type and upper case type to stress 

pronouns since their slanted form slows down the speed of recognition and has per-

ceived elegance.     

It is widely acknowledged that italics are very useful for emphasizing individual 

words within a text to get conspicuity since they are attributed a contrastive role in text. 

The content of the italicized term is often opposed to that of other words in the text and 

draws attention to the sentence as a whole and not just to the term itself [243].  

Serifs and non-serifs: Serif refers to the little extra stroke added as a stop to the begin-

ning and end of the main strokes of a character. Fonts with serif are called serifs and 

fonts without serifs are called sans serif. In general, it is recommended that serifs should 

be chosen for text type and sans serifs should be used for display type in order to pro-

vide more contrast.  

We encounter printed material in a variety of forms, and these materials may use any 

of thousands of different type fonts: serif, sans serif, script and those that do not fit into 

the other three categories. Most of what we read uses a serif or sans serif font, and these 

kinds of fonts are usually appropriate in many conditions, although some will be more 

legible than others. Serif fonts, which have little embellishment, typically are used for 

the text. It may be easier to segregate words with serif fonts, and different letters may be 

easier to identify. However, there is no difference in reading speed for serif and sans 

serif fonts. When we consider fonts type for use on CRT and LCD computer monitors, 

we also need to consider point size, screen resolution, illumination conditions, back-

ground colours, viewing distance, and monitor size.   

When reading from a distance, Gothics are found to be more legible than Romans. 

For highway use, a font called Clearview has been specially developed to improve the 

legibility and readability of road signs [244] because it has three properties: thinner 
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stroke widths; lowercase letters with increased loop heights; and more open letter spac-

ing for the lowercase Clearview [245]. Consequently, people recognize words at a 16% 

greater distance with the Clearview font than with traditional highway fonts, which at 

55 mph translates into an additional 2s to read the sign. 

Boldness: The boldness of characters, also called weight, is a physical property of a let-

ter that can be varied while keeping other properties unchanged. Bolder versions of a 

basic typeface are produced by increasing stroke width. Therefore, the bold typeface of 

a letter is heavier than that of the version of the basic typeface of the letter.  

Like italics and case, bold words tend to draw too much attention [243]. However, 

reading speed doesn’t benefit form bold text in the normal fovea and periphery [246]. 

Many signs, especially highway signs, are customarily read at the greatest possible dis-

tance, i.e. as soon as possible during approach. Good highway signs maximize sight dis-

tance by using low complexity-bold-lettering.  

Case refers to how characters are capitalized within a word or phrase. There are two 

types of cases for alphabets: Uppercase and lower case.  

Like italics, upper case lettering is used for emphasis, which can be used to bring at-

tention to a specific word or phrase.  

Within the field of typography and cognitive science, there is a popular belief that 

text set in mixed upper- and lower-case is more legible than in all upper-case because 

text in all upper-case reduces the shape contrast for each word. Since lower-case charac-

ters vary in both height and average position, making words constructed with them 

more distinctive, lower-case characters are much easier to read than all capitals [247, 

248] and 90% of readers prefer lower case text as compared to 10% for all upper-case. 

In addition, there is a common belief that the legibility of lower-case words should be 

greater than that of upper case words [249].   

However, from the viewpoint of optical vision, enlarging any small object makes it 

more visible to achieve better visibility, while upper-case text perceived at a greater dis-
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tance has a retarding effect on reading speed.  Furthermore, the uppercase letters are 

classified more rapidly as letters (vs. non-letters) when they are preceded by a briefly 

exposed [250]. Moreover, since letter size determines legibility for low vision readers 

and for those viewing visually small text, uppercase text is more legible in terms of 

reading speed for readers with reduced acuity due to visual impairment, and in normal-

ly-sighted readers when text is visually small [251].  When point size is fixed, upper-

case text is simply more legible and familiar acronyms are processed more quickly in 

the familiar uppercase than in lowercase [252, 253].  

4.6.2 Weight and stroke width 

From the viewpoint of image processing, weight refers to the “inked area”. It can be ex-

actly calculated by the total amount of the connected component “inked” pixels filling 

the inked area, or be roughly estimated by the contour and the stroke width.  Imaging 

opens the letter’s compositional stroke and strings them together, just like in on-line 

handwriting which strings each stroke. Accordingly, it will be considered as a rectangu-

lar stripe with the width of stroke width and the height of the length of contour. The 

length of contour can be estimated by the total amount of the edge points in the contour, 

thus  

pixels inked""component  connected  theofnumber   totalthearea inked"" =  

contour  in the points edge  theofnumber   total the width stroke the                   
                    

×≈  
Considering the region given by the tight rectangular boundary box of the letter, both 

edge density and inked pixel density get involved as: 

 width.stroke  thedensity  edge density  pixel inked"" ×≈                      (4.2) 

And this can be regarded as one of the necessary conditions of being a text object. 

Moreover, since weight describes many kinds of subtle differences among types in 

terms of design, it will play an important role with respect to our tasks e.g. region-level 

features and distinguishing the machine-printed text and handwritten text.    
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4.7 Straight line 

“The straight line is godless [56]”, as text is one typical man-created visual object, the 

straight line is the basic element that gives form to a letter and determines the style of 

the type. And line terminations (the ends of letter parts) and horizontals appear to be the 

two most important features for letter identification [254, 255]. However, since there is 

‘‘word superiority effect’’, little attention has been devoted to computational modelling 

of letter perception as well as the line property of character.  

In 1974, Rumelhart and Siple[256]  proposed the feature matrix for the letter compu-

tational model, see Figure 4.19 for a representation of the feature matrix, which consists 

of a set of 16 independent features that allow us to characterize any of 26 letters of the 

alphabet. For example, letter A is composed of eight features from this matrix: 1, 2, 3, 4, 

5, 6, 10, and 12.  

Based on the model, Grainger, Rey, and Dufau have claimed that the features of a let-

ter mainly consists of lines of different orientation and curvature [257], and these have 

been tested in the interactive-activation computational model of letter perception.  

The interactive-activation model of McClelland and Rumelhart [258] suggests a  hierar-

chical organization of two levels: a feature and a letter level. The lines of different ori-

entations are used as the representation at feature level and in feature-based identifica-

tion visual processes at the letter-level. These representations are interconnected by 

feed-forward, feedback, and lateral connections, each being characterized by a fixed pa-

rameter that determines its weight. By systematically varying these parameter values, 

the predictions of the different computational instantiations can be tested. And the re-

sults are in favour of the computational model of letter perception. 

 “A” derived from 

feature matrix: 

1,2,3,4,5,6,10,12 

Figure 4.19 Left side: the feature matrix (adapted from Rumelhart &Siple 1974), Right side: letter 
“A” derived from this matrix 
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From the viewpoint of human letter perception, characters are modelled as a set of 

lines of different orientation. However, for image processing, as figures in the back-

ground, proportions bridle each visual object in the same 2D space, and proportions are 

kept as the maximum possibility in the 3D space. Thus, we regard the line proportion of 

the length of the line segment in terms of the size of the letter as feature and call it the 

ratio of the straight line, denoted as RSL, as defined below: 

               ;
letter ofWidth 

segment line Horizontal oflength  the
=HRSL   

.
letter ofHeight 

segment line Vertical oflength  the
=VRSL                                              (4.3)        

The line is also calculated based on the Kirsch edge map and the details are discussed 

in the three-level text computational model appearing in chapter 6. 

4.8 Size and its related proportion 

The size of type is described as the "depth of space required by one line of type", as-

suming a minimum distance between one line and the next. In other words, height is 

used to indicate size, without regard for the width of a character. And alternative 

measures of size are x-height, capital height, and total letter height.  

In type design, there is a tension between considerations of distinctiveness and uni-

formity that are essential to the design process. Type designers use a systematic refer-

ence frame to create a family of objects for identification. The frame system constrains 

size proportions within the font, for example, the ratio of x-height to cap height and the 

length of ascenders and descenders are characteristics of a particular font [259]. The 

proportions vary somewhat among fonts, but within a restricted range thereby making 

fonts of the same point size appear larger or smaller. These regularity effects within a 

font lead to characters being related by weight, contrast, stress, or the axis of the letter. 

Meanwhile, individual characters are distinct in terms of the form and construction of 

the letter. 

In the letter perception, the size of the letter weakly influences the efficiency for letter 

identification, but the efficiency is inversely proportional to perimetric complexity (pe-

rimeter squared over "ink" area, i.e. the contour of the letter form) [260].     
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For the human observer, since the size of the image projected on the retina is a func-

tion of both the size of the letterform and the viewing distance, the sizes of type are of-

ten characterized in terms of visual angle. Under optimal conditions, visual angles of 

between 0.35 and 0.40 degrees (equivalent to 8 to 10 point type) are capable of present-

ing a legible image to the viewer possessing perfect vision. And the fluent range extends 

over a factor of 10 in angular print size (x-height) from approximately 0.2° to 2°. As-

suming a standard reading distance of 40 cm (16 inches), the corresponding physical x-

heights are 1.4 mm (4 points) and 14 mm (40 points)[261].  

For close up reading at a distance of 35 cm, such as in books, sizes between 9 and 11 

points are predominantly used. And 10-point (9 pixels) type is best used for the text 

body, which is read faster than the type of other sizes, and has optimal legibility in elec-

tronic display [236]. However, 8-point type is most suitable for so called consultation 

text.  

At a reading distance of 75 cm, for instance, when reading posters or signs, a charac-

ter height of a little less than 4 mm could result in optimal reading performance (reading 

speed). For the commonly used typeface Times New Roman, this character height cor-

responds with a type size of 15 points. And in PowerPoint, it is best to use a font size of 

at least 22 points for bullets and 16 points for figure legends and axes, since these font 

sizes can project to screens at least 22 minutes of arc or 16 minutes of arc, as recom-

mended for critical legibility or legibility, respectively [237].  

In pixelated text reading, reading performance is impaired if as few as 6 x 6 binary 

pixels per character width are available, particularly with larger characters [262-265].  

And a grid density of about 4 pixels per character width is needed to allow for accurate 

character definition [263, 265].  

For text in an image within a clutter natural scene, illustrated in Figure 8, nearly 80% 

of the characters have their height in the range of [11, 90] pixels, and more than 90% of 

the characters have their height in the range of [11,150] pixels. Even though the height 

of characters depends on the size of sign in design, very large (>300 pixels height) or 

very small characters (<10pixels height) are small in terms of quantity, being about 3% 

and 0.2% respectively.  
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4.9 Summary 

In type design, there is a tension between considerations of distinctiveness and uni-

formity that is essential to the design process. Individual characters must be distinct in 

their form and construction and the shapes of individual letters are constrained within a 

font by the similar systematic reference frame of design. Accordingly, they are related 

in terms of the shape, proportions, weight, contrast, and other stylistic attributes of let-

ters.  

From the standpoint of design, there are several important factors which contribute to 

the readability, legibility and conspicuity, including the size and its related proportions 

(height to width ratio), luminance, viewing distance, stroke width-to-height ratio, and 

weight. 

However, most investigations of character properties for text legibility in the litera-

ture use simplified stimuli presented on otherwise featureless backgrounds, a situation 

quite unlike the typical natural world. Moreover, in relation to the image we cannot re-

store the above mentioned factors, such as real size, viewing distance and luminance. 

Thus, while these studies have provided important insights into the essential process of 

letters perceived, the extent to which this understanding holds true in natural vision is 

less clear.  

In relation to image, luminance can be connected to the intensity, and contrast can be 

associated with the local RMS contrast. Moreover, proportions can be assumed to be 

kept at maximum possibility (like the real one) since they possess inbuilt, intrinsic 

properties for the form and construction of letters. On the public benchmark dataset for 

text detection within a clutter scene, we analyse the height, mean intensity, local con-

trast and the relations among them.  

In an image with a cluster scene, nearly 80% (79.27%) of the characters have their 

height in the range of [11, 90] pixels, about 13% of the characters have their height in 

the range of [91,150] pixels,  5% of the characters have their height in the range of 

[151,300] pixels,  about 3% of the characters have their height in the range of [301, 

1000] pixels, and only  0.2% characters have their height at less than 10 pixels.    

For mean intensity, about 80% of the characters have their mean intensity in the 

range of [80,170], 10% of the characters have their intensity in the range of [61-80] and 

[171,180], and another 10% of the characters have their mean intensity in the range of 
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[181,255] and [31, 60]. Thus, the mean intensity can be divided into three intervals, 

such as [1, 80], [81,170], [171,255] which corresponds to nearly 10%, 80% and 10% of 

the characters. 

Moreover, both mean intensity and local contrast do not seem to have interactions 

with height. However, mean intensity and local contrast has inverse relations between 

their trend lines.  

Additionally, besides the proportions of letters, another four particular properties are 

of interest, including line, weight, orientation and size. “Straight line is godless”, as text 

is a human created object while line represents the basic element in letters both in terms 

of letter perception and in image processing. Since line length varies broadly in compar-

ison to height, proportions of line length to size will be regarded as significant features 

for individual characters.  Weight is related to many kinds of type, that is, it tells the dif-

ference in terms of intra-class and gets involved in the features at the region-level. As a 

result, the weight related features in image processing will play a very important role in 

this project.  Orientation is not only important to the text object but also to the clutter 

scene. Size is the basic element of physical appearance, thus it plays a significant role in 

our project.  

In summary, from the standpoint of image processing, the properties of individual 

characters consist of mean intensity, local RMS contrast, stroke width to height ratio, 

height to width ratio, straight line ratio, and weight related attributes. Owing to these 

varying properties an image-processing based algorithm will be employed to extract 

them in the following chapters.  
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Chapter 5 

Properties of Local Spatial Organization 

Besides distinctiveness, through the commonalities in the shape, proportions, and other 

stylistic attributes of letters within a font, uniformity in letters is achieved. It is the uni-

formity that makes text contain verbal stimulus control features, including type, line, 

weight, orientation and size. Text can “say” something and be identified by readers. 

Consequently, text is “dressed up” [266] in the “costume” of typestyles which imbues 

meaning i.e. physical appearance. Also, the uniformity of letters contributes to text legi-

bility in relation to the psychological concepts of perceivability, bias, similarity, and let-

ter identification in computation [267]. 

Any pair of letters, beyond their distinctiveness, has a visual similarity that can be de-

fined by, for example, the numbers of features (e.g line) the two letters have in common, 

which is referred to letter confusability. And for any letter, one can average its confusa-

bility with the 25 other letters to give a measure of that particular letter’s overall letter 

confusability [268]. And for any letter string, one can measure its overall confusability.  

In any letter string, there is a significant interaction between letter spacing and con-

fusability on the flanked letters. Letter confusability together with the neighbouring spa-

tial arrangement leads to a visual crowding effect since visual crowding refers to 

by excessive feature integration.  

As text is composed of letter strings or words, which have significant interactions be-

tween the organization of letters and their identification, and this perceptual organiza-

tion can be modulated by the spacing between letters [269], changes in crowding  can be 

modulated by the function of inter-letter spacing [48].  

Although these studies are presented from the viewpoint of perception and design, 

they have provided important insights into the essential calculation of space organiza-

tion in image processing. We will apply the rules as prior knowledge to quantify and 

measure the space organization in images.  
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Therefore, this chapter deals with those properties of the local spatial organization of 

text which directly relate to the arrangement of neighbouring letters in text, including 

letter spacing, word spacing, alignment, line width, and leading.  

5.1 Textual organization and space 

In many cases, the printed text is required to be conspicuous. There are two kinds of 

conspicuity that can be achieved. One is to emphasize single words or some paragraphs 

by distinctly different typefaces in order to receive more attention from the reader than 

other words or paragraphs. For instance, titles are often set in bold in papers or in maga-

zines. And the other is to emphasize the entire area of text to get high figure background 

contrast by spatial arrangement, i.e. text organization in space, for the purposes of being 

conspicuous. 

         
An important aim of textual organization is to optimize readability. Indeed, in the 

case of display, the characteristics of display must be related to the spatial array of char-

acters on the display. Further, there are four basic characteristics of alphanumeric dis-

play formats that influence the ability of an observer to read or interpret the display [5]: 

overall density, local density, grouping and layout complexity, as illustrated in Figure 

5.1.  

Overall density is the number of characters shown over the total area of the display, 

often expressed as a percentage of the total character spaces available. Local density is 

Figure 5.1 After [4, 5] examples of different dis-
play densities and grouping: a) overall densi-
ty=100%, local density=81%; b) overall densi-
ty=50%, local density=72%; c) overall 
density=50%, local density=39%; and d) group-
ing into two sets. 

Figure 5.2 Samples of group-
ing into several sets 
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the density in the region immediately surrounding a character, often manipulated by al-

tering line spacing. For best readability, overall display density should be as low as pos-

sible, with local density at an intermediate level. This reduces lateral masking between 

display characters and increases the ease with which a reader can locate information in 

the display.  

Grouping is related to the Gestalt organizational principles i.e. the extent to which 

items form well-defined perceptual groups. Layout complexity is the extent to which the 

arrangement of items on the frame follows a predictable visual scheme, which can be 

quantified by the formula adapted from information theory [270]. Grouping display el-

ements will improve readability so long as the groups are appropriate, but there is a 

trade-off between grouping and layout complexity [5, 271]. More groups means higher 

complexity, and increased layout complexity can mean decreased readability. In addi-

tion, for text in the clutter scene, most of them exist in the grouping display, as shown in 

Figure 5.2.  

 Clearly, the dominant ingredient in the organization of text is space. Space is a par-

ticularly compelling tool for organizing text or a display because the visual system au-

tomatically attempts to group elements that are close together within the available space. 

In terms of typography, space consists of margin, letter spacing, word spacing, align-

ment, line width, and inter-line space. And we start from the most fundamental of spac-

ing being the letter spacing [272] within a word.  

5.2 Letter spacing and word spacing 

In the clutter scene, forming text according to spatial arrangement is a function of posi-

tion within a horizontal array. Therefore, the letter spacing plays a central role in calcu-

lating the relative distance between them and the neighbouring letters and this is deter-

mined by the height of the character. Further, word spacing plays an important role in 

calculating letters as a string of words. 

We investigate the recommendation of them in the original design, and then take them 

into account to set the letter spacing for calculating the space organization in our task.  
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5.2.1 Letter spacing 

Letter spacing, also called inter-letter spacing, or tracking, refers to the distance be-

tween the closest parts of two adjacent characters.  

Inter-letter spacing generally applies to the overall spacing between all neighbouring 

characters in a set and affects the information density in a line or a block of text. High-

density type allows the designer to fit more words on a line of text than when using type 

with regular spacing, whereas low-density type takes up more space per word.  

 In typographic designs, the type of font influences the letter spacing. There are two 

types of font, one of which yields only limited possibilities in letter spacing. 

A monospace font comprises an alphabet of which all letters have the same width. Such 

single width characters can be found on printers. A proportional font comprises an al-

phabet of letters which vary in the amount of space they take up, resulting in balanced 

letter spacing which occupies less space than single width characters. 

Proportional spaced fonts use a different amount of horizontal space depending on the 

width of the letter. Thus, font size is a factor significantly affecting proportional spacing. 

For smaller font sizes, it results in tighter spacing while larger fonts lead to bigger spac-

ing.  Spacing with smaller fonts needs to be maintained at the default size or larger. For 

the regular font size of 10 to 12 points, spacing can be more condensed, about -5 pixels 

from the default, and it can still maintain good accuracy. For bigger font sizes the letter 

spacing can be decreased to -10 pixels or more without sacrificing text legibility[273].  

