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The recent advancement in sensing, computing and artificial intelligence, has led to the

application of robots outside of the manufacturing factory and into field environments. In

order for a field robot to operate intelligently and autonomously, the robot needs to build

an environmental awareness, such as by classifying the different surface-types on a steel

bridge structure. However, it is challenging to classify surface-types from images that are

captured in a structurally complex environment under various illumination and imaging

conditions. This is because colour and texture features extracted from these images can

be inconsistent.

This thesis presents a surface-type classification approach to classify surface-types in a

structurally complex three-dimensional (3D) environment under various illumination and

imaging conditions. The approach proposes RGB-D sensing to provide each pixel in an

image with additional depth information that is used by two developed algorithms. The

first algorithm uses the RGB-D information along with a modified reflectance model to

extract colour features for colour-based classification of surface-types. The second

algorithm uses the depth information to calculate a probability map for the pixels being

a specific surface-type. The probability map can identify the image regions that have a

high probability of being accurately classified by a texture-based classifier.

A 3D grid-based map is generated to combine the results produced by colour-based

classification and texture-based classification. It is suggested that a robot manipulator is

used to position an RGB-D sensor package in the complex environments to capture the

RGB-D images. In this way, the 3D position of each pixel is precisely known in a

common global frame (robot base coordinate frame) and can be combined using a

grid-based map to build up a rich awareness of the surrounding complex environment.

A case study is conducted in a laboratory environment using a six degree-of-freedom robot

manipulator equipped with a RGB-D sensor package mounted to the end effector. The

results show that the proposed surface-type classification approach provides an improved

solution for vision-based classification of surface-types in a complex structural environment

with various illumination and imaging conditions.
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Glossary of Terms

Complex

environment

A 3D workspace that has multiple planar surfaces arranged

in various positions and orientations.

Confusion matrix A specific table that allows the visualisation of classification

results. Each column of the matrix represents the instances

in a predicted class, while each row represents the instances

in an actual class.

Environmental

awareness

In the context for a robot this can include but is not limited

to the knowledge of, a geometric map of the environment

that describes the location of surfaces and obstacles, and a

semantic map that provides a label for objects, surface-types

and locations within the environment.

Grid A type of representation based on occupancy grids used to

divide a space into discrete grid cells. For surface-type map

in 3D this becomes voxels.

Grit-blasting The abrasive removal of surface rust and/or paint using a

high pressure grit stream.

Surface-type map Model of the geometry and surface-type of surfaces in the

environment.

RGB-D The combination of a colour image represented in the RGB

colour-space (red, green, blue) with the addition of depth

data that corresponds with each colour image pixel.
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Robot manipulator In this thesis, this is a six-degree of freedom Denso industrial

robotic manipulator, with a RGB-D sensor tool mounted on

the end-effector.

Sensor package Generally refers to an IR-based depth sensing camera, a

colour camera and a light source.

Surface The face of an object/structure in the environment.

Surface normal A 3D vector perpendicular to a surface.

Surface-type The appearance of a surface described by the colour and

texture.

Textural appearance The visual appearance of a surface that can be changed by

the image capture conditions.

Viewpoint A position in space and an orientation of a sensor that results

from a manipulator pose �Q. This can also be expressed in

terms of the homogeneous transformation matrix, 0Ts( �Q)

Voxel Volumetric Pixel which represents a 3D cube-like volume in

Euclidean space.



Chapter 1

Introduction

The application of autonomous robotic systems beyond the structured factory settings and

into field environments is beginning to become a reality. Field robotic systems that can

operate in complex structural environments can aid humans in performing tasks, often

undertaking them with improved efficiency and with reduced risks. Unlike a human, a

robotic system can operate without fatigue, while maintaining a more consistent level of

accuracy and repeatability for prolonged periods.

The traditional industrial factory setting has provided a structured and predictable

operating environment suitable for configuring robots to perform repetitive tasks. In

contrast, a field environment can dynamically change over time; the environment around

the robot can also be changed due to movements made by the robot. As a result,

pre-configured robot routines are generally unusable for a field environment. Therefore, a

field robot must have the ability to explore and sense the environment to generate and

maintain an up-to-date environmental awareness. One such application that is

considered in this research is autonomous grit-blasting robots for complex steel bridge

structure maintenance (Figure 1.2b). In this application, a mobile industrial robot

manipulator needs to autonomously conduct grit-blasting to remove old paint from steel

surfaces in a steel bridge structural environment. To conduct this operation, besides

geometric information of the environment, the robot needs to be aware of the

surface-types (e.g. painted metal surface, blasted metal surface, rust, timber scaffolding,

1
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(a) (b)
Figure 1.1: a) Mock robotic inspection setup in a laboratory; b) Actual bridge

maintenance environment

etc). This thesis focuses on approaches and algorithms needed to accomplish

surface-type classification in a complex structural three-dimensional (3D) environment

under various illumination conditions. Varying illumination and imaging conditions can

be a result of the light source being repositioned in the environment, or due to surfaces

being at different distances and angles. This thesis presents: (a) a surface-type

classification approach; (b) a colour feature extraction algorithm using Red, Green,

Blue-Depth (RGB-D) images and a modified reflectance model; and (c) an algorithm to

calculate a probability map of surface-types in an image.

Practical experiments are conducted to verify the algorithms using a sensor package

consisting of an RGB image camera and a depth camera to capture the RGB-D images.

The RGB-D sensor package is mounted to the end-effector of a robot manipulator, where

the sensor-to-robot base position can be calculated using a hand-eye transformation. The

outcomes of this thesis, including the surface-type classification approach and algorithms,

are evaluated on a mock inspection setup in a laboratory (Figure 1.1a).

This chapter provides an introduction to the research work and the background to the

practical application (Figure 1.1b), from which the challenges and problems are identified.

This chapter also presents the motivation for the research, the scope of the research work,

the main contributions, the relevant publications, and an outline of the subsequent chapters

in this thesis.
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1.1 Background

Steel bridges are an important component of the modern transportation system, with over

30,000 road and rail bridges in use across Australia and more than 400,000 steel bridges

in the United States and Europe. Bridge maintenance and replacement form a large

part of the expenditure associated with traffic infrastructure management. Statistically,

Australia spends $200 million each year on bridge maintenance, with $19 million spent on

maintaining and improving the iconic Sydney Harbour Bridge [16].

The most common cause of steel bridge failure is deterioration due to corrosion [17], which

can significantly reduce the expected lifespan of the structure. To prolong the lifespan

of a steel bridge, rust removal maintenance via grit-blasting and repainting is performed

regularly. The process of grit-blasting involves accelerating abrasive media (grit) through

a blasting nozzle by means of compressed air in order to generate an abrasive grit stream

that can be used to treat surfaces such as to remove rust, prepare the surface for painting,

remove burrs or rough edges, etc.

Grit-blasting can produce large reaction forces over 100 N [18], which causes operators to

fatigue quickly. Operator fatigue not merely results in reduced productivity, but increases

the risk of blast stream related injury or fatality. Long-term grit-blasting exposes the

operators to hazardous contaminated particles as paint used on steel bridges can contain

lead, mercury and asbestos particles. To this due to these particles become airborne

and can be aspirated or ingested, leading to diseases including asbestosis, silicosis, lead

poisoning, and mercury poisoning. Although respiratory and blast protective precautions

are enforced in Australian workplaces, the most effective way of mitigating the risks is to

remove the operator(s) from the hazardous environment. Therefore, research into a bridge

maintenance robotic system is being conducted to address this mitigation strategy. The

primary goal of the robotic system is to remove the operators from the hazardous task

of grit-blasting and into a safer role of high-level control and decision-making. Secondary

outcomes will be to increase productivity.

A sealed containment area is typically established to provide a stable platform for

maintenance work. Figure 1.2a shows a containment area established for the
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maintenance of the under deck structure of a steel bridge. As part of the research

conducted in [6][19], a mobile robotic system capable of autonomously grit-blasting the

steel surfaces on a bridge structure is developed. Figure 1.2b shows the deployment of

the mobile robotic system in a containment area. Currently, the robotic system is

capable of building a 3D geometric map of the surrounding surfaces, which has enabled

automated path-planning and grit-blasting of the identified surfaces. However, a human

inspector is still required to visually inspect the finish quality of a blasted surface to

determine whether it is of acceptable quality or if re-blasting is necessary.

Therefore, it is desirable to implement a machine vision system to automate the surface

inspection process such that a human inspector is not required. In order to efficiently

inspect all the surfaces in the surroundings, a machine vision system can be mounted to the

end-effector of a robot manipulator such that it is possible to position the imaging device(s)

at different viewpoints to capture images of the different surfaces. But when a machine

vision system is mounted to the end-effector of a robot to perform surface-type (classified

based on the colour and/or the texture) inspection of a bridge, the following challenges need

to be addressed: (a) the inspection environment can be structurally complex, containing

multiple surface planes where one observation viewpoint will not be able to inspect all

the surfaces; (b) movement limitations of a robot manipulator may make it difficult to

position sensors to capture an image of a single surface plane in the environment; (c)

varying illumination conditions in the environment may produce images of a surface with

non-uniform illumination; and (d) the surface inspection process will need to be performed

in an online manner such that the results can be used by the robotic system to make

decisions during the grit-blasting process. Hence, a surface-type classification approach

needs to be devised that can address these challenges so that a mobile robotic system can

be used to inspect surfaces on a steel bridge.
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Complex steel structure

Varying illumination conditions

(a) (b)

Figure 1.2: a) A sealed containment area established for bridge maintenance; b) A
mobile robotic system deployed for steel bridge maintenance

1.2 Motivation

In order for a robotic system to conduct grit-blasting in a complex structural bridge

environment, the robotic system must be capable of building an up-to-date environmental

awareness, including not only a geometric map but also surface-types (e.g. to identify

areas that should not be blasted). To date, research into geometric map building of a

steel bridge using a six degree-of-freedom robot manipulator with a range sensor mounted

on the end-effector has been successfully conducted [20]. The geometric map has enabled

the robotic system to autonomously grit-blast surfaces in a safe and collision-free manner,

albeit indiscriminately.

From the safety and correct grit-blasting operation standpoint, surface-type awareness is

necessary. An awareness of the surfaces-types will enable the robotic system to grit-blast

only the required surface areas, evaluate the grit-blast finish quality, and perform

additional touch-up grit-blasting work upon evaluation. However, an outstanding

challenge is to provide the robotic system with the capability of non-intrusively collecting

surface data, and classifying the different surface-types in the environment.

Recent research in vision-based classification approaches have demonstrated improved

robustness towards image inconsistencies caused by illumination, sensor noise, sensor
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movement and position. However, machine vision and classification approaches for

surface-types have not been demonstrated for applications in complex structural

environments where illumination conditions can vary, such as on a steel bridge structure.

Firstly, data acquisition in a complex structural environment can be constrained and

limited because the movement of the robot manipulator can be restricted by the

environment. Secondly, the field environment generates additional data inconsistency

due to vibration, dust, and complex 3D structures. A review of the literature (see

Chapter 2) reveals that the current algorithms and classification approaches have not

been demonstrated for such field applications. It is the purpose of this thesis to perform

research into the approaches and algorithms that can enable a robotic system to

autonomously acquire, classify and map the surface-types in a field environment.

1.3 Scope

This research aims to develop a surface classification approach that facilitates the

non-intrusive sensing and classification of surface-types in complex steel bridge structural

environments by a robotic system. Research work will be conducted to develop an

algorithm to improve colour feature extraction from images with non-uniform

illuminations and an algorithm to assess the classification results of images produced

using a texture-based classifier. Ihe research also covers the implementation of a

multi-modal RGB-D sensor package (RGB camera and depth camera) to a robot

manipulator to acquire data for classification. Overall, the scope of this work shall enable

a robotic system to classify surface-types in a complex structural environment under

various illumination conditions.

The following assumptions are made for this research: (a) it is assumed that the

environment remains static for the duration of data acquisition and all light source in the

environment are known and controllable (not outdoors daylight conditions); (b) the

multi-modal sensor package can be rigidly mounted and calibration can be performed to

establish the transform between the sensors, and the hand-eye transform between the

sensor package and a robot manipulator; and (c) the target field environment consists of

planar and Lambertian surfaces.
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In the case study, a robotic bridge maintenance scenario is used. Because the

grit-blasting diameter is assumed to be approximately 200 mm, the spatial resolution of

the surface-type classification approach needs to meet the criteria of being equal to or

finer than the aforementioned blast diameter. The detailed configuration and setup of

the robot platform and additional hardware used in the case study are provided in

Chapter 6.

1.4 Contributions

The theoretical contributions of this thesis are:

• A surface-type classification approach. The approach is composed of two algorithms to

address the change in illumination and textural appearance of surface-types.

• An algorithm for the extraction of colour features using a modified reflectance model and

RGB-D images. This algorithm can be applied to images of surfaces that are illuminated

by a light source positioned at various viewing distances and angles.

• An algorithm to assess the classification results produced by a classifier trained with

texture features. A probability map is generated for each pixel to show the probability

of being a specific surface-type. This algorithm can be applied to images captured

under various image capture conditions (viewing distance, viewing angle, camera optical

settings) where the textural appearance of a surface-type can change from image to

image.

The practical contribution of this research work is:

• A software package written in Matlab for surface-type classification and result

visualisation is developed as part of an industry funded project to grit-blast a steel

bridge using robots. The package is intended to be used onsite during robotic bridge

maintenance work.
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1.6 Thesis Outline

Chapter 2 presents a review of research work that is relevant to the development of the

proposed approach and algorithms. The topics reviewed include the different types of

environmental awareness, the technologies and approaches that can be used to inspect a

surface, and the vision-based approaches for the classification of surface-types using colour

and texture features.

Chapter 3 presents the proposed surface-type classification approach for complex

structural environments under various illumination and imaging conditions. This chapter

details the processes used in the approach to precisely position an RGB-D sensor package

with a robot manipulator, to calculate the viewing distance and viewing angle for each

pixel in the captured RGB-D image, and to build a surface-type map in 3D from the

classified images.

Chapter 4 presents an algorithm for the extraction of colour feature using RGB-D

images and a modified reflectance model. A reflectance model using a single light source

is presented and the process to extract three reflectance-based features from each colour

channel (RGB) of a pixel is provided. A classifier is trained using the extracted

reflectance-based colour features to classify surface-types in images with non-uniform

illumination. Experiments are conducted to compare the classification performance of

the reflectance-based colour features against other colour-space features including RGB

and the CIELab colour-space component a*b*.

Chapter 5 presents an algorithm to generate a probability map that can be used to

assess the classification results produced by a texture-based classifier. An analysis is

performed to show the effect of image capture condition (viewing distance, viewing angle

and camera optical settings) on texture features extracted from an image in terms of

image qualities (focus quality, spatial resolution, perspective distortion). From the

analysis, capture condition thresholds are defined and are used in a function to calculate

a pixel’s probability of being a surface-type. The process of using the function to

generate a probability map for the pixels in an image is detailed. Experiments are

conducted to verify the effect of image capture conditions on (focus quality, spatial
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resolution and perspective distortion) and consequently on the accuracy of surface-type

classification results. An experiment is also conducted using a probability map to

identify regions in an image that have a high probability of being accurately classified.

Chapter 6 presents a case study that combines the colour-based and texture-based

classification results to produce a surface-type map in 3D. The case study is performed

using an RGB-D sensor package mounted to the end-effector of a six degree-of-freedom

robot manipulator. The specifications of the RGB-D sensor package and robot

manipulator used in the case study are provided, and the process to calibrate the RGB-D

sensors and the transformations between the different coordinate frames are also

detailed. Furthermore, the process to evaluate the accuracy of the classification results

using a benchmark surface-type map is presented. The experiments are conducted using

classifiers trained with colour-based and texture-based features extracted from a training

RGB-D dataset. Surface-type classification is performed on images collected by the

RGB-D sensor package positioned by the robot manipulator using different movement

strategies.

Chapter 7 presents the conclusion to the thesis, discussion on limitations of the proposed

surface-type classification approach, and future work.



Chapter 2

Review of Related Work

This chapter reviews the research works that are relevant to the development of concepts

and methods required to address the research challenges associated with surface-type

classification by a robotic system in a complex structural environment. The reviewed

work includes the different types of environmental awareness, the technologies and

approaches that are used to inspect a surface, and the vision-based approach for

classifying surface-types based on colour and texture features.

2.1 Environmental Awareness

Gaining an environmental awareness in a context that is useful towards the task at hand

is important. Environmental awareness for an autonomous robot can include, but is not

limited to, a geometric map of the environment that describes the location of surfaces and

obstacles, and a semantic map that provides a label for objects, surface-types and locations

within the environment. Various approaches and technologies have been developed to build

geometric and/or semantic awareness of an environment in the form of maps.

A top-down 2D geometric map of the environment can be used to provide the information

necessary for robot path/motion planning and navigation within a 2D workspace. The

geometric map consists of grid cells forming a discrete topological map; each cell can in

the state of unknown, occupied and unoccupied. In an ideal case, 2D geometric mapping

11
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can be achieved using a depth sensor and an odometer mounted onto a mobile platform. A

dead reckoning approach [21] using odometry data can track the movements of the mobile

platform from which the collected depth data at different positions are combined together

to build a 2D geometric map. However, noise-free odometry is generally impossible for a

real-world scenario and a dead reckoning approach will result in a 2D geometric map with

accumulating offset errors [21]. As such, various approaches have been devised to generate

an accurate 2D map for a real-world scenario. This work in [22] demonstrated 2D geometric

mapping for an enclosed area such as a factory or storehouse using a 2D laser range finder

mounted on a conveyance car. The position of the car was estimated by detecting the

line-segments of the walls to calculate the orientation and distance of the car from the

walls. For an environment that has curved surfaces, two algorithms were proposed in [23]

to register consecutively collected depth data together to compute the relative position

change of the depth sensor. The first algorithm computed the relative position change

between two depth scans by matching tangent lines using distance minimisation, and the

second algorithm solved a point-to-point least squares problem to compute the relative

position change. In summary, it has been shown that there are approaches available to

generate 2D geometric maps that are accurate for real-world applications with the ability

to correct offset errors.

In order to perform tasks in 3D space, a 3D geometry map is necessary. Three dimensional

geometry mapping has been demonstrated from a static platform using a 2D laser range

finder mounted onto the end-effector of a robot manipulator [7]. The robot manipulator

provides a way to accurately combine the depth data into a common reference frame

using kinematics and a hand-eye transform between the end-effector and the laser range

finder. A 3D geometry map of a bridge structural environment has been generated by

sweeping a laser range finder to scan the environment using a robot manipulator. For

3D geometry mapping on a mobile platform, [24] has demonstrated the use of a vertically

sweeping laser range finder mounted onto a Segway robot mobility platform (RMP). The

depth data from different scans were combined together using a probabilistic registration

approach that incorporated a generic surface probability prior, to guide the optimisation

process towards maps that closely resemble the real environment. A 3D geometry map of

an office environment had been produced using this approach. However, mapping using
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a 2D laser range finder has been shown to be time-consuming and sensitive to vibration;

therefore, alternative depth sensors have also been investigated to build a 3D geometry

map.

Stereo vision and depth camera are alternative depth sensor technologies that can be used

to build a 3D geometric map. In stereo vision, depth is calculated by identifying the

disparity between matching features in two simultaneously captured images from different

viewing perspectives. Stereo vision has been demonstrated to detect the distance of objects

in the environment for localisation [25], identify an object for grasping [26], and generate a

3D colour map as shown in Figure 2.1 for visualisation [1]. However, a limitation of stereo

vision is the need for texture disparity in captured images to calculate depth. Therefore,

plain environments with low texture disparity, i.e. low illumination and plain surfaces, do

not perform well with stereo vision. To use stereo vision in a plain environment, pattern

projection approaches[1] [27] have been suggested to generate artificial features in the

environment. Alternatively, a single camera setup with an onboard projected light-source

can also be used to build a 3D geometric map in an environment that has low texture

disparity. The Time of Flight (ToF) based depth camera [28] which measures depth by

projecting a flash of LIDAR into the scene and calculates the return time of the light

has been in use by the robot community since the 90s. However, commercially available

ToF camera tend to be low resolution, and costly. The recent availability of an RGB-D

camera that combines an RGB and IR camera has provided a cost-effective and lightweight

solution to performing 3D geometric mapping with additional colour information (3D

colour map). The use of an RGB-D camera to generate a 3D colour map in real-time

has been shown to be possible in [29]. In this approach, on-the-fly reconstruction of a

static indoor environment was achieved by implementing an iterative closest point (ICP)

algorithm using the graphics processing unit (GPU). Robustness in combining the depth

data was improved by using both geometric and photometric information when performing

the nearest neighbour search. In terms of precision differences between stereo vision and

the IR depth camera, [30] has conducted a comparison between a Microsoft Kinect (IR

depth camera) and the Bumblebee2 camera (stereo vision). The results showed that due

to the higher resolution of the Bumblebee2, it has better localisation performances over

the Kinect. However, studies are still required to test the sensors in an industrial setting
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under unideal capture conditions to further identify the limitations of each technology.

Nevertheless, the availability of these depth sensors that are capable of capturing colour

such that a 3D colour map can be generated has improved semantic labelling in 3D.

