UNIVERSITY OF TECHNOLOGY, SYDNEY

Surface-type Classification in Structured Planar Environments under Various Illumination and Imaging Conditions

by

Andrew Wing Keung To

A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy

in the

Faculty of Engineering and IT Electrical, Mechanical and Mechatronic Systems Group Centre for Autonomous Systems

July 2015

Declaration of Authorship

I, Andrew Wing Keung To , declare that this thesis titled, 'Surface-type Classification in Structured Planar Environments under Various Illumination and Imaging Conditions' and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

UNIVERSITY OF TECHNOLOGY, SYDNEY

Abstract

Faculty of Engineering and IT Electrical, Mechanical and Mechatronic Systems Group

Doctor of Philosophy

by Andrew Wing Keung To

The recent advancement in sensing, computing and artificial intelligence, has led to the application of robots outside of the manufacturing factory and into field environments. In order for a field robot to operate intelligently and autonomously, the robot needs to build an environmental awareness, such as by classifying the different surface-types on a steel bridge structure. However, it is challenging to classify surface-types from images that are captured in a structurally complex environment under various illumination and imaging conditions. This is because colour and texture features extracted from these images can be inconsistent.

This thesis presents a surface-type classification approach to classify surface-types in a structurally complex three-dimensional (3D) environment under various illumination and imaging conditions. The approach proposes RGB-D sensing to provide each pixel in an image with additional depth information that is used by two developed algorithms. The first algorithm uses the RGB-D information along with a modified reflectance model to extract colour features for colour-based classification of surface-types. The second algorithm uses the depth information to calculate a probability map for the pixels being a specific surface-type. The probability map can identify the image regions that have a high probability of being accurately classified by a texture-based classifier.

A 3D grid-based map is generated to combine the results produced by colour-based classification and texture-based classification. It is suggested that a robot manipulator is used to position an RGB-D sensor package in the complex environments to capture the RGB-D images. In this way, the 3D position of each pixel is precisely known in a common global frame (robot base coordinate frame) and can be combined using a grid-based map to build up a rich awareness of the surrounding complex environment.

A case study is conducted in a laboratory environment using a six degree-of-freedom robot manipulator equipped with a RGB-D sensor package mounted to the end effector. The results show that the proposed surface-type classification approach provides an improved solution for vision-based classification of surface-types in a complex structural environment with various illumination and imaging conditions.

Acknowledgements

I would like to thank my supervisors Prof. Dikai Liu, and Dr Gavin Paul for their continual support and assistance throughout the course of my research. Your guidance and countless hours spent towards improving my research work has led to a more complete, quality thesis.

Thanks to the rest of the team at the Centre of Autonomous Systems, and Prof. Gamini Dissanayake, the head of the research centre, for providing an excellent environment that has facilitated great research interactions and exchange of ideas. Fellow research student Gibson Hu for providing encouragement and support throughout the course of the candidature.

I would finally like to thank my immediate family members Nelson To, Anita Luk, Anson To, grandparents and Ayesha Tang for believing in me to strive to do my very best.

This work is supported in part by the ARC Linkage Project: A robotic system for steel bridge maintenance, the Centre for Autonomous Systems (CAS), the NSW Roads and Maritime Services (RMS) and the University of Technology, Sydney (UTS).

Contents

De	eclar	ation of Authorship	i
Al	ostra	\mathbf{ct}	ii
Ac	cknov	wledgements	iv
Li	st of	Figures	viii
\mathbf{Li}	st of	Tables	xiii
Al	obre	viations	xiv
No	omer	nclature	$\mathbf{x}\mathbf{v}$
Gl	lossa	ry of Terms	xix
1	Intr	oduction	1
	1.1	Background	3
	1.2	Motivation	5
	1.3	Scope	6
	1.4	Contributions	7
	1.5	Publications	8
		1.5.1 Journal Papers	8
		1.5.2 Conference Papers	8
	1.6	Thesis Outline	9
2	Rev	riew of Related Work	11
	2.1	Environmental Awareness	11
	2.2	Sensor Technologies and Sensing Approaches Used for Surface Inspection $\ .$	16
	2.3	Vision-based Classification of $\operatorname{Surface}(s)$ with Non-uniform Illumination $\ .$.	20
	2.4	Vision-based Classification of $\mbox{Surface}(s)$ with Texture Inconsistency $\ . \ . \ .$	25
	2.5	Discussion	27
3	Sur	face-type Classification Approach	30