For text legibility, the size of inter-letter spacing plays a central role since it manipu-

lates the amount of lateral interference among neighbouring characters [274] or words 

[233, 275]. By increasing letter spacing, word legibility can be improved and gradually 

reach an asymptote close to single character legibility. Performance deteriorates non-

linearly whenever letters are separated by at least 2 blank spaces, with the concomitant 

emergence of a word length effect, and the threshold of about 2 spaces is constant 

across variations in font size [276].The reason for this is that there is a dual effect [277]: 

increasing  letter spacing improves individual letter identification but damages whole-

word form (the unitization of words [278]) and/or parallel letter processing.  

For application, there are solutions, for instance, the inter-letter spacing is recom-

mended to range from 25 to 50 percentage of letter height for large format application in 
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buildings [279]. In large format signage, inter-character spacing of 2/7th letter height 

and line spacing of 4/7th height are best.  

Once the spacing within words has been determined, the word spacing can be deter-

mined. 

5.2.2 Word spacing 

The distance between the words of a line of text is called word spacing, or inter-word 

spacing [280]. It has an influence on word segmentation and facilitates word selection 

and identification [281]. Thus, it has an effect on reading performance[282].  

In English, there is interplay between letter spacing and word spacing, which influ-

ences a font's readability. To enable a reader to easily distinguish between individual 

words, the distance between the last letter of one word and the first letter of the adjacent 

word needs to be significantly larger than the distance between adjacent letters within 

one word.  

The optimal distance between two words is 25 percent of the type size [203]. For all 

practical purposes, based on practical experience in typography, the “i” rule is adopted 

as the conventional format for word spacing. This means that word spacing is about 

equal to the space occupied by the letter “i”. In applications, inter word spacing is rec-

ommended to be in the range from 75 to 100 percent of letter height. 

5.2.3 Setting in space organization calculation 

Only when proportions among component parts are captured, the image or picture of the 

object is recognized as the same as the object itself in the real world. Therefore, in the 

clutter scene, we assume that the ratio of letter spacing or word spacing to the height of 

type size is kept at the maximum possibility when the image is taken.  

Considering the recommendation of letter spacing and word spacing in relation to de-

sign, we have, after trial and error, set the letter spacing at less than 60 percent of letter 

height to calculate the letters into a string of words. 
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5.3 Text line 

After inter-letter spacing and inter-word spacing are determined, the line of text is found 

as a whole. There are two attributes of the text line: alignment and line width. 

5.3.1 Alignment and the importance of neighbourhood  

Alignment is the way the lines of text are arranged in relation to each other within the 

margins that have been set. There are four options for alignment. We can choose to 

align the lines to either the left or the right, and justify or centre the lines of text. 

 Alignment on the left:  It is also called ranged left or unjustified. When the text is 

aligned on the left only, the left margin is fixed whereas the right margin is not fixed. 

Therefore, all lines start at the same distance from the left margin, producing a ragged 

envelope where the lines end.  For the purpose of increasing readability and reading 

comfort over the ragged envelope, rational spacing is made for the left range text break-

ing off the lines, which is useful for instructional text, and can convey the text infor-

mation clearly as well as the text structure. 

Justification:  The other traditional way of aligning lines of text is justification. In or-

der to avoid an uneven right margin, full justification is used to cut off the long words at 

the end of a line by hyphens, and vary both letter spacing and word spacing in such a 

way that all lines end at the same distance from the right margin. And with word pro-

cessors in computers, the text can be easily justified in different ways: fill-justified, 

equal-justified, and micro-fill justified. Consequently, readers get used to the full justi-

fied arrangement of text. They do not grow accustomed to ragged right text. Further, it 

is more tedious to read unjustified papers than those that are justified. However, in 

terms of reading speed, all forms of justification read equally well, and there is no read-

ing time superiority of ragged –right (unjustified) text [283] .  

Uncommon arrangement: Neither right alignment nor centred text is commonly used 

in ordinary text. Both are most often used in brochures or volumes of poetry in order to 

draw attention to the informative content. And none of the special arrangements of text 

are significantly superior to the conventional arrangement.  
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For text in the clutter scene, most are used to draw attention to the informative con-

tent, thus uncommon arrangement or compliant arrangement are usually used, for in-

stance in Figure 5.3, the principle of chunking is incorporated in several group sets of 

text in arbitrary places and these arrangement strongly emphasize each individual chunk.  

Moreover, since the word recognition processes are very tolerant of text orientation 

[284], exhibiting a modest decline for orientations within +/-60 degree of the horizontal 

regardless of visual field meridians (right horizontal, upper-right diagonal, vertical, and 

upper-left diagonal), there is a compliant arrangement in which words are not aligned at 

all and are placed in harmony with the message content. Thus, especially in this case, 

only the neighbourhood of individual characters will provide significant clues for lead-

ing to the text chunks by grouping neighbouring letters in order to predict where the text 

is. 

However, in the early stages of the detection task during which the visual object is 

not identified as letters, the neighbourhood needs to be estimated in the state of black 

box. In order to measure the neighbourhood without knowing any identification, we 

need to consider spacing, position, and physical appearance to calculate the proximity in 

position and the similarity in appearance. The computational detail will be discussed in 

Chapter 5.  

5.3.2 Line width 

Line width refers to the distance between the left and right margins of a text column, 

and is also called length of line. It affects both reading comfort and reading speed. If 

lines are too short, it will result in frequent hyphenation, and readers also very often 

have to shift their view to the next line thereby breaking read rhythm. On the other hand, 

if lines are too long, the reader will have a hard time focusing on the text. Furthermore, 

Figure 5.3  Samples of compliant alignment 
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it can be difficult to continue onto the correct line in large blocks of text. The ideal line 

length depends on the design of typeface, type size, and line spacing.  

For books, for the conventional type sizes (9 to 12 points) it has been concluded that, 

on the average, the optimal line width lies between 10 to 12 words per line. This 

amounts to a range of between 50 and 70 characters per line of text, also counting word 

spaces, to achieve the highest readability [285]. Thus, generally, the optimal line length 

for body text is considered to be 50 to 60 characters per line, including spaces [286], or 

9 to 10 words, and anything from 45 to 75 characters is widely-regarded as a satisfacto-

ry length of line [203]. 

   For signs, in limited space with high overload and information conflicts, the infor-

mation density of the primary navigational message should be limited to a single glance. 

A simple message (i.e., one with few characters or elements), which can be made large 

to allow it to be seen further upstream, should be limited to a maximum of six words 

[287]. 

For text in the clutter scene, there is big uncertainty of line width since they are either 

from books or from signs. Accordingly, what we can do is to focus on its related factors: 

letter spacing and word spacing, that is, the neighbourhood measurement of letters.  

5.3.3 Inter-line spacing   

Inter-line spacing, also called leading, is the distance between the baseline of one line of 

text and the baseline of the next.   

The amount of points of leading depends on the type size. A rule of thumb is that the 

leading that warrants optimal reading conditions is 125 percent of the type size for any 

size of type [203]. For instance, given a type size of 12 points,  two lines of text would 

ideally be separated by 15 points in distance, i.e. 3-point leading. 

Instead of the point measurement in print practice, computers offer the possibility to 

space lines at 1, 1.5, or 2 times the regular spacing. Regular spacing corresponds with 

the setting regularly chosen for the particular typeface in which the text is printed (not 

solid setting). 1.5 times spacing refers to a setting in which the width of the space be-

tween lines is twice as high as regular spacing.    

In terms of readability, line spacing has significant main and interaction effects on 

both the proofreading time and detection rate [288]. Increasing interline blank spacing 
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also speeds up the reading process overall, while also improving the identification of the 

words and the letters within words [278] presumably because it decreases the adverse 

effect of crowding between adjacent lines of text [289] . Thus, wider line spacing can 

lead to better accuracy and to faster reaction times [290]. Especially, when the contrast 

of the text is reduced, as may occur within intraocular light scatter or poor viewing con-

ditions, spacing becomes particularly important [282]. 

   Moreover, there are solutions for different applications. In screen-based proofreading, 

1.5 line spacing is recommended for use. For large format application in buildings, the 

inter line spacing is recommended to range from 75 to 100 percent spacing [279]. Note 

that, word spacing should appear to be narrower than leading. If not, the evenly spaced 

look of the text is broken up by ‘rivers’ that appear to run through it vertically [204].  

For text in the clutter scene, more blank space will increase the text conspicuity while 

maintaining the group set of the text. Thus, the inter-line spacing plays an important 

role in filtering out the non-text objects. 

5.4 Keeping balance among spacing 

Letter spacing, word spacing and inter-line spacing should keep in a balance so as to 

have a harmonious design on the whole. This means that letter spacing Ls  should be 

smaller than word spacingWs , which should be smaller than type size Ts , i.e., 

LeadingTsWsLs <<< . Leading should be the biggest number of points. Accordingly, 

there is a rule of thumb about the relationship of size and ratio [204],

5:4:1:: =LeadingTsWs . But that ratio is not applicable when text is fully justified 

because both letter and word spacing are variable in that case. 

Specifically, in signs in which the text is displayed within a background panel, spac-

ing is essential to legibility. Just as white space gains attention in newspaper text, be-

sides the five typical colours (red, blue, yellow, white and black) in standard traffic 

signs, signs that have blank space are more easily noticed. Blank space may be obtained 

by making signs larger or by removing secondary copy that has no navigational value, 

in order to increase the text conspicuity while maintaining the group set of text. More 

empty space should generally result in less secondary copy thereby leading to more 

conspicuous text. And the open space surrounding the copy area of a sign ideally should 
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not be less than 60 percent of the sign or background area, such that a reasonable expec-

tation of legibility will exist. 

And in instances in which only letters comprise the total sign, such as channel letters 

on building walls, there is a useful rule of thumb which takes into account the letter 

spacing in a line as usually being 1/3 the width of an individual letter and this can give a 

surprisingly close determination of the actual length of the line of letters. 

For text in the clutter scene, there are big uncertainties of position, arrangement and 

size, and only sorts of spacing, including letter spacing, word spacing and interline 

spacing, can be measured for the purpose of grouping neighbouring letters into words or 

text  group sets. All of these spacing arrangements contribute to a neighbourhood of let-

ters, words and text group sets. When we calculate the space relationships among visual 

objects, the first thing we need to do is measure one of the three types of spacing based 

on the size of characters. 

5.5 Summary 

Letter spacing, word spacing and interline spacing are in harmony with each other and 

organized as a whole text which keeps crowding and readability in good balance. All of 

them are highly related to the type size, and have a practical recommendation ratio to 

the type size respectively.  

For text in the clutter scene, since there are big uncertainties of position, arrangement 

and size, only spacing contributes to the neighbourhood and can be measured for the 

purposes of grouping neighbouring letters into words or text group sets. Thus, they are 

integrated into the text computation model as attributes in the letter-centred level and 

word-centred description in chapter 6, and calculated in the image-based method for the 

purposes of quantifying space organization.  



Chapter 6 Representation of Image and Text in Clutter Scene                
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Chapter 6  

Representation of Image and Text in Clutter Sce-
ne 
Crowding is a consequence of spatially pooling features within receptive fields of in-

creasing size: information is averaged or not resolved by attention. And clutter also 

starts from the strong attempts to quantify information density. Therefore, both crowd-

ing and clutter need a reasonable region in which to operate for the purposes of achiev-

ing calculated targets. Fundamentally, this region needs to represent image by quantify-

ing the spatial layout or space organization and based on this representation, the 

computational model of text can be built up.  

Inspired by a painter’s description of proportions among component parts in a picture, 

this chapter will mathematically deal with the region generation, quantification of the 

spatial representation of image, and the three-level text computational model in detail. 

6.1 Space-averaged image representation 

Space organization plays a significant role in clutter or crowding. We need to specify 

the region of image over which statistics are computed, and capture the organization ex-

plicitly—the grouping by similarity + proximity.  

As described above, crowding is as a consequence of spatially pooling features within 

receptive fields of increasing size: information is averaged or not resolved by attention. 

And the pooling regions for computing statistics are smallest at the fovea and increase 

in size approximately linearly with increasing eccentricity.  

Since the pooling region is tightly related to the receptive field size, we need to ex-

plore the conditions of increasing the receptive field size for the purpose of capturing 

the organization explicitly. 



 

100 

6.1.1 The size of pooling region  

Early in 1952, Kufflor found that the receptive fields of light adapted cat retinal gangli-

on cells are approximately circular and have functionally distinct central and peripheral 

regions. And Hartline-Ratliff equations (1, 2), were used to model receptive fields. Then, 

for the response to moving bars, the concentric difference of Gaussians was proposed as 

a model for the receptive field of retinal ganglion cells. Later, arbitrary temporal phase 

differences between the centres and surroundings were included in the difference of 

Gaussians model [291].  

Specially, for the response to drifting gratings, a Gaussian subunits solution[292] is 

presented as follows: (i) model receptive fields can be composed of any number of sub-

units, located anywhere in the  plane; (ii) the subunits are not required to be radial-

ly symmetric, i.e., any two-dimensional Gaussian function is allowed; and (iii)  re-

sponses are predicted to gratings of any spatial frequency at any orientation. As a result 

of the constraint that the model of receptive fields must show linear spatial summation, 

the response can be calculated by a summation of the individual subunit responses. 

Similarly,  in vision contour integration research, Field and Hess  discussed the link-

ing between given elements in terms of the “association field” which integrates ele-

ments across neighbour filters tuned to similar orientations [177]. Moreover, Einevoll 

presented both the discrete and the continuous mathematical model for the spatial recep-

tive-field organization [293].   

These investigations of receptive fields provide us with the following principles. Giv-

en that the spatial element is anywhere in the 2D plane, those elements across neighbour 

filters are tuned to similar orientations and can be integrated into an association recep-

tive field. Since crowding has the property of averaging within the receptive field, the 

pooling region can be obtained by integrating similar spatial elements in the neighbour-

hood.  
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6.1.2 Pooling region generating  

6.1.2.1 Spatial elements 

According to the theory of perspective, when objects recede from the eye or camera, the 

size of the object decreases; this means that the space of the object in image is reduced 

meanwhile the contour is lessened. If the distance is far enough away, the contours or 

boundary of separated objects disappear and those separated objects as parts are merged 

into a whole to show.  This suggests that there are two spatial elements which need to 

be represented:  the space occupied by the object and the contour or edge of the object. 

Although we will explore the contour of the object based on the reasonable edge de-

tector in the next chapter, contour will disappear when the space occupied is too small, 

and it can be distorted by crowding or clutter [188] [197]. Moreover, space occupied by 

the object exists and has discernible information. That is what impressionists do. 

Significantly, impressionists realized that an object does not have its own colour but 

many individual patches of colour, so they used directional brushstrokes or colour 

patches, which are small space patches in space regularity, to represent “formless” visu-

al objects instead of clear contoured shapes. Learning from this school of art, we have 

used an image-based method-connected component analysis to represent the space 

patches forming an object. 

6.1.2.2 Geometric mean regions  

Considering our task of text extraction, all the colour (RGB) images are converted to 

grey-scale. There is an advantage of grey scale objects over letters and silhouettes in a 

cluttered environment, in that the informative features of objects, defined by local varia-

tions in contrast, appear to mitigate the detrimental effects of crowding. Compared to 

letters or silhouettes, grey-scale objects (e.g. intact, aperture, and donut) require a much 

smaller increase of contrast in crowded conditions to restore accuracy to the uncrowded 

level. Thus, all of the following operations are on the grey-level image. 

The space patches are defined solely by incorporating all the similar grey level pixels 

in the neighbourhood of the currently selected pixel, element or unit. And pooling re-
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gions in global image can be defined by GM regions. GM regions are defined by the 

property of the geometric mean function in space patches.  

The concept can be explained informally. Imagine all possible grey patches in an im-

age I , they are arranged in a consistent way to generate texture or form. This looks like 

the preconceptions about a “tree” or letters or “windows” or “sky”. If we are shown an 

object in an image, instead of rendering solid objects, many individual grey patches 

work together in harmony to make up a form, i.e., the form of an object is the harmonic 

combination of grey patches. 

What and how is harmony created?  ‘Do you not know that our soul is composed of 

harmony and that harmony is only produced when proportions of things are seen or 

heard simultaneously? [55]’ According to Leonardo Da Vinci, proportion is in all things, 

it is not only found in numbers and measurements but also in sounds, spaces and in 

whatsoever power there maybe. Harmony is composed of the union of its proportional 

parts reacted (e.g. seen or sounded) simultaneously. And a feeling of beauty in human 

being is born from these harmonious proportions. For visual objects in an image, their 

component grey patches are made to react simultaneously and can be seen at one and 

the same time both together and separately, their geometry and proportion are therefore 

keys in creating a structure and their proportion should ideally reflects the object in the 

real world. 

How to capture these proportions among the component parts of a visual object? In 

mathematics, the geometric mean (GM) can capture the ratios to the reference value. 

The fundamental property of the geometric mean, which can be proven to be false for 

any other mean, is  

( )
( )i
i

i

i

YGM
XGM

Y
XGM =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛                                                          (6.1) 

This makes the geometric mean the only correct mean when averag-

ing normalized results, and it is the results that are presented as ratios to reference val-

ues, i.e. geometric mean can capture the proportion. And a geometric mean is often used 

to compare different items– finding a single "figure of merit" for the items–when each 

item has multiple properties that have different numeric ranges. Thus using it among 

grey patches, the proportions of component parts to the whole image can be captured 

implicitly.  
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GM=109 GM=148 GM =54 GM=20 GM=7 
Original 

GM=148 GM=54 GM=20 GM=7 

GM=403 GM=54 GM=20 GM=7 

Figure 6.1 Images  partitioned into GM regions  

GM=148 GM=54 GM=20 GM=7 

GM=148 GM=54 GM=20 GM

GM=148 GM=54 GM=2 GM=7 
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Image I is a mapping  :I .2 SRD →⊂  cc space patches/regions are well de-

fined on images if: 

1. S is totally ordered, i.e. a reflexive, antisymmetric and transitive binary rela-

tion≤  exists. In this paper, { }255,,1,0 …=S is considered, and the regions 

can be defined on the images. 

2. An adjacency (neighbourhood) relation DDA ×⊂ is defined. In this paper 

8-neighbourhoods are used, i.e. Dqp ∈, are similar and adjacent ( )pAq iff 

1
1

≤−∑ =

d

i ii qp , and qp,  has the similar grey level s . 

Region Q is a contiguous subset ofD , i.e. for each Qqp ∈, there is a sequence

qaaap n ,,,,, 21 … and .,, 11 AqaAaapAa nii +  Let isN _ be the number of the sequence 

points.   

GM indicator Let { }sgS QQQSs ,,,| 21 …∈=Λ  be a set of regions in grey level

s . The number of regions is sg .  Among the set of regions sΛ , the number of the 

sequence points is selected as the indicator of each region, and the geometric mean 

sGMΛ  is computed as sg
sg

sg

is
is NNNNGM

s 21
1_

_ =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∏

=
Λ . And sGMΛ  becomes 

an indicator of the sΛ . 

GM regions Let { }skssGM ΛΛΛ=Ψ ,,, 21 …  be a set of regions with a similar ge-

ometric mean, called GM regions, and sjΛ with the number jsg of space patches. 

Since there are similar geometric means, a set of values of geometric mean exist in 

the image, let { }rGMGMGMGMGM ,,,, 321 …= denote it, and the number of ge-

ometric mean value is equal to r . Then, the image I  can be represented as the set 

of GM regions ∪
r

i
GMiI

1=

Ψ= . 

Table 6.1 Definitions used in following sections 

  

In equation (5.1), if iY is the total amount of points in an image, and iX  is a variable 

of the number of points of grey patches in a given grey level, then ( )iXGM  can find a 
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single “figure of merit” in the global image. If iY is a variable of the amount of points in 

whole objects, which can be formed in many kinds of grey levels, iX is a variable of the 

number of points of component parts, and ( )iXGM  can capture a single “figure of merit” 

in an object as well as those in different objects. 