Figure 2.1: 3D geometric map with additional colour information [1]

Semantic labelling of surfaces and objects within a geometric map can improve

decision-making for tasks. For example, semantic labelling of locations (e.g. bedroom,

kitchen) can improve human-centric tasks beyond what is capable with only map

coordinates. Various approaches have been devised that use image data, depth data and

a combination of both to perform semantic labelling of a geometric map. In [31], an

approach has demonstrated the use of image data to semantically label different areas of

a 2D geometric map. The image data was integrated into a Conditional Random Field

(CRF) that also considered higher level semantics such as adjacency and place

boundaries to provide location labelling. This approach was shown to be able to achieve

a high percentage of correct labelling of locations even when using images taken from the

Internet. Furthermore, [32] has demonstrated the use of image data for unsupervised

semantic labelling of indoor scenes. In this approach, Scale-Invariant Feature Transform

(SIFT) [33] and Generalised Search Tree (GiST) features [34] were extracted from images

to generate Visual Words (VW) [35]. Context-based features were extracted from Bags

of VW using two-dimensional histograms. Experimental results showed that the

context-based features can be successfully used to label different locations such as office,

corridors, etc. In the case of semantically labelling objects within an environment, [32]
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has demonstrated the use of SIFT features extracted from depth data. Stereo vision was

used to provide the depth data from which the objects and their orientation in space can

be labelled. The approach has been practically demonstrated on an industrial robot to

perform object grasping and alignment operations. In addition, with the recent

advancements in RGB-D sensor technology that can achieve high-resolution image and

depth data capture at high frame rates, improved approache to semantically label

objects using RGB-D information have been devised. RGB-D information can be used to

provide both the geometric shape and colour information of an object for semantic

labelling. The work in [2] demonstrated an RGB-D based approach that combined

multiple observations of a scene to semantically label multiple object types. In this

approach, image-based object detection was applied to the image data, where each pixel

was assigned class probabilities of being a certain object class-type. The class

probabilities of each pixel were projected into a voxel-based 3D geometric map where a

Markov Random Field that combines the class probabilities with 3D shape cues was used

to infer and label objects. This approach was able to accurately label multiple objects

including a bowl, a cap, a cereal box, etc. Figure 2.2 shows examples of the 3D colour

maps with labelled objects of different class-types from this approach. The geometric

shape of an object is a good descriptor for semantically labelling objects into different

class-types, but is ineffective for labelling surface-types.

Overall, the reviewed approaches and technologies have provided a generalised concept of

environmental awareness in terms of geometric mapping and semantic labelling. In order

to semantically label surface-types and surface conditions in high-resolution, a further

review of the surface sensing approaches and sensor technologies is needed.
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Figure 2.2: 3D scene labelling results for three complex scenes, where: bowl is red, cap
is green, cereal box is blue, coffee mug is yellow and soda can is cyan [2]

2.2 Sensor Technologies and Sensing Approaches Used for

Surface Inspection

Surface inspection is performed to assess for surface conditions such as defects [4] [36] [37],

deterioration [13] and finish quality [38]. Given the differences among surface inspection

tasks, a range of sensors and sensing approaches are available [39]. The following is a

review of the sensors and sensing approaches that have been demonstrated to provide

non-destructive surface inspection in different industrial applications.

In applications that require a high degree of precision and accuracy (i.e. sub-millimetre),

commercial contact-based sensors are available for use [3]. The following is a summary

of the different sensors and sensing approaches that are shown Figure 2.3. A chemical

kit can be used for the detection of surface contaminants including: chlorides, sulphates,

nitrates, ferrous ion, etc. To detect for contaminants, testing samples are extracted from

the surface and measured using an analogue sensor such as pH paper, or digitally using a

digital salt detector that measures conductivity. For surface profile measurements, various

inspection approaches have been developed, such as surface profile comparators with a

magnifier for sub-millimetre surface profile measurement. Additionally, surface profile can

also be measured using replica profile tape (Appendix D illustrates the use of profile tape

to extract surface profile samples). Once a surface sample is extracted onto a replica profile

tape, a texture gauge can be used to measure the coarseness of the surface profile with

accuracy in the order of microns. For the measurement of surface coating thickness that is
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not directly observable from the exterior, ferrous and non-ferrous thickness measurement

gauges can be used. In both types of gauges, a sensing probe is placed in contact with the

surface and a thickness reading is provided with accuracy of up to ± 2.5 micron. Overall,

from the reviewed contact-based sensors and approaches, it is shown that it is possible to

perform surface inspection with precise measurements in the order of microns. However,

these sensors and sensing approaches can only measure a small surface area at a time,

thus impractical for the full inspection of all surfaces in an area such as a bridge structure.

It will be time-consuming to set up and costly to perform over a large inspection area.

Therefore, alternative sensors and sensing approaches have been investigated for surface

inspection over a large area.

Chemical kit Surface profiler Thickness gauge SSPC Visual Guide

Figure 2.3: Commercial surface inspection instruments [3], please refer to Appendix D
for SSPC visual guide

In order to perform large area and non-contact surface inspection, laser-based sensing

approaches have been investigated. In [40], a laser-based position-sensitive detector

(PSD) has been presented to inspect the inner surface of a pipe for defects and diameter

changes. The laser-based device was able to scan the entire inner wall of the pipe and

could transverse the length of the pipe by being mounted on a micropipe robot.

Experiments performed on a pipe with a diameter between 9.5–10.5 mm have shown that

the approach was able to detect defects within the pipe with ± 0.1 mm accuracy.

Another laser-based approach has been demonstrated for the surface-type inspection of a

steel bridge structure [7][41]. In this approach, a laser range finder was used to collect

laser range data and intensity data from surfaces in the environment. Surface-type

classification was performed using the collected data and has yielded accurate results for

different surface-types including wood, rust, and steel. Although it was possible to
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perform non-contact surface inspection with high-precision and for a large area using a

laser, it was also time-consuming to collect the high-resolution data. Thus, currently it

can be impractical to collect high-resolution laser data over a large area required for the

classification of finer texture surfaces such as rust and blast grading as described by the

visual inspection standards provided by The Society of Protective Coatings (SSPC,

formally the Steel Structures Painting Council): SSPC VIS2 and SSPC VIS5 (Appendix

D).

For real-time applications, vision-based approaches currently provide the best option for

large area inspection of finer texture surfaces. In marble slab grading, a vision system

has been demonstrated to categorise marble slabs into different aesthetic groups based

on texture attributes including: smooth gradients of colour, and the existence of veins

and spots [4]. Figure 2.4 shows the inspection system consisting of a conveyor delivery

system with a vision system providing diffused and controlled lighting for the acquisition

of marble slab images. Texture features were extracted from the collected images using

principal component analysis, and classified with a multi-layer perceptron neural network

classifier. The classification results showed a high success rate of 90% for a set of 30 marble

textures classified into three classes. Another industry that uses a vision system to perform

surface defect detection is metal sheets/strips manufacturing processes [42][43][44]. In [45],

real-time surface inspection of hot rolled strips has been demonstrated using an algorithm

that combines image processing techniques including: image segmentation (real-time), four

types of defect detection (just-in-time), and defect classification (idle-time). This vision

system was able to identify defects on metal strips with a maximum width of 1650 mm

and a moving speed of 18 m/s. Furthermore, [46] presented an analysis of the illumination

on steel surface-type to design the optimum imaging modes of surface defects on steel

plates. The approach was able to obtain high quality images that show surface defects

in high contrast, while satisfying the production speed requirement of the steel sheet

manufacturing process.

Overall, this review shows that a vision system provides the best approach for surface

inspection in real-time, for fine texture defects, and over a wide surface area. However,

in the situation where a vision system is to be used in dimly lit and complex structural

environments, illumination and texture inconsistencies can occur in images. Figure 2.5
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Figure 2.4: Automation of the marble quality classification process: from image
acquisition to the pallets [4]

shows an example of a bridge structure environment where surface inspection is to be

performed using a camera mounted onto the end-effector of a robot manipulator with

a light source. Due to the impracticality of repositioning the light source for each new

observation, the robot manipulator may need to move around the light source in a way that

results in changes to the camera distance and angle to surfaces. As such, the captured

images can appear non-uniformly illuminated and have texture inconsistencies such as

focus blur, spatial scaling, and perspective distortion. In order to accurately classify the

surface-types from these images, algorithms that are robust to the inconsistencies are

needed. A review of vision-based classification approaches is provided to identify the

outstanding problems that need to be addressed when implementing a vision system in a

complex structural environment under various illumination conditions.

Robot manipulator

Light source + Camera

Figure 2.5: Directional light source and camera mounted to the end-effector of a bridge
maintenance robot to inspect for rust and grit-blasting quality [5] [6] [7]



Chapter 2. Review of Related Work 20

2.3 Vision-based Classification of Surface(s) with

Non-uniform Illumination

In research where the lighting in an environment is assumed to uniformly illuminate a

surface; texture features can be robustly extracted using Grey-Level Co-occurrence

matrix (GLCM, refer to Appendix B.1 for usage in the thesis) to classify various

surface-types. Figure 2.6 shows examples of uniformly lit images that can be classified

using GLCM features, including an insect wing image [8] to classify insect types; steel

surface images to classify for different rust and sandblast (cleanliness) grades [9]; and an

aerial image [10] to classify for vegetation types. However, when surfaces are

non-uniformly illuminated, their visual appearance described by the pixel intensity

values will vary. This can adversely affect surface-type classification results when using

GLCM features which may misinterpret non-uniform illumination as texture. In order to

improve the classification accuracy for surface-types in an environment where

illumination consistency cannot be guaranteed, further research has been performed into

generating illumination-tolerant texture features. Local Binary Patterns [47] (LBP, refer

to Appendix B.2 for usage in the thesis) is a very popular feature type that has

demonstrated high tolerance against monotonic illumination. Various extensions have

also been made to the original LBP to improve illumination tolerance. One such work is

shown in [48] which aims to improve the robustness against reflective illumination with a

proposed gradient local binary pattern (GLBP). The GLBP is shown to improved

texture classification accuracy for images with reflective illumination; demonstrated

using the Outex and Brodatz database with simulated reflective illumination added to

each test sample using a linear transform function. In addition to investigating LBP,

there have been other studies towards improving vision-based classification of surface

texture under non-uniform illumination. A general view of this area of research includes,

the investigation of using SVM to provide robust texture classification with variation in

pattern scale [49], a proposed bidirectional feature histogram approach to represent

texture surfaces that address changes in lighting and viewing conditions [50], a proposed

3D textons approach to describe the spatial variation in texture due to reflectance and

surface normal [51], a parametric approach for estimating the likelihood of
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homogeneously textured images.[52], an approach to remove illumination variance

(shadows) from images using intrinsic images [53]. The next paragraph will look more

specifically into the classification approaches that have demonstrated illumination

tolerance, divided into key areas of statistical approach, filter-based approach, and

model-based approach. For a statistical approach, [54] demonstrated material

classification using image patch exemplars extracted from images obtained from an

unknown viewpoint and illumination. In this approach, training models of texture were

built using statistical descriptions of filter responses. The approach was tested on the

CURet, San Francisco and Microsoft Textile databases, and showed that small image

patches (3×3 pixels patch) contained sufficient information to discriminate between

different textures. A filter-based approach was demonstrated in [55] to provide

illumination-invariant texture classification when given a single training image. A set of

filter banks that comprised of Gabor filters at four orientations and a Gaussian filter,

were applied to extract an illumination-invariant feature vector. Experiments were

conducted to classify texture images from the PhoTex database and the results showed

accuracy above 95% for test images with only illumination tilt changes, and 60–80% for

test images with non-equal illumination slants. Furthermore, a texture recognition

approach based on surface rendering has been demonstrated in [56]. The approach used

a model-based system to classify image texture seen from different distances and under

different illumination directions by rendering 2D image texture as it would appear under

different imaging capture conditions. The approach was tested by classifying images with

different imaging conditions than the training image dataset. Overall, there exists

various approaches to successfully classify texture surfaces captured under non-uniform

illumination.

Insect wing Rust grade Sandblast grade Aerial image

Figure 2.6: Images captured with uniform illumination [8][9][10]
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A colour-based approach to perform rust detection on non-uniformly illuminated images

has been demonstrated in [57]. Fourteen colour-spaces (RGB, rgb, I1I2I3, HSV, HIS,

YUV, YIQ, YCbCr, YCgCr, XYZ, W*U*V*, L*u*v*, L*a*b*, and L*C*h*) were

evaluated to find the best colour-space components for the discrimination of rust from a

background surface under non-uniform illumination. The evaluation identified a*b* as

the best colour-space components for rust detection, and they were selected as the

features to demonstrate an adaptive ellipse approach to segment the rust regions in the

images. The experimental results showed that these features provided high rust detection

accuracy. Further investigation of rust detection in [11][58] has proposed the use of a

Fourier Transform to initially segment background and rust regions for training data.

Fourier transform was performed in the S colour-space component of hue, saturation and

intensity (HSI) to detect the background region in the image, and in the b* colour-space

component from L*a*b* to detect the rust regions in the image. The identified pixels for

rust and background regions were used to train a Support Vector Machine (SVM), and

were subsequently used to classify the test images. Figure 2.7 shows the classification

results for an original image sample and a simulated non-uniform illumination image for

a single surface plane. Classification results were presented that uses the proposed SVM

approach (SVMRA: Support Vector Machine Rust Assessment), the previously proposed

adaptive ellipse approach (BE-ANFIS: Box-and-Ellipse-Based Adaptive Network Based

Fuzzy Inference System), and a benchmark K-Means approach (SKMA: simplified

K-means algorithm). The SVM-based approach showed the best performance in terms of

accuracy and processing time. Currently the approach can be applied for images with

non-uniform illumination on a single surface plane, with a consistent background type.

Image intensity adjustment is another approach for improving classification. Intensity

adjustment of an image with non-uniform illumination has been demonstrated in [59].

In this work, Bidimensional Empirical Mode Decomposition (BEMD) morphology has

been applied to reduce the levels of shade and highlights and produce an image with

improved intensity consistency. The intensity adjustment approach was evaluated using a

K-Means approach to detect rust in images. Improved accuracy over the original image

was demonstrated. The detailed intensity adjustment approach can be used for images

that contain a single surface plane to bring the intensity values to a consistency level
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Original image
Image size: 256x256

Rust percentage: 12.38%

Simulated non-uniform 
illumination image
Image size: 256x256

Rust percentage: 12.38%

SKMA
Rust percentage: 11.46%
Processing time: 0.57s

BE-ANFIS
Rust percentage: 12.41%
Processing time: 157.19s

SVMRA
Rust percentage: 12.37%
Processing time: 4.43s

SKMA
Rust percentage: 59.99%
Processing time: 0.55s

BE-ANFIS
Rust percentage: 12.50%
Processing time: 127.85s

SVMRA
Rust percentage: 12.38%
Processing time: 10.52s

Figure 2.7: Rust classification results for an original image, and an image with simulated
non-uniform illumination; Rust percentage = percentage of pixels in an image identified

as rust [11]

dependent on the overall intensity range of the image. For images that contain a complex

scene with multiple surfaces, the BEMD approach will be ineffective and as such, image

adjustment approaches based on a reflectance model have been investigated to reduce

illumination inconsistency. A light attenuation adjustment model has been applied to

underwater terrain images [60]. In this work, a reflectance model and a 3D geometric

map of the terrain were used to adjust the intensity of a pixel to correct for illumination

attenuation, vignetting and colour patterns caused by underwater lighting. The adjusted

images provided improved colour consistency for a 3D colour map. The work in [61] also

demonstrated image adjustment to match the colour and illumination of objects captured

underwater with the same object captured in air. An attenuation coefficient was estimated

using multiple underwater images of objects captured at known-distance locations. The

estimated coefficient was applied to correct subsequent images for improving recognition

and classification operations.

Given knowledge of the light source position, viewing distance, and viewing angle of
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surfaces in an image, the use of reflectance properties to directly classify surface-types is

possible and has been demonstrated in [12]. In this approach, a subset of the

Bidirectional Reflectance Distribution Function (BRDF) was estimated by using images

captured under different lighting directions. The results of this work are shown in Figure

2.8, where two surface-types with similar colour appearance but with different reflectance

properties can be distinguished. This approach is currently limited to a small surface

patch placed inside a specially designed and calibrated lighting array to capture images

with different lighting directions at known distances and angles [62].

The use of image and depth data captured by a portable stereo vision camera to

estimate BRDF parameters was demonstrated in [63]. In this work, the BRDF

parameters of different surface-types were estimated using a Population Monte Carlo

algorithm, given the depth data of surface points and the direction vectors of the light

source. The estimated posterior distributions of the BRDF parameters were used as the

features to classify the surface-type in an image. Classification experiments were

conducted on different surfaces where each test image showed only a single-type;

classification was performed on an image level. Per-pixel multi-class classification of raw

materials using BRDF was demonstrated in [64]. In this work, different wavelengths of

light were used to illuminate surface-types such that discriminating BRDF spectral

responses could be identified. The experimental results showed that images comprised of

different surface-types including metal, plastic, fabric, ceramic and wood can be

classified. It is noted that in order to accurately estimate the BRDF spectral response as

features for surface-type classification, a complicated LED light array was used to

provide different wavelengths of light at multiple directions to the surface of interest.

Thus, further research into identifying the reflectance parameters for an image pixel,

captured using a single light source by varying distances is necessary. Current research

has indicated potential in this direction, such as light-field estimation for augmented

reality using a single hand-held camera [65] and reflectance propriety estimation using a

phone and onboard LED lighting [66]. With further research, methods of extracting

reflectance parameters can be applied in practice to extract features for per-pixel

surface-type classification in a complex field environment under various illumination.
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Figure 2.8: Captured sample image (left), Classification based on single image (middle),
Classification based on Hemispherical Harmonic coefficients (right) [12]

2.4 Vision-based Classification of Surface(s) with Texture

Inconsistency

Texture in an image describes the inter-pixel relationship in terms of intensity value. There

are many theoretical approaches to analyse an image to extract texture features, including

statistical, geometrical, model-based and signal processing methods [67][68][69]. A case

study of pattern recognition methods to classify a steel surface has demonstrated many of

the theoretical approaches [70].

In summary, statistical analysis identifies the spatial distribution of pixel values (greyscale

images, individual channels in a colour image, and depth images). Features extracted

using statistical analysis include intensity co-occurrence [10], grey level difference [71] and

local binary pattern (LBP) [47]. Geometrical analysis identifies the texture primitives in

an image. Features extracted using geometrical analysis include spatial organisation of

edges primitives [72]. Model-based analysis synthesises an observed intensity distribution

into a model. Model-based features include parametric mosaic models [73]. Signal analysis

examines the frequency components of an image. Features extracted by signal processing

include Wavelet transform [74], Gabor transform [75], difference of Gaussian [76], and

pseudo-Wigner distribution [77].

Many of the available texture analysis approaches have been shown to be able to extract

features for the classification of real-world textures with appearance change. In [78], LBP

was used to provide rotation invariant features for classifying remote sensing images.

The features were compared against spectral only data and GLCM features for image
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classification, and improved overall accuracy has been demonstrated. In [79], image

classification was performed using features extracted at different viewing distances to

improve tolerance to texture inconsistencies caused by spatial scaling. GLCM features

were extracted at a number of distances and modelled into a continuous function of

scale. The shape of this function was used to improve the discriminatory power of

classes. This approach was demonstrated for Pap smear cell nuclei images and showed

improved classification accuracy over the traditional approach that selects a number of

the discrete distances to train a class. In the majority these works, texture-based

classification has been demonstrated using image samples taken from texture databases

with various levels of texture consistency, including MeasTex, VisTex, Outex, Brodatz

and CuRet. For application in field environments, additional texture inconsistency can

be expected due to unsupervised image capture conditions, including lens focusing,

camera positioning, camera exposure adjustments and image cropping.

In the case where a camera is set up to observe surfaces in a complex structural

environment, it is difficult to capture images of a single surface plane at consistent

orientation and distance. Figure 2.9 shows an example image of a steel structure

captured from an outdoors environment with irrelevant surfaces in the background. Rust

grade classification was performed on the image using signal processing features and

fractal dimension features trained with an SVM classifier [13]. The experimental result

shows a 99% accuracy for training data, and 66% accuracy for test data, suggesting the

difficulty of achieving accurate classification when images contain significant texture

appearance change caused by inconsistent image capture conditions.

Inconsistent image capture conditions (specifically referring to the focus quality, camera

positioning relative to the surfaces, and position of light source) can result in texture

appearance change that is beyond the capability of a texture analysis approach to

extract features while maintaining high class discrimination. Therefore, image processing

has been applied to improve texture-based classification. An image quality adjustment

approach [80][81] has been proposed that uses a reference image database for automated

quality adjustment of test images for improving classification accuracy. Experimental

results showed that the approach was able to improve the detection of contaminant

particles in images captured in a dynamic environment involving large changes in image



Chapter 2. Review of Related Work 27

Figure 2.9: Rusty signpost image [13]

quality. However, in the case where the scene in an image can change, it is difficult to

use a reference image database to perform image quality adjustment. Alternatively,

image quality assessment can be performed to detect and reject images with texture

appearance change to maintain the overall accuracy of the classification process. Image

quality assessment approaches based on geometric structured distortion and image

definition (motion blur, noise), such as in [82][83], have been used to detect for texture

appearance change. A limitation of these image quality assessment approaches is the

assumption of texture inconsistency across the whole image. For an image that contains

different levels of texture inconsistencies (i.e. depth of field image blur, multiple surfaces

at different distances), these image assessment approaches are ineffective. Therefore, a

possible area of further research is assessing an image pixel for texture inconsistencies

from the training dataset. By being able to assess the texture inconsistency on a pixel

level, it is possible to identify the accurately classified pixels/regions from an image that

is classified using a training dataset that does not completely encapsulate the texture

feature variance.