	3.1	Surface	e-type Classification Approach	31
	3.2	Positio	ning of the RGB-D Sensor Package Using a Robot Manipulator	32
	3.3	Calcula	ating the Viewing Distance and Viewing Angle for an Image Pixel	34
	3.4	Surface	e-type Map in 3D	37
		3.4.1	Combined Surface-type Map	38
	3.5	Colour	Feature Extraction	39
	3.6	Classif	ication Results Assessment	39
	3.7	Discus	sion	40
4	Alg	\mathbf{orithm}	for Extraction of Colour Features	41
	4.1	Chapte	er 4 Overview	42
	4.2	Diffuse	d Reflectance Values Extraction	45
		4.2.1	Torrance-Sparrow Reflectance Model	46
		4.2.2	Radiometric Response Function of a Camera	48
		4.2.3	Camera-to-Light Source Position Calculation	50
		4.2.4	Diffused Reflectance Value Calculation - Proposed Colour Features .	53
	4.3	CIELa	b L*a*b* Colour-Space Conversion	54
	4.4	Experi	ment 1: Surface-type Classification of Images Containing a Single	
		Surface	Plane with Non-uniform Illumination	58
	4.5	Experi	ment 2: Surface-type Classification of an Image Containing Multiple	
		Surface	e Planes with Non-uniform Illumination	66
	4.6	Discuss	sion	71
5	\mathbf{Alg}	\mathbf{orithm}	for Classification Result Assessment	73
5	Alg 5.1	orithm Algorit	for Classification Result Assessment	73 74
5	Alg 5.1 5.2	orithm Algorit Image	for Classification Result Assessment ' hm Overview Capture Conditions	73 74 76
5	Alg 5.1 5.2	orithm Algorit Image 5.2.1	for Classification Result Assessment ' hm Overview	73 74 76 77
5	Alg 5.1 5.2	orithm Algorit Image 5.2.1 5.2.2	for Classification Result Assessment ' hm Overview	73 74 76 77 79
5	Alg 5.1 5.2	orithm Algorit Image 5.2.1 5.2.2 5.2.3	for Classification Result Assessment ' hm Overview	73 74 76 77 79 82
5	Alg 5.1 5.2	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.3 5.2.4	for Classification Result Assessment ' hm Overview	73 74 76 77 79 82 84
5	Alg 5.1 5.2	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	for Classification Result Assessment '' hm Overview '' Capture Conditions '' Focus Quality '' Effect of Focus Quality on Texture Features '' Spatial Resolution '' Effect of Spatial Resolution on Texture Features '' Perspective Distortion ''	73 74 76 77 82 84 86
5	Alg 5.1 5.2	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	for Classification Result Assessment '' hm Overview	73 74 76 77 79 82 84 86 87
5	Alg 5.1 5.2	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula	for Classification Result Assessment ' hm Overview	73 74 76 77 82 84 86 87 89
5	Alg 5.1 5.2 5.3 5.4	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi	for Classification Result Assessment ' hm Overview	73 74 76 77 82 84 86 87 89 93
5	Alg 5.1 5.2 5.3 5.4	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi 5.4.1	for Classification Result Assessment " hm Overview	73 74 76 77 82 84 86 87 89 93 94
5	Alg 5.1 5.2 5.3 5.4	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi 5.4.1 5.4.2	for Classification Result Assessment " hm Overview	73 74 76 77 82 84 86 87 89 93 94
5	Alg 5.1 5.2 5.3 5.4	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi 5.4.1 5.4.2	for Classification Result Assessment " hm Overview	73 74 76 77 82 84 86 87 89 93 94 01
5	Alg 5.1 5.2 5.3 5.4	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi 5.4.1 5.4.2 5.4.3	for Classification Result Assessment ////////////////////////////////////	73 74 76 77 82 84 86 87 89 93 94 01 08
5	Alg 5.1 5.2 5.3 5.4 5.5	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi 5.4.1 5.4.2 5.4.3 Discuss	for Classification Result Assessment	73 74 76 77 82 84 86 87 93 94 01 08 13
5	Alg 5.1 5.2 5.3 5.4 5.5 Cas	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi 5.4.1 5.4.2 5.4.3 Discuss	for Classification Result Assessment " hm Overview	73 74 76 77 82 84 86 87 89 93 94 01 08 13 15
5	Alg 5.1 5.2 5.3 5.4 5.5 6.1	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula 5.4.1 5.4.2 5.4.2 5.4.3 Discuss e Stud ; Experi	for Classification Result Assessment " hm Overview	73 74 76 77 82 84 86 87 89 93 94 01 08 13 15
5	Alg 5.1 5.2 5.3 5.4 5.5 6.1	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi 5.4.1 5.4.2 5.4.3 Discuss e Study Experi 6.1.1	for Classification Result Assessment " hm Overview	73 74 76 77 82 84 86 87 93 94 01 08 13 15 15
5	Alg 5.1 5.2 5.3 5.4 5.5 Cas 6.1	orithm Algorit Image 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Calcula Experi 5.4.1 5.4.2 5.4.3 Discuss e Stud Experi 6.1.1 6.1.2	for Classification Result Assessment " hm Overview	73 74 76 77 82 84 86 87 89 93 94 01 08 13 15 15 15

