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The recent advancement in sensing, computing and artificial intelligence, has led to the
application of robots outside of the manufacturing factory and into field environments. In
order for a field robot to operate intelligently and autonomously, the robot needs to build
an environmental awareness, such as by classifying the different surface-types on a steel
bridge structure. However, it is challenging to classify surface-types from images that are
captured in a structurally complex environment under various illumination and imaging
conditions. This is because colour and texture features extracted from these images can

be inconsistent.

This thesis presents a surface-type classification approach to classify surface-types in a
structurally complex three-dimensional (3D) environment under various illumination and
imaging conditions. The approach proposes RGB-D sensing to provide each pixel in an
image with additional depth information that is used by two developed algorithms. The
first algorithm uses the RGB-D information along with a modified reflectance model to
extract colour features for colour-based classification of surface-types. The second
algorithm uses the depth information to calculate a probability map for the pixels being
a specific surface-type. The probability map can identify the image regions that have a

high probability of being accurately classified by a texture-based classifier.

A 3D grid-based map is generated to combine the results produced by colour-based
classification and texture-based classification. It is suggested that a robot manipulator is
used to position an RGB-D sensor package in the complex environments to capture the
RGB-D images. In this way, the 3D position of each pixel is precisely known in a
common global frame (robot base coordinate frame) and can be combined using a

grid-based map to build up a rich awareness of the surrounding complex environment.

A case study is conducted in a laboratory environment using a six degree-of-freedom robot
manipulator equipped with a RGB-D sensor package mounted to the end effector. The
results show that the proposed surface-type classification approach provides an improved
solution for vision-based classification of surface-types in a complex structural environment

with various illumination and imaging conditions.
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Direction vector between the surface point and the RGB camera
coordinate origin

Direction vector between the light source point and the RGB camera
coordinate origin

Discrete probability distribution of the surface-types for k €
{1,...n:}, given n; number of surface-types.

Probability of surface-type state given the evidence E

Probability of an evidence given the surface-type

Probability of evidence

Probability value of a pixel being a surface-type based on viewing
distance

Probability value of a pixel being a surface-type based on viewing

angle
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P; g Probability value of a pixel being a surface-type based on viewing

cHV e

distance and viewing angle

Combinations of Variables
(az,a1,ap) Polynomial coefficients for camera radiometric response in the

reflectance model

{Dn,, Dy} Depth of field threshold range

{Dn,, Dy, } Spatial resolution threshold range

(Ka,r, Ka.g, K4 ) Diffused reflectance value for each RGB colour channel

(Ks R, Ksa, K B) Specular reflectance value for each RGB colour channel

(Zey Yoy 2e) Axes of RGB camera’s 3D Cartesian coordinate frame

(Zoy Yos 20) Axes of Robot base’s 3D Cartesian coordinate frame

(e, Ye, 2e) Axes of End-effector’s 3D Cartesian coordinate frame

(TsyYs, 2s) Axes of Depth sensor’s 3D Cartesian coordinate frame

(TnsTf, 7o) Threshold parameters to calculate an image pixel’s probability of
being a surface-type

(w1, w2) Weighting coefficients to calculate an image pixel’s probability of

being a surface-type
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Complex
environment

Confusion matrix

Environmental

awareness

Grid

Grit-blasting

Surface-type map

RGB-D

A 3D workspace that has multiple planar surfaces arranged
in various positions and orientations.

A specific table that allows the visualisation of classification
results. Each column of the matrix represents the instances
in a predicted class, while each row represents the instances
in an actual class.

In the context for a robot this can include but is not limited
to the knowledge of, a geometric map of the environment
that describes the location of surfaces and obstacles, and a
semantic map that provides a label for objects, surface-types

and locations within the environment.

A type of representation based on occupancy grids used to
divide a space into discrete grid cells. For surface-type map
in 3D this becomes voxels.

The abrasive removal of surface rust and/or paint using a
high pressure grit stream.

Model of the geometry and surface-type of surfaces in the
environment.

The combination of a colour image represented in the RGB
colour-space (red, green, blue) with the addition of depth

data that corresponds with each colour image pixel.

Xix
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Robot manipulator

Sensor package

Surface

Surface normal

Surface-type

Textural appearance

Viewpoint

Voxel

In this thesis, this is a six-degree of freedom Denso industrial
robotic manipulator, with a RGB-D sensor tool mounted on
the end-effector.

Generally refers to an IR-based depth sensing camera, a
colour camera and a light source.

The face of an object/structure in the environment.

A 3D vector perpendicular to a surface.

The appearance of a surface described by the colour and
texture.

The visual appearance of a surface that can be changed by
the image capture conditions.

A position in space and an orientation of a sensor that results
from a manipulator pose Cj This can also be expressed in
terms of the homogeneous transformation matrix, OTS(Q)
Volumetric Pixel which represents a 3D cube-like volume in

Euclidean space.
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