2.5 Discussion

This chapter has presented a review of the research work relevant to the algorithms and

approaches necessary to achieve surface-type classification in a complex structural
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environment under various illumination conditions. Firstly, a review of the approaches

that can be used to build different types of environmental awareness is presented.

Currently, it is on-going research to accurately build a 3D geometric map with additional

colour information (3D colour map) in real-time using an RGB-D sensor [90] The

information that is provided by the 3D colour map is shown to be useful to semantically

label objects and locations in order to improve decision-making beyond what map

coordinates can provide. Secondly, a review of sensors and sensing approaches used to

perform surface inspection is provided. The review has identified that a vision system is

suitable for non-contact, large surface area, and real-time inspection of surfaces. Vision

systems have been successfully implemented in factory settings using a fixed camera

position and uniform lighting on the inspection surface to produce high

detection/classification accuracy.

Finally, a review of algorithms and approaches is provided to examine the ways of

implementing a vision system to classify surface-types from images with illumination and

texture inconsistencies. It is identified that the current algorithms and approaches will

not be adequate for a mobile vision system to be used in the field to inspect a complex

structural environment under various illumination conditions. An image of a complex

structural environment can contain multiple surfaces at different viewing distances and

viewing angles relative to the camera and light source. As a result, the non-uniform

illumination and texture appearance change can be more challenging in comparison to

images of a single surface plane captured with a consistent camera position. These

challenges include: (a) colour-based surface-type classification using colour-space

conversion and/or intensity adjustment algorithms can produce low accuracy results due

to the large illumination change in the images; and (b) texture-based surface-type

classification, which has improved robustness against non-uniform illumination can also

produce low accuracy results due to the inconsistency in texture appearance caused by

changes in image capture conditions of the camera (viewing distance, viewing angle and

camera optical settings).

This thesis shall present the approach and algorithms to enable surface-type classification

in complex structural environments under various illumination conditions. Algorithms

are presented to address the identified research problems of non-uniform illumination and
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texture appearance change for images captured in a structurally complex environment.

In the next chapter, an overview of the proposed surface-type classification approach,

and the processes used to capture RGB-D images and represent classification results in a

surface-type map are presented.



Chapter 3

Surface-type Classification

Approach

From the review of related works in Chapter 2, it was identified that in order to implement

a vision-based approach to perform surface-type classification in a structurally complex

environment under various illumination and imaging conditions, the following is needed:

(a) A colour feature extraction algorithm that can improve classification accuracy of an

image captured in a complex structural environment under various illumination

conditions. The reviewed approaches and algorithms for extracting colour features may

extract features that results in low classification accuracy due to the non-uniform

illumination for a complex scene.

(b) An algorithm to assess the classification results of an image that has been classified

using a texture-based classifier. When images of a complex environment are captured using

different image capture conditions, the texture appearance of a surface-type may vary

from surface plane to surface plane; resulting in the texture features being inconsistent.

Therefore, different regions in an image can be misclassified, and a way to identify the

regions in an image that are classified accurately is needed.

This chapter present an approach and two algorithms that addresses non-uniform

illumination and texture appearance change to enable surface-type classification of a

30
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complex structural environment. The process flow of the proposed surface-type

classification approach is detailed. The details of the two developed algorithms are

provided in the subsequent Chapters 4 and 5, while the remaining sections of this

chapter present the processes of using a robot manipulator to position the RGB-D sensor

package to capture RGB-D images, the calculation of depth information including

viewing distance and viewing angle for each RGB image pixel, and the process of

representing classification results in a surface-type map.

3.1 Surface-type Classification Approach

Figure 3.1 shows an overview of the proposed surface-type classification approach. In this

approach, a robot manipulator is used to precisely position an RGB-D sensor package at

different viewpoints in a complex structural environment (e.g. Figures 1.1, 1.2) to collect

RGB-D images. The collected depth image is processed to produce depth information

for individual RGB image pixels, including: 3D position of the pixel, viewing distance,

viewing angle, direction vector, and surface normal. Two algorithms are used, including

a colour feature extraction algorithm and a classification result assessment algorithm. In

the colour feature extraction algorithm, the depth information is used with a modified

reflectance model to extract reflectance values from each colour channel of an RGB pixel.

The reflectance values are used as the features in a colour-based classifier to perform

per-pixel surface-type classification. In the classification result assessment algorithm, the

depth information and camera optical settings (image capture conditions) are used to

generate a probability map of surface-types in an image. For each pixel in an image the

map contains a probability of being a specific surface-type.

In brief, an RGB-D image is surface-type classified using two classifiers: one from a

colour-based classifier using the proposed diffused reflectance values as features, and the

other from a texture-based classifier using texture features. The classification results are

combined into a 3D grid-based surface-type map with a probability map used to provide

a weighting factor for the texture-based classification results. The choice of using a

surface-type map in 3D to represent classification results can enable a global surface-type

awareness of an environment to be incrementally built over multiple observations.



Chapter 3. Surface-type Classification Approach 32

Calculate depth 
information for RGB 
image pixels (Section 

3.3)

Position RGB-D sensor package by 
moving the robotic manipulator 

end-effector (Section 3.2)

Capture RGB-D image

Algorithm for colour 
feature extraction 

(Section 3.5, 
Chapter 4)

Algorithm for 
assessing

classification result 
(Section 3.6, 
Chapter 5)

Combine
classification results 

into surface-type map 
(Section 3.4)

Surface-type map

Depth image

Texture-based
classifier

Colour-based 
classifier

RGB image

Figure 3.1: Overview of the proposed surface-type classification approach

3.2 Positioning of the RGB-D Sensor Package Using a

Robot Manipulator

A robot manipulator is used to provide the means of precisely positioning an RGB-D

sensor package at the different viewpoints to observe surfaces in a complex environment.

The RGB-D sensor package consisting of a rigidly coupled red/green/blue (RGB) camera

and a (D)epth camera that is mounted onto the end-effector of the robot manipulator, such

that the position and orientation of the sensor package relative to the robot base frame at

each viewpoint can be accurately calculated (limited by calibration process and/or robot

manipulator odometry). By using a robot manipulator to position the RGB-D sensor
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package, it is possible to register the RGB-D image collected at each viewpoint into a

common reference frame.

The transform oTs, that describes the position and orientation of the Depth camera

relative to the robot base frame is calculated using the end-effector-to-robot base

transform oTe( �Q), and the hand-eye transform eTs. Provided with the Denavit and

Hartenberg (D-H) parameters for a robot manipulator with n number of joints, the

transform oTe( �Q), is expressed as:

oTe( �Q) =

n∏
i=1

i−1Ti(qi) (3.1)

where �Q = [q1, q2, ...qn]
T are the joint angles of a robot manipulator for achieving a certain

pose. Figure 3.2 shows the coordinate frames of a robot manipulator and an RGB-D sensor

package.

zs

y
s

x s

Robot base coordinate frame: 
(xo, yo, zo)

End-effector coordinate frame:
(xe, ye, ze)

Depth camera coordinate frame:
(xs, ys, zs)

zc

y
c

xc

RGB camera coordinate frame:
(xc, yc, zc)y oz o

xo

ze

y
e

xe

Figure 3.2: Coordinate frames of a robot manipulator and an RGB-D sensor package

The hand-eye transform, eTs, that describes the position and orientation of the depth

camera relative to the end-effector is estimated using a calibration approach developed as

part of this research and detailed in Appendix A [84]. Given oTe( �Q) and eTs, the transform

between the depth camera and the robot base frame oTs, is calculated as:

oTs =
oTe( �Q)× eTs. (3.2)
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oTs for each viewpoint is used to transform the RGB-D image from the depth camera

coordinate frame into the robot base frame that is used as the coordinate frame for the

global 3D surface-type map.

3.3 Calculating the Viewing Distance and Viewing Angle

for an Image Pixel

The viewing distance and the viewing angle of an image pixel are used in the two algorithms

to calculate the diffused reflectance values and the probability map. Figure 3.3 illustrates

the viewing distance and viewing angle for a 3D point in the camera coordinate frame

(xc, yc, zc) that corresponds to a pixel in the RGB image. The viewing distance, dc, is

defined as the distance from the surface point-to-RGB camera coordinate origin; and the

viewing angle, θc, is the angle of incidence between the normal of the point �vη, and the

straight line direction vector between the point and the RGB camera coordinate origin

�vc. Each pixel in an image will have a corresponding point, and a viewing distance and

a viewing angle associated with it. The following process is used to calculate the viewing

distance and viewing angle for a pixel in the RGB image.

Surface plane

Image plane

dc

c

Surface point

v

vcCameraOptical
centre

Figure 3.3: Viewing distance and viewing angle for a surface point in 3D

First, the depth image, Ωs, captured by the depth camera is converted using perspective

projection [85] into a set of points (xsi , ysi , zsi), where i ∈ {1, . . . n} given n number of

pixels in the image. The depth camera’s intrinsic parameters [86], which includes the focal

lengths Fsu and Fsv and the principal points Csu and Csv are used for the perspective
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projection, as:

xsi = (iu − Csu)×
Ωsi

Fsu

(3.3)

ysi = (iv − Csv)×
Ωsi

Fsv

(3.4)

zsi = Ωsi (3.5)

where iu and iv are the image coordinate position for the ith pixel, and Ωsi is the depth

value for the ith pixel. The set of points in depth camera coordinate (xsi , ysi , zsi) is

transformed into RGB camera coordinate (xci , yci , zci) by using the transform sTc [86]

between the depth camera and the RGB camera.

For the set of points in the RGB camera coordinate, a principle component analysis

(PCA)-based approach [87] is applied to identify the surface normals. To calculate a

surface normal for a point, a search is performed to identify a subset of surrounding

points P within a distance τμ. If the number of points in the subset returned from the

distance search meets the required amount deemed sufficient (greater than the number of

dimensions in Euclidean space), then PCA can be performed. The PCA process includes

calculating the covariance matrix cov(P) for the subset of points P, and then analysing

the eigenvectors Vλ and the eigenvalues λ for the surface normal. Figure 3.4 shows the

eigenvector Vmin(λ), with the smallest eigenvalue min(λ). A condition is set to assess

whether Vmin(λ) can be taken as the surface normal for the point, and is expressed as:

If min(λ) <
1

τα
mid(λ) then �vη = Vmin(λ) (3.6)

where min() is a function to identify the smallest element in a vector and mid() is a

function to identify the element in a vector which has neither the smallest/largest value

(for a vector with three elements), and τα is a threshold set by the user.
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Vmin( ) 

Figure 3.4: The surface normal calculated for a 3D point

If the majority (>50%) of the points in P are within a point-to-plane distance of τκ to

the identified surface plane, then the surface normal is determined to be accurate for the

selected point and is labelled as valid. This process is repeated until all points in the

set (xci , yci , zci) have been either assigned with a surface normal or marked as a point

without a valid surface normal (i.e. noise points or points close to corners/edges) because

of insufficiency : (a) number of points returned from the distance search of τμ is less than

the number of dimensions, or (b) the condition in Equation 3.6 was not satisfied, or (c)

less than 50% of points in P are within the point-to-plane distance τκ.

Given the surface normal for a point, �vηi , and the direction vector starting from the point

to the RGB camera coordinate origin, �vci , the viewing angle, θci , is calculated as:

θci = cos−1 �vηi · �vci
||�vηi || ||�vci ||

. (3.7)

The viewing distance is calculated as the Euclidean distance between the point to the

RGB camera coordinate origin (xco , yco , zco) and is expressed as:

dci =
√
(xco − xci)

2 + (yco − yci)
2 + (zco − zci)

2. (3.8)

The values of dci and θci are calculated for each point in the set.
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3.4 Surface-type Map in 3D

A 3D grid-based map that is similar in concept to an occupancy grid [88], octomap [89],

RGB-D map [90] is used to combine and represent the vision-based (colour and texture)

classification results such that it can be used by a robot. In 3D space, a voxel (volumetric

pixel) can be used as the individual grid cell that forms a surface-type map. In this way,

the classification result of image pixels that have 3D points in close proximity can be

combined and represented by a voxel. A surface-type map based on voxels can be used to

combine and represent: (a) classification results produced using RGB-D images captured

from different viewpoints in the environment; and (b) classification results of an RGB-D

image produced by different classifiers. The 3D grid-based map is used in the case study

presented in Chapter 6 to combine and represent the (colour and texture) classification

results of an environment.

Voxel

1. (xo , yo , zo )
2. P( Mk )

i i i

Figure 3.5: A grid-based 3D surface-type map used to represent surface-type
classification results

Figure 3.5 shows that each voxel is associated with a point in the robot-based coordinate

(xoi , yoi , zoi) and contains a discrete probability distribution of the surface-types, P (Mk),

for k ∈ {1, . . .t}, given nt number of surface-types. The point associated with a voxel is

the centre position of the voxel’s space. Points are defined at intervals according to the

voxel size μ. The initial state of P (Mk) for a voxel is a uniform distribution since there is

no surface-type a priori knowledge.

To assign an image pixel to a voxel, the 3D coordinate point of the pixel is rounded down

to the nearest voxel coordinate point. For example, if the voxel size is μ = 10 mm, an
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image pixel with the coordinate point (13, 18, 35) will be assigned to the voxel associated

with the coordinate point (10, 20, 30). Once the voxel has been identified for the pixel,

the conditional surface-type probabilities of the pixel provided by the classification result

is updated into the voxel’s current surface-type probability distribution P (Mk) using

Bayes’ rule. The updated surface-type probability distribution of a voxel, P (Mk|E), is

calculated using the conditional surface-type probabilities generated by a classifier for

the pixel P (E|Mk), the voxel’s current surface-type probability distribution P (Mk), and

a normalisation constant, P (E) as:

P (Mk|E) =
P (E|Mk)P (Mk)

P (E)
. (3.9)

For every new update to the voxel given new observation, P (Mk) is taken as the current

P (Mk|E). At any stage of the surface-type map, a voxel’s surface-type probability

distribution P (Mk) can be used to provide a single surface-type estimate, M̂k (a decision

about the most probable surface-type for the voxel). Maximum a posteriori (MAP)

decision rule is used to select the most probable hypothesis as the candidate class as:

M̂k = argmax
Mk

P (Mk). (3.10)

3.4.1 Combined Surface-type Map

The classification results produced using a colour-based classifier and a texture-based

classifier are combined to generate a combined surface-type map. Firstly, separate

surface-type maps are produced from the colour-based classification result and from the

texture-based classification result. Then for the corresponding voxels between the two

surface-type maps, their surface-type probability distribution are combined as:

Pc,t(Mk) =
Pc(Mk) + ωv × Pt(Mk)∑nt

k=1(Pc(Mk) + ωv × Pt(Mk))
(3.11)

where the combined surface-type probability distribution is Pc,t(Mk), the surface-type

probability distribution for the colour-based classification result is Pc(Mk), and the

surface-type probability distribution for the texture-based classification result is Pt(Mk).
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A weighting factor ωv is applied to Pt(Mk) by using a probability map produced from

the algorithm detailed Chapter 5; the weighting factor for a voxel is the average of the

probability values for the pixels within the voxel’s space.

3.5 Colour Feature Extraction

Chapter 4 will present an algorithm for the extraction of colour feature using RGB-D

images and a modified reflectance model. A reflectance model using a single light source

is presented and the process to extract three reflectance-based colour features from each

colour channel (RGB) of a pixel is provided. A classifier is trained using the extracted

reflectance-based colour features to classify surface-types in images with non-uniform

illumination. Experiments are conducted to compare the performance of the extracted

reflectance-based colour features against other colour-space features, including RGB and

the CIELab colour-space component a*b* to classify surface-types under various

illumination conditions.

3.6 Classification Results Assessment

Chapter 5 will present an algorithm to produce a probability map to assess texture-based

classification results by analysing the image capture conditions (viewing distance, viewing

angle and camera optical settings). An analysis is performed to show the effect of image

capture condition changes in terms of image qualities (focus quality, spatial resolution,

perspective distortion) on the consistency of texture features extracted from images of a

surface-type. From the analysis, image capture condition thresholds are defined and used

in a function to calculate a pixel’s probability of being a specific surface-type. The process

using the function to produce a probability map of surface-types in an image is detailed.

Experiments are conducted to verify the effect of changes in image capture conditions. An

experiment is also conducted to use a probability map to identify regions in an image that

have a high probability of being accurately classified.
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3.7 Discussion

This chapter has presented the proposed approach to classify surface-types in a complex

structural environment under various illumination conditions. The processes in the

approach including the use of a robot manipulator to collect RGB-D images, the

calculation of viewing distance and viewing angle for each pixel, and the combination and

representation of classification results as a surface-type map are detailed in this chapter.

It is to note that the parameters and thresholds used for the calculation of viewing angle

(size of the subset of points P, τμ, τα and τκ) are empirically selected by considering the

resolution and noise level of the depth data and the complexity of the environment. The

selected parameters and thresholds are manually evaluated by checking for satisfactory

performance for several viewpoints in the environment. Future work will (a) investigate

designing a process to optimally select the parameter and threshold values that produces

the best performance and (b) develop failure modes to handle the low performance due

to incorrectly selected parameters and thresholds. The next two chapters will present the

algorithms for colour feature extraction and the algorithm to assess classification results.



Chapter 4

Algorithm for Extraction of

Colour Features

When a single light source is used to illuminate the surfaces in a dark environment (Figure

4.1), the captured images may exhibit non-uniform illumination caused by the different

position of the light source relative to the surfaces. Non-uniform illumination can adversely

affect the classification accuracy of surface-types when colour-based features are used.

In order to accurately classify different surface-types in an image that has non-uniform

illumination, either the training images needs to completely encapsulate the variance in

illumination or an algorithm to extract illumination-invariant colour features is used.

Figure 4.1: Robot manipulator with a directional light source illuminating a surface

A widely applied approach to extract illumination-invariant colour features is to convert

the standard Red, Green, and Blue (RGB) colour-space into a colour-space that

represents the illumination intensity in an individual colour component. Typically, RGB

41
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can be converted into (CIELab) L*a*b*, HSV, HSL, and RG chromaticity colour-spaces

to separate illumination intensity into a colour component and provide colour features

for classification [57]. Additionally, please refer to Section 2.3 for related research on

illumination-invariant features.

The algorithm presented in this chapter extracts colour features in an image that has

non-uniform illumination by using the addition of depth (D) information and a reflectance

model. The intensity values of an RGB pixel are taken as the irradiance off a surface

that is illuminated by a single light source. Assuming Lambertian surface-types, the

diffused reflectance values, which describes the ratio of diffused light reflected off a surface,

can be extracted from each colour channel of a pixel and used as colour features for

classification of the surface-types. In the case of metal such as steel structures, the surfaces

can be assumed Lambertian when painted with a matt finish, corroded with rust and/or

prepared for painting via grit-blasting. The work presented in this chapter was published

in ’Surface-type Classification using RGB-D, Transactions on Automation Science and

Engineering’ (please refer to Section 1.5.1, point 1).

4.1 Chapter 4 Overview

This chapter presents the algorithm to perform colour feature extraction from an image

and the experiments to verify the extracted features. Firstly, a reflectance model of a

single light source is provided and used to describe the various illumination conditions

on surfaces. The radiometric response function of a camera is discussed and taken into

account by modifying the reflectance model.

Figure 4.2 shows the processes of the colour feature extraction algorithm. The preliminary

processes of capturing the RGB-D image and calculating the 3D point (xci , yci , zci), the

surface normal �vη, the viewing direction vector �vc, and the viewing angle θc for an RGB

pixel has been provided in Chapter 3. Firstly, the position of the light source in the

camera coordinate frame, �l, is calculated using a calibration RGB-D image that contains

both specular and diffused reflectance. Once the light source position has been calculated,

the reflectance model parameters including light source-to-surface point distance, dl, and
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the angle of incidence of the light source-to-surface point, θl, are calculated for the pixels.

Finally, given dl and θl, the diffused reflectance values, Kd, for each RGB colour channel

where (Kd,R,Kd,G,Kd,B) ∈ Kd, are calculated as the proposed colour features to classify

surface-types. The process of calculating dl and θl, and then Kd, is performed for each of

the pixels in an image, as detailed in the Algorithm 1 pseudocode.