vi

		6.1.4 Method to Evaluate the Accuracy of Classification Results using a
		Surface-type Map $\ldots \ldots \ldots$
		6.1.5 Training Surface-type Classifiers
	6.2	Experiment 1: Surface-type Classification with Viewing Distance Change . 127
6.3 Experiment 2: Surface-type Classification with Viewing Distance and		
Viewing Angle Change		
	6.4	Discussion
	Com	140
1	Con	
7	7.1	Summary of Contributions
7	7.1	Summary of Contributions 143 7.1.1 A Surface-type Classification Approach using RGB-D Images 143
7	7.1	Summary of Contributions 143 7.1.1 A Surface-type Classification Approach using RGB-D Images 143 7.1.2 An Algorithm for Colour Feature Extraction 144
1	7.1	Summary of Contributions 143 7.1.1 A Surface-type Classification Approach using RGB-D Images 143 7.1.2 An Algorithm for Colour Feature Extraction 144 7.1.3 An Algorithm for Classification Result Assessment 144
1	7.1	Summary of Contributions1437.1.1A Surface-type Classification Approach using RGB-D Images1437.1.2An Algorithm for Colour Feature Extraction1447.1.3An Algorithm for Classification Result Assessment1447.1.4Practical Contribution145
1	7.1 7.2	Summary of Contributions 143 7.1.1 A Surface-type Classification Approach using RGB-D Images 143 7.1.2 An Algorithm for Colour Feature Extraction 144 7.1.3 An Algorithm for Classification Result Assessment 144 7.1.4 Practical Contribution 145 Discussion of Limitations 146