Therefore, GM can be an indicator of a “figure of merit” in an image that has close 

relations to the proportion of component parts. Since GM can indicate the “figure of 

merit” among proportional component parts, GM regions get involved in object consti-

tution. Shown in Figure 6.1, image is composed of the GM regions in different GM lev-

els. 

If several kinds of grey levels have similar proportions or rhythms in an image, they 

have the same GM value, and can form the same object, or in other words the same type 

of objects bring to human beings the similar feeling of beauty. So those grey patches 

with similar GM values are composed of GM regions. The formal definition of the GM 

regions concept and the necessary auxiliary definitions are given in Table 6.1.  Accord-

ing to the Gaussian subunits solution and the associated field, the receptive field must 

show the linear spatial summation. And those GM regions, which are generated by 

neighbourhood proximity and similarity, can be considered as our pooling regions over 

which statistics are computed. 

 

6.1.3 Statistics feature over GM regions 

The investigation of crowding in the cluttered image shows that the averaging property 

of crowding is still reasonable, and local image statistics can reasonably predict where 

crowding occurs. Moreover, clutter can be measured by cluster density. 

Bex et al shows that local image statistics, such as target size, eccentricity, local RMS 

contrast and edge density, can reasonably predict where crowding occurs. And those 

differing local  positions, orientations, phases and spatial structures can be synthesized 

by summary statistic crowding modelling which is based on a textural representation 

[78]. However, the cluttered image is usually composed of a broad range of spatial and 

temporal structures, and the standard contrast sensitivity function is a poor indicator of 

sensitivity to structure in cluttered scenes. Contrast sensitivity does not increase mono-
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tonically with the image contrast at the target location but is similar for very high or 

very low local contrasts. But, contrast sensitivity does rise monotonically with the den-

sity of edge features at the test location. The sensitivity to spatial structure in natural 

scenes depends on the distribution of local edges as well as the local amplitude spec-

trum. Thus, for our task, over GM regions, statistical features are analysed, for instance 

pixel density, RMS contrast, edge density, orientation, direction density, and neigh-

bourhood measurement. We need to analyse not only those general local statistical fea-

tures, but also those discriminative features of text. The latter features of text will be 

discussed in section 6.2.   

Neighbourhood measurement has tight relations to both the text object and non-text 

object, and we will define it over GM regions. Moreover, we’ll deal with the general lo-

cal statistical features. These include pixel density, orientation, direction density, RMS 

(root mean square) contrast and edge density. Pixel density corresponds to luminance; 

RMS contrast is the variation in pixel intensity over GM regions; direction density is the 

space-average direction output of edge detector, where has eight bins for eight direc-

tions respectively; Edge density is the space-averaged binary output of the edge detector, 

where higher values denote more edge pixels per unit area.  

6.1.3.1 RMS contrast 

Given an image NMI × , its global RMS contrast can be computed by mean intensity I  and 

standard differences of intensityσ  in the global image, shown in Equation (4.1) in 

Chapter 4 and rewritten as follows: 

I
RMS σ

=  , ,1 1

0

1

0
,∑∑

−

=

−

=

=
M

i

N

j
jiIMN

I   ( )∑∑
−

=

−

=

−=
1

0

1

0

2
,

1 M

i

N

j
ji II

MN
σ                          (6.2) 

And the local RMS contrast in a space patch 
QQ NMQ × can be computed by mean inten-

sity QI of local regionQ  and its standard differences Qσ as thus:  

   ,
Q

Q
Q I

RMS
σ

=   ,1 1

0 0
,

1

∑ ∑
−

= =

−

=
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1 Q QM

i

N

j
Qji
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Q II
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σ         (6.3) 
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And over the GM Regions { }sksssGM ΛΛΛ=Ψ Λ ,,, 21_ … , the average RMS is computed 

as 

                                     
sGM

sGM

I
RMS

sGM
Λ

Λ
Ψ =

Λ

_

_
_

σ

 

                                         
,1

1 1_
_,

1

_ ∑ ∑
∑

Λ

Λ= =
Λ

Λ=

Λ =
sk

sj

sg

is
isjsk

sj
j

sGM

j

I
sg

I     

                         ∑ ∑
∑

Λ

Λ= =
Λ

Λ=

Λ =
sk

sj

sg

is
isjsk

sj
j

sGM

j

sg 1 1_
_,

1

_
1

σσ                                         (6.4) 

Where isjI _, is the mean intensity of a space patch, and isj _,σ is standard intensity dif-

ference of the space patch, and both of them can be computed by equation (6.3). 

6.1.3.2 Orientations, direction density and edge density    

Based on the edge map obtained by Kirsch operators, edge density is computed over the 

space patches and GM regions. Given a space patch iQ , Let iconsN __ denote the number 

of edge points over local region iQ , and
zdiriN __ denote the number of edge points in di-

rection ,z  { }7,6,5,4,3,2,1,0=z corresponding to the indicators of the above compass di-

rection kernel. Over the GM Regions { }sksssGM ΛΛΛ=Ψ Λ ,,, 21_ … , the averaged direction 

density zdirsGMDensity ___ Λ  is computed as thus: 

∑∑
∑

Λ

Λ= =
Λ

Λ=

Λ =
k

j

sg

i
zdirijk

j
j

zdirsGM

j

N
sg

Density
1 1

__

1

___ ,1                                     (6.5) 

 And the edge density conssGMDensity ___ Λ is computed as thus: 
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∑∑
∑

Λ

Λ= =
Λ
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Λ =
k

j

sg

i
iconsjk

j
j

conssGM

j

N
sg

Density
1 1

__,

1

___
1                                     (6.6) 

6.1.3.3 Cluster and neighbourhood measurement  

Image ,I  there are r levels of GM, let { }rGMGMGMGMGM ,,,, 321 …= enumerate the 

values of GM. Therefore, image I consists of a set of GM regions ,
1
∪
r

k
GMk

I
=

Ψ=  
kGMΨ

denotes the GM region corresponding to kGM . Over GM regions, adjacency (neigh-

bourhood) relation 
kk GMGMccA Ψ×Ψ⊂ is defined. For given regions ,,

kGMqp QQ Ψ∈ both 

the position and physical appearance of the region are considered. Space among the two 

regions corresponds to position change, which consists of the x coordinates change and 

y coordinates change. And the width and the height of the tight rectangular boundary of 

the region correspond to the physical appearance. And over the three dimensions, 

Gaussian functions are applied to measure the relations between pQ and qQ  as follows: 

 ,
2

exp
2
1Re 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−=

σπσ
lation            qp ξξ −=Δ                              (6.7) 

Where ξ denotes four dimensions, including x-coordinates change, y-coordinates 

change, width, and height of the tight rectangular boundary, and σ is the Gaussian con-

stant. Regions pQ  And qQ are similar and adjacent ( )qccp QAQ iff σ1Re ∈lations  confi-

dence interval.  

Cluster lΩ is a contiguous subset of GM regions
kGMΨ , i.e. for each qp QQ ,

kGMΨ∈ , 

there is a sequence qcnccp QQQQQ ,,,, 2,1 … and qcccncicccicccp QAQQAQQAQ ,, 11 + . Let lcgmN __

be the number of the sequence regions. 

In GM regions
kGMΨ , there might be several clusters, whose locations and length of 

the sequence reflects and quantifies the composition of the cluttered scene.  
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6.2 Computational model of text   

Type design is the beginning of letters. Considering the distinctiveness and uniformity, 

type designers constrain the shape of individual letters within a font by constraining size 

proportions, so that they are related in weight, contrast, and stress, or the axis, of the let-

ter. The proportions vary somewhat among fonts, but they are within a restricted range 

which makes the fonts of the same point size appear larger or smaller. These regularity 

effects within a font imply the shared properties or commonalities in addition to the dis-

tinctiveness among letters. These commonalities in the shape, proportions and other sty-

listic attributes of letters within a font, lead to the uniformity. This suggests that letters 

forming text are related in weight, contrast, proportions, and they also share some at-

tributes. Thinking of the space averaging property of the crowding effect, the common-

alities among letters can be captured over pooling the regions explicitly to some extent. 

Learning from the computational model in letter perception, a letter mainly consists of 

lines of different orientation and curvature, and two-level interactive-activation compu-

tational models are used to describe them. This suggests that the straight line plays a 

key role in letter perception. And we also pay attention to the straight line in letters in 

our task. 

Additionally, in Ergonomics, text has two kinds of characteristics: properties for letter 

form, and properties of organization among letters. Since properties for letter form de-

termines the form is a letter in perception, it definitely plays a significant role in the dis-

crimination of a single letter. For properties of organization, it includes letter spacing, 

word spacing and line spacing. It especially corresponds to the space regularity of letters 

which leads to the crowding effect and summation of subunits in a receptive field. 

Therefore, these organizational properties should be quantified and computed in our 

task. 

Summarising the properties in different aspects mentioned above, text can be de-

scribed in three level computation models. Illustrated in Figure 6.2, the first level of rep-

resentation consists of the features of letters, which correspond to the properties of the 

physical appearance of type but in an image-based representation. The second level 

consists of letter-centred attributes, that is, the relations among letters over both space 

locations and physical appearances in the image, such as letter spacing or letters neigh-

bourhood. And the third level consists of a word-centred description, i.e. considering 
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the space roles at play in the global image; we can compute it over the GM regions 

since text usually appears as one or several clusters in the GM regions. 

 
  

6.2.1 Feature of letters 

As we know from chapter 3, the functional properties of a letter, which relate to its 

physical appearance include letter shape, line, size (width and height), weight, and pro-

portion for the purposes of legibility. Given an image, these properties in Ergonomics 

can be translated in image-based attributes.  The width and height and the related pro-

portions of a letter can be used in a similar fashion to those in Ergonomics, thus we fo-

cus on those properties which we need to specially process in image.  

6.2.1.1 Letter shape 

Letter shape refers to the contour or form of a letter, or the inked space occupied by the 

letter. Therefore, it can be captured by grey space patch—region Q  defined in 5.1.2.2, 

or formed by the edge point (i.e. boundary point).   

Actually, the boundary of one thing with another is of the nature of a mathematical 

line, but not of a drawn line, because the end of one colour is the beginning of another 

colour—the boundary is a thing invisible. Image edge points depend on the detection 

Feature of letter 

Letter-centred description 

Word-centred description  

Visual input 

Text 

Figure 6.2 Schematic representation of a computational model of text    

of lette
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algorithm. Indeed, edge detection is arguably the most important operation in low-level 

computer vision with its plethora of techniques.  

However, the optimality of an edge detector can only be assessed in the context of a 

well-defined task. That is, the quality of an edge map is directly related to the amount of 

supportive information it carries into the subsequent processing stages. Since this in-

formation is extracted after the edge map is generated, a measure of confidence should 

be associated with the bottom-up information stream. Then, a task dependent top-down 

process can confirm (or discard) the hypotheses arising during the execution of the task 

and, thus, improve the overall performance. We will deal with one edge algorithm em-

bedded in the confidence measure in the next chapter. 

Based on the confident edge points, the letter form can be generated based on the 

neighbourhood measurement. And we will deal with it in the next chapter. 

6.2.1.2 Pixel density and contour density

Weight can be obtained by the number of the “inked” pixels in a regionQ . Considering 

the commonalities among letters, pixel density—the number of pixels per unit area, is 

defined to correspond with weight. Given a regionQwith the number of pixels isN _ in 

grey level s , it has a tight rectangular boundary with the width W and heightH , and 

then the pixel density pixelDensity  is defined as follows 

( )HWNDensity ispixel ×= _                                          (6.8) 

Additionally, if there is a number of an edge point isconN __  in the regionQ , contour 

point density pixelconDensity _ is also defined as a variable related to weight, and is com-

puted as  

( )HWNDensity isconpixelcon ×= ___                                (6.9) 

Since font of the same typeface can have different weights, it means that there are 

somewhat intra-class differences, and we can tell the subtle differences of letters in the 

same category. And we will deal with them in an application in chapter 6. 
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6.2.1.3Line and line ratios 

Line Although a letter mainly consists of lines of different orientation and curvature, 

text arbitrary sizes and complex background set big uncertainty on the length of lines, 

so a straight line ratio is defined to correspond to this property.   

Based on the edge points with directions, edge in one orientation can be computed by 

connecting the edge points in corresponding directions. According to Kirsch, the hori-

zontal line is composed of the edge points either in direction 2(north) or direction 

6(south); the vertical line is formed by the edge points either in direction 0(east) or di-

rection 4(west). A 45 straight line consists of the edge points either in direction 

3(Northwest) or direction 7(southeast), and a 135 straight line is formed by the edge 

points either in direction 1(Northeast) or direction 5(Southwest). And we can connect 

the corresponding edge points to straight lines in eight directions respectively based on 

neighbourhood measurement as follows: 

Let z enumerate the eight directions: { }7,6,5,4,3,2,1,0=z  which corresponds to ,00

,45 ,90 ,135 ,180 ,225 270 and 315 respectively, edge map E is a mapping

.: 2 zRDirE →⊂  straight lines are well defined on edge map if: 

1. z is ordered and z ={ }7,6,5,4,3,2,1,0 is considered, the straight lines can be de-

fined on the edge map.  

2. An adjacency (neighbourhood) relation DirDirAdir ×⊂  is defined. In this paper 

8 neighbourhoods are used, i.e., Dirqp ∈, are similar and adjacent ( )pAq iff 

1
1

≤−∑ =

d

i ii qp , and qp,  has the same direction.   

Straight line L  is a contiguous subset of ,Dir i.e. for each Lqp ∈, there is a se-

quence qaaap n ,,,,, 21 … and .,, 11 qAaaAaapA dirnidiridir +  Let izN _ be the number of the 

sequence of edge points, i.e. the length of the line segment L .  

Line ratios are defined over both horizontal orientation and vertical orientation in 

the region U  given by the tightly rectangular boundary box of a letter since both hor-

izontal line and vertical line are salient structure features of a letter in letter percep-

tion. The ratios are referred to the horizontal line length to the width of a letter HRSL , 

and the vertical line length to the height of a letter VRSL , and defined as follows: 
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( )

letterofWidth
NN

RSL iiU
H

_6_2 ,max
=              

( )
letterofHeight
NN

RSL iiU
V

_4_0 ,max
=             (6.10) 

Note that the region U given by the tightly rectangular boundary box of a letter can 

be composed of the grey space patchesQ , or be obtained by the letter shape.  

6.2.2 Letter-centred features 

For the purpose of readability, letter spacing, word spacing and interline spacing are in 

harmony with each other and organized as a whole text. And all of them are highly re-

lated to the type size. Here letter-centred features refer to the space relations among let-

ters derived from similarity and proximity, i.e. adjacent. Considering the type size, i.e., 

the width and height of a letter, we deal with the relations among letters.  

Given letters letterkletterletter ,,2,1 … and 2letter , their tightly bounding boxes ,1B

,2B  ,… kB are in width ,, 21 WW ,… kW and height ,, 21 HH ,… kH respectively. Relations 

among the letters are defined over the regions occupied by the bounding boxes as fol-

lows: 

An adjacency (neighbourhood) relation LA is defined over boundary boxes. In this 

paper, the size of the boundary boxes, and distances between the bounding boxes of let-

ters are used. ( )jLi BAB if their appearances are similar and their positions are near in 

space on these conditions: 

i.  ( )jiij HHCH ,max1≤Δ and ( )ji HHCHij ,min2≤Δ , jiji HHH −=Δ , , 

21,CC are constants.  

ii. Horizontal distance between the two letters ),max(_ 3 ji HHCxSpace <Δ , 

here 3C is a constant. Additionally, in the vertical direction, the y-coordinates 

of the two letters have common parts. 

Letter strings Str is a contiguous subset of the boundary boxes occupied by letters, i.e. 

for each StrBB ki ∈,  there is a sequence of kni BbbbB ,,,2,1, … and kLniLiLi BAbbAbbAB ,, 11 + . 

Let istrN _ be the number of the contiguous bounding boxes of letters, i.e. the length of 

the string .Str  
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Note that, as it’s well known, when nature needs a proportion to relate things and to 

provide order on any scale, it tends to use the golden ratio. And moreover, letter spacing 

is recommended to range from 25 to 40 percent of letter height, so we also use the gold-

en ratio and practical recommendation to default set ,618.01 =C 382.02 =C , .4.03 =C  

6.2.3 Word-centred description 

Corresponding with the word spacing and line spacing, word-centred description refers 

to the space regularity in global level, i.e. the cluster attributes in space. Since text usu-

ally is one or several clusters in GM regions, we define the word-centred attributes over 

GM regions. Over GM regions, there might be one or several clusters. Word-centred at-

tributes include the statistical properties of each cluster and the relations of their space 

location. 

Given a cluster { }qnccpl QQQQQ ,,, 21, …=Ω  in GM regions GMΨ , lcgmN __ denotes the 

number of the entire component space patches. And the statistical properties the cluster

lΩ are composed of average width ,W  average height ,H average stroke width strokeW , 

average direction points izN _ ( { }7,6,5,4,3,2,1,0=z ) and standard differences ,, HW σσ  

,strokeσ ,zσ  )7,6,5,4,3,2,1,0( =z  respectively as thus: 
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The relationships among clusters can be represented pictorially by the Venn diagram, 

in which sets are represented as the interiors of an overlapping circle (or other plane fig-

ures). Set combinations are represented by areas bounded by the circles, as shown in the 

following example for two clusters ml ΩΩ , , illustrated in Figure 6.3: 
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i. Intersect: xml =Ω∩Ω ;  

ii. Disjoint: ,φ=Ω∩Ω ml    ( ) ( )mlml nn Ω+Ω=Ω∪Ω ; 

iii. Subset: ,llm Ω=Ω∩Ω .mml Ω=Ω∪Ω  

 

6.3 Summary 

Clutter is the state in which the organization of visual items can cause crowding and 

lead to a degradation of performance in some task. This definition of clutter brings up 

two key points: the association between clutter and the representation or organization of 

information, and the notion that clutter may depend upon the user’s task. This presents 

the two corresponding questions. One is how the clutter scene images are represented 

by the spatial layout or space organization. And the other question is how to express the 

text in the clutter image, although there is another representation from the viewpoint of 

Ergonomics. 

And the investigations of crowding in chapter1 provide important insight into the es-

sential process of crowding as follows: 1) image features are pooled within receptive 

fields of increasing size, and 2) crowding can be broken by grouping or crowding of 

crowding.  Clearly, what we need to specify, of course, is the region over which the sta-

tistical property of crowding is computed and un-crowding is realized by a grouping 

based on similarity. 

Either with clutter or crowding, what we need to do is provide a reasonable represen-

tation of their spatial element and quantify their relations in space, that is, their neigh-

bourhood together with similarity depends on our text detection work. 

According to the theory of perspective, when objects recede from the eye or camera, 

the size of the object decreases. This means that the space of the object in the image is 

reduced while the contour is lessened. If the distance is far away enough, the contours 

or boundary of the separated object disappears and the separate objects are merged into 

       

a)                                                                                  b)                                                                   c)

Figure 6.3 relationships among clusters over GM regions: a) intersect; b) Disjoint; c) Subset 
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a whole.  This suggests that there are two types of spatial elements:  space occupied by 

object and the contour or edge of the object. 

Contour will disappear when the space occupied is too small, and it can be distorted 

by crowding or clutter, while the space occupied by the object exists and has discernible 

information. That is what impressionists do. 

Especially, impressionists have realized an object does not have its own colour, but 

many individual patches of colour, so they use directional brushstroke or colour patches, 

which are small space patches in space regularity, to represent visual object “formless” 

instead of the clear contour shape sketch. Learning from the painters, we can use an im-

age-based method--connected component analysis to represent the space patches form-

ing an object. And spatial organization is explored among these connected component 

space patches. 