Experiments are conducted to compare the diffused reflectance values Kd against RGB

intensity values and (CIELab) L*a*b* colour component values. Three support vector

machine (SVM, refer to Appendix C.2) classifiers are trained with the diffused reflectance

values, RGB intensity values, and L*a*b* colour component values to classify for

surface-types. The accuracy of the classification results is compared. A portable RGB-D

sensor package with a mounted light source has been implemented in the experiments.
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Process depth image for 
3D point, surface 
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Figure 4.2: Colour feature extraction algorithm
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Algorithm 1 Calculation of diffused reflectance values (Kd) for an RGB-D image

Require: Light source position, �l, and depth information (xci , yci , zci), �vηi

1: for pixel i = 1 to n in RGB-D image set {1, . . . n} do

2: if pixel i has a valid surface normal �vηi then

3: dli = CalculateDistance(�l,xci , yci , zci)

4: θli = CalculateAngle(�l,xci , yci , zci ,�vηi)

5: for colour channel x = 1 to 3 in RGB colour-space (R=1, G=2, B=3) do

6: Kd,xi
= CalculateDiffusedReflectanceValue(dli ,θli ,Ir,xi

)

7: end for

8: else

9: Kd,1i ,Kd,2i ,Kd,3i = null values

10: end if

11: end for

The following is a description of the functions used in the algorithm above:

• CalculateDistance(�l,xci , yci , zci) calculates the Euclidean distance (dl) between the

light source(�l = (xcl , ycl , zcl)) and the surface point (xci , yci , zci); formula provided

in Equation 4.14

• CalculateAngle(�l,xci , yci , zci ,�vηi) calculates the angle of incidence of the light source

to the surface point, θl; formula provided in Equation 4.13

• CalculateDiffusedReflectanceValue(dli ,θli ,Ir,xi
) calculates the diffused reflectance

values, Kd, for each RGB colour channel where (Kd,R,Kd,G,Kd,B) ∈ Kd; formula

provided in Equation 4.12

4.2 Diffused Reflectance Values Extraction

This section details the reflectance model selected to describe the illumination of a scene

created by a single light source, and the function selected to model the radiometric response

of a digital camera. Combining the selected reflectance model and radiometric response
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function, a formula is produced that is used to calculate the diffused reflectance values for

an RGB pixel as the proposed colour features. The steps to calculate the parameters in

the formula are also detailed in this section.

4.2.1 Torrance-Sparrow Reflectance Model

A reflectance model can be used to describe the irradiance of light when it is reflected

off a surface, such as the attenuation, specularity and diffusion. The Torrance-Sparrow

reflectance model [91] is selected to describe the light reflected off a surface point as a

combination of both diffused and specular reflections. The Torrance-Sparrow reflectance

model is a general reflectance model and has shown to be able to capture the reflectance

properties of a large number of surfaces [92]. Figure 4.3 shows a simple illustration of

how light is reflected off a surface, and the characteristics of the diffused reflection and

the specular reflection that is produced. In the model, the surface point-to-light source

direction vector is �vl, the surface point normal vector is �vη, and the surface point-to-camera

coordinate origin direction vector is �vc. The diffused reflection describes the light rays that

are scattered within the surface, and the specular reflection describes the light rays that

are directly reflected from the surface.

Diffused
reflectance

Specular
reflectance

RGB Camera

Light source

vl

v

vc

Figure 4.3: Diffused and specular reflection

Assuming the Fresnel reflectance is constant and the geometric attenuation factor for a

clean air environment is one, the general equation of the Torrance-Sparrow reflectance
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model for an image pixel is expressed as:

Ir =
Il
dl2

(kd cos θl +
ks

cos θc
exp(− α2

2σ2
)). (4.1)

The parameters in Equation 4.1 are illustrated in Figure 4.4, where the diffused

reflectance ratio is kd, the specular reflectance ratio is ks, the light source intensity is Il,

surface-to-camera distance is dc, light source-to-surface point distance is dl, reflected

light intensity off the surface is Ir, angle between the light source direction vector and

the surface normal vector is θl, angle between the viewing direction vector and the

surface normal vector is θc, the angle between the surface normal vector with the

bisector of the viewing direction vector and the light source direction vector is α, and the

surface roughness is σ.

Camera

Surface with:
 roughness 

Diffused reflectance kd
Specular reflectance ks

v

Il

cIr

l

vc

dc

dl

Light source

vl

l = (xc , yc , zc )l l l 

Figure 4.4: Parameters of light reflectance model

For a light source intensity Il, which is a constant value (brightness of the light source is

always the same), it is unnecessary to explicitly express the light source intensity parameter

Il in the reflectance model. Therefore, the reflectance values, Kd and Ks, are defined by

combining the reflectance ratios, kd and ks, with the light source intensity Il, as:

Kd = kdIl, Ks = ksIl (4.2)
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then Equation 4.1 is rewritten as:

Ir =
1

dl2
(Kd cos θl +

Ks

cos θc
exp(− α2

2σ2
)). (4.3)

It is noted that the reflected light intensity notation, Ir, is a set notation that represents

the intensity values for the three RGB colour channels, where (Ir,R, Ir,G, Ir,B) ∈ Ir. In

addition, the reflectance values (Kd, Ks) are also set notations used to represent the

reflectance values for each RGB colour channel, where (Kd,R,Kd,G,Kd,B) ∈ Kd, and

(Ks,R,Ks,G,Ks,B) ∈ Ks. Given that the calculation of the reflectance value is the same

for each colour channel, the equations are expressed using the set notations (Ir,Kd,Ks).

The calculation process is performed for each colour channel to generate the three

separate reflectance values for a pixel.

4.2.2 Radiometric Response Function of a Camera

In many computer vision algorithms, it is assumed that the surface irradiance is linearly

related to the RGB intensity values captured by a camera [93][94]. However, a camera will

usually have a non-linear radiometric response function [95]; radiometric response function

describes how the surface irradiance detected by a pixel in the camera’s sensor is converted

into RGB image intensity values.

The non-linearity of the radiometric response function needs to be taken into consideration

in applications where colour consistency is important (e.g. image mosaics and textures of

3D models [93]). In the proposed colour feature extraction algorithm, the measurement

of reflected light intensity off a surface point, Ir, is performed using an RGB camera. As

a result, the reflectance values (Kd, Ks) calculated using this reflectance model will be

affected by the non-linear radiometric response of the camera. Hence, the radiometric

response of a camera needs to be included as part of the reflectance model in order to

calculate consistent diffused reflectance values.

It has been proposed in [14] that the radiometric response function can be represented

using a polynomial function of nth order depending on the non-linearity of the radiometric
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response. Figure 4.5 shows the radiometric response of several different imaging systems,

which illustrates that a polynomial function is suitable to model the response function.

Image pixel 
intensity value

Surface
irradiance

Figure 4.5: Response functions of several different imaging systems [14]

In the selected reflectance model, it is assumed that the light source Il is a constant value

and the exposure settings of the camera are fixed. Therefore, the change in reflected light

intensity off a surface, as measured by an RGB camera, is only dependent on the distance

of the light source to the surface, dl. The radiometric response of a camera can be included

into the reflectance model by modifying the light intensity change relative to the distance

dl, from originally ( 1
d12

) in Equation 4.3 into a 2nd order polynomial function such that it

is modified and rewritten as:

Ir =
1

a2dl2 + a1dl + a0
(Kd cos θl +

Ks

cos θc
exp(− α2

2σ2
)). (4.4)

A 2nd order polynomial is identified as the lowest order to provide suitable

approximation of the radiometric response for a RGB camera. Calibration experiments

have shown that a 2nd order polynomial used in the equation can provide values for a
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machine learning algorithm (SVM, naive Bayes) to produce accurate classification. The

coefficients (a2, a1, a0) of the polynomial are calculated using a calibration process, where

dl is incrementally increased away from a surface with Lambertian reflectance (only

diffused reflectance). The RGB intensity value of a pixel with zero or near zero angle of

incidence θl, at each increment of dl, is taken as a sample point. A least squares fitting of

a 2nd order polynomial to the sample points is applied to identify the coefficients. As a

result, the diffused reflectance values calculated for surface points within the calibrated

light source-to-surface range will show improved consistency.

4.2.3 Camera-to-Light Source Position Calculation

The camera-to-light source position, �l = (xcl , ycl , zcl), describes the position of the light

source in the camera coordinate frame. It is used to calculate the reflectance model

parameters of the light source-to-surface point distance, dl, and the angle of incidence of

the light source to the surface point, θl, for each pixel. The camera-to-light source position,

�l, can be calculated using the specular and diffused reflectance regions in a calibration

image [96].

Figure 4.6a shows a greyscale calibration image Ωc, that can be used to calculate �l, which

contains a planar surface that consists of a single surface-type (constant Kd and Ks).

Figure 4.6b contains a specular reflectance region Ωcs (white) and Figure 4.6c contains a

diffused reflectance region Ωcd (non-white).

(a) (b) (c)

Figure 4.6: a) Greyscale of the calibration image Ωc; b) Binary image of specular
reflectance region in the calibration image Ωcs; c) Diffused reflectance region in the

calibration image Ωcd



Chapter 4. Algorithm for Extraction of Colour Features 51

The specular reflectance region Ωcs, in the calibration image Ωc, is identified by applying

an intensity value threshold, τs, as in:

Ωcs = {i ∈ Ωc|Iri > τs}. (4.5)

Figure 4.7 shows the centroid pixel in the specular reflectance region, defined as �p; the

direction vector from �p towards the light source position �l, defined as �vlp ; the normal vector

for �p, defined as �vηp ; and the direction vector from �p towards the camera coordinate frame

origin, defined as �vcp (all unit vectors). Because the angle between the surface normal

(�vηp), and the bisector of the two direction vectors (�vlp and �vcp) is assumed to be zero for

the centroid pixel (α = 0), �vlp can be calculated as the reflection vector of �vcp , as:

�vlp = 2(�vηp · �vcp)�vηp − �vcp . (4.6)

The direction vector for surface point-to-camera, �vcp , and the surface normal vector, �vηp ,

are provided by the depth image (detailed in Chapter 3).

 

vc vl

v

l

p xc  , yc  , zcp p p

p p dlp

p

Figure 4.7: Light source direction vector estimation using specular centroid pixel

The distance dlp , between the specular centroid point �p, and the light source position �l, is

estimated using the diffused region of the calibration image Ωcd (shown in Figure 4.6c).

The value of Ωcd is extracted by applying an intensity threshold, τd, to the calibration
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image Ωc, as:

Ωcd = {i ∈ Ωc|Iri < τd}. (4.7)

A least squares fitting of the diffused reflectance component of Equation 4.4 to Ωcd is

performed to calculate dlp , as:

dlp = argmax
dn

∑
i∈Ωcd

⎛
⎝f(i, dn)− 1

Ncd

∑
i∈Ωcd

f(i, dn)

⎞
⎠

2

(4.8)

where:

f(i, dn) =
Iri(a2dl(i, dn)

2 + a1dl(i, dn) + a0)

cosθl(i, dn)
. (4.9)

The number of pixel points in the diffused region is Ncd; the optimisation parameter

to identify the best fit of diffused reflectance component to the diffused region of the

calibration image is dn; the greyscale intensity value for an ith pixel point is Iri ; the light

source-to-surface point distance for an ith pixel point assuming dlp = dn, is dl(i, dn); and

the angle between the light source direction vector and the surface normal vector for an

ith pixel point assuming dlp = dn, is θl(i, dn).

The estimated direction vector, �vlp , and the distance, dlp , are used to calculate the

camera-to-light source position, �l, as:

�l = �p+ dlp�vlp . (4.10)

It is noted that depending on factors including light intensity, camera exposure setting

and the reflectance of the surface-type, the range of intensities captured in an image can

be different. Therefore the thresholds τd and τs are selected empirically to separate the

diffused and specular regions in an image, and are dependent on the intensity range of the

captured image. Currently, calibration for the light source position is performed during

a commissioning stage which is supervised by an operator. In the event of failure due to

inappropriate parameter values, the process is repeated.
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4.2.4 Diffused Reflectance Value Calculation - Proposed Colour

Features

The diffused reflectance values are calculated and can be used to classify different

surface-types. The diffused reflectance component of Equation 4.4 is expressed as:

Ir =
1

a2dl2 + a1dl + a0
(Kd cos θl). (4.11)

Equation 4.11 is rearranged for the calculation of the diffused reflectance value, Kd, as:

Kd =
Ir(a2dl

2 + a1dl + a0)

cos θl
. (4.12)

To calculate Kd for an image pixel, the light source-to-surface point angle of incidence, θl,

and light source-to-surface point distance, dl, needs to be calculated. Figure 4.8 illustrates

the calculation of the reflectance model parameters θl and dl for a point corresponding to

an image pixel.

3D point for ith

image pixel

(xc , yc , zc )

l = (xc , yc , zc )

v
l

dl

vl

l l l

i i i

Figure 4.8: Calculating θl and dl for a 3D point representing an ith image pixel

The value of θl is calculated using the surface normal vector, �vη, and direction vector, �vl,

for the 3D point as:

θl = cos−1 �vl · �vη
||�vl||||�vη|| . (4.13)
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The light source-to-surface point distance, dl, is calculated using the light source position,

�l, and the point of the pixel with ith index, as:

dl =
√
(xcl − xci)

2 + (ycl − yci)
2 + (zcl − zci)

2. (4.14)

The RGB intensity values for a pixel are used as the reflected light intensity off the surface

where (Ir,R, Ir,G, Ir,B) ∈ Ir. As a result, three diffused reflectance values (Kd,R,Kd,G,Kd,B)

are calculated for an image pixel. The outcome of the algorithm is three diffused reflectance

values for each pixel that can be used as the colour features to classify surface-types.

4.3 CIELab L*a*b* Colour-Space Conversion

In this thesis, L*a*b* colour-space conversion is performed on the collected RGB-D images

to provide a benchmark comparison against the diffused reflectance values extracted by

the algorithm.

The RGB colour-space has been shown to be able to classify surface-types (such as rust)

from simple background surfaces [97]. However, non-uniform illumination significantly

reduces the classification accuracy when the RGB colour-space is used. Therefore,

colour-space conversions have been performed to reduce the misclassification caused by

non-uniform illumination. The work in [57] and [11] investigated 14 colour-spaces to find

the best configuration for non-uniformly illuminated rust image detection and found that

the a*b* colour component from the CIELab colour-space was the best configuration for

this application.

The L*a*b* colour-space represents illumination intensity as a separate luminance

component. The L* component corresponds to lightness intensity ranging from black to

white (0–100), the a* component measures green-red (negative-positive), and the b*

measures blue-yellow (negative-positive). To convert RGB into the L*a*b* components,

the tristimulus values [98] (X, Y, Z) are calculated as:

X = 0.4125f

(
R

255

)
+ 0.3576f

(
G

255

)
+ 0.1805f

(
B

255

)
(4.15)
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Y = 0.2126f

(
R

255

)
+ 0.7152f

(
G

255

)
+ 0.0722f

(
B

255

)
(4.16)

Z = 0.0193f

(
R

255

)
+ 0.1192f

(
G

255

)
+ 0.9505f

(
B

255

)
(4.17)

wheref(x) =

⎧⎨
⎩

100×
(
x+0.055
1.055

2.4
)

, if x > 0.04045

100× (
x

12.92

)
, otherwise.

(4.18)

Tristimulus values are calculated using the standards of Observer = 2◦, Illuminant = D65.

Using the calculated tristimulus values, the values of L*a*b* [57] are calculated as:

L∗ = 116f

(
Y

Y 0

)
− 16 (4.19)

a∗ = 500

[
f

(
X

X0

)
−

(
Y

Y 0

)]
(4.20)

b∗ = 200

[
f

(
Y

Y 0

)
−

(
Z

Z0

)]
(4.21)

wheref(x) =

⎧⎨
⎩

x
1
3 , if x > 0.008856

7.787x+ 16
116 , otherwise.

(4.22)

The effect of non-uniform illumination on different colour-space components is investigated

by using images with controlled illumination changes. The controlled illumination changes

are achieved by adjusting an original image using simulated lighting effects rendered using

digital software (Photoshop, lighting effect: 2 O’clock spotlight and soft omni). Figure

4.9a shows the original 400×400 pixels colour image with constant RGB values (103, 202,

203), Figure 4.9b shows the original image adjusted to simulate illumination created by a

side directional light source, and Figure 4.9c shows the original image adjusted to simulate

illumination created by a light source directly in front of the image plane.
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(a) (b) (c)

Figure 4.9: a) Original image; b) Image adjusted to simulate illumination by a side
directional light source; c) Image adjusted to simulate illumination by a light source

directly in front of the image plane

The three images are converted into the L*a*b colour-space and the distribution of

normalised values (i.e. within [0, 1]) in each colour-space component for L*a*b and RGB

are shown in histograms. Figure 4.10 shows the histograms for the image with the

simulated side directional light source, and Figure 4.11 shows the histograms for the

image with the simulated light source directly in front of the image plane. The

histograms show that the L*a*b colour-space is able to provide colour features with less

variance. The colour-space components of the a* and b* have low distribution variance

in comparison with the RGB colour-space components. The distribution variance for the

colour component L* is higher in comparison to a* and b* which is expected because it

represents the change in illumination intensities in the two images with simulated

lighting. It is to note that the histograms for the image with simulated side directional

lighting has a tall spike at the low intensity (Figure 4.10), this is due to the rendering

process producing uniform colour intensity for the ”shaded” area; surface region that is

not illuminated by the light source.
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Figure 4.10: Histograms of colour-space components for image adjusted to simulate

illumination by a side directional light source
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Figure 4.11: Histograms of colour-space components for image adjusted to simulate
illumination by a light source directly in front of the image plane

Table 4.1 shows the mean and standard deviation for the normalised value distribution of
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each colour-space component in the three images. The results also confirm that a* and b*

have the lowest distribution variances, where the standard deviations are up to an order

of magnitude lower than the RGB colour-space components. In addition, the change of

the mean values for a* and b* from the original image, to the two images with simulated

lighting is also lower in comparison to RGB. This shows that a* and b* can provide values

with higher consistency in the presence of non-uniform illumination. Therefore, they will

be used as a benchmark for subsequent experiments with the real image.

Table 4.1: Mean and standard deviation of colour-space component distribution

Original image Side directional light source Light source directly in front

Mean StdDev Mean StdDev Mean StdDev

R 0.403 0 0.3399 0.0883 0.3210 0.1291

G 0.792 0 0.6405 0.1597 0.5257 0.2291

B 0.796 0 0.5512 0.1501 0.5280 0.2298

L* 0.874 0 0.7945 0.0852 0.7304 0.1325

a* 0.424 0 0.4213 0.0038 0.4507 0.0109

b* 0.473 0 0.5037 0.0039 0.4814 0.0037

4.4 Experiment 1: Surface-type Classification of Images

Containing a Single Surface Plane with Non-uniform

Illumination

In this experiment, RGB-D images of four different surface-types are collected from a

laboratory environment (Figure 4.12) using the RGB-D sensor package shown in Figure

4.13. The four surface-types include rusted metal surface, blasted metal surface, timber

surface, and painted metal surface. For each surface-type, RGB-D images are collected at

four different positions (one for training, and three for testing), as illustrated in Figure

4.14. The training images are captured at a viewing distance to surface of approximately

500 mm and a centre pixel viewing angle of incidence of 0◦, and the three testing images

are collected at viewing distances ranging between 500–1000 mm, and with viewing angles
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in the range of approximately 0–60 degrees for the angle of incidence between the centre

pixel ray-cast to the surface normal. Figure 4.15 shows the collected RGB images of the

four surface-types that are collected under illumination from an LED light source only.

Note that manual contrast adjustments have been applied to the rusted and blasted surface

images in order for them to be viewable in Figure 4.15; the experimental classifications

were performed using the unadjusted images. The aim of this experiment is to test the

performance of the proposed diffuse reflectance features to provide generalisation of the

surface-types even under various illumination conditions. This is achieved by training

a classifier with limited image data captured from one viewpoint and then classifying

images capture from other viewpoints; which changes the illumination on the surface. The

classification results of the same surface are compared against the results produced using

other colour-based features to observe the relative performance.

Rusted surface Blasted surface Timber surface Painted surface

Figure 4.12: Experiment environment from which the four surface-types are collected
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Figure 4.13: RGB-D sensor package consisting of a Kinect, Point Grey Firefly camera
and LED light source

Surface

RGB-D
sensor

package

Image 2 
capture position

Image 3 
capture position

Image 1 
capture position

500 m
m

Training image 
capture position

Figure 4.14: The different RGB-D image capture positions used to collect images under
non-uniform illumination
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Figure 4.15: Training image and three test images

For each RGB-D image, (R,G,B) intensity values, diffused reflectance values

(Kd,R,Kd,G,Kd,B) ∈ Kd, and L*a*b* colour-space components (a*, b*) are extracted

from each image pixel and used as features for the four surface-type classifications. A

multi-class SVM classifier (Appendix C) has been selected to classify the surface-types,

where three separate multi-class SVM classifiers are trained with feature vectors

(R,G,B), (Kd,R,Kd,G,Kd,B) and (a*, b*). The training RGB-D images collected for each

surface-type is used to train the three SVM classifiers. The SVM classifiers are validated

by classifying the training RGB-D images first, and subsequently applied to classify the

three additional images collected for each surface-type.

Figures 4.16, 4.17, 4.18 and 4.19 provide a visualisation of the classification results for

each of the surface-types. The colour scheme used in these figures is: blue = painted

surface, teal = timber surface, yellow = rusted surface, and red = blasted surface. The

change in illumination of images collected for each surface-type progressively increases

from the Training image through to Image 3 as a result of the change in the LED light

source position and the angle relative to the surface in the image. From Figure 4.16,

it is observed that the classification accuracy decreases progressively from the Training

image through to Image 3, which corresponds to the progressively increased change in
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illumination. This is particularly prominent in the classification result for Image 3 when

using RGB features for classification, which shows a large region of misclassification on

the left side of the image where the light fall-off is the most significant. Classification

results using Kd and a*b* features also show the same misclassification characteristics due

to change in illumination, albeit less significant. The classification results shown for the

other surface-types in Figures 4.17, 4.18 and 4.19 also exhibit the same misclassification

characteristics due to change in illumination; again this is most significant when using

RGB features. It is highlighted that the exposure settings on the camera (gain, aperture

and shutter speed) are fixed for this experiment such that the changes in illumination

intensity are dependent on only the light source’s distance and angle to the surface. The

high misclassification observed for image 3 (attributed to the illumination intensity of the

surface being lower than that of the training data) is therefore a factor of the viewing

distance and viewing angle. It is noted that due to the way the RGB-D sensor package is

set up, the field of view of the depth camera does not completely cover the field of view

of the RGB camera. As a result, the lower part of the RGB image does not have depth

values. This is evident in Figure 4.16, which shows the results of the SVM classifier using

Kd features with a misclassification of rust (yellow) on the lower part of the images due

to null Kd values (given no depth values). Additionally, the size of the uncovered lower

part is different for each sample due to the changes in viewing distance and viewing angle

between samples, and slight difference when repeating the same viewpoints for capturing

different surface-types. Therefore, manual cropping has been performed to omit the lower

part of the RGB images. In addition, cropping to Images 2 and 3 for the rusted and

blasted surfaces is also performed to omit classification results of unrelated surface-types

in the image due to inadequate surface space of the surface-type to cover the whole image

frame when the field of view is increased, as shown in Figure 4.15.