Appendices

149

\mathbf{A}	IR (Camera Hand-eye Calibration	150
	A.1	Methodologies	150
	A.2	Feature Points Identification	151
	A.3	Camera-to-robot Transform through 3D Feature Matching	153
	A.4	Hand-Eye Transform and Point Cloud Registration	154
	A.5	Limitations and Concluding Note	155
в	Tex	ture Features	156
	B.1	Grey Level Co-occurrence Matrix	156
	B.2	Local Binary Patterns	157
\mathbf{C}	Mu	lti-class Surface-type Classifier	159
	C.1	Naive Bayes Classifier	159
	C.2	Support Vector Machines	160
D	Sur	face Preparation Guideline	161
	D.1	Description	161
\mathbf{E}	Con	Ifusion Matrices	164
	E.1	Chapter 4: Experiment 1	164
	E.2	Chapter 6: Experiment 1	180
	E.3	Chapter 6: Experiment 2	182

List of Figures

1.1	a) Mock robotic inspection setup in a laboratory; b) Actual bridge maintenance environment	2
1.2	a) A sealed containment area established for bridge maintenance; b) A mobile robotic system deployed for steel bridge maintenance \ldots	5
$2.1 \\ 2.2$	3D geometric map with additional colour information [1]	14
2.3	Is green, cereal box is blue, coffee mug is yellow and soda can is cyan [2] Commercial surface inspection instruments [3], please refer to Appendix D for SSPC visual guide	16 17
2.4	Automation of the marble quality classification process: from image acquisition to the pallets [4]	19
2.5	Directional light source and camera mounted to the end-effector of a bridge maintenance robot to inspect for rust and grit-blasting quality [5] [6] [7] .	19
$2.6 \\ 2.7$	Images captured with uniform illumination $[8][9][10]$	21
2.8 2.9	image identified as rust [11]	23 25 27
3.1 3.2 3.3 3.4 3.5	Overview of the proposed surface-type classification approach Coordinate frames of a robot manipulator and an RGB-D sensor package . Viewing distance and viewing angle for a surface point in 3D The surface normal calculated for a 3D point	32 33 34 36 37
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \end{array}$	Robot manipulator with a directional light source illuminating a surface Colour feature extraction algorithm	41 44 46 47 49

4.6	a) Greyscale of the calibration image Ω_c ; b) Binary image of specular reflectance region in the calibration image Ω_{cs} ; c) Diffused reflectance	
	region in the calibration image Ω_{cd}	50
4.7	Light source direction vector estimation using specular centroid pixel	51
4.8	Calculating θ_l and d_l for a 3D point representing an i^{th} image pixel	53
4.9	a) Original image; b) Image adjusted to simulate illumination by a side	
	directional light source; c) Image adjusted to simulate illumination by a	
4.10	light source directly in front of the image plane	56
4 - 1 - 1	illumination by a side directional light source	57
4.11	Histograms of colour-space components for image adjusted to simulate illumination by a light source directly in front of the image plane	57
4.12	Experiment environment from which the four surface-types are collected	59
4 13	BGB-D sensor package consisting of a Kinect Point Grev Firefly camera	00
	and LED light source	60
4.14	The different RGB-D image capture positions used to collect images under	
4 1 5	non-uniform illumination	60
4.15	Training image and three test images	61
4.16	Painted surface classification results	64
4.17	Timber surface classification results	64 07
4.18	Rusted surface classification results	65
4.19	Blasted surface classification results	65
4.20	a) Experiment 2 image that contains two surface planes and three	co
4 91	Surface-types; 0) Depth image showing the segmented surface planes	09
4.21	surface-type, black is not the surface-type	69
4.22	a) Classification result using RGB features; b) Classification result using $a^{*}b^{*}$ features; c) Classification result using K_{d} features. The colour scheme used in these figures are: teal – timber surface vellow – rusted surface	
	and red = blasted surface	69
4.23	Additional images collected in the environment	70
5.1	Algorithm to calculate a probability map of image pixels being a specific	
-	surface-type	75
5.2	Plane of focus and depth-of-field diagram	78
5.3	a) Ideal pixel surface position within the DOF range; b) Pixel surface a_{a}	70
F 4	positions at the limits of the DOF range \ldots \ldots \ldots \ldots	78 70
5.4 F F	Checkerboard image $\Omega_t(u, v)$	(9
5.5 5.0	Gaussian blurred images of the checkerboard	81
0.0	box plot magrams of the texture feature distribution extracted from the blurred images produced using different values of β	Q1
57	Frample of pixel density on a surface relative to the viewing distance	01 01
J.1 5 0	Example of pixel density of a sufface relative to the viewing distance	00
0.0	in spatial resolution when using a fixed pixel window size to extract texture	
	features	85