This concept can be explained informally as follows. Imagine all possible gray patch-

es in an image, they are arranged in a constitutional way to generate textures or form, 

which looks like the preconceptions about “tree” or letters or “windows” or “sky”. If we 

are shown an object in an image, instead of rendering solid objects, many individual 

gray patches work together in harmony to make up a form, i.e., the form of the object is 

the harmonic combination of grey patches. 

What is harmony?  Harmony is only produced when proportions of things are seen or 

heard simultaneously [55]. According to Leonardo Da Vinci, proportion is in all things, 

it is not only found in numbers and measurements but also in sounds, spaces and in 

whatsoever power there maybe. Harmony is composed of the union of its proportional 

parts reacted (e.g. seen or sounded) simultaneously. And a feeling of beauty in the hu-

man being is born from these harmonious proportions. For visual objects in image, their 

component gray patches are also made to react simultaneously and can be seen at one 

and the same time both together and separately, their geometry and proportion are keys 

in creating a structure and their proportion should reflect the object in the real world. 

In mathematics, the geometric mean (GM) can capture those ratios to the reference 

value. Thus using it among grey patches, the proportions of component parts to the 

whole image can be captured implicitly, and also GM can capture a single “figure of 

merit” in an object. Therefore, GM can be an indicator of “figure of merit” in an image 

which has close relations to the proportion of component parts. Since GM can indicate 
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the “figure of merit” among proportional component parts, GM regions get involved in 

object constitution.  

If several kinds of grey level have similar proportions or rhythm in an image, they 

have the same GM value, and they may form the same object, or the same type of ob-

jects which bring to the human being the feeling of beauty. So those grey patches with a 

similar GM value are composed of GM regions. The formal definition of the GM re-

gions concept and the necessary auxiliary definitions are given in Table 1.   

According to the Gaussian subunits solution and the associated field, the receptive 

field must show linear spatial summation. And those GM regions, which are generated 

by neighbourhood proximity and similarity, can be considered as our pooling regions 

over which statistics are computed.  

Over GM regions, statistics features are defined and computed, including RMS con-

trast, orientation, direction density, and edge density. And neighbourhood is measured, 

together with similarity, adjacent relations are defined and clusters are obtained over 

GM regions. Thus, a space-averaged image representation is built up. 

Moreover, to summarise the properties in different aspects investigated in type design, 

letter perception and computation, text can be described in terms of a three-level com-

putation model. The first level of representation consists of the features of a letter, 

which correspond to the properties of the physical appearance of type but in image-

based representation, such as letter shape, weight and pixel density, line and straight 

line ratios. The second level consists of letter-centred attributes, that is, relations among 

letters over both space locations and physical appearances in image– letter spacing or 

the letters neighbourhood. And the third level consists of a word-centred description, 

which considers the space roles of word playing in the global image. We also define the 

space relations over clusters since text is generally in one or several clusters in the GM 

regions.     

The space averaged representations of image in the clutter scene and text model pro-

vide us with the insights of the computational features of text, and give us clear instruc-

tions for the algorithm of text extraction from the clutter scene.  
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Chapter 7  

Text Detection Algorithm Based on the Space 
Averaged Crowding Model  

The space averaged representations of image in the clutter scene and text model built in 

Chapter 4, provide us with insights into the computational features for text, and give us 

clear instructions for the algorithm of text extraction from the clutter scene. 

Guided by these representations of image and text in the cluttered scene, instead of 

only focusing on the features of text, and considering the statistical properties of clutter 

and crowding, we propose a framework of text detection by integrating the properties of 

clutter/crowding into text features. Based on the quantification of the space organization 

of the clutter scene, a highly perceptive solution of text extraction is developed over 

GM regions and the three-level text model. This chapter will present details of the pro-

posed algorithm, including feature extraction, component extraction, GM regions gen-

eration and GM regions analysis and text location. 

7.1 Methodology  

Based on the space averaged representation of image and the text three-level model, we 

propose a new framework to extract text strings with multiple sizes and colours from 

the cluttered scene. Illustrated in Figure7.1, the flowchart of our framework consists of 

three main parts: a) image partition to find text character candidates based on confident 

edge map and non-overlapped grey space patches. In this part, guided by the representa-

tion of image proposed in Chapter 4, image is represented by a set of GM regions with 

clutter features, meanwhile the image also is partitioned into a set of closed regions 

based on the gradient-based method, and post processing is then performed to remove 

the GM regions and closed regions. b) Attributes are computed over GM regions, in-

cluding the general features of image and text features. Meanwhile, space adjacent rela-

tions among close regions are analysed in this part.  c) In this part, the saliency of GM 

regions are analysed in each GM level. For our task, the GM level provides the granu-

larity of the space element of the image.  
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Accordingly, for the large format text, even formed by only one character, it is still sali-

ent enough and detected by text structure features. For small text, according to the three 

aspects of perspective, when the text is too small, the boundary and colours of letters 

disappear, only the sheet resulting from the string of small letters can be discriminated. 

The investigation of text legibility and readability suggests to us that the measurement 

of small text is less than 5 pixels height. And the large format size is bigger than 72 

points, being approximately 66 pixels height. 

In each GM level, three-level features of text together with space-averaged image sta-

tistical features over the GM regions are used to GM analyse or learn by SVM to deter-

mine the text locations. And then with the cross-validation of close regions, the text re-

gions are inferred.  

The proposed framework is able to effectively detect text strings in arbitrary locations, 

sizes, orientations, colours and slight variations of illumination or the shape of the at-

tachment surface. Compared with existing methods which focus on independent analy-

sis of a single character, the text string structure is more robust in terms of distinguish-

ing background interferences from text information. Experiments demonstrate that our 

framework outperforms the state-of the-art Robust Reading Dataset. 

Overall, the algorithm introduced in this chapter offers the following primary contri-

butions to robust detection of text with variations of scale, colour, and orientation from 

the clutter scene: 

Starting from the high perception, instead of focusing on text features and considering 

the statistical properties of the clutter and the crowding based on the quantified space 

regularity, we explore the composition of visual objects on image and infer the patches 

of text from a perceptual view. Because the prosed method does not reply on heavy 
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Figure 7.1 the flowchart of the proposed framework of text detection  
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classifier training, it is not tangled with the constraints in legend solutions. Moreover, 

the proposed method, owing to its analysis of the composition of visual objects and the 

statistics of clutter instead of subtle local features, shows robustness in a clutter envi-

ronment. This chapter contributes in the following aspects: 

• Most existing work of text detection from clutter scene images only focuses on 

features of text, usually ignoring the features of the cluttered scene. We propose 

a new framework to robustly detect text strings with variations of orientation 

and scale from the cluttered scene by integrating three-level features of text 

based on clutter or crowding statistics properties, introduced in chapter 6. 

• We formally quantify the space organization or the constitutional proportions of 

component parts of the visual objects, especially the composition of text. There-

fore, a highly perceptive solution is proposed to analyse the visual objects in the 

image. 

• We model text by combining the three-level features of text and the clutter sta-

tistic properties. Three-level features of text consist of features of letter, letter-

centred space relations (the organization of letters), and word-centred attributes 

(i.e. attributes over GM regions). And the statistics properties of the clutter scene 

are computed over GM regions. Under this model, we develop an algorithm 

based on the GM partition and gradient-based partition to compute connected 

components of candidate characters. It is more robust and achieves better results 

than only using one of them. 

After this, we deal with the detail in the following parts. 

7.2 Image partition 

According to the representation of image in the clutter scene, image partition is firstly 

performed to group together the adjacent pixels that belong to the same character, ob-

taining a map of space patches as candidates of text. Based on local gradient features 

and the uniform grey value of text characters, we design a gradient-based partition algo-

rithm and a multi-grey level partition algorithm respectively.  
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7.2.1 Multi-grey connected component (MGCC) 

The space patches are defined solely by incorporating all the similar grey level pixels in 

the neighbourhood of the currently selected pixel. And the whole image is represented 

as a set of grey patches in the multi-grey level. And among them, geometric mean is 

captured and GM regions are generated as pooling regions of crowding effect. The defi-

nition has been introduced in Chapter 4. Now the details are implemented by connected 

component analysis (CCA).  

Image is a mapping :I ,2 SRD →⊂ { }255,,1,0 …=S , Multi-grey level space 

patches/regions are well generated on images by the adjacent grouping. An adjacency 

(neighbourhood) relation DDA ×⊂ is defined. Here, 8-neighbourhoods are used, i.e. 

Dqp ∈, are similar and adjacent ( )pAq iff 1
1

≤−∑ =

d

i ii qp , and qp,  have the similar 

grey level s .   

Region Q is a contiguous subset ofD , i.e. for each Qqp ∈, there is a sequence ,p ,1a

,2a  ,…  ,na q and  Let isN _ be the number of the sequence points.  

Let { },,,, 21 sgS QQQ …=Λ Ss∈  be a set of regions in grey level s , and sg denote the 

number of regions in this grey level . Thus, for a 8-bit grey images (i.e. 2550 ≤≤ s ),

nmI × , its multi-grey Connected Components (MGCC) are described as below, 

∪ ∪∪ 255

0 0 ,
255

0
_

= ==× =Λ=
j

sg

i ijjnm
j QjsI                                              (7.1)   

Based on the basic MGCC image segmentation, GM regions are obtained in the fol-

lowing way. Among the set of regions sΛ , the number of the sequence points isN _  is se-

lect as the flag of each region, and the geometric mean value sGMΛ  is computed as

sg
sg

sg

is
is NNNNGM

s 21
1_

_ =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∏

=
Λ . And sGMΛ  becomes an indicator of the sΛ . 

Then, let ΨGM = Λs1,Λs2,…,Λsk{ }  be a set of regions with similar geometric mean, 

called GM regions, and Λsj with the number jsg of space patches. Since there are similar 

geometric means, a set of values of geometric mean exist in the image, let 

I

.,, 11 AqaAaapAa nii +
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{ }rGMGMGMGMGM ,,,, 321 …= denote it, and the number of geometric mean value is 

equal to r . Then, the image I  can be represented as the set of GM regions: 

                                                ∪
r

i
GMiI

1=

Ψ=                                                     (7.2) 

7.2.2 Gradient-based partition 

Generally, an edge map is associated with closed and infinite curves, and image can be 

partitioned into a set of regions given by these close curves. The increase in the saliency 

of closed curves is often considered desirable because these curves are usually more 

significant than their open counterparts with the same length. Indeed, closed curves are 

considered more salient by the HVS [8]. 

Similarly, for our task, un-crowding requires our target to be conspicuous through 

both salient structure and grouping according to space regularity. Thus, beside the 

straight line, the form or shape of character becomes another salient feature in feature 

level, and it will affect the letter-centred features. We need to select a confident edge 

detector. Then based on these confident edge points, the contour of the interested re-

gions will be generated.  

Usually, the close curves are considered as salient structure. Therefore, we call the 

regions given by contours as close regions (CRs).   And image can be partitioned into a 

set of CRs.  

Local contrast in a 2D image corresponds to discontinuities in depth or in surface orien-

tations of 3D objects, changes in material properties, and variations in scene illumina-

tion. This can be captured by edge detection. Edge detection converts a 2D image into a 

set of curves. However, the optimality of an edge detector can only be assessed in the 

context of a well-defined task. That is, the quality of the edge map is directly related to 

the amount of supportive information it carries into the subsequent processing stages. 

Since this information is extracted after the edge map is generated, a measure of confi-

dence should be associated with the bottom-up information stream. The paper 
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[Pami2001] defined a confidence measure by using information which inherently exist-

ed in the regular sampling lattice and was not employed in the computation of the gradi-

ent magnitude. The paper then proposed an edge detection approach. 

Based on a gradient operator, for edge detection embedded confidence, the data 

is weighted with binomial weights and the simplest local structure model is assumed. 

The two sequences are  

T

T

]125.0,25.0,0,25.0,125.0[)1,1;()(

]0625.0,25.0,375.0,25.0,0625.0[)0,0;()(

−−==

==

jhjd
ihis

K

K                                             (7.3) 

yielding the masks 
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                                  (7.4)  

                    
TWW =dy    

After gradient estimation, every pixel in the image is associated with an edge (gradient) 

magnitude ĝ   and an edge orientation eθ̂ . Then, after performing hysteresis thresholding, 

the confident edge points are obtained. 

Since this edge detector embedded in confidence fills in most missed corners in the 

hysteresis thresholding step, for example, the edge map shown in Figure 7.2c), it can 

help us to obtain the contour or shape to the object and give us access to the global in-

formation.  

55×

Figure 7.2 a) Original image. b) Traditional (Sobel) edge map. 
c)  Edge map with embedded confidence 

b)                                                              b)                                                 c) 
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A “point in polygon” algorithm with embedded confidence from computational geome-

try, is used to determine if the point is inside or outside of the polygon and the coordi-

nate axes. Moreover, it fills in most missed corners. Thus, edge points determined by 

polygonal contours, which are modulated by both the magnitude and orientation of gra-

dient, are reliable for generating the contours of an object.  

Based on these confident edge points, contours are generated by grouping together the 

edge points that belong to the same object. And the regions given by these contours are 

also interested by the vision task and defined as close regions since the majority of 

meaningful visual objects have close contours.     

The contours are captured by the adjacent grouping together of the confident edge 

points, shown in Figure 7.3, e.g. meaningful contours are captured, and the isolated long 

horizontal lines are discarded. The close regions given by contours are interested and 

the image can be represented as a set of close regions. The contour generation algorithm 

is defined in Table 7.1 in detail. 

Further, space relations (neighbourhood) among CRs are measured as those that are 

computed among grey space patches in Chapter 6. And based on the adjacent grouping 

Edge Image EI is a mapping  :EI .2
ESRD →⊂  cc space patches/regions are 

well defined on images if: 

3. ES is binary value of edge points { }1,0=ES , the regions can be defined on the 
edge point images. 

4. An adjacency (neighborhood) relation DDAE ×⊂ is defined. In this paper 8-
neighbourhoods are used, i.e. Dqp ∈, are similar and adjacent ( )qpAE iff 

1
1

≤−∑ =

d

i ii qp , and qp,  has the similar value s . 
Shape & Close Region Q is a contiguous subset ofD , i.e. for each Qqp ∈, there 

is a sequence qaaap n ,,,,, 21 … and .,, 11 qAaaAaapA EniEiE +  Let iseN _ be the number of 

the sequence points.   

Let { }
eMe QQQ ,,, 21 …=Λ  be a set of regions. The number of regions is eM .  Then, 

the image I  can be represented as the set of CR regions eI Λ= . 

Table 7.1 Contour generation algorithm and related definitions used in following sections 
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algorithm which was defined in section 6.1.2.2, clusters are also formed. Similarly, the 

statistic properties of clutter or crowding are computed over them. Therefore, the fea-

tures computed over CRs consist of the physical measures and the statistical properties 

of the tight rectangular boundary box, such as width, height, aspect ratio, mean intensity, 

local RMS contrast, and neighbourhood. Their computations are the same as the calcu-

lation over the regions given by MGCCs. 

   After image partitioning into a set of regions, the statistical properties of image in 

the cluttered scene and three-level features of text are computed over these regions. 

 

7.3 Features extraction 

Both the statistical properties of image in the clutter scene and features of text are com-

puted over regions given by MGCCs and CRs, and extended in the GM levels. We deal 

with them in the following sections. 

7.3.1 Basic features of physical appearance  

The basic features of the physical appearance of a region consist of the attributes of its 

tight boundary box (i.e., width, height, area, centroid, and aspect ratio), density of pix-

els, stroke width, orientation and density of directions, straight line ratio, mean intensity 

and local contrast.  

Without the loss of generality, given a region iQ formed by a MGCC, its tight rectan-

Figure 7.3 Close regions generated by adjacency grouping confident edge points. 
a) Edge point grouping. b) Regions given by contours 

a)                                                                                    b) 
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gular boundary box is measured by width isW ,  and height isH , . And let iconsN ,_ denote the 

number of edge pixels in the region, and isN , denote the connected pixels of it. Note 

that, Kirsch operator is adopted to extract the edge pixels in a region given by MGCC. 

To better adapt the variance of input images, the threshold inside Kirsch operator is well 

adjusted in order to assure enough edge points are identified inside Connected Compo-

nents. The basic features of physical appearance are defined over them. 

There may be a wide variety of shapes of the region iQ . The size of it is determined 

by the width isW ,  and the height isH ,  of its rectangular tight boundary box. That is,  

  
minmax,

minmax,

yyH
xxW

is

is

−=

−=
                                                                      (7.5)                 

 where minmaxminmax ,,, yyxx is the maximum and minimum coordinates in axis−x

and axis−y respectively . Thus, the area of iQ  is defined as 

            isisis HWarea ,,, ×=                                                         (7.6) 

And the aspect ratio of the shape of iQ  is followed as 
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is
is H
W

ratioAspect
,

,
,_ =                                                                     (7.7) 

The centroid of the region iQ  is computed as 
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Inside CC, the density of mass is considered as an important property to measure 2D 

visual patches. And edge density-the amount of edge point per area, is one important 

measure of clutter meanwhile the direction density is one key measure of the closure of 

a symmetric object. Thus, we compute these densities as: 
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Where idirsN ,_ is the number of the edge points with the given direction .dir  The di-

rection of edge points is described statistically on a 8-bin Histogram of edge Direction 

(HoD). The number iconsN ,_ of edge points is quantized onto eight directions ( ) ,,isHoD ϕ  

let ( ) ,,_, iconsis NHoD =ϕ whose directions are closed to { }0 ,45 ,90 , ,315ϕ∈ . Simply, let 

{ }7,6,5,4,3,2,1,0=dir  correspond to the directions respectively, and idirsN ,_ stands for the 

number of edge pixels in each direction. 

 As discussed in 5.2.1.3, since the straight line is a critical determinative features in 

letter perception, we have defined the straight ratio to capture it over regions. And the 

straight lines are extracted by the adjacent grouping algorithm. Here, an edge line in iQ  

is considered as a line with at least two edge pixels consecutively linked together, and 

all these edge pixels are on the same edge direction dir . When { }6,2∈dir  , it is hori-

zontal line islh , . When { }4,0∈dir , it is horizontal line .,islv  The ratio of the max length of 

straight line to the width or the height of the tight rectangular boundary box of ,iQ

isRSL ,  is defined as: 

{ } ( ) ( )
is

is
V

is

is
HVHis W

lh
RSL

H
lv

RSLRSLRSLRSL
,

,

,

,
,

max
,

max
,, ===                   (7.10)     

where ( )⋅max stands for the maximum length of the line. 

In addition, the stroke width is an important feature of character which can separate 

text from other elements of a scene [25]. In our work, the stroke width issw _ is also 

adopted along with other newly defined features in region .iQ  

  Then, consider that one of statistics properties of clutter is local RMS contrast, a wide 

variety of physical constituents contribute to the distribution of local luminance and 

contrast. Local luminance and contrast are measured in image patches formed by win-

dowing with a circularly symmetric raised cosine weighting function. Given region iQ , 

the cosine weighting function is as thus:  
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Where r is the patch radius, let ),min(5.0 ,, isis HWr ∗= . ( )jj yx , Is the location of the

thj  pixel in the patch, and ( )cc yx , is the location of the centre of the patch iQ .  