Table 4.2 shows the classification accuracy for each RGB-D image (with image cropping

applied) using the three SVM classifiers; refer to Appendix E.1 for confusion matrices to all

results. Overall, the classifier using Kd features demonstrated the highest accuracy, with

accuracy ranging between (96.41–99.98%); followed by the classifier using a*b* features

with accuracy ranging between (76.06–96.88%); and then the classifier using RGB features,

with accuracy ranging between (15.99–98.70%). For each image that is classified, the
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order of accuracy achieved from highest to lowest is Kd, a*b* and RGB, except for the

timber surface images. For the timber surface images (training and testing), RGB-based

classification results showed higher accuracy than the a*b*-based classification results.

RGB features are able to distinguish timber surface with higher accuracy than the a*b*

features.

In addition, from Table 4.2 it can be observed that a decrease in classification accuracy

occurs from the Training image to Image 3, which corresponds to the increased change in

illumination caused by the change in light source position. The most significant decrease

in accuracy from the Training image to Image 3 was observed for the classifier trained

with RGB features when classifying images of the rusted surface, showing a decrease from

56.03% to 15.99%. For the rusted surface images, the classifiers trained with Kd and a*b*

features did not show a significant decrease in accuracy due to the change in illumination,

where the results for all images maintained an accuracy above 90%.

In summary, this experiment has demonstrated the use of Kd values to provide more

accurate classification of surface-types from images containing a single surface plane. The

non-uniform illumination is caused primarily by the increased angle of incidence between

the light source and the surface.
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Painted surface

Kd

RGB

a*b*

Training image Image 1 Image 2 Image 3

Painted = Timber = Rusted = Blasted =

Figure 4.16: Painted surface classification results

Timber surface

Kd

RGB

a*b*

Training image Image 1 Image 2 Image 3

Painted = Timber = Rusted = Blasted =

Figure 4.17: Timber surface classification results
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Rusted surface

Kd

RGB

a*b*

Training image Image 1 Image 2 Image 3

Painted = Timber = Rusted = Blasted =

Figure 4.18: Rusted surface classification results

Blasted surface

Kd

RGB

a*b*

Training image Image 1 Image 2 Image 3

Painted = Timber = Rusted = Blasted =

Figure 4.19: Blasted surface classification results
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Table 4.2: Classification results for RGB-D images of a single surface plane

Accuracy (%)

Training image Image 1 Image 2 Image 3

Painted surface

RGB 93.90 77.27 62.43 59.34

a*b* 96.21 87.57 78.13 76.06

Kd 97.70 97.19 96.90 96.93

Timber surface

RGB 98.70 93.08 84.85 83.15

a*b* 96.88 87.93 81.27 81.24

Kd 99.85 99.96 99.89 99.98

Rusted surface

RGB 54.03 46.34 30.12 15.99

a*b* 96.00 96.355 95.89 94.23

Kd 98.98 99.58 98.91 96.87

Blasted surface

RGB 76.14 85.82 80.12 56.51

a*b* 92.27 95.61 95.60 91.93

Kd 96.41 98.25 97.94 98.36

4.5 Experiment 2: Surface-type Classification of an Image

Containing Multiple Surface Planes with Non-uniform

Illumination

In Experiment 2, surface-type classification is performed on an image that contains a

complex scene captured in the environment shown in Figure 4.12. Figure 4.20a shows an

image that contains two perpendicular surface planes with three surface-types, including

a blasted metal surface, a rusted metal surface and a timber surface (image is contrast

enhanced for viewing purposes). Figure 4.20b shows a segmented depth image which
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contains the two perpendicular surface planes that are classified in this experiment. The

non-uniform illumination in this image is caused by the two surface planes being

perpendicular, such that the distance and angle of incidence changes significantly

between the two planes. As a result, surface plane 1 (which is further away from the

light source than surface plane 2) will have lower illumination intensity but the plane will

be lit more uniformly because the angle of incidence with the light source is less. Surface

plane 2 will be lit non-uniformly because the change in distance and angle of incidence

with the light source is larger.

Surface-type classification is performed on the image (Figure 4.20a) using the three SVM

classifiers trained with the training surface-type images in Experiment 1. The classification

results produced by the three classifiers are compared by using manually labelled images

(ground-truth) for each surface-type. Figure 4.21 shows the binary labelled images for

each surface-type on the two surface planes, where the labelled surface-type is shown in

white and the non-related surface-types are shown in black in each image.

Figure 4.22 shows the visualisation of the surface-type classification results produced by

the three SVM classifiers. The colour scheme used in these figures is: teal = timber

surface, yellow = rusted surface, and red = blasted surface. Table 4.3 shows the confusion

matrices of the surface-type classification results produced by the three SVM classifiers.

The confusion matrix shows the classified class (column) produced by an SVM classifier

versus the actual class (row) provided by the ground truth labelled images. From the

confusion matrix, the classification accuracy of each surface-type can be calculated.

Overall, the SVM classifier trained with Kd features produced the highest classification

accuracy for all three surface-types in the test image. From the confusion matrices, it can

be seen that the highest classification accuracy achieved for the timber surface is 45.74%

using Kd features; followed by the classifiers using RGB and a*b* features with 10.69%

and 0.04%, respectively. From the visualisation of the classification results shown in Figure

4.22, the timber surface is misclassified mainly as rusted metal surface for RGB and a*b*

feature-based classifiers, and blasted metal surface for the Kd feature-based classifier. For

the two other classified surface-types of rusted metal surface and blasted metal surface,

a*b* andKd features produced results of 79.25%, 80.31% and 91.37%, 99.28%, respectively.
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The classifier trained with RGB features produced the lowest accuracies in comparison for

the rusted metal and blasted metal surfaces with 0.45% and 20.43%. This can be explained

by referring to the classification result visualisation for the classifier using RGB features

shown in Figure 4.22a. It can be seen that the classifier misclassified the majority of

the rusted surface as timber surface, and the remaining image regions as rusted metal

surface. Therefore, the classifier using RGB features resulted in low accuracy for all three

surface-types.

Additional surface-type classification is performed on two more images collected in the

environment at different viewpoints (shown in Figure 4.23). Table 4.4 shows the average

classification accuracy for each surface-type in the environment. The average classification

accuracy of each surface-type is calculated from the classification results of the three images

(Figure 4.20a and Figure 4.23) produced using the three SVM classifiers. The results in

the table indicate that on average, Kd has the highest accuracy, followed by a*b*, and

finally RGB.

In summary, this experiment has demonstrated the classification of an image that

contains a complex scene where the illumination intensity on the captured surface has

changed from the training images used to classify the surface-types. The overall result in

this experiment is similar to Experiment 1, which suggests that the diffused reflectance

values Kd can provide higher classification accuracy when the captured images contain

non-uniform illumination caused by change in light source distance and angle to the

surface planes.
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Blasted metal 
surface

Rusted metal 
surface

Timber surface

Surface plane 1

Surface plane 2 Surface plane 1

Surface plane 2

(a) (b)

Figure 4.20: a) Experiment 2 image that contains two surface planes and three
surface-types; b) Depth image showing the segmented surface planes

Timber surface Rusted metal 
surface

Blasted metal 
surface

Figure 4.21: Binary ground truth labelled images for each surface-type. White is the
surface-type, black is not the surface-type

(a) (b) (c)

Figure 4.22: a) Classification result using RGB features; b) Classification result using
a*b* features; c) Classification result using Kd features. The colour scheme used in these
figures are: teal = timber surface, yellow = rusted surface, and red = blasted surface



Chapter 4. Algorithm for Extraction of Colour Features 70

Table 4.3: Confusion matrices for the surface-type classification results produced using
the three SVM classifiers

Confusion matrix: RGB

Surface-types Timber Rusted Blasted Accuracy (%)

Timber 8823 72769 882 10.69

Rusted 59313 269 2 0.45

Blasted 8002 46969 14119 20.43

Confusion matrix: a*b*

Surface-types Timber Rusted Blasted Accuracy (%)

Timber 34 78860 3395 0.04

Rusted 3 47194 12357 79.25

Blasted 0 5925 62737 91.37

Confusion matrix: Kd

Surface-types Timber Rusted Blasted Accuracy (%)

Timber 37248 7433 36751 45.74

Rusted 21 47831 11702 80.31

Blasted 0 486 67128 99.28

Figure 4.23: Additional images collected in the environment
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Table 4.4: Average surface-type classification results for images

RGB a∗ b∗ Kd

Average Timber Accuracy (%) 12.23 0.026 44.05

Average Rusted Accuracy (%) 14.13 80.45 82.54

Average Blasted Accuracy (%) 54.43 91.17 96.17

Overall Accuracy (%) 28.79 64.37 78.03

4.6 Discussion

In this chapter, the algorithm to perform extraction of new colour features from an image

has been presented. The algorithm uses RGB-D images and a reflectance model to extract

three diffused reflectance values for each RGB image pixel. The diffused reflectance values,

as another type of colour feature, can be used to classify surface-types in images under

various illumination conditions caused by the change in position and angle of a single

light source relative to the surfaces shown in the images. Two experiments have been

conducted to demonstrate the use of diffused reflectance values to classify images under

various illumination conditions. The classification accuracy produced by an SVM classifier

trained with diffused reflectance values is compared against two other SVM classifiers

trained with RGB colour intensity feature, and CIELab a*b* colour-space features. The

experimental results showed that the classifier trained with the diffused reflectance values

has produced the highest accuracy amongst the three SVM classifiers.

It is understood that this algorithm requires accurate viewing distance and viewing angle

for each image pixel, and it is challenging to calculate surface normals for points on complex

structures with multiple small surface planes (i.e. bridge flanges and cross braces) given

the clutter of the scene, sensor resolution and/or sensor noise. Therefore, a possible

future work will be the use of a priori surface geometry knowledge of the environment

to perform surface template matching. By fitting the depth values to precise models of

surface structures, it is possible to calculate an accurate distance and surface normal for

each pixel point on the surfaces (a detailed discussion is provided in Chapter 7).
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In conclusion, this chapter has detailed the algorithm to extract colour features to perform

per-pixel surface-type classification. In order to fully utilise the available RGB-D images to

produce accurate surface-type classification results, texture features can also be extracted

from the image and used as features for surface-type classification. The next chapter

presents an algorithm to produce a probability map to assess the accuracy of texture-based

classification results.



Chapter 5

Algorithm for Classification Result

Assessment

Surface-type classification using texture features first involves the collection of a training

image dataset that is a good generalisation of each surface-type. From the collected

training image dataset, texture features can be extracted and used to train a classifier

that will be used to classify the surface-types.

However, when images are captured in a complex structural environment under different

image capture conditions (viewing distance and viewing angle), the appearance of a

surface-type can vary texturally from image to image. This change in textural

appearance can be attributed to image qualities, including focus quality, spatial

resolution and perspective distortion. As such, the texture features extracted from these

images can be inconsistent with the training image dataset and the classifier may not be

able to accurately classify the surface-types in the images.

This chapter presents an algorithm to calculate a probability map of surface-types in an

image, which can be used to assess the texture-based classification results of the image. The

approach uses the change in image capture conditions between the image and the training

image dataset to calculate the probability values in the map. The capture conditions of an

image (viewing distance and viewing angle) are calculated using the depth data provided

as part of the collected RGB-D information.

73
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Experiments are conducted in a laboratory environment to verify the effect of image

capture conditions on the consistency of the extracted texture features, and the effect of

image capture condition changes on classification accuracy. The texture features are

analysed using box plots to visualise the effect of image capture condition changes, and

are used to train a classifier to classify for surface-types. A naive Bayes classifier is

selected given that it builds the class models statistically and can provide a clear

association between the box plot visualisation and classification accuracy. A final

experiment is conducted to produce probability maps that are used to identify the

accurately classified regions in the images. The work presented in this chapter was

published in ’An Approach to Identifying Classifiable Regions of an Image taken by

Autonomous Robots in Structural Environments, Robotics and Computer-Integrated

Manufacturing’ (refer to Section 1.5.1, point 2) and ’Image Segmentation for Surface

Material-type Classification using 3D Geometry Information, International Conference

on Information and Automation’ (refer to Section 1.5.2, point 4)

5.1 Algorithm Overview

Figure 5.1 shows the procedure to calculate a probability map for a classified image. The

preliminary processes of capturing RGB-D images and calculating the viewing distance

(dc) and the viewing angle (θc) for an RGB image have been presented in Chapter 3. For

a classifier trained with texture features to classify surface-types, a calibration process is

performed to calculate a set of parameter values (τn, τf , τθ, ω1, ω2). The calibration process

is performed for each surface-type, Mk, for k ∈ {1, . . . nt}, given nt number of surface-types.

Each surface-type in the training image dataset has a unique set of parameter values

(τnMk
, τfMk

, τθMk
, ω1Mk

, ω2Mk
). A unique set of parameter values is necessary for each

surface-type, given that the image capture conditions can affect the classifier differently.

For example, the classifier may be able to accurately classify surface-type 1 from images

collected at a viewing distance in a range of 300 mm to 1000 mm, while surface-type 2

can only be accurately classified in a range of 300 mm to 500 mm.

Once the set of parameter values has been identified for a surface-type, it can be used

to calculate the probability value of a pixel being the surface-type. Algorithm 2 shows
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the pseudocode for calculating the probability value of image pixels in a classified image.

For an image pixel classified as a surface-type class, the parameter values corresponding

to that surface-type class are selected and used in a function to calculate the probability

value. The process is repeated to calculate a probability value for all pixels in the image.

Calculate pixel’s 
viewing distance
 & viewing angle 

(Chapter 3)

Capture RGB-D image 
(Chapter 3)

Calculate the set of 
threshold parameter

values for each 
surface-type (Section 

5.2)

Depth 
image

Select the threshold values 
corresponding to the 

classified surface-type (Mk) 
for a pixel (Section 5.3)

Classification results of 
calibration RGB images

Probability map 
for a classified 

image

Texture-based classifier trained with an 
image dataset

RGB
image

Calibration RGB 
images

Classification result 
of RGB image

(classified image)

dc, , c,

n, f, , 1, 2

Calculate the probability of 
a pixel being the classified 
surface-type  (Section 5.3)

n , f   ,     , 1   , 2Mk Mk Mk Mk Mk

Figure 5.1: Algorithm to calculate a probability map of image pixels being a specific
surface-type
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Algorithm 2 Calculation of the probability value for each pixel in the classification result

Require: Parameter values of surface-types (τnMk
, τfMk

, τθMk
, ω1Mk

, ω2Mk
), and depth

information dci , θci

1: for pixel i = 1 to n in RGB-D image set {1, . . . n} do

2: if pixel i has a valid viewing angle θci then

3: Get Mk for pixel i from classification result of image

4: Pdci
= CalculateDistanceProbability(dci ,τnMk

, τfMk
,ω1Mk

)

5: Pθci
= CalculateAngleProbability(θci ,τθMk

,ω2Mk
)

6: Pdci ,θci
= Pdci

× Pθci

7: else

8: P dci ,θci
= null value

9: end if

10: end for

The following is a description of the functions used in the algorithm above:

• CalculateDistanceProbability(dci ,τnMk
, τfMk

,ω1Mk
) calculates the probability of a

pixel (at viewing distance, dc ) being a surface-type based on the formula provided

in Equation 5.17

• CalculateAngleProbability(θci ,τθMk
,ω2Mk

) calculates the probability of a pixel (at

viewing angle, θc) being a surface-type based on the formula provided in Equation

5.18

5.2 Image Capture Conditions

This section details the image capture conditions (viewing distance and viewing angle)

and image qualities (focus quality, spatial resolution and perspective distortion)

considered in the algorithm. The effect of image capture conditions on the texture

appearance (appearance of a surface as described by the visual texture) of a surface-type

in the images and the texture features extracted from these images are discussed. For

the purpose of this investigate, we have chosen to use the GLCM texture features
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including contrast, correlation, energy and homogeneity (Appendix B.1) to demonstrate

the effect of image capture conditions on textural appearance; GLCM texture features

have been used in previous literature to classify for different grades of rusting on steel

structures [13] [9]. From the discussion, image capture condition threshold parameters

are defined for each image quality including distance range for focus quality {Dn1 , Df1},
distance range for spatial resolution {Dn2 , Df2}, and viewing angle threshold for

perspective distortion τθ. The thresholds are used to describe the maximum change in

image capture conditions between a classified image and the training image dataset. The

thresholds are used to provide the means to assess: (a) the similarity in texture

appearance of a surface-type(s) in an image and the training image dataset; and (b)

whether the texture appearance of a surface-type in an image has altered to resemble

that of another surface-type in the training image dataset (i.e. the texture appearance of

out-of-focus blasted metal surface can appear similar to a timber surface). The threshold

parameters defined in this section are used in a function to calculate a pixel’s probability

of being a surface-type.

5.2.1 Focus Quality

Focus quality describes the acutance of an image region defined by geometrical optics,

including the plane of focus and the depth-of-field (DOF). Figure 5.2 shows the plane of

focus, which is the plane parallel to the image plane with ideal focus quality (i.e. maximum

acutance level permitted by the lens quality); and DOF, which is the region in front and

behind the plane of focus with acceptable focus quality. For texture-based classification,

the DOF range can be used to identify the surfaces in an image with acceptable focus

quality to extract texture features for accurate classification. The DOF range {Dn1 , Df1}
[99] is formulated with the following variables: lens focal length, Fc, lens f-number, δ, the

circle of confusion, ϕ, and the plane of focus-to-camera distance, dp, as:

Dn1 =
Fcdp

2

Fc
2 + δϕ(dp − Fc)

(5.1)

Df1 =
Fcdp

2

Fc
2 − δϕ(dp − Fc)

. (5.2)
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Plane of focus

Image plane

Depth-of-field

dp

Df Dn1 1

(distance from the camera at which objects are in focus)

Fc

Focal length

Figure 5.2: Plane of focus and depth-of-field diagram

The DOF range Equations 5.1 and 5.2 define the maximum and minimum viewing distances

for surface planes captured in an image to have the acceptable focus quality necessary for

texture-based classification. Figure 5.3a and Figure 5.3b show two scenarios where image

pixels will have acceptable focus quality. In both scenarios, the viewing distance, dc, of

image pixels corresponding to a surface plane are within the DOF range Dn1 to Df1 , as:

Dn1 ≤ dc ≤ Df1 (5.3)

Depth-of-
field Plane of 

focus

Df

Dn

Surface plane

d
c

Camera

1

1

Depth-of-
field Plane of 

focus

Df

Dn

dc

dc
1

1

(a) (b)

Figure 5.3: a) Ideal pixel surface position within the DOF range; b) Pixel surface
positions at the limits of the DOF range

The DOF range can vary from image to image due to optical adjustments made to the

lens focal length, Fc, lens f-number, δ, and the plane of focus-to-camera distance, dp.



Chapter 5. Algorithm for Classification Result Assessment 79

However, the circle of confusion, ϕ, is a fixed value; and in optical terms, it is the value

used to determine what is acceptable acutance in an image. It is set according to different

image formats. For texture-based classification, ϕ, can be used to describe the texture

acutance necessary for the extraction of texture features. The value of ϕ, is determined

for a texture-based classifier by using a set of calibration images. The calibration images

are captured with incrementally increasing plane of focus-to-camera distance (dp) from

the distance at which the camera is focused to, when capturing the training dataset (dt).

Classification is then performed on the calibration images and the results are examined

to identify the plane of focus-to-camera distance dp, where the classification accuracy falls

below a predetermined accuracy percentage. This value of dp, is taken as the maximum

viewing distance, Df1 , and a value for ϕ can be calculated using Equation 5.2 rewritten

as:

ϕ =
Fcdp

2 −Df1Fc
2

Df1δ(dp − Fc)
. (5.4)

It is to note that either Equation 5.1 or 5.2 can be used for the calculation of the circle of

confusion ϕ, and Equation 5.2 is arbitrarily selected for used.

5.2.2 Effect of Focus Quality on Texture Features

The texture features extracted from images with focus quality change are analysed using a

checkerboard image Ωt(u, v). Figure 5.4 shows the checkerboard image, where each black

or white square is 20×20 pixels.