5.9	Box plot diagrams of the texture feature distribution extracted from the scaled images produced using different values of β_s	85
5.10	a) The camera viewing angle used to capture the training dataset, θ_t , and the viewing angle threshold, τ_{θ} ; b) An example of a camera viewing angle	
	that is within the viewing angle threshold	87
5.11	Distorted images of the checkerboard	88
5.12	Box plot diagrams of the texture feature distribution extracted from the distorted images produced using different values of β_k	89
5.13	Sigmoid function to calculate the probability value of a pixel based on the	
	viewing distance	90
5.14	Sigmoid function to calculate the probability value of a pixel based on the viewing angle	91
5.15	Visualisation of the probability value P_{d_c,θ_c} with image capture condition	
	changes in viewing distance d_c , and viewing angle θ_c	92
5.16	Procedure for calculating the probability value of the classification results	
	of an image	93
5.17	Experimental setup of camera to capture images of a surface-type	95
5.18	Image capture conditions used to capture images with focus distance changes	95
5.19	Set of images with focus distance changes	96
5.20	Box plot diagrams of the texture features distribution extracted from the	
	set of images with focus distance change: horizontal axis shows the images	
	(1-15) corresponding with plane of focus change from $(30 mm to 170 mm)$;	
	and vertical axis shows the values for each texture feature $\ldots \ldots \ldots$	96
5.21	Image capture conditions used to capture images with spatial resolution	
	changes	98
5.22	Set of images with spatial resolution changes	98
5.23	Box plot diagrams of the texture feature distribution extracted from the set of images with spatial resolution change: horizontal axis shows the images (1–15) corresponding with viewing distance and plane of focus change from	
	(30-170 mm); and vertical axis shows the texture feature values	99
5.24	Image capture conditions used to capture images with perspective distortion	100
5.25	Set of images with perspective distortion	100
5.26	Box plot diagrams of the texture feature distribution extracted from the set of images with perspective distortion: horizontal axis shows the images $1-5$ corresponding with viewing angle change from 0° to 60° ; and vertical axis	
	shows the values for each texture feature	101
5.27	Experimental environment to capture surface-type images with different	
	image capture conditions	102
5.28	Image capture conditions used to capture a set of images for each	
	surface-type in the experimental environment	103
5.29	Set of images of blasted metal surface captured with changes in image capture conditions	103
5.30	Set of images of rusted metal surface captured with changes in image capture	
	conditions	104