The local luminance and the root-mean-squared (RMS) contrast of each patch are 

measured through weight by the raised cosine window. The local luminance of a patch 

is defined by 
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L                                                           (7.12)  

Where N is the total number of pixels in the raised cosine window, jL is the lumi-

nance of the thj pixel, and jw is the weight of the raised cosine windowing function at 

the thj pixel. The RMS contrast of the patch is defined by  
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According to [1], illustrated in Figure 7.4, the statistics result shows that the average 

RMS contrast in rural images is in the range 0.2–0.34 (depending on the analysis patch 

size), and the band-limited RMS contrast is in the range of 0.15–0.18 for rural images. 

The half-saturation contrast (c50) is expected to match the median contrast, which is in 

the range of 0.18–0.24, and it seems to be in reasonable agreement with the contrasts in 

natural scenes.  
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7.3.2 The features of space relations among regions  

 The properties of space relations among regions correspond to the character organi-

zation and space regularity of crowding or clutter- grouping by similarity + proximity. 

Therefore, the proximity is defined over the distance between the two regions, and the 

similarity is still considered over the physical appearance features as follows. 

Without the loss of generality, given any two regions iQ and ,jQ  their physical ap-

pearance are measured by the widths ji WW , and heights ji HH , of the tight rectangular 

boundary boxes respectively, and their positional change range along x-axis are[ ]eisi xx ,

and [ ]ejsj xx , , meanwhile the positional change rang along y-axis are [ ]eisi yy , and [ ]ejsj yy , . 

And their local mean intensities and local RMS contrast are ii RMSL , and jj RMSL , . 

Over the two dimensions of physical appearance and local RMS contrast, the simi-

larity relation is measured by the Gaussian function 

  ,
2

exp
2
1Re 2

2

⎟⎟
⎠

⎞
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⎝

⎛ Δ
−=

σπσ
lation            ji ξξ −=Δ                                      (7.14)   

where ξ denotes the two dimensions of width, and height of the tight rectangular 

boundary box and one dimension of local RMS contrast, and σ is the Gaussian constant, 

a)                                                                                       b) 
 Figure 7.4 After[1]  a) Example of hand segmentation of an image into regions containing
“sky”, “foliage”, “ground”, and “backlit foliage”. b) Demonstration of the variation in contrast
and luminance that might fall on a receptive field during a sequence of eye fixations. The cir-
cles show a receptive field at an arbitrary location relative to the fixation point. 
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it has three values corresponding to the three dimensions respectively. And regions iQ  

and jQ are similar in physical appearance iff σ1Re ∈lations  confidence interval.  

Over the position change, spaces among the two regions in horizontal direction

HSpace  and vertical direction VSpace  can be computed. Consider that letter space is de-

termined by letter height for readability, we measure the proximity in the reference to 

the height of the tight boundary box. Regions iQ  and jQ are proximity iff 

( )jiH HHSpace ,maxα< and 0≤VSpace . Here α is a constant. 

Thus, regions iQ  and jQ are adjacent (neighbours) for each other iff iQ  and jQ are 

similar and proximity. And the two regions can be connected or merged into one. Then 

with the adjacent measure, cluster is generated in GM regions. 

7.3.3 Features over GM regions 

Geometric mean can capture the proportion of the component parts of an object, and 

can find a single "figure of merit" for these parts. And GM regions get involved in ob-

ject constitution, while image can be composed of the GM regions in different GM lev-

els. As text has a highly salient structure, for the purpose of extracting the “figure of 

merit” or salient structure in the clutter scene, all features of region can be extended to 

GM-level. 

   Given GM regions { },,,, 21 skssGM ΛΛΛ=Ψ … { }
isMsi QQQ
,

,,, 21 …=Λ , and ,jQ  

isMj ,,,2,1 …=  stand for regions given by the corresponding MGCCs in the same grey 

value, features are computed over these regions as follows: 

The average width and height of the regions as  
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Where ,,isW isH ,  can be calculated according to Eq.(7.5).  

The average aspect ratio of the shapes of regions in GMψ   
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where jsratioAspect ,_ stands for the aspect ratio of the given region jQ , and is calcu-

lated according to Eq. (7.7). 

Inside GMψ , the average pixel density, average edge density and average edge direc-

tions will be used to measure the appearance of object and the clutter 
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Where jconsjs DD ,_, , and jdirsD ,_ stand for the pixel density, edge density and direction 

density of the given region jQ with grey level s , which can be calculated according to 

Eq.(7.9). 

The average straight line ratios are calculated as  
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Where jsRSH , denotes the straight line ratio of the region jQ with grey level s , and 

can be obtained according to the Eq.(7.10) 

And the average luminance and local RMS contrast are also calculated as 
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where jL denotes the local mean intensity in the region jQ , and is calculated accord-

ing to Eq.(7.12). jrmsC , denotes the local RMS contrast in the region ,jQ which is com-

puted according to Eq.(7.13). 

Additionally, the average stroke width is as  
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7.4 Clusters analysis over GM and CRs

7.4.1 The composition of visual object over GM regions 

In order to explore the semantic links across CCs, motivated by composition theory and 

the maximum entropy [294], a typical statistical model on the number of pixels in CCs 

is established to infer the composition of a visual object consisting of multiple CCs. 

Then, the CCs on the image obtained in Section 7.2.1 can be further organized. The CCs 

with similar composition complexity based on the newly proposed models will be 

grouped together. At the end of this section, it will be shown that such groupings will be 

close to human perception. The CCs belonging to the same object will be grouped to-

gether. In such a way, it will be easier to identify the object of interest on the image. It i 

not possible to have such semantic grouping if it is carried out based on the CCs in Sec-

tion 7.2.1. 

Given the grey level s , the number of pixels in the region jQ  is jsN , . According to the 

Constitution Theory[294] on system complexity, jQ  is an element of a set 

{ }
isMsi QQQ
,

,,, 21 …=Λ . jsN , will be considered as a random number following a typical 

statistical distribution. Its geometric mean sv̂  can be approximated as,  

     is isM M

j jss Nv , ,

1 ,ˆ ∏ =
=                                                            (7.21) 

To simplify the computation, it usually calculates the logarithm of geometric mean 
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(GM) ss vv ˆlnˆ =′ . Thus,  

      ∑ =
′=′ isM

j jss NCv ,

1 ,ˆ                                                      (7.22) 

where jsjs NN ,, ln=′ , andC  is a constant. 

In order to explore the statistics of random number jsN , , it is presented in a more gen-

eral term jsNz ,= . Its probability distribution function is noted as ( )zf . Accordingly, its 

logarithm of geometric mean v′ is, 
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In fact, the composition of CCs on a given grey level s  can be seen as the composition 

of z on the same grey level. According to composition theory and maximum entropy 

[22], given a grey level s , the composition complexity of z can be presented by entropy: 

    ( ) ( ) ( )dzzzzHs flnf
0∫
∞

−=                                             (7.24) 

  
To obtain (or maximize) ( )zHs , we represent Eq.(7.24) Using the Lagrange function 

conditioned on Eq.(7.23), 
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Further, 21,λλ  can be regarded as constants given that the conditions of Eq. (7.23) are 

always satisfied. In order to maximize ( )zf  , let ,0=
∂
∂
z
Fs  

           ( ) ( ) ( ) ( ) 0lnffflnf 21 =++−=
∂
∂ zzzzz
z
Fs λλ                                     (7.26)  

So we have 
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       ( ) zz lnfln 21 λλ +=                                                           (7.27) 

then   

( ) 21 λλ zezf ⋅=                                                                    (7.28)    

Substitute Eq.(7.28) into Eq.(7.24), we have  
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Obviously, there are two terms in Eq.(7.29). The first item ( )zφ  is a power distribu-

tion and the second item, in fact, corresponds to GM. According to the composition the-

ory, the composition complexity of an object must be constant. Moreover, the composi-

tion complexities of two different objects are not the same. That is, this complexity will 

not change given various compositions of the object parts. Given an object of multiple 

grey levels, the composition complexity on various grey levels are the same i.e. 

 ( ) ( ) 2552,10,21 ≤≤≡ sszHzH ss                                      (7.30) 

Because ( )zHs1 and ( )zHs1  are congruent, to simplify the analysis and maintain the 

congruence, we may reasonably enforce their corresponding items, power distribution 

and GM (see Eq. (7.22)), to ensure that they are congruent.  Consequently, CCs on an 

image will be identified as parts of the same object if their ( )zφ  and geometric meanv′

are the same.  

Without estimating the parameters in Eq. (7.29), it cannot calculate ( )zφ . This paper 

proposes an approximation solution by first carrying out image segmentation according 

to GMs of all CCs. For a given image, it supposes that there are { }srss …,2,1 different 

GM values ,sv′  on an image). Thus, 

 ∪r

s snmI 1=× Λ=                                                 (7.31) 

( )rss ≤≤Λ 1  denotes all regions which are on one or several grey levels where the 

GM equals to sv′ . So the regions of the same GM are grouped together which satisfy the 

necessary condition of Eq. (7.30). That is, these regions are the candidate parts con-

structing the same object (their ( )zφ  may not be the same) (See an example in Figure 

7.5 where the patches of same visual objects have the same GMs marked by the same 
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colour on the image). For the purpose of this paper on text detection, candidate text re-

gions are now grouped together.  

In Section 7.3.3, various features of MGCC defined in Section7.3.1 are extended to 

further define the features of a group of CCs of the same GM. A sophisticated analysis 

or SVM learning is then carried out on these new features to eliminate non-text objects 

on which ( )zφ is different from the text object although they have the same GM.   

7.4.2 Analysis of GM regions  

In order to detect the candidate text patches on an image, investigation on properties 

of characters in Chapter 3, 4 and 5, we define three conditions below, 
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1T and 2T are two threshold values pre-defined.  
For a given ,sΛ  if its relevant features satisfy all three conditions above, sΛ is regard-

ed as the set of candidate text patches. Otherwise, it belongs to non-text objects. 

So far, all candidate text patches have been allocated. In the next stage, three cases are 

investigated to firmly recognize the text patches. In the first case, the text information 

dominates the image, where all text patches stay on a single GM value sv′ . According to 

our work, this case can be interpreted by satisfying the following conditions, 
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Figure 7.5 Image partitioning based on proposed GM. a) original 
image; b) Image segmentation based on GM. The patches of the 
same GMs are marked by the same colour.  

a)                                                 b) 
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where { }.,,2,1, srssjjs …∈∀≠  sv′  is a dominated GM, and all patches in sΛ corre-

spond to text regions on image, which are also the most salient objects.  

The second case is a bit more flexible than the first one. The text patches may stay on 

two different GMs. It is interpreted by satisfying the following conditions,      
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1                                                                  (7.33)                

where { } .2,1,,,2,1,21 sjsjsrssjss ≠≠∈∀≠ …  Thus, all patches in 21 ss ΛΛ ∪ belong 

to text regions on image.  

If an image cannot match either case above, it will be viewed as the third case which 

is more complicated. Multiple conditions are defined below to progressively remove 

non-text patches. The rest of them will be regarded as text patches. For the text detec-

tion in a nature scene, the text region size would be constrained to a certain scale (this 

constraint may be very flexible and can depend on the data). 

According our investigation in the section 4.41, about 3% of the characters have their 

height in the range of [301, 1000] pixels and they are called big character. Thus, given 

the size of image HIWI × , if the ratio of MGCC size vs. image size is beyond the pre-

defined threshold
e
1 , i.e., pixelsH

eHI
H

eWI
W

is
isis 300,1and1

,
,, ≥≥≥ , the corresponding re-

gions iQ are regarded as the large MGCCs. If any large CC satisfies one of conditions 

below, it will be regarded as non-text patches and removed from the image. 

If cis tRSL <, ;  

If
( )
( ) 3

4,_0,_

4,_0,_

,min
,max

T
DD
DD

dirsdirs

dirsdirs > ; 

if
( )
( ) 4

6,_2,_

6,_2,_

,min
,max

T
DD
DD

dirsdirs

dirsdirs >  

if ; and 6,_5, TDTD iconsis <>  
Where 6543  and ,,, TTTTtc are defined empirically.  

By exploring the three cases above, text patches will be firmly recognized. In order to 

better highlight the text regions on the image, the tightly bound boxes of CCs, instead of 

original CCs of various shapes, are used to pad text regions. The nearby patches of simi-

lar sizes are merged to each other. 
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7.4.3 Cross validation among GM regions and CRs   

Clusters are generated by grouping proximity and similarity over GM regions accord-

ing to 6.1.3.3. Meanwhile, based on the confident edge points, close regions (CRs) are 

obtained, and clusters over CRs are obtained by grouping by physical appearance simi-

larity and position proximity. 

For clusters, if clusters on GM regions are overlapped or embedded by clusters on 

close regions, the candidate GM clusters are considered as text. If they are exclusive, 

they will have average features of straight line RSL  and local RMS contrast rmsC  to fil-

ter them. 

For isolated GM region, the region is distinguished by the determinative features, es-

pecially the straight line RSL and local RMS contrast .rmsC   

7.5 Experiment  

7.5.1 Data set 

In order to provide a base line comparison, the proposed method is applied on the 

publicly available dataset ICDAR 2003[6]. This dataset has been widely used for text 

detection in natural scenes as a benchmark, and it contains 258 images in the training 

set and 251 images in the test set. The image regions containing text strings are labeled 

in XML files. In both the training set and test set, the images consist of varying spatial 

structures and varying texts. 

7.5.2 Evaluation 

The proposed algorithm is compared with benchmark methods with respect to 

measure−f  which it is a combination of two measures: precision p  and recall r . Ac-

cording to [27], precision is the ratio of area of the successfully extracted text regions to 

the area of the whole detected region, and recall is the ratio of area of the successfully 

extracted text regions to the area of the ground truth regions. The area of a region is the 



 

139 

number of pixels inside it.  Low precision means over estimate while low recall means 

under-estimate. To combine p and r , measure−f  is defined as below 

  ( ) ,1
1

rp

f
∂−

+
=
α

                                                               (7.34)  

 

where α represents the relative weight between these two metrics and 1≤f . Larger

f , better performance. In our evaluation, we set 5.0=α  . 

7.5.3 Results and discussion 

In the experiments, the thresholds defined in previous sections are determined empiri-

cally as 3.0=ct , 643 ==TT , 678.05 =T , 016.06 =T . Figure 7.6 shows the sample re-

sults of text detection. 

There are several extremely difficult cases which failed in the existing[6, 7, 12, 13]. 

These cases include: 1) background of strong bright light; 2) blur image; 3) too small 

text; 4) very short text (e.g. less than 3 characters); 5) text behind mesh; 6) transparent 

text. Figure 7.7 demonstrates the encouraging performance of the proposed method on 

these cases. The proposed method not only extracts the subtle low-level text feature but 

also maintains the composition of visual object structure which is robust in relation to 

the variances of the image background.  

Figure 7.6 Sample results of text detection
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The proposed method is compared with twelve benchmark methods which also carried 

out the experiments on the ICDAR2003 dataset. The reported performance of these 

benchmark methods and the proposed method is summarized in Table 7.2. 

Given the impressive performance on the difficult cases shown in Figure 7.7, the pro-

posed method demonstrates enough robustness overall when compared with previous 

methods. It is shown that the proposed method achieves an impressive f-measure on the 

Table 7.2 Performance comparison between the proposed 

method and benchmark methods presented in [6, 7] 

 Precision Recall f-measure     
Our method 0.73 0.72 0.72 
GM 0.67 0.64 0.625
CC  0.6 0.6 0.58 
Yao[11] 0.68 0.66 0.66 
Epshtein[12] 0.73 0.60 0.66 

Yi[13] 0.71 0.62 0.62 
Becker 0.62 0.67 0.62 
Chen 0.60 0.60 0.58 
Ashida 0.55 0.46 0.50 
David 0.44 0.46 0.45 
Zhu 0.33 0.40 0.33 
Wolf 0.30 0.44 0.35 
J.Kim 0.22 0.28 0.22 
Todoran 0.19 0.18 0.18 
N.Ezaki 0.18 0.36 0.22 

                a 

Figure 7.7 Results of text detection on extremely difficult cases which failed in the previ-
ous papers [42][293]. a) Strong highlights; b) Blur image; c) Too small text; d) Text with 
less than 3 characters; e) Text behind mesh; f) transparent text  

        b 

c 

                             d 

e 
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top rank with the best recall rate against all these benchmark methods. 

Further, the proposed method can be used to the real street view images, some exper-

imental results of street view images are shown in Figure 7.8. Inspecting Figure 7.8 a), 

b) and c), the left column are original images and the right column shows the experi-

mental results. These street view images with clutter scene full of windows, buildings 

and cars, however, the proposed method can detect the text effectively. 

    
                                                       a) 

   
                                                        b) 

       
                                                        c) 

Figure 7.8 Some experimental results on street view images 
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7.6 Summary 

In above sections, a new solution is demonstrated, which describes the spatial struc-

ture of a natural scene image in a perceptual way for detecting the text regions on the 

image. 

In the proposed solution, Multi-Grey Connected Components (MGCC) are used to 

represent the intricate pattern of an image. Based on the GM indicator, we explore the 

composition theory among component parts, and the Geometric Mean (GM) is proposed 

as a new way to describe the compositional complexity of an object across the meaning-

ful CCs. Without following the legend framework based on supervised training, the 

proposed methods explore the input images on both pixel-levels through MGCC and al-

so the semantic level through GM. In the end, the text regions are located on the image. 

The proposed method sorts out several cases which failed in the existing methods. 

There are broad possible extensions to this work. The approach describing spatial 

structure is derived in a perceptual way which can be used for multi-object segmenta-

tion, semantic labelling and image quality assessment. It can also be used to discover 

the intrinsic compositional pattern for both visual objects and different shades of grey.  
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Chapter 8  

Automatic Processing of Bank Cheques 

Since text is still as a figure in document image, and also has the same properties of text 

appearance in local level, spatial level and global level, including individual character 

features, spatial relations (neighbourhood and appearance similarity), crowding effect 

and saliency. Therefore, the representations of image based on space regularity and 

three-level computational modelling of text in the cluttered scene can also have utility in 

terms of developing document processing systems which are capable of transferring the 

data present in documents like bank cheques, commercial forms, and government rec-

ords into machine readable formats. As a large number of cheques in wide variety of 

layout have to be processed every day in a bank, an automatic reading system saves 

time and processing costs and offers better customer service.  Thus, automatic cheque 

processing[295] is one of the most widely researched areas in document analysis and 

biometrics. 

During the last decade, automatic cheque processing became an industrial problem. 

Some of the prominent vendors in the area of automatic bank cheque processing are 

‘A2iA’, ‘Mitek’, ‘Parascript’ and ‘SoftPro’. The difficulties in developing an effective 

cheque reading system are the high degree of variability and uncertainty in the user-

entered date information. People print or write the data zones in free style and there is 

no fixed format for cheques. There are differences not only in terms of background, but 

also in terms of the type and position of the machine printed and handwritten infor-

mation. However, necessary data zones must be involved. 

Generally, a cheque consists of the fields of legal amount, courtesy amount, date, and 

payee details which should be filled or printed by an account holder. The signature field 

is to be signed to ensure the authenticity of the cheque. Moreover, the two fields for fill-

ing the value of the cheque named the legal amount and courtesy amount are intended 

for redundancy. Legal amount contains the amount written in words, demonstrating the 
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official value of the cheque. And the courtesy amount contains the amount written in 

numerals, which is supposed to be for courtesy purposes.  

It is considered that a disagreement between the legal and courtesy amount shall be 

an indicator of amount alteration. Additionally, banks have the freedom to customize 

some parts of the cheques such as the background pattern, which is generally used to 

personalize the cheques. For example, they can use different fonts, special symbols, 

logos, lines, forms, different colours and imprinted textures.  