Figure 5.4: Checkerboard image Ωt(u, v)
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A 2D Gaussian kernel g(u, v) is convolved with Ωt(u, v) to simulate the blurring effect

produced by focus quality changes [100]. The 2D Gaussian kernel is expressed as:

g(u, v) =
1

2πβg2
exp

−u2+v2

2βg2 (5.5)

where βg, is the variable that affects the amount of blur. A blurred image Ωb(u, v) is

produced as:

Ωb(u, v) = g(u, v) ∗ Ωt(u, v). (5.6)

Figure 5.5 shows 5 out of 11 Gaussian blurred images (1000×1000 pixels) produced by

using different values of βg (ranging from 0 to 10, at increments of 1) in Equation 5.6;

applied to the checkerboard image (Figure 5.4). The following steps are performed on

each of the 11 Gaussian blurred images: (1) Divide the image (1000×1000 pixels) into

25 equal samples of window size 200×200 pixels (window size is arbitrarily selected); (2)

Extract from each sample, GLCM texture features including contrast, correlation, energy

and homogeneity (Appendix B.1, GLCM texture features); (3) Plot the distribution of

feature values (contrast, correlation, energy and homogeneity) into separate box plots.

Figure 5.6 shows the box plots for each texture features. In each box plot diagram, the

vertical axis is the feature value for a particular texture feature, and each increment in the

horizontal axis corresponds with one of the Gaussian blurred image (11 in total). From

the box plot diagrams, it can be seen that the extracted texture feature values have a

small distribution range for each image but the values change across the images.

This also shows that the change in focus quality can affect the extracted texture feature

values. In order to identify if focus quality change has affected the texture features such

that they are inconsistent between an image and the training image dataset, the DOF

viewing distance threshold range can be used. It is assumed that for image pixels with

viewing distance dc, that are within the DOF viewing distance threshold range {Dn1 , Df1},
the effect of focus quality is minimal on texture features.
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Original image g = 3 g = 7g = 1 g = 10

Figure 5.5: Gaussian blurred images of the checkerboard
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Figure 5.6: Box plot diagrams of the texture feature distribution extracted from the
blurred images produced using different values of βg
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5.2.3 Spatial Resolution

Spatial resolution describes the number of pixels representing a surface area, i.e. pixels per

square millimetre (PPM). Spatial resolution will affect the selection of a window size (n×n

pixels) to extract texture features [101]. Therefore, when the window size is fixed, it is

necessary to assess the spatial resolution between an image and the training image dataset

(collected with a specific spatial resolution) to determine if the image can be accurately

classified. In order to assess if the spatial resolution between an image and the training

image dataset are different, the viewing distance (dc) can be used.

Spatial resolution can be expressed in terms of viewing distance (dc) by using a pinhole

camera model analogy, where the image pixels are perspective projected into 3D space.

Equations 5.7 and 5.8 are used to project an image pixel into the camera’s 3D coordinate

frame, where: iu and iv are the 2D coordinates of an image pixel, Ccu and Ccv are the

camera’s principle points, Fcu and Fcv are the focal lengths for the two axes of an image,

and zc, is the distance between the image plane and the surface point corresponding to an

image pixel.

xc = (iu − Ccu)×
zc
Fcu

(5.7)

yc = (iv − Ccv)×
zc
Fcv

. (5.8)

Assuming Fcu � Fcv and dc � zc, the surface area represented by an image pixel increases

in proportion to the square of the viewing distance dc. For example, substituting Fcu = 1,

Fcv = 1, (iu − Ccu) = 1, and (iv − Ccv) = 1, then (xc, yc) position of a pixel when

zc = 1, 2, 3, etc, is (1, 1), (2, 2), (3, 3) etc. Therefore, the surface area represented by each

pixel changes in proportion to the inverse square of the viewing distance dc (as shown in

Figure 5.7), and can be expressed as:

PPM ∝ 1

dc2
. (5.9)
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Figure 5.7: Example of pixel density on a surface relative to the viewing distance

For an image that is captured at a viewing distance dc, and where the training image

dataset is collected at a viewing distance dt, the spatial resolution is assumed identical

when dc = dt. A spatial resolution threshold range is defined, where Dn2 , is the minimal

viewing distance from the training image dataset dt, and Df2 , is the maximum viewing

distance from dt. An image with a viewing distance of dc, can be assessed to have similar

spatial resolution as the training image dataset, as:

Dn2 ≤ dc ≤ Df2 . (5.10)

The viewing distance range {Dn2 , Df2} for spatial resolution is determined by using a set of

calibration images. The calibration images are captured at various viewing distances (dc)

from the viewing distance used to collect the training image dataset (dt). Classification

is performed on the calibration images and the results are examined to identify the two

viewing distance values Dn2 and Df2 . From the two values, the one with the closer viewing

distance is taken as Dn2 and the further viewing distance is taken as Df2 . Within this

range {Dn2 , Df2}, the classification accuracy is above the predefined accuracy threshold.
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5.2.4 Effect of Spatial Resolution on Texture Features

The effect of changing spatial resolution on GLCM texture features is analysed by using

the texture pattern of a checkerboard, Ωt(u, v), shown in Figure 5.4. A scaling coefficient

(βs) is applied to both axes of the checkerboard image to produce images with different

spatial scales. The scaling of the pixels from the original image Ωt(u, v) into the scaled

image Ωt(u
′, v′) is expressed as:

u′ = ‖βsu‖ (5.11)

v′ = ‖βsv‖. (5.12)

When upscaling the checkerboard image, a nearest-neighbour interpolation algorithm is

applied to generate the values of the new pixels in the upscaled image. Figure 5.8 shows 5

out of the 11 (1000×1000 pixels) images generated using different scaling coefficient values

of βs, ranging from 0.5 to 1.5 at 0.1 increments. Texture features including contrast,

correlation, energy and homogeneity are extracted from each scaled image by dividing the

image into equal size samples of 200×200 pixels. Figure 5.9 shows the box plot diagrams of

value distribution of texture features extracted from the samples. In each box plot diagram,

the vertical axis shows the numerical value for the texture feature and the horizontal axis

shows the 11 scaled images. From the box plot diagrams, it can be seen that the value

distribution for the texture features changes across the different scaled images. This shows

that the change in spatial resolution simulated by scaling the texture pattern can affect the

consistency of the extracted texture features. Hence, it is necessary to identify if spatial

resolution has affected the consistency of texture features. It is noted that scaled image

6 has significantly higher energy and homogeneity values as can be observed from Figure

5.9, this is due to the size of each individual checkerboard black and white cells being

200×200 pixels; which matches with the sampling window size. As a result each sample

taken from scaled image 6 contains only black or white pixel values; which results in high

energy and homogeneity values.
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Original images = 0.5 s = 1.3s = 0.7 s = 1.5

Figure 5.8: Upscale and downscale images of the checkerboard image to simulate change
in spatial resolution when using a fixed pixel window size to extract texture features
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Figure 5.9: Box plot diagrams of the texture feature distribution extracted from the
scaled images produced using different values of βs
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5.2.5 Perspective Distortion

Perspective distortion describes the change in the textural appearance of a surface-type

as a result of the viewing angle at which the surface plane is captured by the camera.

Perspective distortion in an image can affect the consistency of the extracted texture

features, and thus adversely affect the classification accuracy. Therefore, it is necessary to

assess the perspective distortion in order to identify its effect on texture features.

Minimal perspective distortion is achieved when the viewing direction of the camera is

perpendicular to the surface plane. Therefore, to ensure that perspective distortion is

minimised in the training dataset, the viewing angle selected to collect the training image

dataset, θt, is zero; θc is the viewing angle used to capture subsequent testing images.

Figure 5.10a illustrates the viewing angle θt = 0◦ that is selected to collect the training

image dataset, and also the viewing angle threshold (τθ) which defines the maximum

viewing angle that can be used to collect subsequent testing images. Testing images

collected within the viewing angle threshold (τθ) are assumed to have negligible perspective

distortion, thus are classifiable by a classifier trained with the training dataset. Figure

5.10b shows an example which satisfies this condition, where the viewing angle used to

collect the test image is θc, is within the viewing angle threshold τθ, as:

θc ≤ τθ (5.13)

In order to determine a suitable value for the viewing angle threshold, τθ, which is

dependent on the surface-type(s) to be classified, a set of calibration images is used. The

calibration images are captured by positioning the camera at various viewing angles, θc.

Classification is performed on the calibration images using the trained classifier and the

results are examined to identify the viewing angle at which the classification accuracy

falls below an acceptable (predetermined) accuracy percentage. This value is taken as

the viewing angle threshold τθ.
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Surface

Camera

Image plane t = 0º

Camera

Image plane

c

c  

(a) (b)

Figure 5.10: a) The camera viewing angle used to capture the training dataset, θt, and
the viewing angle threshold, τθ; b) An example of a camera viewing angle that is within

the viewing angle threshold

5.2.6 Effect of Perspective Distortion on Texture Features

The texture feature values extracted from images with perspective distortion are also

analysed using the texture pattern from a checkerboard image Ωt(u, v) shown in Figure

5.4. Given the simple texture pattern being used (straight parallel lines and homogeneous),

perspective distortion caused by viewing angle is sufficiently approximated using a shearing

transformation [102]; for more complex patterns planar homography can be applied [103].

A shearing coefficient, βk, is applied to both axes of Ωt(u, v) to generate a distorted image

Ωt(u
′, v′), as:

u′ = ‖u+ βky‖ (5.14)

v′ = ‖βku+ v‖. (5.15)

Figure 5.11 shows 5 out of 10 (1000×1000 pixels) distorted images produced with

different values of βk, ranging from 0.1 to 0.5 at 0.05 increments. Texture features

including contrast, correlation, energy and homogeneity are extracted from each

distorted image by dividing the image into equal size samples of 200×200 pixels. Figure

5.12 shows the box plot diagrams of the value distribution for each texture feature. In

each box plot diagram, the vertical axis shows the numerical value for the texture feature

and the horizontal axis shows the 10 distorted images. From the box plot diagrams, it
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can be seen that the extracted texture feature values have a small distribution range, but

the values are inconsistent across the distorted images. Therefore, it is necessary to

assess if perspective distortion has affected the consistency of texture features. The

viewing angle threshold (τθ) can be used.

k k k k

Figure 5.11: Distorted images of the checkerboard
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Figure 5.12: Box plot diagrams of the texture feature distribution extracted from the
distorted images produced using different values of βk

5.3 Calculation of a Probability Map

From Section 5.2, image capture condition parameters have been defined, including the

viewing distance range for DOF {Dn1 ,Df1}, spatial resolution {Dn2 ,Df2}, and the viewing

angle threshold for perspective distortion (τθ). This section discusses the use of these

parameters to calculate the probability for an image pixel being a surface-type. The

process of using the function to generate a probability map for a classified image is also

detailed. The probability map contains the probability of pixels in an RGB image being a
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specific surface-type and can be used to weight the accuracy of classification results when

texture features are used to classify.

Combining Equations 5.3 and 5.10, we have:

τn ≤ dc ≤ τf (5.16)

where τn = max{Dn1 , Dn2}, and τf = min{Df1 , Df2}. Given the viewing distance range

(τn, τf ), the probability value (Pdc) of an image pixel being a surface-type is calculated

using a sigmoid function as:

Pdc =
1

1 + ew1(τn−dc)
− 1

1 + ew1(τf−dc)
(5.17)

where ω1 is a weighting coefficient to define the sigmoid curve around the viewing distance

range (τn, τf ). The transition slope between low and high probability values is affected by

the threshold value selected for ω1. Figure 5.13 shows an example of the sigmoid function

used to calculate the probability value, Pdc , for an image pixel.

f

Probability
value

Viewing distance
of pixel dc

n

Figure 5.13: Sigmoid function to calculate the probability value of a pixel based on the
viewing distance

For perspective distortion given the viewing angle threshold τθ, the probability value Pθc

of an image pixel being a surface-type is calculated using a sigmoid function as:

Pθc = 1− 1

1 + ew2(τθ−θc)
(5.18)
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where ω2 is a weighting coefficient to define the sigmoid curve around the viewing angle

threshold τθ. The transition slope between low and high probability values is affected by

the threshold value selected for ω2. Figure 5.14 shows an example of the sigmoid function

used to calculate the probability value Pθc .

Probability
value

Viewing angle 
of pixel c

Figure 5.14: Sigmoid function to calculate the probability value of a pixel based on the
viewing angle

From the probability values calculated based on viewing distance (Pdc) and viewing angle

(Pθc) the combined probability value, Pdc,θc , is calculated as:

Pdc,θc = Pdc × Pθc . (5.19)

The value of Pdc,θc is used to represent the probability of a pixel being a surface-type

based on image capture conditions. Figure 5.15 shows a visualisation of the calculated

probability value Pdc,θc with respect to image capture conditions in viewing distance dc,

and viewing angle θc.
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Pd , 

dc

c

c c

n f

Figure 5.15: Visualisation of the probability value Pdc,θc with image capture condition
changes in viewing distance dc, and viewing angle θc

Each surface-type in a training image dataset requires calibration to produce a unique

set of parameter values for calculating the probability value (τnMk
, τfMk

, τθMk
, ω1Mk

,

ω2Mk
). This is necessary given that the classification accuracy of each surface-type can be

affected differently by image capture condition changes. Figure 5.16 shows the procedure

of generating a probability map for a classified image.

For a pixel in an image classified as surface-type Mk, the threshold parameter values for

the surface-type (τnMk
, τfMk

, τθMk
, ω1Mk

, ω2Mk
) are used to calculate the probability value.

This process is repeated until all the pixels in an image are assessed, and a probability

map is generated.

The generated probability map can be used to identify regions in a classified image that

have a high probability of being accurately classified. Additionally, a probability map can

be used to provide a weighting factor for the classification result when combining into a

surface-type map (detailed in Section 3.4.1 and demonstrated in Chapter 6).
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Pd  ,    =   Pd × P

Get the classified surface-type 
(Mk) for the ith pixel from the 

classification results

Probability map of 
surface-type in the
classified image

Classification result of an
image (1...n), n = number of 

pixels in image

Apply the parameter values 
of the surface-type Mk

n , f   ,     , 1   , 2Mk Mk Mk Mk Mk

i = 1

i  n?

Calculate Pd
(Eq 5.17)

ci
Calculate  P

(Eq 5.18)
ci

ci ci ci ci

i = i + 1

yes

no

Figure 5.16: Procedure for calculating the probability value of the classification results
of an image

5.4 Experiments

Three experiments are conducted in this chapter to verify the algorithm. The first

experiment is performed to experimentally verify the effect of image capture conditions

on the consistency of extracted texture features. The second experiment is performed to

demonstrate the effect of image capture conditions on the classification accuracy. The
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third experiment is performed to demonstrate the use of probability maps to identify

regions in images that have a higher probability of being accurately classified.

5.4.1 Experiment 1: Effect of Image Capture Conditions on Texture

Features

In this experiment, the effect of image capture condition in terms of image qualities

(focus quality, spatial resolution and perspective distortion) on texture feature extraction

is experimentally verified. Figure 5.17 shows the camera setup and the surface-type in

this experiment. The images of the surface are captured under different image capture

conditions to produce three sets of 1280×960 pixels images (Cropped to 960×960 pixels

square images). Each set of images has changes to one image quality, i.e. image set one

contains images with only focus distance changes. Texture features including contrast,

correlation, energy and homogeneity are extracted from each image by dividing into 100

samples (manually selected size), therefore a sampling window size of 96×96 pixels is

used. The value distribution of the extracted texture features are visualised and

statistically compared using box plot diagrams. The experiment performed on the three

sets of images is outlined separately as follows.

(1) Figure 5.18 illustrates the image capture conditions used to collect a set of images

with focus distance changes. The camera is set at a fixed viewing distance dc = 100 mm,

and a viewing angle θc = 0◦ to the surface plane. The plane of focus, dp, is changed

in 10 mm increments between a range of 30 mm to 170 mm by adjusting the focus on

the camera lens, where an image is captured at each increment. Figure 5.19 shows the

captured set of images with focus distance changes, and Figure 5.20 shows the box plot

diagrams of the value distribution of each texture feature. In each box plot diagram, the

vertical axis shows the numerical value for the texture feature and the horizontal axis

shows the 15 captured images with plane of focus changes ranging from 30 mm to 170 mm

corresponding to images 1–15.

From the box plot diagrams shown in Figure 5.20, it can be seen that the extracted

texture features are inconsistent across the images, in which the most observable results

are demonstrated for the texture features of energy and correlation. For the texture feature
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of energy, the mean value for image 1 is 0.0224 and the mean for image 15 is 0.3600.

A two-sample t-test (i.e. using Matlab function ttest2) between image 1 and image 15

supports the hypothesis that the distributions come from populations with unequal means.

Similarly, for the texture feature of correlation, the mean for image 1 is 0.9680 and the

mean for image 15 is 0.5648; and the result of a two-sample t-test between image 1 and

image 15 also supports the hypothesis that the two distributions come from populations

with unequal means. In summary, given the change in focus distance produced by varying

the plane of focus (dp) in the range of 30 mm to 170 mm, inconsistencies are observed for

the extracted texture features across the set of images.

Figure 5.17: Experimental setup of camera to capture images of a surface-type

Surface

Camera

dc = 100 mm  

dp=170 mm

dp=100 mm

dp=30 mm

Figure 5.18: Image capture conditions used to capture images with focus distance
changes
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dp=170 mm dp=160 mm dp=150 mm dp=140 mm dp=130 mm

dp=120 mm dp=110 mm dp=100 mm dp=90 mm dp=80 mm

dp=70 mm dp=60 mm dp=50 mm dp=40 mm dp=30 mm

Figure 5.19: Set of images with focus distance changes
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Figure 5.20: Box plot diagrams of the texture features distribution extracted from
the set of images with focus distance change: horizontal axis shows the images (1–15)
corresponding with plane of focus change from (30 mm to 170 mm); and vertical axis

shows the values for each texture feature

(2) Figure 5.21 illustrates the image capture conditions used to collect a set of images
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with spatial resolution changes. The viewing distance, dc, and plane of focus, dp, are

concurrently changed in 10 mm increments between the range of 30 mm to 170 mm from

the surface plane, and the viewing angle θc, is kept constant at 0
◦. An image is captured

at each increment and Figure 5.22 shows the set of images with spatial resolution changes.

Figure 5.23 shows the box plot diagrams of the value distribution of each texture feature.

In each box plot diagram, the vertical axis shows the numerical value for the texture

feature and the horizontal axis shows the 15 captured images with plane of focus change

from 30 mm to 170 mm corresponding to images 1–15.

From the box plot diagrams shown in Figure 5.23, it can be seen that the extracted texture

features have similar value distribution ranges across the images. The texture features of

contrast, energy and homogeneity are observed to have a similar value distribution across

the images. For example, for the texture feature of contrast, image 1 has a mean value of

5.7561 and a standard deviation of 1.5976, and image 15 has a mean value of 7.8408 and

a standard deviation of 4.2553. However, a two-sample t-test between image 1 and image

15 supports the hypothesis that the distributions come from populations with unequal

means. Furthermore, the most significant change in value distribution between images

is observed for the texture feature of correlation. For example, the mean and standard

deviation for image 1 are 0.8838 and 0.0311 respectively, and for image 15, these values

are 0.9530 and 0.176, respectively. A two-sample t-test between image 1 and image 15 also

supports the hypothesis that the distributions come from populations with unequal means.

In summary, given the change in spatial resolution produced by concurrently varying the

viewing distance dc, and the plane of focus dp, between the range of 30 mm to 170 mm, it is

shown that the value distribution of the extracted texture features appear similar but are

statistically inconsistent across the set of images. The value distribution appear similar

given that the viewing distance range 30 mm to 170 mm produces insignificant change in

spatial scaling/resolution for a window size of 96×96 pixels; the selected window size is

manually verified to be able to encapsulate the fractal of the surface-type’s texture pattern

for all tested spatial resolutions.
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Surface

Camera

c = 0º
dp = 30 mm, dc = 30 mm

dp = 100 mm, dc = 100 mm

dp = 170 mm, dc = 170 mm

Figure 5.21: Image capture conditions used to capture images with spatial resolution
changes

dp, dc=170 mm dp, dc=160 mm dp, dc=150 mm dp, dc=140 mm dp, dc=130 mm

dp, dc=120 mm dp, dc=110 mm dp, dc=100 mm dp, dc=90 mm dp, dc=80 mm

dp, dc=70 mm dp, dc=60 mm dp, dc=50 mm dp, dc=40 mm dp, dc=30 mm

Figure 5.22: Set of images with spatial resolution changes
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Figure 5.23: Box plot diagrams of the texture feature distribution extracted from the
set of images with spatial resolution change: horizontal axis shows the images (1–15)
corresponding with viewing distance and plane of focus change from (30–170 mm); and

vertical axis shows the texture feature values

(3) Figure 5.24 illustrates the image capture conditions used to collect a set of images with

perspective distortion. The camera is set with a constant viewing distance of dc = 100 mm,

and plane of focus of dp = 100 mm. The viewing angle, θc, is changed at 15◦ increments

between the range of 0◦ and 60◦, and an image is captured at each increment. Figure 5.25

shows the captured set of images with perspective distortion and Figure 5.26 shows the box

plot diagrams of the value distribution of each texture feature. In each box plot diagram,

the vertical axis shows the numerical value for the texture feature and the horizontal axis

shows images 1–5 corresponding with the viewing angle change from 0◦ to 60◦.