х

5.31	Set of images of timber surface captured with changes in image capture conditions	104
5.32	The images used in the training dataset with image capture conditions of d_{-100} mm and θ_{-0}°	105
5.33	$u_c = 100$ mm and $v_c = 0$	105
5.34	The RGB-D sensor package used in this experiment and the experiment scene with multiple surface planes	109
5.35	600×600 pixels training image of the timber surface-type	109
5.36	Row 1 test images; row 2 classification results of test images; row 3 segmented image regions with a high probability of being accurately classified	110
		110
6.1	RGB-D sensor package: Firefly camera, Kinect, and LED light source	116
6.2	Denso VM-6083 robot manipulator	117
6.3	25 checkerboard images captured by the IR camera (left) and the Firefly	
	camera (right) for intrinsic and extrinsic calibration	118
6.4	Extrinsic transformation between the Firefly camera and the IR camera	
	coordinate frames	118
6.5	IR and depth images used to identify the calibration points to perform	
	hand-eye calibration	119
6.6	Real robot manipulator and a simulation of the robot manipulator with a	
	point cloud transformed into the robot base coordinate frame	120
6.7	Calibration images used to identify the light source position relative to the	1.0.0
	Firefly camera coordinate frame	120
6.8	The calibration image perspective projected into 3D and light source	101
6.0	Seture of the environment to use and a bandward surface to the environment.	121
0.9 C 10	Setup of the environment to generate a benchmark surface-type map	122
0.10	Benchmark surface-type map, and surface-type map generated from	199
6 11	1280×060 pixels training images collected for each surface type	120
6 19	Training image detect used to extract features to train surface type	124
0.12	Functional framework and the laboratory environment	120
0.15	Experiment 1 setup of the aboratory environment	127
0.14 6.15	Classification regults using classifier trained with PCB features. Timber	120
0.15	surface is dark blue, painted metal surface is sky blue, rusted metal surface	
	is vellow and cardboard is red	129
6 16	Classification results using classifier trained with a*b* features: Timber	120
0.10	surface is dark blue, painted metal surface is sky blue, rusted metal surface	
	is vellow and cardboard is red	130
6.17	Classification results using classifier trained with K_d features: Timber	
	surface is dark blue, painted metal surface is sky blue, rusted metal	
	surface is yellow and cardboard is red	130
6.18	Classification results using classifier trained with LBP features: Timber	
	surface is dark blue, painted metal surface is sky blue, rusted metal surface	
	is yellow and cardboard is red	131

6.19	Probability maps for texture-based classification results	. 131
6.20	Classification results by combining K_d and LBP classification results: Timber surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and cardboard is red	. 132
6.21	Image 1 surface-type maps generated using classification results from K_d , LBP and Combined: Timber surface is dark blue, painted metal surface is	100
6.22	Sky blue, rusted metal surface is yellow and cardboard is red	132
6 92	Experiment 2 setup of the laboratory environment	125
6.24	Images collected of the environment	. 100 125
6.24 6.25	Classification results using classifier trained with RGB features: Timber surface is dark blue, painted metal surface is sky blue, rusted metal surface	. 155
	is yellow and cardboard is red	. 136
6.26	Classification results using classifier trained with a*b* features: Timber surface is dark blue, painted metal surface is sky blue, rusted metal surface	
	is yellow and cardboard is red	. 137
6.27	Classification results using classifier trained with K_d features: Timber surface is dark blue, painted metal surface is sky blue, rusted metal	
6.28	surface is yellow and cardboard is red	. 137
	surface is dark blue, painted metal surface is sky blue, rusted metal surface	190
6 20	Probability many for texture based elegification regults	120
6.30	Classification results produced by combining K_d and LBP classification results: Timber surface is dark blue, painted metal surface is sky blue,	. 150
6.31	rusted metal surface is yellow and cardboard is red \ldots \ldots \ldots \ldots Image 1 surface-type maps generated using classification results from K_d ,	. 139
6 32	LBP and Combined: Timber surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and cardboard is red	. 139
0.02	different features	. 141
A.1	Overview of the process for hand-eye calibration	. 151
A.2	a) IR image; b) Binary image of reflector discs	. 152
A.3	a) Datasets of points in 3D representing the reflector discs; b) Circle fit on a dataset	152
A.4	a) An IR depth camera attached to a robot manipulator observing the calibration plate; b) Camera-to-robot base frame and end-effector-to-robot base frame.	. 155
П 1		150
В.1	The calculation of a decimal value for a pixel using the LBP operator	. 158