For the purpose of the automatic reading and fraud detection of a cheque, we need to 

extract the information of payee details, legal amount and signature, and give the meas-

ure of the physical appearance of the characters. In this chapter, we will apply the repre-

sentation of image and text in the clutter scene to automatically read and measure the 

scanned image of a bank check.  This brings up three issues related to imaged-based 

technology: automated signature extraction; automatically reading the payee and legal 

amount; and the integrated system. 

Practically, the user-entered information exists in two types of scripts: one is ma-

chine-printed text, and the other one is handwritten text. Since automatically processing 

the two different types of text involves adopting very different technology, how to dif-

ferentiate them from each other becomes the first practical challenge, but most litera-

tures have tended to ignore it. Additionally, signature is one typical form of handwritten 

text in a cheque.  

Thus, we first start with signature extraction, which is entangled in the printed text 

background. We suggest that handwritten regions possess the typical information which 

follows the context-aware saliency principles. With such principles, the saliency is con-

verted into a computation model, followed by a Context-aware Saliency Signature De-

tection (CSSD) algorithm. Experiments show that the proposed saliency approach can 

effectively detect the handwritten signature entangled in printed text. Further, SVM 

suggests that the two features, i.e. pixel density and contour density, play more im-

portant roles than other features in order to tell the intra-class differences between print-

ed text and handwritten text. Based on the two important features averaged over the text 

string clusters, the type of cheque can be examined.  

Then, we deal with automatically extracting the legal amount and payee content giv-

en the variety in font, size and background patterns. Accordingly, the whole document 

image is partitioned into space patches, and string clusters are generated through calcu-
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lating the space relations – proximity and similarity. Then, three-level features of text 

are computed over the string clusters. Based on the three-level features, the type of im-

age can be determined, that is to say, telling form or table type from non-form type. Fur-

thermore, OCR is used to recognize the keywords, and the regions of payee and legal 

amount are identified and measured. These technologies are integrated into one whole 

cheque processing system, which provides automatic processing and human-

intervention operations.  

Experiment results on the real data (569,737 images) show that the system is effective. 

With the accuracy threshold of 70%, the successful detection rate of the payee name is 

found to be 98.7%. With the accuracy threshold of 80%, 90% and 95%, the successful 

detection rate of the payee name is stable at 97.93%.  And for legal amount, the success-

ful detection rate is found to be 98.13%, 97.27%, 94.60%, and 93.54% with the corre-

sponding accuracy thresholds of 70%, 80%, 90%, and 95% respectively.  

8.1 Signature extraction  

Recently, many applications revive the study of handwritten scripts. Such applications 

include word spotting and text searching on professional documents and historical pub-

lications[296-302], and many applications, from reading of the legal amount or other 

field data on bank cheques [303-309] and of postal addresses [310, 311], revive the 

handwritten script study. In the word spotting task, if the given manuscript documents 

have clearly extracted text lines, they are further segmented into individual words and 

spotted or recognized by GHMM [296, 298], biologically inspired methods [297],W-

TSV[301, 302]. However, all these applications are based on only processing either the 

printed text or handwritten text. They cannot detect the mixture of different types of 

texts as illustrated in Figure 1. In fact, this illustration discloses a very challenging prob-

lem, i.e. how the handwritten signatures can be extracted from the entangled printed text 

background.  

In previous decades, many research outcomes have been reported on text detection 

and text recognition by using discriminative features.  

For detection, it captures the difference between text/characters and non-text objects 

by using distinct features of character such as ridge points, edge points, SIFT points, 

stroke width, or the connected components (CC)-based features of printed text [299]. 



 

147 

For recognition, it needs to capture the intra-character difference by using each indi-

vidual character’s discriminant features. For printed text, there are statistical features, 

geometrical and topological features [303]. And for handwritten text [304] or signature, 

the features proposed include Histogram of Orientation like features [296], biological 

inspired features [297], Weighted Topological Signature Vector (W-TSV) [302], and 

other features based on geometric centroids [312] and fixed points [313].  

However, the above approaches are not suitable for extracting handwritten text em-

bedded with printed ones as shown in Figure 8.1. This is because the subtle difference 

between printed text and handwritten text is minor, which cannot be well described by 

such existing features. This section tackles this problem by exploring the conspicuity of 

handwritten text and demonstrates that such conspicuity can be used to detect handwrit-

ten text or signatures against printed text. 

Letters are not a simple set of visual stimuli. They can differ from each other in basic 

features like the orientation of their line segments (e.g. A vs H) or line termination (X 

vs O). And letters that do not differ in basic features (e.g. L vs T) must still be discrimi-

nable or they would be of little use as members of an alphabet. They have not only a 

limited set of basic pre-attentive features, such as line, size, curvature, and several as-

pects of form (e.g line termination), but also space regularity which leads to informative 

text in perception. And the latter can makes the whole text pop out from the surround-

a)                                                                                                                  

Figure 8.1 Entangled text with variety in layout, location, font and size. 

c)                                                                                                                  
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ings. If the document is full of text, the signature in the document can stand out from 

machine-printed text since its space organization is rare and different from the text. In 

this case, rather than saying that attention somehow identifies an object (conspicuity in 

pre-attentive), we would say that attention enables object recognition processes to work 

on a single item at a time. This notes that context information plays an important role in 

the consipicuity of the target object. And we can search the signature by the hierarchical 

structure of the component part of the text. 

Our idea is to use context-aware object conspicuity, which has been previously stud-

ied in the research of saliency [10].However, the problem of the re-formulation of the 

saliency for the typical cases, shown in Figure 8.1, is not always straightforward. It re-

quires integrating the detailed bottom-up object features and top-down domain 

knowledge for a concrete and feasible description of context-aware saliency. This sec-

tion demonstrates such a reformulation and transforms it into a context-aware saliency 

signature detection algorithm. 

8.1.1 The algorithm framework 

We apply the representation of image and the three-level text model to describe the 

document image. Firstly, the document image is partitioned into multiple regions of in-

terest through connected component analysis on a binary image.  And then three-level 

text features are calculated, including basic features, letter-centred (space organization, 

i.e. letter string) features, and word-level (relations among string clusters) features. The 

three-level features agree with the four basic principles of human vision defined by the 

context-aware saliency [10] :  

 1. Local low-level considerations, including factors such as contrast and colour. In 

our case, such low-level factors include the edge point and other feature points that rep-

resent the contour or shape of an object on a binary image, but also it consists of those 

pixels that can be connected with their neighbours so that the space occupied by a visual 

object can be obtained. 

2. Global considerations, which suppress frequently occurring features, and maintain 

features that deviate from the norm. In our case, an image is partitioned globally into 

multiple regions of interest through adjacent groupings by Connect Components Analy-
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sis (CCA). And the features are computed over basic regions. Such global segmentation 

will later on help to highlight the conspicuity of the handwritten signature.  

3. Visual organization rules, which state that visual forms may possess one or several 

centres of gravity through which the form is organized. In our case, this rule means the 

space regular organization in which letters form a text (i.e., letter string), which is 

measured by letter-centred features. Meanwhile, the features of regions given by CCA 

can be extended from CCA to regions given by letter strings. And such centres are the 

centres of letter strings formed with this rule. 

4. High-level factors. In our case, the most important features are distinguished from 

the rest of the features through the process of SVD. 

The framework of Context-aware Saliency Signature Detection (CSSD) is shown in 

Figure 8.2. We incorporate the principles (1), (2), (3) and (4) into a context-aware sali-

ency computation model.  Through this model, an image is partitioned into a set of 

space patches given by CCAs on the global level, and each space patch is considered as 

one visual object (i.e. VO). And each of them has attributes on multi-layers, including 

low-level, global-level, organization, and high-level factors. Through the SVD process, 

the relationship and sub-structure among VOs (essentially described by relevant con-

nected components) can be captured, and the context-aware saliency is calculated. 

Based on the saliency, the salient signature VOs are figured out by the VO analysis. 

 Therefore, the algorithm framework contains three parts: the first is the image parti-

tion, the second is the context-aware saliency model, and the third is the VO analysis, as 

illustrated in Figure 8.2.  
 

 

 

8.1.2 Image partition 

According to the theory of perspective, when objects recede from the eye or camera, the 

size of the object decreases, this means the space occupied by the object in image is re-

Image Partition Context-aware 

Saliency 

Visual Ob-
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Figure 8.2 The framework of Context-aware Saliency Signature Detection 
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duced meanwhile the contour is lessened. If the distance is far away enough, the bound-

ary of the separated object disappears and the separated objects are merged into a whole. 

What is more, the boundary of one thing with another is of the nature of a mathematical 

line (e.g. contour detected by edge detector). This suggests that space occupied by an 

object in an image plays a critical role in being visible and discernable.  

Therefore, we regard those space patches occupied by the object as the building 

bricks of a visual object. Since the document image is full of characters, and each char-

acter usually occupies one space even if it consists of several line segments, we consider 

one connected component space patch as one basic Visual Object (VO) in bank cheque 

processing. 

The formal definition of the VO concept and the necessary auxiliary definitions are 

given in Table 8.1. 

Image I is a mapping  :I ,2 SRD →⊂  { }.255,0=S  Connected component space 
patches/regions are well defined on images if: 

5. An adjacency (neighbourhood) relation DDA ×⊂ is defined. In this section 
4-neighbourhoods are used, i.e. Dqp ∈, are similar and adjacent ( )pAq iff 

1
1

≤−∑ =

d

i ii qp , 4=d stands for the number of neighbour, and qp,  has the 
similar grey level 0=s . 

VO region is a contiguous subset ofD , i.e. for each VOqp ∈, there is a sequence
qaaap n ,,,,, 21 … and .,, 11 AqaAaapAa nii +  Let iN be the number of the sequence 

points. Let { }MVOVOVO ,,, 21 …=Λ  be a set of regions in grey level .0=s Thus, for a 
binary image nmI × , it can be partitioned into a set of VOs as below, 

.
1∪

M

i inm VOI
=× =Λ=  

Table 8.1. Definitions used in following sections. 

Letters together with harmonic space regularity form a whole text. Therefore, space 

regularity among letters corresponds to the visual organization of text. It consists of let-

ter spacing, word spacing and interline spacing. All of them have tight relations to the 

type size of an individual letter. 

With respect to the type size of individual letters, i.e., the width and height of a letter, 

the space organization is quantified and calculated. Here, we regard each VO as a char-

acter. Without the loss of generality, givenVOs kVOVOVO ,,, 21 … , their regions of inter-

est are those tightly rectangular bounding boxes kROIROIROI ,,, 21 …  in width ,, 21 WW
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,… kW and height ,, 21 HH ,… kH respectively. Relations among these VOs are defined 

over those ROIs  as thus: 

An adjacency (neighbourhood) relation VOA is defined over boundary boxes. In this 

section, the size of the boundary boxes, and the distance between the bounding boxes of 

letters are used. ( )jVOi ROIAROI iff their physical appearances are similar and their posi-

tions in space are near enough on these conditions: 

i.  ( )jiij HHH ,max1ξ≤Δ and ( )ji HHHij ,min2ξ≤Δ , jiji HHH −=Δ , , 

21,ξξ are scale factors.  

ii. Horizontal distance between the two letters

),max(_ 3 ji HHxHSpace ξ<Δ , here 3ξ is a scale factor. Additionally, in the 

vertical direction, the y-coordinates of the two letters have common parts. 

VO strings StrVO _ is a contiguous subset of the boundary boxes occupied by letters, 

i.e. for each StrVOROIROI ki _, ∈  there is a sequence of kni ROIbbbROI ,,,,, 21 … and

,1bAROI VOi ,1+iVOi bAb .kVOn ROIAb  Let istrN _ be the number of the contiguous RIOs of 

VOs, i.e. the length of the string ,_ StrVO  and istrROI _  denote the regions given by the 

tightly rectangular boundary box of StrVO _  in width istrW _ and height istrH _ . 

  Given two VO Strings iStrVO _ and jStrVO _ ,  an adjacency (neighbourhood) rela-

tion VBA is defined over StrsVO _ . Size of sROIstr  and distances between them are used. 

( )jVOi StrVOAStrVO __ iff their physical appearances are similar and their positions in 

space are near enough on these conditions: 

i. ( )jiij HHH ,max1λ≤Δ , jiji HHH −=Δ , , 1λ are scale factors. 

ii. Vertical space between two VO strings follows the principle of line space 

in text: ( ),,min __2 jstristr HHVSpace λ<Δ and in horizontal direction, the dis-

tance of start point in coordinate−x  ( ).,min __3 istristr HWx λ≤Δ  Here, 32,λλ

are scale factors. 

VO Blocks A BlockVO _ is a contiguous subset of VO strings, i.e., for each 1_ StrVO  

and BlockVOStrVO k __ ∈ , there is a sequence of kn StrVOSSSStrVO _,,,,,_ 211 … and
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,_ 11 SAStrVO VB  ._,1 kVBniVBi StrVOASSAS +  Let MBN denote the number of VO strings, 

and 
iBlockROI be the region of the tightly rectangular boundary box of the VO block. 

8.1.3 Context-aware saliency computation model (CSCM) 

In our case, each connected space patch given by adjacent grouping is regarded as one 

VO. In a global consideration, an input document image is defined as a set of co-

occurring visual objects. A visual object (VO) is a visual information carrier that deliv-

ers the author’s intention and catches part of the user’s attention as a whole. A VO often 

represents a semantic object, for instance, character or symbol, words, a text sentence, 

signature, or non-text objects, such as lines, forms, logos, and pictures etc., as illustrated 

in Figure 8.3. 

 

 
With regard to VOs, human processors are serial processors who handle one source of 

visual information at a time. While clearing bank cheques, they integrate various activi-

ties and maintain an appreciation of the dynamic time-consuming working situation by 

sampling information and shifting attention from one thing to another. They rely on 

judgment, experience, estimation, prediction and memory to fill in the gaps, and to shed 

less important information. Expectancy, motivation, and conspicuity all play a role in 

determining what a human processor will notice.  

Figure 8.3 Visual Objects (VOs) marked by rectangle boxes 
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  Of course, for human processors to find information useful, it must first be noticed. 

With respect to documents, characters, letter strings and words are all vivid informative 

figures, which all have legibility, readability and conspicuity. The issue of what attracts 

attention when processing depends on the degree to which the information content 

matches the informational needs of the processor. It brings up two key points, the asso-

ciation between the information content and conspicuity, and the notion that conspicuity 

may depend upon the user’s task. The former suggests that there is conspicuity of the 

visual object compared to its surroundings; the latter tells us that it has distinguishable 

and discernable features which can be verified by processors.  

 For signature detection, the signature is observed impressively by its physical ap-

pearance, i.e. it stands out from its institutional surroundings. And obviously, it is our 

target of detection. Therefore, we consider the context-aware saliency of signature over 

the space patches given by adjacent groupings.  

The four basic principles of the context-aware saliency of VO are discussed as fol-

lows. At the local level, the attributes of VO correspond to not only the local contrast 

features, i.e. edge points, but also those proper points which consitute the VO through 

adjacent groupings. In global consideration, the image is partitioned into a set of VOs 

which are the basic informative visual component parts and contribute to highlight the 

target.   

And in visual organization, the space relations among VO are defined and calculated 

based on position proximity and physical similarity, and lead to a set of VO Strings and 

VO blocks, over which the space averaged statistical features are computed. SVD is 

used to decompose the attribute space of VO, and the conspicuous basic VOs and their 

interrelationships among CCs are exposed. Therefore two discriminative features are 

obtained to tell handwritten text from machine-printed text, including pixel density and 

edge density. Moreover, through the features of VO strings, signature handwritten 

cheques can be picked out from the printed ones.  

The above mentioned factors will be dealt with in detail below. 

We assign three attributes for each VO: region of interest (ROI), multi-layer attributes 

(MA) and occurring frequency ( f ). 
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Definition 1: Region-of-interest (ROI) is referred to a spatial region or segment with-

in an image, i.e. VO region. As shown in Figure 3, a ROI can be denoted by its tight 

rectangular geometrical parameters, i.e. { }BottomRightTopLeft ,,,   Inside a ROI, the 

pixels share some common properties (see the details below). 

Definition 2: The context-aware saliency model for an image is defined over a set of 

VOs: 

{ } { },,, iiii fMAROIVO = ,1 Mi ≤≤                                  (8.1) 

    Where, iVO is the thi VO  in an image, iROI  is the ROI  of ,iVO iMA  is the MA  of

,iVO if is the occurring frequency f of discriminative features, M represents the total 

number ofVOs  in an image. 

Generally, edge points and their orientations are the predominant features of local con-

trast. Let 
iconN denote the number of edge pixels on a given iVO .  Thus, by combining its 

total number of sequence pixels iN and
iconN , one attribute of VO is formed and repre-

sented as ( )
iconi NNAL ,  

In high perception, colour, motion, orientation and size are the undoubted guiding at-

tributes. Shape is the most vexed one because of its complications. We capture such 

shape related attributes inside the given ,iVO including the size and density of mass as 

below. 

The size of iVO is determined by the width iW  and the height iH  of its tightly rectan-

gular boundary box,  

         ,, minmaxminmax yyHxxW ii −=−=                                         (8.2) 

where ( ) iVOyx ∈, . Thus, the area of iROI is defined by 

                         .iiROI HWArea
i

×=                                                                   (8.3) 
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Inside ,iVO the density of mass is considered as an important property to measure 2D 

visual space patches. Accordingly, we define the pixel density ipD _ and edge density

iconD _  of iVO  as follows: 

._,_
ii

con
i

ii

i
i HW

N
conD

HW
NpD i

×
=

×
=                                   (8.4) 

Consequently, iVO  can be rewritten as a vector with two-layer attributes 

VOi = Ni,Nconi
,Wi,Hi,D_ pi,D_ coni,AreaROIi

⎡⎣ ⎤⎦,          (8.5) 

Where the first two components are regarded as low-level attributes and the rest of the 

components are regarded as high-level components.  What is more, when we consider 

the visual organization of text, we need to quantify the letter-centred attributes of space 

organization based on the three-level text model proposed in Chapter 4, and each VO is 

nested in its VO string and VO block. 

 

The attributes of VO String and VO Block are statistical space averaged features. With-

out the loss of generality, given a VO string { }ni ROIROIROIStrVO …,_ 2,1= , its whole 

tight boundary box is measured by the widthWstr and the height ,Hstr  let istrN _ de-

notes the number of the entire basic ROI s given by component space patchVOs . The 

statistical space averaged properties of the VO string are composed of average width

strW and average height strH  of its component ROI, average edge density iconstrD ___ , 

average pixel density ipstrD ___ , and those standard differences ., __ strHstrW σσ    they 

are calculated respectively as thus: 

,1 _

1_
∑
=

=
istrN

i
i

istr
str W

N
W     ( ) ,1 _

1

2

_
_ ∑

=

−=
istrN

i
stri

istr
strW WW

N
σ

                 (8.6)
                

,1 _

1_
∑
=

=
istrN

i
i

istr
str H

N
H     ( ) ,1 _

1

2

_
_ ∑

=

−=
istrN

i
stri

istr
strH HH

N
σ

                (8.7)
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,_1___
_

1
∑
=×

=
istrN

i
ipD

HstrWstr
ipstrD

            
 

._1___
_

1
∑
=×

=
istrN

i
iconD

HstrWstr
iconstrD                                (8.8) 

Where, iiii conDpDHW _,_,, are calculated according to the equation (8.2) and equa-

tion (8.4). Similarly, the space averaged statistical properties of the VO block are calcu-

lated over the VO block regions. Therefore, each VO is nested in its VO string and VO 

block with their respective statistical properties. Signature or handwritten text can be 

picked up by the hierarchical structure of its component VOs. 