From the box plot diagrams shown in Figure 5.26, it can be seen that the texture value

distributions are inconsistent across the images. The texture distribution ranges are

observed to increase from image 1 through to image 5 for all texture features including

contrast, correlation, homogeneity and energy. For example, for the texture feature of
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contrast, image 1 has mean and standard deviation values of 17.3258 and 2.7177,

respectively; and image 5 has mean and standard deviation values of 12.3026 and

10.8181, respectively. The standard deviation of image 5 is approximately three times

greater than image 1. A two-sample t-test between image 1 and image 5 supports the

hypothesis that the distributions come from populations with unequal means. Overall,

given the pattern skewing caused by a change of viewing distance θc between the range

of 0◦ to 60◦, it is shown that the value distributions of the extracted textures are

inconsistent. It is noted that the change in viewing angle also results in viewing distance

changes in the images. Hence, the cumulative effect of focus distance change and spatial

resolution can also present in this set of images.

Surface

Camera

c= 60º

c= 45º

c= 0º
c=15º

c= 30º

Figure 5.24: Image capture conditions used to capture images with perspective
distortion

c = 0 c = 15 c = 30 c = 45 c = 60

Figure 5.25: Set of images with perspective distortion
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Figure 5.26: Box plot diagrams of the texture feature distribution extracted from the set
of images with perspective distortion: horizontal axis shows the images 1–5 corresponding
with viewing angle change from 0◦ to 60◦; and vertical axis shows the values for each

texture feature

Experiment 1 has demonstrated the effects of focus, spatial resolution and perspective

distortion on the consistency of extracted texture feature values. It has been shown that

the change in image capture conditions has resulted in the extracted texture features

having distribution range changes. This can adversely affect the accuracy of surface-type

classification, particularly when the range of feature values for the surface-type overlaps

with other surface-type classes.

5.4.2 Experiment 2: Effect of Image Capture Conditions on

Surface-type Classification

In this experiment, a classifier trained with an image dataset that contains three

surface-types captured under known image capture conditions. The classifier is applied
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to classify images of the same surface-types captured under different image capture

conditions. Experiment 1 has shown that the changed image capture conditions can

affect the consistency of the extracted texture features for a surface-type. The objective

of this experiment is to verify the effect of image capture conditions on classification

accuracy.

Figure 5.27 shows the environment used to collect the three surface-types, including blasted

metal surface, rusted metal surface and timber surface. Figure 5.28 shows the different

image capture conditions used to capture a set of images for each surface-type. The viewing

distance, dc, is changed in 50 mm increments between the range of 50 mm to 300 mm from

the surface plane. At each viewing distance, the viewing angle (θc) is also changed in 10◦

increments between the range of 0◦ to 50◦, resulting in a total of 36 images (1280×960

pixels) captured for each surface-type. For this experiment, the camera’s optical settings

are fixed and set with a plane of focus dp = 100 mm. Figure 5.29 shows the set of images

captured for the blasted metal surface, Figure 5.30 shows the set of images captured for

the rusted metal surface, and Figure 5.31 shows the set of images captured for the timber

surface.

Rusted surface Blasted surface Timber surface

Figure 5.27: Experimental environment to capture surface-type images with different
image capture conditions
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Surface

40º

30º

10º
20º

Camera

50 mm

100 mm

150 mm

200 mm

250 mm

300 mm

Image capture 
conditions for 

training dataset

50º

0º
Change of c

Change of dc

Figure 5.28: Image capture conditions used to capture a set of images for each
surface-type in the experimental environment

0° 50°40°30°20°10°

50 mm

100 mm

150 mm

200 mm

250 mm

300 mm

Figure 5.29: Set of images of blasted metal surface captured with changes in image
capture conditions
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0° 50°40°30°20°10°

50 mm

100 mm

150 mm

200 mm

250 mm

300 mm

Figure 5.30: Set of images of rusted metal surface captured with changes in image
capture conditions

0° 50°40°30°20°10°

50 mm

100 mm

150 mm

200 mm

250 mm

300 mm

Figure 5.31: Set of images of timber surface captured with changes in image capture
conditions

Each image is cropped into 960×960 pixels, and is divided into samples with a window

size of 96×96 pixels to extract texture features of contrast, correlation, energy and
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homogeneity. The four features are used to train a classifier that will be used to classify

the three surface-types in this experiment. Figure 5.32 shows the images for each

surface-type collected at dc = 100 mm and θc = 0◦, which are used as the training image

dataset. A naive Bayes classifier (Appendix C) is trained using the training image

dataset. In addition, a distance-based outlier reject option [104] is used to reject samples

with features that are outliers to the training image dataset. All the images in Figure

5.29–5.31, including the training images (Figure 5.32), are classified using the trained

naive Bayes classifier. Tables 5.1, 5.2 and 5.3 show the classification accuracy for the

images, where the grey cells highlight the classification result of the training images.

Blasted surface Rusted surface Timber surface

Figure 5.32: The images used in the training dataset with image capture conditions of
dc = 100 mm and θc = 0◦

Table 5.1: Classification accuracy for blasted metal surface images

Classification Accuracy (%) of blasted metal surface images

0◦ 10◦ 20◦ 30◦ 40◦ 50◦

50 mm 73 27 24 14 0 1

100 mm 73 43 10 18 19 0

150 mm 41 37 23 13 13 1

200 mm 31 35 20 7 7 4

250 mm 6 8 26 23 9 8

300 mm 8 4 8 11 6 7
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Table 5.2: Classification accuracy for rusted metal surface images

Classification Accuracy (%) of rusted metal surface images

0◦ 10◦ 20◦ 30◦ 40◦ 50◦

50 mm 12 0 0 0 0 0

100 mm 100 99 70 14 6 5

150 mm 100 100 100 100 100 93

200 mm 100 100 100 100 100 100

250 mm 100 100 100 100 100 78

300 mm 100 100 99 100 96 65

Table 5.3: Classification accuracy for timber surface images

Classification Accuracy (%) of timber surface images

0◦ 10◦ 20◦ 30◦ 40◦ 50◦

50 mm 22 9 35 0 0 0

100 mm 94 87 77 13 0 0

150 mm 74 72 71 70 48 0

200 mm 76 82 60 50 14 0

250 mm 46 59 45 21 0 0

300 mm 14 0 0 0 0 0
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Figure 5.33: Visualisation of the classification accuracy for the surface-type images
corresponding to the results presented in Tables 5.1, 5.2 and 5.3

Overall, it can be seen from Tables 5.1, 5.2 and 5.3 that the classification accuracy is

affected by the change in image capture conditions. The highest classification accuracy is

observed for the images used as the training dataset (dc = 100 mm, θc = 0◦) for all the three

surface-type classes: blasted surface achieved 73% accuracy, rusted surface achieved 100%

accuracy and timber surface achieved 94% accuracy. The lowest classification accuracy

is observed for blasted metal surface (7%) and timber surface (0%) with image capture

conditions dc = 300 mm and θc = 50◦, and for rusted metal surface (0%) with image

capture conditions dc = 50 mm and θc = 50◦. In general, the classification results show

that accuracy decreases when the image capture conditions deviates from the training

image dataset’s, which is (dt = 100 mm, θt = 0◦). It is interesting to observe that the

classification result for the rusted surface showed high accuracy for the majority of images.

This could be because the texture features clearly distinguish the rusted surface amongst

the three surface-types, such that the classifier can classify rusted surfaces accurately

across the tested range of image capture conditions.

Figure 5.33 shows a visualisation of the classification accuracy plotted against viewing

distance and viewing angle, generated using the classification results presented in the

tables. From the visualisation, it can be observed that the change in classification

accuracy relative to image capture conditions is different for each surface-type. This
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difference in classification accuracy can be attributed to the capability of the chosen

texture features to distinguish between the three surface-types. As observed, the features

(contrast, correlation, energy and homogeneity) can clearly distinguish a rusted metal

surface and have resulted in high classification accuracy for a large range of image

capture conditions. The lowest accuracy was observed for the blasted metal surface with

only a small range of image capture conditions with high classification accuracy. This

can be observed from the visualisation shown in Figure 5.33. It is noted that the change

in classification accuracy relative to image capture conditions is used in the algorithm to

determine the parameter values (τn, τf , τθ, ω1, ω2) for each surface-type.

5.4.3 Experiment 3: Identification of Accurately Classified Image

Region(s)

In this experiment, images are captured from a scene that contains multiple surface

planes and are classified to identify for a timber surface-type. A probability map is

produced to identify the regions in an image (called ”segmented regions”) that have a

higher probability of being the timber surface-type. The classification accuracy of an

image and the segmented regions only are compared. This experiment demonstrates the

use of probability maps to identify regions in images that have a high probability of

being accurately classified.

Figure 5.34 shows the RGB-D sensor package used in this experiment (Point Grey Firefly

and PMD nano), and the complex scene that contains multiple surface planes from which

RGB-D images are collected and classified for the timber surface-type. The PMD nano

(ToF based depth camera) is used for capturing the depth images in this experiment; given

the close proximity with the surfaces (around 300mm) to capture the texture details. The

Kinect, which was used in Chapter 4 is not suitable in this situation given that it has

a minimum range of 500mm. The PMD nano used an integration time in the range

of 20 to 200 micro seconds for this experiment. Figure 5.35 shows the 600×600 pixels

training image for the timber surface-type collected with image capture conditions of

viewing distance dt = 200 mm and viewing angle θt = 0◦. The camera’s optical settings

are fixed for this experiment with dp = 200 mm.
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RGB-D sensor 
package

Timber surface-type
RGB camera

Depth camera

Figure 5.34: The RGB-D sensor package used in this experiment and the experiment
scene with multiple surface planes

20 × 20 pixel window size

Figure 5.35: 600×600 pixels training image of the timber surface-type

The training image is divided into samples of 20×20 pixels window size to extract texture

features including contrast, correlation, energy and homogeneity. A single-class naive

Bayes classifier is trained with the training samples and is used to classify the timber

surface-type. In this experiment, test images are divided into samples of 20×20 pixels

window size that are classified by the trained classifier. Figure 5.36 shows (first row) four

test images that are captured from the scene (shown in Figure 5.34) with multiple surface

planes, and the surface-type classification results for the four test images (second row).

The classification results shown in the second row are in binary, where white represents
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the samples classified as timber surface-type and black represents the samples classified as

non-timber surface-types.

The probability map for the timber surface-type is generated using the parameter values:

τn = 150 mm, τf = 250 mm, τθ = 20◦, ω1 = 1, and ω2 = 1. Figure 5.36 shows (third

row) the regions (white) in each test image with a high probability of being accurately

classified as a surface-type. The white regions are identified by thresholding for pixels with

probability value Pdc,θc Pdc , that are greater than 0.9. It is noted that the threshold value

is selected manually from a calibration process in which a set of training samples with a

range of probability values are classified; all samples with probability value greater that

0.9 are shown to be accurately classified and thus 0.9 is selected as the threshold value.
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Figure 5.36: Row 1 test images; row 2 classification results of test images; row 3
segmented image regions with a high probability of being accurately classified

The test image and the segmented regions of the test image are compared in terms of

their accuracies. Tables 5.4, 5.5, 5.6, and 5.7 are the confusion matrices for each of the

four test images. Each table contains two separate confusion matrices: one for complete
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classification result of the test image, and the other for classification result of the

segmented regions only. The rows in a confusion matrix shows the classified class and the

columns show the actual class. From the confusion matrices, it can be observed that the

classification accuracy of the segmented regions, are higher than the original test images.

Classification accuracy is observed to be higher for image 1 by 19.91%, image 2 by

20.94%, image 3 by 9.21%, and image 4 by 17.87%. The higher classification accuracy for

the segmented region only, can be attributed to lower misclassification of the timber

surface-type.

In conclusion, this experiment showed the use of a probability map to assess regions in an

image that have a high probability of being accurate. The identified regions are shown to

have lower misclassification and, consequently, have a higher accuracy in comparison to

the classification result of the test image.

Table 5.4: Confusion matrices for test image 1

Confusion matrices: Test image 1

Classification result of test image

Surface-types Timber Non-timber

Timber 672105 10657

Non-timber 245876 300143

Accuracy: 79.12%

Classification result of segmented regions only

Surface-types Timber Non-timber

Timber 530840 10657

Non-timber 0 0

Accuracy: 99.03%
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Table 5.5: Confusion matrices for test image 2

Confusion matrices: Test image 2

Classification result of test image

Surface-types Timber Non-timber

Timber 648907 65124

Non-timber 232401 278059

Accuracy: 75.70%

Classification result of segmented regions only

Surface-types Timber Non-timber

Timber 552287 15880

Non-timber 3334 192

Accuracy: 96.64%

Table 5.6: Confusion matrices for test image 3

Confusion matrices: Test image 3

Classification result of test image

Surface-types Timber Non-timber

Timber 853759 17578

Non-timber 140287 219062

Accuracy: 87.17%

Classification result of segmented regions only

Surface-types Timber Non-timber

Timber 821012 15816

Non-timber 15665 17618

Accuracy: 96.38%
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Table 5.7: Confusion matrices for test image 4

Confusion matrices: Test image 4

Classification result of test image

Surface-types Timber Non-timber

Timber 579420 11740

Non-timber 322823 316659

Accuracy: 72.81%

Classification result of segmented regions only

Surface-types Timber Non-timber

Timber 551599 10606

Non-timber 52616 63850

Accuracy: 90.68%

5.5 Discussion

An algorithm that uses image capture conditions to calculate a probability map has been

presented in this chapter. The probability map can be used to identify the accurately

classified regions in images. The image capture conditions and image qualities (focus

quality, spatial resolution and perspective distortion) has been discussed and analysed to

define a set of threshold parameters. The threshold parameters were used to calculate the

probability values for an image pixel being a surface-type. The function can be used to

produce a probability map for the classification results of an image classified using texture

features.

Experiments were conducted in a laboratory environment to verify the effect of image

capture conditions on extracted texture feature values, the effect of image capture

conditions on classification accuracy, and the use of probability maps to assess for image

regions that are accurate. Currently, the probability map is used assess for regions in an

image that has a high probability of being accurate. However, it is possible to use the

probability map in such a way as to provide the most probable surface(s) of a pixel to
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provide additional information for accuracy assessment ( Chapter 7 provides a more

detail discussion). Furthermore, in this experiment a focusable lens was selected over a

pinhole-like lens to provide better low-light performance (bigger maximum aperture) and

sharpness across a wider range of viewing distances. In future, an investigation will be

conducted to investigate the suitability of using a pinhole lens or a focusable lens

depending on the target environment. Additionally, further future work will look into

autonomously selecting the parameter values for an environment and investigates the

failure modes if the values are not selected properly.

From the algorithm presented in chapter 4, colour features can be extracted to produce

per-pixel classification result of a test image, and from the algorithm present in this

chapter, a probability map is produced for an image classified based on texture features.

The next chapter will present a case study on a robotic system that uses the algorithms

presents in chapters 4 and 5 to build a surface-type map in 3D.



Chapter 6

Case Study

This chapter presents a case study of the surface-type classification approach detailed

in Chapter 3 that uses the algorithms presented in Chapter 4 and Chapter 5. In this

case study, a laboratory experimental environment is set up to enable an RGB-D sensor

package mounted onto the end-effector of a robot manipulator to collect images from

different viewpoints. The RGB-D images collected from each viewpoint are classified

using classifiers trained with colour-based and texture-based features to produce two sets

of classification results. From the colour-based and texture-based classification results, a

combined surface-type map in 3D can be generated.

6.1 Experiment Setup

6.1.1 Setup of RGB-D Sensor Package

The experiments are conducted using an RGB-D sensor package with an attached light

source, as shown in Figure 6.1. The sensor package consists of a Microsoft Kinect, a Point

Grey Firefly 1.2 megapixel camera with a 6 mm lens (RGB camera), and a single LED

light source. It is noted that a single LED light source was selected in this sensor package

over the previous LED array light source used in Chapter 4 due to design constraints of

size and weight on end-effector attachment. The single LED light source and the LED

115
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array light source can both be assumed as a point light source; albeit having different

illumination intensities. In the RGB-D sensor package, the IR camera (depth camera)

from the Kinect is used to provide a 640×480 pixels depth image with a field of view of

57◦ horizontally and 43◦ vertically. The Firefly camera is used to provide a 1280×960

pixels RGB image with a field of view of 56◦ horizontally and 43◦ vertically (the field of

view specifications are for a 1/2-inch sensor size, therefore they are slightly narrower for

the Firefly’s 1/3-inch sensor size at approximately 43◦ horizontally and 33◦ vertically).

Kinect’s IR camera 
(depth camera)

Firefly camera 
(RGB camera)

LED light source

Figure 6.1: RGB-D sensor package: Firefly camera, Kinect, and LED light source

6.1.2 Robot Manipulator

The robot manipulator used in this case study is the Denso VM-6083 manipulator arm with

six degrees-of-freedom. Figure 6.2 shows the Denso VM-6083 robot manipulator where

the RGB-D sensor package can be attached to the end-effector. In this configuration, it is

possible to precisely position the RGB-D sensor package at a wide range of viewpoints in

a complex environment. The Denavit and Hartenberg (D-H) parameters and limitations

of the Denso VM-6083 are provided in Table 6.1. Using the D-H parameters, a kinematic

model can be generated to represent the position of the end-effector relative to the robot

manipulator base for a given set of joint angles.
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Table 6.1: Denavit and Hartenberg [15] parameters, joint types and limits for the Denso
VM-6083 manipulator arm

Link Twist αi Length a d Offset State at Zero Min (deg) Max (deg)

1 −π
2 0.18 0.475 0 -170 170

2 0 0.385 0 −π
2 -90 135

3 π
2 -0.1 0 π

2 -80 165
4 −π

2 0 0.445 0 -185 185
5 π

2 0 0 0 -120 120
6 0 0 0.084 0 -360 360

Figure 6.2: Denso VM-6083 robot manipulator

6.1.3 Calibration

Three different calibration processes are performed to identify the coordinate frame

transformation between: (1) the Firefly camera and the IR camera; (2) the IR camera

and the robot manipulator end-effector (hand-eye); and (3) the Firefly camera and LED

light source. The transformations are used in the surface-type classification approach to

generate depth information in the RGB camera coordinate frame for the algorithms and

to produce the surface-type map in the robot base coordinate frame. The three

calibration processes are outlined below.

(1) Camera calibration is performed between the Firefly camera and the Kinect’s IR

camera to enable perspective projection of the depth image produced by the IR camera

into 3D points in space, and then transformation and perspective projection into the
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Firefly camera coordinate frame. In this case study, the cameras are calibrated using the

Matlab toolbox provided here http://www.vision.caltech.edu/bouguetj/calib_doc/

based on the checkerboard method [86]. Figure 6.3 shows the 25 checkerboard images

used for calibration and Figure 6.4 shows the calibrated extrinsic transformation between

the camera coordinate frames that will be used to transform the 3D points and to

generate depth information in the Firefly camera coordinate frame, and Table 6.2 shows

the calibrated extrinsic parameter values.

IR camera Firefly camera

Figure 6.3: 25 checkerboard images captured by the IR camera (left) and the Firefly
camera (right) for intrinsic and extrinsic calibration

Figure 6.4: Extrinsic transformation between the Firefly camera and the IR camera
coordinate frames



Chapter 6. Case Study 119

Table 6.2: Calibration parameter values for IR to Firefly camera

Rotation vector (Radian) -0.03674 -0.02362 0.00861

Rotation reprojection error (±) 0.00412 0.00496 0.00023

Translation vector (Radian) 3.48739 77.41613 1.42057

Translation reprojection error 0.11491 0.12650 0.71923

(2) Hand-eye calibration of the IR camera coordinate frame to the robot manipulator base

coordinate frame is performed to enable the transformation of the collected RGB-D images

into the robot base frame. The hand-eye calibration method used is presented in Appendix

A, and Figure 6.5 shows the calibration IR image and depth image produced from the IR

camera. Figure 6.6 shows the robot manipulator in the pose used to capture the calibration

image and a simulation of the robot manipulator with a point cloud transformed into

the robot base frame using the IR camera-to-robot base transformation produced from

hand-eye calibration.

IR image Depth image

Calibration points

Figure 6.5: IR and depth images used to identify the calibration points to perform
hand-eye calibration
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IR camera-to-robot base 
transform

Point cloud 

Figure 6.6: Real robot manipulator and a simulation of the robot manipulator with a
point cloud transformed into the robot base coordinate frame

(3) Light source calibration is performed to identify the position of the LED light source

relative to the Firefly camera coordinate frame. Figure 6.7 shows the calibration image, the

binary image of the specular region, and the image showing only the diffused region. The

specular and diffused regions are segmented by using threshold values of τd = τs = 255×0.7.

Figure 6.8 shows the light source position identified using the centroid of the specular region

(specular point) in the calibration image and a reflectance model.

Calibration image Binary specular region Diffused reflectance region 

Figure 6.7: Calibration images used to identify the light source position relative to the
Firefly camera coordinate frame
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Light source position

Camera coordinate frame

Colour point cloud

Specular point

Figure 6.8: The calibration image perspective projected into 3D and light source
position relative to the Firefly camera coordinate frame

6.1.4 Method to Evaluate the Accuracy of Classification Results using

a Surface-type Map

To evaluate the accuracy of surface-type classification results, a benchmark surface-type

map can be used. A benchmark surface-type map is produced by manually labelling the

surface-types in the RGB-D image. Each pixel from the labelled RGB image is

perspective projected into 3D, and the labelled surface-type of pixels stored in voxels (μ

= 10 mm) to produce a benchmark surface-type map, as detailed in Section 3.4. In this

way, a benchmark surface-type map that shows a surface area can be used to evaluate

the accuracy of surface-type maps produced from colour and texture-based classification

results. Figure 6.9 shows the setup of the environment; and Figure 6.10 shows a

benchmark surface-type map of the environment (left), which can be used to evaluate the
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accuracy of the surface-type map produced from classification results (right). Accuracy

evaluation is performed by comparing the voxels in corresponding 3D locations between

the benchmark and the evaluated surface-type maps. A voxel in the evaluated

surface-type map is considered as accurate if the most probable surface-type stored in

the voxel matches with the benchmark map’s labelled surface-type. The overall accuracy

of an evaluated surface-type map is taken as the total number of voxels evaluated to be

accurate divided by the total number of voxels in the evaluated surface-type map.