List of Tables

4.1	Mean and standard deviation of colour-space component distribution 58
4.2	Classification results for RGB-D images of a single surface plane 66
4.3	Confusion matrices for the surface-type classification results produced using
	the three SVM classifiers
4.4	Average surface-type classification results for images
5.1	Classification accuracy for blasted metal surface images
5.2	Classification accuracy for rusted metal surface images
5.3	Classification accuracy for timber surface images
5.4	Confusion matrices for test image 1
5.5	Confusion matrices for test image 2
5.6	Confusion matrices for test image 3
5.7	Confusion matrices for test image 4
6.1	Denavit and Hartenberg [15] parameters, joint types and limits for the
	Denso VM-6083 manipulator arm
6.2	Calibration parameter values for IR to Firefly camera
6.3	Classification accuracy for SVM classifier trained with RGB features $\ . \ . \ . \ 126$
6.4	Classification accuracy for SVM classifier trained with a *b* features $\ .$ 126
6.5	Classification accuracy for SVM classifier trained with K_d features 126
6.6	Classification accuracy for SVM classifier trained with LBP features 127

Abbreviations

DOF	Depth of Field
FOV	Field of View
GLCM	Grey-Level Co-occurrence Matrices
IR	Infrared
PCA	Principal Component Analysis
RGB-D	Red, Green and Blue colour-space image with corresponding Depth
	image
\mathbf{SVM}	Support Vector Machines
UTS	University of Technology, Sydney

Nomenclature

General Formatting Style

$f(\cdot \cdot \cdot)$	A scalar valued function
$\mathbf{f}(\cdot\cdot\cdot)$	A vector valued function
$[\cdot \cdot \cdot]^T$	Transpose
·	Absolute value
$\ \cdot\ $	Vector length and normalised vector
C	Covariance matrix
d	distance between two points
D	A diagonalised matrix
i	Index value in a list
n	Variable signifying the last index of a set or to refer to a count
Р	Probability
(u,v)	Index values in a 2D array or an image
$ec{v}$	A vector
Ω	2D image
τ	Threshold
θ	Angle between two directional vectors

Specific Symbol Usage

- $^oT_e(\vec{Q})$ Homogenous transformation between the robot base coordinate frame and the end-effector at pose \vec{Q}
- $^{o}T_{s}$ Homogenous transformation matrix between the robot base coordinate frame and the sensor coordinate frame

$^{e}T_{s}$	Homogenous transformation matrix between the robot end-effector
	coordinate frame and the sensor coordinate frame
${}^{s}T_{c}$	Homogenous transformation matrix between the sensor coordinate
	frame and the camera coordinate frame
C	Principle point of a pinhole camera model
d_c	Surface point-to-RGB camera coordinate origin distance
d_l	Light source-to-surface point distance
d_p	Plane of focus to camera distance
d_t	The viewing distance used to capture the training image dataset
F	Focal length of a camera
I_l	Light source intensity value
I_r	Reflected light source intensity value
K_d	Set notation for the diffused reflectance values
K_s	Set notation for the specular reflectance values
\vec{l}	The position vector of the light source relative to the RGB camera
	coordinate frame
n_t	Number of surface-types
Р	A vector (or set) of 3D points or vertices
q	Robot manipulator's joint angle
$ec{Q}$	Robot manipulator's joint angle vector, $[q_1, q_2,, q_n]^T$
α	Bisector angle between $\vec{v_c}$ and $\vec{v_l}$
β_g	Gaussian blur coefficient
eta_k	Skewing coefficient
β_s	Scaling coefficient
δ	Lens f-number
μ	Length of the voxel cube in the surface-type map
ω_v	Weighting factor applied to a voxel containing texture-based
	classification results
Ω_s	Depth image from the IR camera
Ω_c	Greyscale calibration image used to calculated the light source
	position