In the attribute domain of VOs, the occurring frequency f of discriminative features will 

be captured through the process of SVD. We adopt basic attributes of iVO to form an at-

tribute matrix spaceΘ . Let iτ denote the attribute vector of iVO , thus  

{ }T110 ,,, −=Θ
kM

τττ …                                                        (8.9) 

Here { },,,,,,_,_: iiROIconiiii WHAreaNNconDpD
ii

τ kMi ,,2,1 …= ⎯⎯ →⎯yields Span:Θ

{ ,_ ipD }.,,,,,_ iiROIconii WHAreaNNconD
ii

  

SVD is used to expose the conspicuous substructure and interrelationship among 

components, SVD decomposesΘ to 

 U=Θ Δ TV                                                             (8.10)  

Instead of the analysis of the original attributes of VOs, the VO analysis (see section 4) 

is carried out on the sub-spaces: ΔU,  and .V  
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From the view of transformation, SVD decomposition projects each row vector of ma-

trix Θ , which represents each VO with multi-layer attributes, to the row vector

{ }rkkkk uuuu ,2,1, ,,, …= , 7=r of matrixU and projects each column vector of matrix Θ

which represents the same attributes across all VOs to the column vector

[ ]Tjrjjj vvvv ,,, 21 …=  of matrix .TV   

Diagonal matrixΔ contains the sorted singular values in which the largest one is at the 

first position i.e. up-left corner of the matrix. That is, the first column vector of U (i.e.

u1 ) and the first row vector of V (i.e. v1 ), which corresponds to the largest singular 

values, are used to analyse the relation between VOs and the relation between different 

attributes of VOs  respectively.  

The VOs represented by each row vector are an abstraction away from the noisy cor-

relations found in the original attribute data space, and they best approximate the under-

lying structure of the dataset along each dimension independently. So we can index 

each individual iVO  from the row vector iu  of matrix U at the same row. Meanwhile, 

the representative of sVO that share substructure become more similar to each other, and 

sVO  that were dissimilar to begin with may become more dissimilar as well, which re-

sults in an discriminable approximation of the data that contains substantially fewer di-

mensions than the original. In practical terms, we take the first columnU1  of U as the 

main discriminative vector of sVO  to find out the class index of sVO  in the matrixΘ by 

K-means clusters.  

The majority of those sVO  are similar, however, the conspicuous sVO  are quite dif-

ferent from the majority ones, that is to say, the occurring frequency f  of them is small. 

This results in two distinguished clusters, one consists of the majority components, and 

the other usually includes small numbers. The K-means algorithm can get it clearly. 

And the number of elements in each cluster can represent the occurring frequency f  in 

the Equation 1. Moreover, K-means is operated on U1  to calculate the saliency level of 

each VO, since saliency in the primate brain is represented at several levels.  

 In an extreme case, if there is of only one conspicuous VO represented by iu1  inU1 , 

we can write U1XiiY = , { }ii xX =  and Tex ji =  is a vector form of the trivial basis, with 

all zero entries except one in the thj position. The index j  is selected such that 
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,,
2

2
U1eU1e TT
liji YYjl −≤−≠∀  

In general terms, each iy  is defined as
2

2

2 U1eTj−= ii ye and the overall MSE is  

  ∑
−

=

−==
1

0

22
M

i
FieE U1XY ii                                                 (8.11) 

Now, the problem to index conspicuous VOs inU1 can be considered to find some VOs 

that minimize the error E, subject to the limited structure ofX , whose columns must be 

taken from the trivial basis. ,min E
iXU1, Mi ,,1,0 …= subject to ,i∀ T

i ex l= for some l . 

And we minimize the expression in (11) by the following iterative process. Since sali-

ency in the primate brain is represented at several levels, let s denote the saliency level, 

when ,1=s it corresponds to the most conspicuous VO. After repeatedly clustering into 

two clusters, the saliency levels of each individual VO can be labelled and for each sali-

ency level, the cluster also is figured out. We shall call this algorithm “SVD-K” to par-

allel the name k-means. By sweeping through the first columnU1 , it can index the sVO  

at the different saliency level as well as index those sVO  in the whole sVO  link list. The 

detail of this algorithm is introduced in Table 8.2.    
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Initialization:  Get U1  as the representation of sVO , and set the iterative number
,1=J 1=s U1u1   =s ; 

Repeat until convergence (stopping rule1):  
    Step 1: The s degree of salient VOs extraction. 

           Repeat until convergence (stopping rule2): 
Step1.1 Partition the su1 elements into 2 sets { }12,1

1, ,
−− J

s
J
s RR  with the centres  

{ }12,1
1, ,

−− J
s

J
s μμ ,each holding the indices most similar to their centres, 

             { }1
,

1
,

1
, , −

≠
−− −<−≠∀= J

kls
s
l

J
ks

s
l

J
ks klR μμ u1u1  

then, update each centres{ }12,1
1, ,

−− J
s

J
s μμ  by 

∑
−∈

=
1
,,

,
1

J
ksRl

s
l

ks

J
ks R

u1μ  

Step 1.2 Set ;1+= JJ  
    Step 2. Update.  

Update the rows of the first column su1 , sweep the lU1 which corresponds 
to the rows in Θ selected by the nonzero entries in iX  with the all zero entries 
except a few positions, su1 is reduced by the lU1 and updated into .1U ′   

                  Then, set 1Uu1 ′=+= sss ,1 . 
 
         Table 8.2.  K-means operated on SVD subspace to compute saliency level.  

8.1.4 VO analysis 

Each element of the first column vector of U (i.e. 1U ) represents one VO respectively. 

The relationship (e.g. similarity) between VOs is noted by the clusters formed by SVD-

Kmeans algorithm. Thus, the occurring frequency f  of a VO in one cluster can be cal-

culated by counting the total numbers of elements in this cluster, i.e. the occurring fre-

quency of each element inU1 , which can be presented as a histogram of the element in

U1 .  

According to the theory of salience [12], the VOs identified as the salient ones usual-

ly have low occurring frequency in the image. Thus, the salient VOs can be detected by 

clusters since VOs are classified into two categories according to the histogram of ele-

ment in 1U : one with high occurring frequency and the other with low occurring fre-

quency respectively. And each cluster has its corresponding saliency level. The first 
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cluster with only a few elements is considered the most conspicuous cluster. And VOs 

in conspicuous clusters are considered to be the salient VOs, which are the candidates of 

signature.   

The element values of the first row vector ofV can indicate the importance of the differ-

ent features of VOs. In this case, large values in 1V  correspond to the important attrib-

utes of VOs. And the two most important attributes are selected: pixel density _ iD p  and 

edge density _ iD con . 

With respect to those salient VOs selected in 6.1.5.1, we can find their nested VO 

strings and the VO block. In the VO string, both pixel density and edge density are used 

to identify whether this VO string is to have a similar pixel density/edge density or not. 

The similarity is defined in terms of these conditions: 

i. Similarity(D_ str _ p_ i,D_ pi ) = D_ str _ p_ i−D_ pi < ε, 2___ ε<ipstrD
and  ;_ 2ε<ipD  

ii. ,____)_,___( ζ<−= ii conDiconstrDconDiconstrDSimilarity  

2___ ζ<iconstrD and  ._ 2ζ<iconD  
Where 22 ,,, ζζεε are the predefined threshold. If the VO strings are similar to the 

nested VO, then the VO string is the signature. 

8.1.5 Signature experiment 

Based on the BME2 off-line signature corpus [15], a synthetic dataset is generated for 

our study (available on request). Each synthetic image mixes one of handwritten signa-

tures from BME2 with a print text background image randomly obtained from the Inter-

net. It contains 33 images embedding 33 original signatures from 33 signers, including 4 

types of images: 1) single signature not-entangled with printed text, 2) single signature 

entangled with printed text, 3) multiple signatures not-entangled with printed text, and 4) 

multiple signatures entangled with printed text. 

Two different experimental results are demonstrated: 1) salient VO detection based on 

context-aware saliency analysis (see Figure 8.4); and 2) signature detection on the print-

ed text background (Figure 8.5).  
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Figure 8.5 Results of signature detection. The left: input image; The right: signatures  

         a)                             c)                                    

Figure 8.4 Salient VO detection: a) original image; b) histogram of elements; c) 

salient VOs (i.e. signature candidates); d) signature extracted finally 

b) d) 
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All of the experiments are carried out with the same parameter setting. VOs are gen-

erated based on the adjacent grouping. The feature vectors of all VOs are spanned onto 

a feature space. Through SVD, the relationships among VOs and the importance of the 

individual attributes in the feature vector are exposed. The occurring frequency of each 

element of value in U1 is normalized into[ ]1,0 and quantified into 8 bins. Such frequen-

cy indicates the occurring frequency of the corresponding VOs in the image (see Figure 

8.4 b). K-means is applied to this histogram of frequency to create two clusters. Salient 

VOs are selected as signature candidates which correspond to the lower frequency (see 

Figure 8.4 c). Then, we set the predefined threshold ,3.022 ==εζ  and signatures are fi-

nally detected (see Figure 8.4 d). 

 

 

  Figure 8.6 shows the results of signature detection based on the proposed method and 

common saliency detection. It demonstrates that the proposed method can achieve supe-

rior performance by extracting the clear signatures from the entangled print text back-

Figure 8.6 Signature detection on printed text back-ground Left: original images of four 

cases:  single signature not-entangled with printed text, single signature entangled with print-

ed text, multiple signatures not-entangled with printed text, multiple signatures entangled 

with printed text; Middle: Signature detection using the proposed method (CCSD). Right: 

context-aware saliency detection [10]. 
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ground. Without the clear problem reformulation, common saliency detection cannot 

separate the handwritten signatures from the printed text (see the right column on Figure 

8.6). 

8.1.6 Extended application of handwritten cheque selection 

By analysing the principles of saliency, we reformulate saliency detection in a comput-

able manner for the case of handwritten signature detection from the entangled printed 

text. Such saliency is formed by visual objects with multiple attributes. Such redefined 

saliency is adopted and transformed into a context-aware saliency signature detection 

(CSSD) algorithm.  

Using such a newly proposed saliency approach, the handwritten signatures are suc-

cessfully extracted from the entangled printed text based on our preliminary dataset. 

Further, it  can be extended into extracting handwritten text from printed ones.  

According to SVD subspace analysis, there are two important features for discerning 

the handwritten text from the machine printed text: pixel density and edge density. Giv-

en a VO string, the histogram of pixel density and the edge density of the VO in the VO 

string is obtained. Then, the probability ( ),_ 1ε<ipDP ( )2_ ε<iconDP and the joint 

probability ( )21 _,_ εε << ii conDpDP are computed over the histogram. The VO string 

is considered as handwritten text in a probability of )_,_( 21 εε << ii conDpDP . It is 

detected as handwritten text when it satisfies the following conditions: 

      If P(D_ pi < ε1,D_ coni < ε2 )>η  and D_ str _ con_ i < ε2 and  D_ p_ i < ε1, VO 

string is handwritten string. 

Further, we apply the centre-surround principle to tell whether the information of the 

payee and the legal amount in a cheque is handwritten or not. Due to the fixation loca-

tions being usually biased towards the centre of the image and the designer’s bias for 

keeping objects at the centre of the image,  the information payee and legal amount lies 

toward the centre of the image. This is the most significant component part which needs 

to be filled. The others lying on the boundary of the document image belong to the 

background or the less important information. Thus, when all the VOs lying towards the 

centre are handwritten, the cheque can be considered as the handwritten cheque.   

With the study of receptive field size, Enroth-Cugell measurements of the contrast 
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sensitivity of X-cells to sinusoidal grating patterns of different spatial frequencies 

makes it possible to predict the radius at which the sensitivity of the central summating 

region falls to e1 (37%) of its maximum value. However, the diameter of the central re-

gion of a receptive field is equated either with the diameter of light which has the lowest 

incremental threshold or with the diameter of the boundary between the receptive field 

regions from which responses of opposite poliarity can be evoked by a small spot of 

light. In practical terms, the receptive field is considered to be an ellipse locating its 

centre at the centroid of the image. The semi-major axis and semi-minor axis of the el-

lipse are equal to e1  (37%) of their maximum value (i.e. half the width in the horizontal 

direction, and half the height in the vertical direction) respectively. Let strhwArea _ de

note the total area of the handwritten VO string in the receptive field, and VOstrArea de-

note the area of all the VO strings in the receptive field. The cheque is considered as a 

written cheque when the area strhwArea _ is considerably big compared to the area

Figure 8.7 Handwritten cheque selections. Top: input image; Medium: Candidates 

of handwritten VOs; Bottom: Handwritten VO strings and handwritten cheque la-



 

165 

VOstrArea i.e., ,_ λ>
VOstr

strhw

Area
Area

.5.0>λ   

As illustrated in Figure 8.7, the written strings are extracted based on features and this 

cheque is labelled as a handwritten cheque according to the centre-surround principle. 

8.2 Automatic extraction of legal amount, payee name 

8.2.1 The flow chart    

Based on connected component space patches resulting from the image partition intro-

duced in section 8.1.2, we determine which VO string and VO block represent the 

payee information or legal amount on the basis of lexicon and OCR recognition. The 

flowchart is illustrated in Figure 8.8, which includes three parts such as image partition, 

OCR over VO string, and VO Block selection based on lexicon and inference.  

In the image partition, the image is split into a set of VO by the adjacent grouping 

through the connected component analysis, and then the VO strings and VO blocks are 

obtained according to proximity and similarity.   Over VO strings and VO blocks, OCR 

Input 

image 

Image partition: 
1)VO generation; 
2)VO string &VO block 

 

OCR  
1) Recognize VO string; 
2) Measure VO attributes.  

VO string &VO block selec-
tion based on lexicon 

 

Lexicon 

Payee  name 

Layout label 

Form? No Yes 

Legal amount 

Inference 

Figure 8.8 The flowchart of payee and legal amount extraction.  

1

2

3
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recognizes them and verifies the keywords of the payee and legal amount, consequently, 

VO strings and VO blocks are selected for the compact filled payee name and legal 

amount, or inferred from those separate strings that are filled in various tables through 

path analysis. 

8.2.2 Inferring   

Besides one string of compact text, the legal amount may be filled as several separate 

strings of text in a wide variety of tables.  Not all of them can be recognized correctly 

by the OCR engine since the accuracy limit of OCR and the deficiency of legibility and 

readability of the image overlap. For the pure text legal amount, the VO string can be 

selected as parts of the legal amount if at least one substring is recognized as a keyword 

in the lexicon.  The VO string’s nested VO block is then considered as the region of the 

legal amount. But for the legal amount filled in various tables, it needs reliable infer-

ence from the certain parts to uncertain ones based on prior knowledge of the financial 

form structure. This brings us two basic practical issues: how to know the legal amount 

has been filled in the table, and how to infer the table structure.  

We apply the Bayesian inference theory to analyse the table. Suppose there are two 

linear functions, f  and g , of two variables, s  and r  , of the form  

( ) ,f dass +=                                                                   (8.12)  

And 

( ) ,,g dcrbsrs ′++=                                                        (8.13)  

Where ba, and c  are the important slope parameters, and d and d ′  are constants that 

play no essential role in this theory. We introduce a third variable, y , into this system 

via the definition 

( )rsgy ,=                                                                        (8.14) 

 and we assume that r  and s are related by the functional relationship 

( ).f sr =                                                                           (8.15)  
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Such a system captures the idea that r  is functionally dependent on s  and y  is func-

tionally dependent on s  and .r  Since f and g are linear, changes in y  and r  are deter-

mined by the slope parameters, ba, and c . This system may be represented by the 

"path" diagram in Figure 8.9. The coefficients ba, and c  are the "path" coefficients, or 

the "direct effects"; i.e., a  is the direct effect of s  on ,r  c  is the direct effect of r on y , 

and b is the direct effect of s  on y . 

The “total effect” of s  on y  is found by substituting the equation for r  into that for

y . This yields  

                             ( )( ) ( ) ( ) ( )dcdscabddascbsssy ′+++=′+++== f,g  

so that 

                                            ( ) dsacby ′′++=                                                          (8.16) 

Hence, the total effect of s  on y is acb + , which may also be calculated as the sum of 

the products of all the direct effects along all the paths connecting s and y in the path di-

agram in Figure 8.9 a); i.e., s  to y  yields b , and s  to r to y  yields ac , so the sum is 

acb + . 

   

In our case, suppose there is a population U of “units” of the header row of a financial 

table, and for each unit u in U we can obtain measurements on three numerical varia-

bles, ( )uS , ( )uR , and ( )uY . In our application, the units are words of digits in the table; 

( ) 1=uS if u  is encouraged to search, and ( ) 0=uS  if otherwise; ( )uR  is the size of the 

VO string of legal amount in the digitu ; and ( )uY  is s'u the interest strings of the table 

cells.  

Figure 8.9 “Path” diagram  

a)                                                                            b)          
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As u  varies overU , ( ) ( ) ( )( )uYuRuS ,, forms a trivariate distribution. This distribution 

can be used to define quantities such as the conditional expectation of R given S , 

( )sSRE = . This conditional expectation is the average value of R for those units in U 

for which S(u) = s. The conditional expectation, ( )sSrRYE == , , has a similar defini-

tion in terms of averages over U. The expected value ( )sSrRYE == ,  is the " true" re-

gression function of Y  on R  and S  in the sense that it is what one is trying to estimate 

by a least the squares regression fit of Y  regressed on R  and S .  

And for our case, the table space structure can be considered as linear system. From  

Figure 8.9, there is a natural "causal order" to the variables ,,RS and :Y S comes first, 

then R , and then .Y  A path analysis uses a causal ordering to focus on certain regres-

sion functions; in the encouragement design, they are the two described above:

( )sSRE =  and ( )., rRsSYE ==  Suppose, for simplicity, that  they are both linear, i.e., 

that 

 
( ) ( ) dasssSRE +=== f                                                          (8.17)               

( ) ( ) .,, dcrbsrsgrRsSYE ′++====                                    (8.18) 

Since we are dealing with the measurements (OCR results) ,,RS  andY  rather than 

the abstract variable ,, rs  and y , we relabel the nodes of the graph ,,RS  andY , as in 

Figure 8.9(b). The path coefficients in Figure 8.9 are just the (population) linear regres-

sion coefficients that may be estimated by a (linear) regression of R  on S , and of Y  on 

S and .R  The same terminology is used as before for the direct effects: The regression 

coefficients are the direct effects. The "total effect" of S  onY , i.e. acb + , can be inter-

preted as the coefficient of S  in the regression of Y  on S   alone: 

( ) ( )( ) ( )SdcRbSESRSYEESYE ′++== ,  

                                              ( ) dSRcEbS ′++=  
                                              ddaScbS ′+++= )(       
                                              ( ) ddcScab ′+++=                                                   (8.19) 

We use the phrase empirical path diagram to refer to any path diagram constructed 

from a causal ordering and the implied set of linear regression functions on units in the 
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table structure. An empirical path diagram is, therefore, simply the result of computing 

certain regression coefficients and arranging them in the appropriate places in the dia-

gram. Based on the relations we can estimate the effective VO strings which are filled 

in the various tables.  

 

 

 
For example, illustrated in Figure 8.10, the stars filled in the table are obtained by 

path analysis. Here, “PAY” is a keyword for “Payee”, starting from it, the payee name 

of “ECTeleconferencing Pty Ltd” is figured out.  And “The SUM OF DOLLARS” is a 

keyword for legal amount, both keywords are verified by OCR. And such units as 

“CENTS, UNITS, TENS, HUNDREDS, THOUSANDS, 10 THOUS, 100 THOUS”, are 

members of the population U of “units” of the header row of a financial table. For each 

unitu , we obtain measurements on three numerical variables ( )uS , ( )uR , and ( )uY . 

( ) 1=uS if u  exists to encouraged to search, and ( ) 0=uS  if otherwise; ( )uR  is the size 

of the VO string of legal amount in the digitu ; and ( )uY  is s'u the interest strings of the 

Figure 8.10 Payee name and legal amount in table cheque are extracted 
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table cells. Through the path analysis, the table structure can be rebuilt, and the interest-

ed strings filled in table cells are found out, including “87, SEVEN, FOUR, THREE, 

*****,*****,*****.” 

To some extent, this method can extract data with touching and overlapping in vari-

ous fields of information, shown in Figure 8.11, there is a stamp overlaid on the cheque. 

By the image partition, effective VO strings are labelled in different colours, and then 

OCR verifies the keyword of payee “PAY” and legal amount “PAY THE SUM OF”.  

Starting from the payee keyword, the VO block of the payee name is found out, which 

includes only part of the stamp. Accordingly, by path analysis among units, table cells 

are picked out, which filters the stamp out.   

 

 
Figure 8.11 Payee and legal amount extraction based on VO strings 
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8.3 System 

8.3.1 System block diagram 

All the above functions are integrated into a whole system. And the overall system 

block diagram is shown in Figure 8.12. For the purpose of fraud detection, both the 

measurement of the physical appearance and its semantic meaning are important. The 

system provides both the required measurement of the physical appearance of text and 

the semantic string content of them. And the task mainly consists of three parts: signa-

ture extraction, payee name extraction and legal amount extraction. 

 
Through context-aware saliency, signatures are extracted. And based on the keywords 

lexicon, the keywords for payee and legal amount are found out from the text strings re-

Load input image 
or record file Image partition 

Payee name 
Extraction 

OCR on 
VO strings&Blocks 

Succeed? 

Legal amount 
Extraction or 
inference 

Report and 
record in file 

Keywords 
lexicon

Succeed? 

Yes

No 
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No 

Legal 
amount output 

Payee name 

out put 

Human in-
tervene 

Signature ex-
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Signature 
output 

Figure 8.12 The overall system block diagram  
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Figure 8.13 Operator schemes of system 
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sulting from OCR operations on VO strings. Meanwhile the OCR engine also measures 

the physical appearances of each character, such as height, width, stroke width etc. 

  Starting from the keyword, the payee name can be figured out from VO strings. Simi-

larly, the whole text string of the legal amount is picked out according to its keywords. 

Besides this whole text string type, separate strings of the legal amount as filled out in 

various tables can also be searched by the path analysis of table units and table cells.  

  When one form of detections fails, the system will report the failure and record the file 

so that humans can intervene to fix this problem. Therefore, besides the completely au-

tomated processing in batches, this system also provides operator-intervening processes, 

shown in Figure 8.13. When the system automatically runs, it processes cheque images 

automatically in batches or in single cheque images, generates results and records the 

image file names of them without results and corresponding problems. And in the mode 

of operator-intervening running, the operator focuses on those images in the record file 

generated by the automatic running process. According to the record file, the operator 

loads the failed cheque image, and labels the failed area reported by recording, and then 

the system provides the measurement of each characters and interested string text in the 

labelled region.  

8.3.2 System evaluation 

Our system has effectively been tested on 569,737 real bank cheque document images 

with 49.8% machine-printed cheque images. 

Since our system provides automatic running and human-intervention, the performance 

of the system depends on the automatic detection rate and operator intervention rate. 

They are defined with the frame of accuracy threshold (AT) (%), which is as high as 

possible, ideally 100%, also depends on the quality of cheque images. 

Definition 1: Accuracy Threshold (AT) (%) 
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%,100
AreaKey in  Char. of # Real

AreaKey in  Detected Char. of#%AT ×=                      (8.20) 

 Note that the real number of characters excludes the char. completely occluded by 

other information. 

Definition 2: Automatic Detection Rate (ADR) (%) 

%,100
Processed be  toCheques of # Total

*lly Automatica Processed Cheques Successful of #  % ADR ×=              (8.21) 

*Note that this is fully processed by the computer without operator intervention. We 

pursue ADR% as high as possible, ideally 100% if our knowledge consolidation is 

comprehensive. And for ADR%, it consists of the rate of successful cheques detected. 

The successful cheques processed automatically means the automatic detection rate of 

text of this system can come up with the readable rate that human eyes can do in the 

term of one accuracy threshold.   

The rate of successful cheques detected automatically (ADSR%) and the rate of un-

successful cheques detected automatically (ADUR %), and  

                    ADSR%+ADUR%=ADR%                                                        (8.22)           

Definition 3: Operator Intervention Rate (OIR) (%) 

 %,100
Processed be  toCheques of # Total

*Manually  Processed Cheques Successful of #OIR% ×=                     (8.23) 

*Note that candidate cheques are given by pre-processing procedure. That is, if 

cheques cannot be processed by a computer, they will automatically ask for operator in-

tervention. It is as low as possible, and it may be higher initially due to incomplete 

knowledge consolidation at the beginning. For OIR%, it includes the rate of successful 

cheques intervened by operators (OISR %) and the rate of unsuccessful cheques inter-

vened by (OIUR %), and  

OISR%+OIUR%=OIR%                                                         (8.24) 
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Table 8.3 The performance of system on real data (569,737 images) 

Accuracy Threshold (AT) (%) 

70% 80% 90% 95% 
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=1.30% 
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97.93% 
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.23% 

1.

87% 

1.

90% 

0
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=1.87% 

      

DR%=ADSR%+OISR%=

97.27% 

      

ER%=ADUR%+OIUR%

=2.73% 

      

DR%=ADSR%+OISR%=

94.60% 

      

ER%=ADUR%+OIUR%

=5.40% 

      

DR%=ADSR%+OISR%=

93.54% 

      

ER%=ADUR%+OIUR%

=6.46% 

 

Definition 4: Error Rate (ER) (%) 

%,100
Processed be  toCheques of # Total
operatorby nor computer by Neither 

Processedfully  UnsuccessCheques of #

ER% ×=               (8.25) 

And           
                               ER%=ADUR%+OIUR%                                                       (8.26) 

It is as low as possible, ideally near to 0%. And they satisfy with the condition 

               %100ER%OIR%ADR% =++                                                               (8.27) 
 

Our system has been tested on the real bank cheque document images, and the per-

formance of our system is shown in Table8.3.  Table 8.3 shows the system is stable and 

effective. With the accuracy threshold of 80%, 90% and 95%, the successful detection 
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rate of the payee name is stable at 97.93%.  And for legal amount, the successful detec-

tion rate is found to be 98.13%, 97.27%, 94.60%, and 93.54% with the corresponding 

accuracy thresholds of 70%, 80%, 90%, and 95% respectively. 

8.4 Summary

Automation of bank check processing is an important and promising application of doc-

ument recognition techniques. Cheque document image processing systems should be 

designed as important tools for reading automatically the wide variety of cheques pro-

vided by relevant units and individuals. 

The difficulties in developing an effective cheque reading system are the high degree 

of variability and uncertainty in the user-entered date information. People print or write 

the data zones in free style and there is no fixed format for cheques. There are differ-

ences not only in background, but also in the type and position of the machine printed 

and handwritten information. The area of interest should be located first in those sys-

tems, which do not depend on specific cheque formats.  And the three data zones are 

necessary to locate the payee name, legal amount and signature. All of them work to 

address the basic issue, how to segment or partition the image? 

The representations of the image based on space regularity and three-level computa-

tional modelling of text in the cluttered scene can also have utility in relation to solving 

this basic issue. And based on the image partition, the signature can be extracted by the 

CSSD algorithm, which also provides the important feature of discerning handwritten 

text from printed text. Meanwhile, based on the OCR, the payee name is found out and 

measured, and the legal amount is also figured out by path analysis or the VO string se-

lection lexicon.  
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 Chapter 9  

Conclusion 

In relation to the figures in image in the clutter scene, it is the physical appearance of 

text that provides the perceptual content and plays a central role for text detection, i.e. 

location and coarse identification.  When observers see text appearance in a clutter sce-

ne, they describe their feelings in perceptual terms e.g. crowding effect and clutter. 

However, the appearance of text still has enough saliency to reveal an informative mes-

sage. Accordingly, text not only has the characteristics of crowding effect and clutter 

but also follows the principles of saliency. If we consider the textual coexistence of 

crowding, clutter and saliency, we come to understand the correlates among them, both 

at the beginning and end of the text detection process.  

  To understand the correlates, there are multilevel considerations, including local low-

level, global level, visual organization and high-level considerations. In low local-level 

considerations, such as local contrast and orientation, they usually reflect the informa-

tive locations. At the global level, crowding and saliency can be thought of as two sides 

of the one coin. Crowding has the property of space averaging over the pooling region, 

while saliency tries to pop up the proto objects. Since text is composed of naturally in-

built neighbouring letters, space averaging represents the inherent characteristics while 

the distinctiveness among letters helps to maintain enough saliency. It is necessary to 

figure out the distinctiveness (high-level factors) through inspecting the properties de-

rived from font design, and this is also what we need to do in terms of high-level con-

siderations. The consideration in high-level perception includes the features of individu-

al characters and the similarity or dissimilarity of them, which crowding, clutter and 

saliency all depend on. In visual organization, the spatial element and its relations (i.e., 

reasonable regions and features) are significant. For saliency, the region is that given by 

salient structures or proto objects; for crowding the region is the pooling region, and for 

clutter, the region is the “interested region”. Once these fundamental steps are achieved, 

we can then go on to build up the computational three-level text model and the repre-
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sentation of an image by quantifying the space organization. Following this, the algo-

rithm and the system of text detection in the clutter scene can be developed. This chap-

ter provides the conclusions and recommendations that have resulted from this study.  

Firstly, on the basis of the analysis and summarization of the theory and properties of 

crowding effect, saliency, and clutter, the correlation among them is obtained in three-

levels, including the feature level, space organization, and the crowding space averaging 

level in a more global manner. This brings up to two basic subtasks: 1) computationally 

make tracks of the discriminative features for text legibility, readability and conspicuity; 

2) interested regions or pooling regions need to be generated or formed to break down, 

or at least decrease the crowding to make our target pop out. In such a way, the image is 

represented on the basis of quantifying the space organization. 

Secondly, since the font stylish attributes and textual organisation contribute to the 

essential functions of the physical appearance during the view construction of text in the 

local level type design, they provide us with a comprehensive understanding of the roles 

and the features of individual characters as many of them cannot be adequately caught 

through image processing alone. After investigating, we transfer them into image-based 

reasonable attributes of individual character, or the measure of the appearance of simi-

larity in space regularity. In image processing, the attributes of individual characters 

consist of local RMS contrast, local mean intensity, edge density, pixel density, orienta-

tion and directions, height to width ratio, stroke with to height ratio, straight line to size 

ratios, and shape (e.g., grey patches occupied by character, contour, etc). Further, the 

measure of neighbourhood is defined by the distance between shapes according to the 

size of shape. Meanwhile, the measure of the appearance similarity is defined as the 

Gaussian function of the shape size. Moreover, to combine the neighbourhood and ap-

pearance similarity, the adjacent relation is defined among the characters. 

Thirdly, for the purposes of quantifying the space organization in crowding and clut-

ter, spatial elements and relations need to be calculated. 

For spatial elements, according to features of individual characters, region-based spa-

tial elements are preferred. According to the theory of perspective, when objects recede 

from the eye or camera, the size of the objects decreases; this means that the space of 

the object in the image is reduced while the contour is lessened. If the distance is far 

enough away, the contours or boundary of separated objects disappear and those sepa-

rated objects as parts become manifest after they are merged into a whole. However, the 
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space occupied by the object exists and has discernible information. This suggests that 

there are two spatial elements that need to be represented:  the space occupied by the 

object and the contour or edge of the object. However, contour can be distorted in the 

clutter scene. Owing to this, a connected component analysis is applied to generate con-

nected components to represent the space patches and image is represented as a corps of 

multi-grey level grey patches. 

For relations among spatial elements, besides the common adjacent relation, there is 

another essential relation: proportions among component parts in image for proportions 

in all things. For adjacent relations defined by proximity and similarity among grey 

patches, clusters are obtained. For proportions, we receive inspiration from painters. If 

we examine the works of painters, especially the Impressionists, they use directional 

brushstroke or colour patches in repetitive patterns to represent a “formless” visual in-

stead of clear shape sketches. These repetitive patterns can offer a compositional format 

to express an artist’s feelings about an object rather than to simply describe it. Further-

more, beside the adjacent relation in space, painters apply harmonious proportions 

among component parts to bridle them into visual objects. It is the painter’s harmonious 

proportions that make the component parts of an object react simultaneously so that 

they can be seen at one and the same time, both together and separately. In mathematics, 

the geometric mean (GM) can capture the ratios to the reference value. If we, therefore, 

apply it to the grey patches, the proportions of component parts in the whole image or 

an object can be captured implicitly. GM resembles the spatial granularity of an image. 

Since GM can find the “figure of merit”, it is defined as an indicator of spatial granu-

larity and it gets involved in object constitution. Image can be composed of the GM re-

gions in different GM levels. Based on GM, the constitution can be explored and we can 

recognize that the different grey levels forming the same visual object are inclined to 

have a similar GM value. Thus, the features of individual characters can be extended to 

the GM level and visual objects can be analysed at the GM level. Further, two kinds of 

pooling regions are clearly shown and these include regions given by clusters generated 

from adjacent relations and GM regions. 

  Based on these studies, the image is represented by a set of GM regions at several 

GM levels. In addition, the three-level computational model of text is built up and cal-

culated over GM regions, including the feature-level, letter-centred level, and word-

centred level. At the feature level, there are attributes of individual characters in image 
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processing. At the letter-centred level, there are the attributes of the space relations 

among letters derived from the similarity of appearance and proximity of position, i.e. 

the adjacent relation. At the word-centred level, the attributes are defined over GM re-

gions. Over GM regions, there might be one or several clusters. Word-centred attributes 

include the statistical properties of each cluster and the relations of their space location.  

Finally, the computational model of text and image representation by the GM regions 

is put into practice for the purposes of developing a new algorithm of text detection in 

the clutter scene and a system for the automatic processing of a big data i.e. the real 

bank cheque. The performance of the algorithm is revealed to be comparable and the 

grey compositional structure of text becomes available for analysis.  Notably too, the 

performance of the automatic processing system of the bank cheque is shown to be ef-

fective.  

The system has been run on the real data (569,737 images). With the accuracy 

threshold of 70%, the successful detection rate of the payee name is found to be 98.7%. 

With the accuracy threshold of 80%, 90% and 95%, the successful detection rate of the 

payee name is stable at 97.93%.  For the legal amount, the successful detection rate is 

found to be 98.13%, 97.27%, 94.60%, and 93.54% with corresponding accuracy thresh-

olds of 70%, 80%, 90%, and 95% respectively.   

The algorithm of the text detection based on the crowding model of text is submitted 

to Pattern Recognition, and the automatic processing system of the bank cheque is sub-

mitted to IJCAR.     

In the future, the thesis works can be further studied in image processing, vision per-

ception, and non iid study. 

Firstly, since GM captures the proportions among component parts in an image and is 

regarded as the essential indicator of the spatial granularity in image, it can be used to 

analyse the intrinsic structure of the image from the standpoint of visual object compo-

sition. Therefore, GM together with features in its level can be applied to image seg-

mentation, semantic labelling and image quality assessment. Also, it can be used to find 

the “figure of merit”, i.e. the most salient figures in an image and the GM method can 

be used to measure the crowding effect and clutter.  

Secondly, our work provides a concrete computational formulation for crowding 

study which contributes to the important and growing research base examining the 

computation and application of the crowding effect.  
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Thirdly, since text computation model is built up on the basis of the unitary process 

of text perceiving, and other visual objects can be represented or understood in the same 

way from the standpoint of vision perception.   

 

Additionally, spatial elements and relations among them are quantified, which sug-

gest typical properties of non iid from the standpoint of composition of image, therefore 

this thesis work can be extended or become one typical case study in the growing field 

of non iid[314] research.  
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Appendix A 

In this appendix, the matrix properties employed throughout the section 5.2.2 are re-
viewed. Let A be an pn× matrix having rank r . Without loss of generality will assume 
r ≤ p ≤ n.  The trace of the matrix is 

[ ] ,trace
11
∑∑
==

==
r

i
i

p

i
iia λA                                                        (A.1) 

where iλ are the eigenvalues of A . The trace of a scalar is the scalar itself and the 
trace has the following invariance properties: 

[ ] [ ]
[ ] [ ] [ ],tracetracetrace

tracetrace
BCACABABC

AA T

==

=                               (A.2) 

Where B and C are matrices with corresponding dimensions. The invariance of trace 
to cyclic permutations is an important property which can often simplify matric manipu-
lations. 

The inner (scalar) product of twon× pmatrices A and B  
( ) [ ] [ ]ABBAAB TT tracetrace ==                                             (A.3) 

Satisfies all the well-known properties of inner product. The Frobenius norm of the 
matrix A  

( ) [ ] ∑∑
= =

====
n

i

p

j
ijFF
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1 1

222 trace AAAA,AA TT

                                 (A.4) 
Is often used and the Cauchy-Schwartz inequality becomes  

[ ]
FF

trace BABAT ≤                                                           (A.5) 
With equality iffA =αB.  
The singular value decomposition (svd) of A is defined as  

                      ,TVUA Σ=                                                               (A.6) 
where U is an nn× and V a pp× orthonormal matrix. The pn× diagonal matrix Σ

has r positive numbers arranged in descending order, the singular valuesσ k ofA . The 

nonzero eigenvalues of TAA and AAT are 2
kσ . The Frobenius norm of A  is then 

                               .
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σA                                                         (A.7) 

The column vectors of U and V provide orthonormal bases for the different subspaces 
associated with matrixA . The vector{ }ruuu ,,, 21 … span the rang ( )AR , and the vectors
{ }prr vvv ,,, 21 …++ span the null space ( )AN , while { }rvvv ,,, 21 … span ( )TAR  and

{ }nrr uuu ,,, 21 …++ span the null space ( )TAN . Thus, [ ]AR and [ ]TAN are orthonormal 

complements in nR , while ( )TAR and [ ]AN are orthonormal complements in .pR  
Let the vectors{ }qbbb ,,, 21 … be an orthonormal basis for a nq ≤ dimensional subspace
⊆ , the nn× projection matrix P  
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has rank ,q it is symmetric and idempotent, and projects orthogonally onto . The 
rank qn − matrix 

PIQ n −=                                                                 (A.9)       
is the projection matrix onto the orthogonal complement of  in nR . 
The operator [ ]Avec  yields the vector a obtained by stacking up the columns of A   . 

It can be shown that  
[ ] [ ] [ ],vecvectrace BAAB TT=                                                (A.10) 

Let ( )Af be a scalar valued function of the matrix A  and assume that 
,AAA δ+= o                                                            (A.11) 

Where oA the uncorrupted is “true” value and Aδ  is a zero-mean perturbation matrix 
with i.i.d. elements. Thus,  

( ).,0~vec 2
npGa IA σδδ =  The variance of ( )Af  can be approximated by error prop-

agation. The linear approximation of  ( )Af   around oA  is obtained from the Taylor ex-
pansion  

( ) ( ) ( ) ( ) ,00 afafaafaff Tδδ ∇+≈+==A                         (A.12) 

where∇ is the gradient of f with respect to a computed in .0a Assuming that the plug-
in principle holds (the function of the mean can be used as substitute for the mean of the 
function) the variance becomes 

( )[ ] ,tracevar 22
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Where the derivation of a scalar function with respect to a matrix is the gradient ma-

trix having as the thij element .
ija
f

∂

∂  The gradient matrix is computed for the true value

.0A The following gradient matrices: 
[ ] TW
A
WA

=
∂

∂ trace            [ ] W
A

AWT

=
∂

∂ trace                               (A.14) 
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