Ω_{cs}	An image of the greyscale calibration image Ω_c containing the
	specular reflectance region
Ω_{cd}	An image of the greyscale calibration image Ω_c containing the
	diffused reflectance region
Ω_t	A simulated texture pattern image
arphi	Circle of confusion
σ	Surface roughness albedo
θ_c	Angle of incidence between the normal of a 3D surface point and
	the straight line between the surface point and the RGB camera
	coordinate origin
θ_l	Angle of incidence between the normal of a 3D surface point and the
	straight line between the surface point and the light source
$ heta_t$	The viewing angle used to capture the training image dataset
$ au_s$	Pixel intensity threshold for identifying the specular reflectance
	region in an image
$ au_d$	Pixel intensity threshold for identifying the diffused reflectance region
	in an image
$ec{v_\eta}$	Normal vector of a 3D surface point
$\vec{v_c}$	Direction vector between the surface point and the RGB camera
	coordinate origin
$ec{v_l}$	Direction vector between the light source point and the RGB camera
	coordinate origin
$P(M_k)$	Discrete probability distribution of the surface-types for $k \in$
	$\{1, \ldots n_t\}$, given n_t number of surface-types.
$P(M_k E)$	Probability of surface-type state given the evidence E
$P(E M_k)$	Probability of an evidence given the surface-type
P(E)	Probability of evidence
P_{d_c}	Probability value of a pixel being a surface-type based on viewing
	distance
P_{θ_c}	Probability value of a pixel being a surface-type based on viewing
	angle

P_{d_c, θ_c}	Probability value of a pixel being a surface-type based on viewing
	distance and viewing angle
	Combinations of Variables
(a_2, a_1, a_0)	Polynomial coefficients for camera radiometric response in the
	reflectance model
$\{D_{n_1}, D_{f_1}\}$	Depth of field threshold range
$\{D_{n_2}, D_{f_2}\}$	Spatial resolution threshold range
$(K_{d,R}, K_{d,G}, K_{d,B})$	Diffused reflectance value for each RGB colour channel
$(K_{s,R}, K_{s,G}, K_{s,B})$	Specular reflectance value for each RGB colour channel
(x_c, y_c, z_c)	Axes of RGB camera's 3D Cartesian coordinate frame
(x_o, y_o, z_o)	Axes of Robot base's 3D Cartesian coordinate frame
(x_e, y_e, z_e)	Axes of End-effector's 3D Cartesian coordinate frame
(x_s, y_s, z_s)	Axes of Depth sensor's 3D Cartesian coordinate frame
$(au_n, au_f, au_ heta)$	Threshold parameters to calculate an image pixel's probability of
	being a surface-type
(ω_1,ω_2)	Weighting coefficients to calculate an image pixel's probability of
	being a surface-type

Glossary of Terms

Complex	A 3D workspace that has multiple planar surfaces arranged
environment	in various positions and orientations.
Confusion matrix	A specific table that allows the visualisation of classification
	results. Each column of the matrix represents the instances
	in a predicted class, while each row represents the instances
	in an actual class.
Environmental	In the context for a robot this can include but is not limited
awareness	to the knowledge of, a geometric map of the environment
	that describes the location of surfaces and obstacles, and a
	semantic map that provides a label for objects, surface-types
	and locations within the environment.
Grid	A type of representation based on occupancy grids used to
	divide a space into discrete grid cells. For surface-type map
	in 3D this becomes voxels.
Grit-blasting	The abrasive removal of surface rust and/or paint using a
	high pressure grit stream.
Surface-type map	Model of the geometry and surface-type of surfaces in the
	environment.
RGB-D	The combination of a colour image represented in the RGB
	colour-space (red, green, blue) with the addition of depth

Robot manipulator	In this thesis, this is a six-degree of freedom Denso industrial
	robotic manipulator, with a RGB-D sensor tool mounted on
	the end-effector.
Sensor package	Generally refers to an IR-based depth sensing camera, a
	colour camera and a light source.
Surface	The face of an object/structure in the environment.
Surface normal	A 3D vector perpendicular to a surface.
Surface-type	The appearance of a surface described by the colour and
	texture.
Textural appearance	The visual appearance of a surface that can be changed by
	the image capture conditions.
Viewpoint	A position in space and an orientation of a sensor that results
	from a manipulator pose \vec{Q} . This can also be expressed in
	terms of the homogeneous transformation matrix, ${}^0T_s(\vec{Q})$
Voxel	Volumetric Pixel which represents a 3D cube-like volume in
	Euclidean space.