Rusted metal surface

Painted metal surface

Timber surface

Cardboard surface

Figure 6.9: Setup of the environment to generate a benchmark surface-type map
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Benchmark surface-type map Surface-type map from 
classification result

Rusted metal surface

Painted metal surface

Timber surface

Cardboard surface

Figure 6.10: Benchmark surface-type map, and surface-type map generated from
classification results

6.1.5 Training Surface-type Classifiers

In this case study, a training image dataset is collected using a viewing distance

dc = 650 mm, viewing angle θc = 0◦ from the surface plane, a fixed camera

optical/exposure setting (dp = 650 mm) for the Firefly camera, and a constant

illumination provided by the LED light source. Figure 6.11 shows the four original

1280×960 pixels images collected by the Firefly camera of each surface-type (rusted

metal beam, painted metal surface, timber and cardboard), and Figure 6.12 shows the

40×700 pixels regions cropped from each image to form the training image dataset used

to train surface-type classifiers (four-class classifiers). It is noted that the cardboard

surface-type has not been previously investigated in prior chapters.

Colour and texture features are extracted from the training image dataset to train

surface-type classifiers for the purpose of comparison. For this case study, SVM is

selected as the classifier to produce the classification results given the higher accuracy it

is able to achieve over the naive Bayes classifier; this is determined by a preliminary

comparison of the two classifiers using the training image dataset. Three sets of colour
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features are extracted to train three separate multi-class SVM classifiers, which include

RGB, a*b*, and Kd ∈ (Kd,R,Kd,G,Kd,B). The camera radiometric function parameters

selected to extract Kd are a2 = 0, a1 = 1, a0 = 0, based on a set of calibration images

captured at distance dl (650–1300 mm). For texture, features are extracted using local

binary patterns (LBP) with a sample window size of 20×20 pixels (Appendix B) to train

a multi-class SVM classifier. The LBP has been selected to provide robustness against

non-uniform illumination in the images [105] and also against rotation variance [106].

Given the low dimension of the colour features, the radial basis function (RBF) kernel is

selected for the SVM classifier; and for the texture features that have a higher dimension,

a linear kernel is selected for the SVM classifier. Cross-validation is performed on the

training image dataset to estimate the performance of the surface-type classifiers trained

with the different features. Cross-validations [107] including resubstitution and hold-out

(two-fold validation) are performed to evaluate the four classifiers (three colour-based and

one texture-based). Hold-out validation is performed by dividing the extracted training

samples into two equal size subsets (subset 1 and subset 2) to be used as both training

and testing data.

Timber surface
training image

Painted metal surface
training image

Rusted metal surface
training image

Cardboard surface
training image

Figure 6.11: 1280×960 pixels training images collected for each surface-type
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Timber surface

Painted metal surface

Rusted metal surface

Cardboard surface

700 pixels
40

pixels

20
pixels

20 pixels

Figure 6.12: Training image dataset used to extract features to train surface-type
classifiers

Tables 6.3 to 6.6 show the results of cross-validation for each of the four classifiers

trained with different features. The diagonal cells (top-bottom) show the classification

accuracy from resubstitution validation, and the remaining cells show the classification

accuracy for hold-out validation when using all, subset 1 and subset 2 in different

combinations of training and testing. From the results, it can be seen that the three

colour-based classifiers have similar accuracy performance and the texture-based

classifier has the highest resubstitution classification accuracy. However, hold-out

validation shows that the texture-based classifier may be overfitting the model to the

training data, given the lower accuracy observed in comparison to the other classifiers.

For the case study, the four classifiers trained with all the samples extracted from the

training image dataset will be used.
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Table 6.3: Classification accuracy for SVM classifier trained with RGB features

Classification accuracy (%) for RGB features

Training

All Subset 1 Subset 2

Testing

All 99.34 91.95 93.83

Subset 1 98.95 99.56 87.76

Subset 2 99.74 84.33 99.91

Table 6.4: Classification accuracy for SVM classifier trained with a*b* features

Classification accuracy (%) for a*b* features

Training

All Subset 1 Subset 2

Testing

All 97.59 95.79 96.25

Subset 1 96.44 97.52 93.32

Subset 2 98.75 94.05 99.18

Table 6.5: Classification accuracy for SVM classifier trained with Kd features

Classification accuracy (%) for Kd features

Training

All Subset 1 Subset 2

Testing

All 96.95 95.42 96.21

Subset 1 95.71 96.36 93.82

Subset 2 98.19 94.49 98.60
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Table 6.6: Classification accuracy for SVM classifier trained with LBP features

Classification accuracy (%) for LBP features

Training

All Subset 1 Subset 2

Testing

All 100 82.86 80.36

Subset 1 100 100 60.71

Subset 2 100 65.71 100

6.2 Experiment 1: Surface-type Classification with Viewing

Distance Change

Experiment 1 demonstrates the surface-type classification approach when using the robot

manipulator to position the RGB-D sensor package that maintains consistent viewing angle

to the surface. Shown in Figure 6.13 is the experiment setup that contains surface-types

including a rusted metal beam, painted metal surface, timber and cardboard. Figure 6.13

also shows the difference in illumination condition on the surfaces, provided by the ambient

lighting of the laboratory (left) and only the LED light source (right). The image set is

collected under the illumination conditions provided by only using the LED light source.

Robot manipulator

RGB-D sensor package

Painted metal surface

Rusted metal surface

Timber surface

Cardboard surface

Ambient lighting Lighting provided by light source

Robot manipulator 
movements

Figure 6.13: Experiment 1 setup of the laboratory environment



Chapter 6. Case Study 128

Figure 6.14 shows a set of 16 images collected from the environment by positioning the

sensor package at different viewpoints using the robot manipulator. The camera

exposure/optical settings remains unchanged from the training image dataset (from

Section 6.1.5). Images 1–5 shown in Figure 6.14 are collected using the same viewing

distance and viewing angle as the training image dataset (dc = 650 mm, θc = 0◦). Only

the observed part of the surface changes in images 15 (random positions; rotation and

translation were not recorded), which has resulted in an image occluding a surface-type

(i.e. image 1 is missing the timber surface). Images 6–16 in the set are collected at

increasing viewing distances away from the surface plane while maintaining the viewing

angle (θc = 0◦). The robot manipulator is used to position the RGB-D sensor package at

50 mm viewing distance increments for images 6–16, resulting in a final viewing distance

of 1300 mm for image 16 from the surface plane.

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16.

Figure 6.14: Images collected of the environment

Features including RGB, a*b*, Kd and LBP are extracted from each image using the

same conditions that are used in Section 6.1.5 for training the classifiers. The four

classifiers trained with the training image dataset in Section 6.1.5 are applied to classify

the images. Figure 6.15 shows classification results produced by the classifier trained



Chapter 6. Case Study 129

with RGB features, Figure 6.16 shows the classification results produced by the classifier

trained with a*b* features, Figure 6.17 shows the classification the results produced by

the classifier trained with Kd features, and Figure 6.18 shows the classification results

produced by the classifier trained with LBP texture features. Figure 6.19 shows the

visualisation of the probability maps produced for the texture-based classification results

(from Figure 6.18). The probability maps are produced using the parameters

τn = 500 mm, τf = 800 mm, τθ = 30◦ , ω1 = 1, ω2 = 1, for all the surface-types.

Combined classification results are produced by combining the colour (Kd, Figure 6.17) and

texture (LBP, Figure 6.18) classification results. For each image, the classification results

for Kd and LBP, and a probability map are used to produce a combined surface-type

map (Section 3.4.1). Figure 6.20 shows the combined classification results and Figure 6.21

shows the surface-type maps for Image 1, of Kd, LBP and the combined classification

result.

Figure 6.15: Classification results using classifier trained with RGB features: Timber
surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and

cardboard is red
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Figure 6.16: Classification results using classifier trained with a*b* features: Timber
surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and

cardboard is red

Figure 6.17: Classification results using classifier trained with Kd features: Timber
surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and

cardboard is red
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Figure 6.18: Classification results using classifier trained with LBP features: Timber
surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and

cardboard is red

0 1

Figure 6.19: Probability maps for texture-based classification results
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Figure 6.20: Classification results by combining Kd and LBP classification results:
Timber surface is dark blue, painted metal surface is sky blue, rusted metal surface is

yellow and cardboard is red

Image 1:Kd Image 1:LBP Image 1:Combined

Figure 6.21: Image 1 surface-type maps generated using classification results from Kd,
LBP and Combined: Timber surface is dark blue, painted metal surface is sky blue, rusted

metal surface is yellow and cardboard is red

The overall accuracy of the classification result for each image is evaluated by comparing

against a manually labelled ground truth of the image. In the experiment, this is
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performed by converting into surface-type maps and then comparing against a

benchmark surface-type map produced for this experiment (example shown in 6.10 and

explained in Section 6.1.4). Figure 6.22 shows a column chart of the classification

accuracy for each image. The horizontal axis shows the 16 images, and the vertical axis

shows the accuracy percentage achieved by each set of features. From the chart, it can

be observed that the classification produced using Kd features has the highest accuracy

when compared with the classification produced using RGB and a*b* colour features for

all 16 images. Please refer to Appendix E.2 for more details on the classification results

of each surface-type; presented using confusion matrices.

Examining the classification accuracy for the images 1–5 which have the same image

capture conditions as the training image dataset, RGB-based classification achieved

accuracies between 42.30% and 52.9%, a*b*-based classification achieved accuracies

between 44.21% and 56.19%, and Kd-based classification achieved accuracies between

57.89% and 66.55%. For images 6–16, where the viewing distance changes, RGB-based

classification achieved accuracies between 2.69% and 30.82%, a*b*-based achieved

accuracies between 2.70% and 33.15%, and Kd-based classification achieved accuracies

between 22.24% and 64.98%. The results show that Kd features in comparison to RGB

and a*b* can produce higher classification accuracy for both images with the same image

capture conditions as the training image dataset, and for images with various

illumination conditions.

For the texture-based classification using LBP features, higher accuracies were achieved

for images 1–5 in comparison with the Kd-based classification. However, when the

camera viewing distance is changed, the accuracy of the LBP-based classification fell

below the Kd-based classification. For images 1–5, LBP-based classification achieved

accuracies between 58.89% and 72.17%; and for images 6–16 between 12% and 66.07%.

For the combined results, which use the Kd-based and LBP-based classification results,

classification accuracy was achieved in the range of 58.47% to 67.77% for images 1–5,

and 22.24% to 65.37% for images 6–16. The combined classification results demonstrated

improved accuracy over the Kd-based classification for images 1–8, and were equal in
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accuracy for images 9–16. When compared against the LBP-based classification, the

combined classification results demonstrated improved accuracy for images 2, 3 and 7–16.

In summary, this experiment has demonstrated the use of Kd to improve colour-based

classification accuracy of images captured by an RGB-D sensor package positioned by the

robot manipulator. In addition, this experiment demonstrated the use of Kd-based and

LBP-based classification results with a probability map to produce combined classification

results with improved accuracies.
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Figure 6.22: Classification accuracy for each viewpoint using the classifiers trained with
different features

6.3 Experiment 2: Surface-type Classification with Viewing

Distance and Viewing Angle Change

Experiment 2 demonstrates the surface-type classification approach when using the robot

manipulator to position the RGB-D sensor package with viewing distance and viewing

angle changes. Figure 6.23 shows the sweeping motion used to position the RGB-D sensor

package from viewpoint 1 to viewpoint 6, used to collect images of surface-types including

a rusted metal beam, painted metal surface, timber and cardboard. It is noted that the

rotation motion used in this case study differs from the motion used to position the RGB

camera in Chapter 5 (Experiment 2, rotated around the cameras optical axis). This is

because the RGB-D sensor package in this case study has multiple cameras, and thus

multiple optical centres also exist. Therefore instead of arbitrarily choosing one cameras

optical axis to rotate around, rotation is performed using the last robot joint. Figure
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6.24 shows the six images collected at position intervals between and including viewpoint

1 and viewpoint 6. The camera exposure/optical settings remain unchanged from the

settings used to collect the training image dataset. Image 1 corresponding to viewpoint

1 is collected at a viewing distance dc = 650 mm and viewing angle to surface θc = 0◦.

From viewpoint 1, the angle of the 5th joint is changed in 10◦ increments and an image is

captured at each increment with the final position being viewpoint 6 that is used to collect

image 6. The collected images have changes to both viewing distance and angle.

Painted metal surface

Rusted metal surface

Timber surface Cardboard surface

Viewpoint 1
Viewpoint 6

Figure 6.23: Experiment 2 setup of the laboratory environment

1. 2. 3.

4. 5. 6.

Figure 6.24: Images collected of the environment

Similar to Experiment 1, features including RGB, a*b*, Kd and LBP are extracted from

each image. The four classifiers trained with the training image dataset from Section 6.1.5
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are used to classify each of the images. Figure 6.25 shows the RGB-based classification

results, Figure 6.26 shows the a*b*-based classification results, Figure 6.27 shows the

Kd-based classification results, and Figure 6.28 shows the LBP-based classification results.

Figure 6.29 shows the visualisation of the probability maps produced for the LBP-based

classification results.

Combined classification results are produced by combining the colour (Kd, Figure 6.27) and

texture (LBP, Figure 6.28) classification results. For each image, the classification results

for Kd and LBP, and a probability map are used to produce a combined surface-type

map. Figure 6.30 shows the combined classification results and Figure 6.31 shows the

surface-type maps for Kd, LBP and the combined classification results of image 1. It is

to note that images 5 and 6 exhibits depth sensor noise and this is observable in Figure

6.25 to Figure 6.30. This noise appears as speckle points with gaps of no data on top half

of the two images; this is a characteristic of the Kinect sensor when no depth reading is

returned for a surface point.

Figure 6.25: Classification results using classifier trained with RGB features: Timber
surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and

cardboard is red
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Figure 6.26: Classification results using classifier trained with a*b* features: Timber
surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and

cardboard is red

Figure 6.27: Classification results using classifier trained with Kd features: Timber
surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and

cardboard is red
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Figure 6.28: Classification results using classifier trained with LBP features: Timber
surface is dark blue, painted metal surface is sky blue, rusted metal surface is yellow and

cardboard is red

0 1

Figure 6.29: Probability maps for texture-based classification results
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Figure 6.30: Classification results produced by combining Kd and LBP classification
results: Timber surface is dark blue, painted metal surface is sky blue, rusted metal

surface is yellow and cardboard is red

Image 1:Kd Image 1:LBP Image 1:Combined

Figure 6.31: Image 1 surface-type maps generated using classification results from Kd,
LBP and Combined: Timber surface is dark blue, painted metal surface is sky blue, rusted

metal surface is yellow and cardboard is red

The accuracy of the classification results are also evaluated by converting them into

surface-type maps such that they can be compared against a benchmark surface-type

map. Figure 6.32 shows a column chart of the classification accuracy of each image.

Please refer to Appendix E.3 for more details on the classification results of each

surface-type; presented using confusion matrices. The horizontal axis shows the six

images, and the vertical axis shows the accuracy percentage achieved for each set of

features. From the chart, it can be observed that the classification produced using Kd

features has the highest accuracy when compared against RGB and a*b* colour
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classification for all six images. The results show that Kd features in comparison to RGB

and a*b* can produce higher classification accuracy for the images.

Examining the colour-based classification of the images, RGB-based classification

achieved accuracies between the range of 1.48% to 28.75%, a*b*-based classification

achieved accuracies between 1.48% and 33.43%, and Kd-based classification achieved

accuracies between 1.50% and 78.15%. The results indicate that Kd features extracted

from images with various illumination conditions can produce higher accuracy in

comparison with RGB and a*b*. Examining the texture-based classification of the

images, LBP-based classification achieved accuracies between 3.11% and 74.37%; and

examining the combined classification results of Kd and LBP, an accuracy range of

1.50% to 78.40% was achieved. The results indicate that the combined classification

results improved or were equal in accuracy to the Kd-based classification. When

compared against the LBP-based classification, the combined results showed improved

accuracy for image 1, but lower accuracies for the remaining images. This is because the

LBP-based results had low weighting in the contribution to produce the combined

classification results for images 3 to 6 due to the low weighting values provided by the

probability maps (Figure 6.29).

In summary, this experiment has demonstrated the use of Kd to improve colour-based

classification of images captured by an RGB-D sensor package positioned by the robot

manipulator. In addition, this experiment demonstrated the use of a probability map

to combine the classification result from an LBP-based classification with a Kd-based

classification. The combined classification results showed improved or equal accuracy to

the Kd-based classification and image 1 for LBP-based classification.
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Figure 6.32: Classification accuracy for each viewpoint using the classifiers trained with
different features

6.4 Discussion

The case study has demonstrated the surface-type classification approach using an RGB-D

sensor package mounted to the end-effector of a robot manipulator. Two experiments were

performed to demonstrate surface-type classification when the robot manipulator is used

to execute different types of movements. Experiment 1 showed the use of movements

where the priority was to position the RGB-D sensor package with linear movements such

that a constant viewing angle is maintained. This movement option resulted in large

changes in robot poses and is suitable when there are no obstacles in the environment for

collision. Experiment 2 showed the use of a sweeping movement by moving a single joint

to position the RGB-D sensor package. The images contained surfaces with changes to

both viewing distance and viewing angle. This movement option can be used when the

robot manipulator is at the reach limits or when there is an obstacle.

It was also observed that due to the training image dataset being collected by cropping

from the centre region of each image (Figure 6.11), the illumination fall-off in the corners

of the images has not been provided in the training image dataset. Hence, all the images

classified in Experiments 1 and 2 showed high misclassification for the corner edges. To

enable practical use of the approach, a more extensive training image dataset will need to

be collected and evaluated, and an additional restriction will also need to be placed on the

viewing distance and viewing angle. This is because the light intensity will eventually be
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too low for classification, and the selected reflectance model is appropriate for viewing angle

of incidences below 60◦ [108]. For future work, analysis will be performed to determine

the relation between illumination fall-off observed in the corners of the images and poor

classification results. Furthermore, future work will extend into analysing the factors of

illumination fall-off, including a cameras vignetting and the light fall-off characteristics of

the selected light source. In this way it is possible to design an improved sensor package

which has minimal illumination fall-off at the edge of the images; for the specified operating

viewing distance and angle range at which data will be captured from.



Chapter 7

Conclusions

This thesis has presented an approach to classify surface-types in a complex structural

environment under various illumination conditions. Two algorithms have been developed:

(a) a colour feature extraction algorithm that can improve classification accuracy of an

image under various illumination conditions; and (b) an algorithm to generate a probability

map that can be used to assess classification results. The two algorithms have been

used in the surface-type classification approach to produce colour-based and texture-based

classification results that are combined and represented in a surface-type map in 3D.

7.1 Summary of Contributions

7.1.1 A Surface-type Classification Approach using RGB-D Images

The presented approach to classify surface-types using RGB-D images provides a

solution to classify a complex environment under various illumination conditions. The

approach combines the use of a vision-based classification method with the addition of

depth information to improve the accuracy of surface-type classification. The approach

also proposes the use of a robot manipulator as the means to position an RGB-D sensor

package in complex environments in order to collect RGB-D images at different

observation viewpoints. In this way, surface-type classification results can be combined

143
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by using the 3D position of the pixel in a global frame (robot base coordinate frame).

Consequently, an awareness of the surrounding environment can be incrementally built

up by making observations from different viewpoints and then combining the information

gained from the viewpoints into a global surface-type map.

7.1.2 An Algorithm for Colour Feature Extraction

An algorithm that uses an RGB-D image and a modified reflectance model has been

presented to extract colour features that can be used to classify surface-types in images

captured under various illumination conditions. The existing Torrance-Sparrow reflectance

model has been selected and modified with a camera radiometric function to derive for the

colour features. The algorithm estimates the relative distance and angle between a point on

a surface and the light source. Using the estimated position information and a reflectance

model, a set of diffused reflectance values are calculated for each RGB image pixel. These

values can be used as colour features to classify surface-types. It was demonstrated that the

extracted features showed improvements in surface-type classification over existing colour

conversion approaches including the CIELab L*a*b colour-space. An existing classifier

(SVM) was utilised to compare the different feature sets.

7.1.3 An Algorithm for Classification Result Assessment

An algorithm for calculating a probability map to assess the classification results

produced by a texture-based classifier has been presented. This algorithm can be used

for images that are captured in a complex structural environment under various image

capture conditions (viewing distance and viewing angle), such that the appearance of a

surface-type can vary texturally from image to image. The probability map contains the

probability of pixels in an RGB image being a specific surface-type and can be used to

assess the classification results of an RGB image classified using texture features. The

probability value is calculated based on the difference in image capture conditions

between an image pixel and the training image dataset. The probability map can be

applied to identify the regions in an image that have a high probability of being

accurately classified, and can be used to provide a weighting factor when combining



Chapter 7. Conclusions 145

texture-based classification results into a surface-type map. Existing techniques for

extracting texture features including GLCM (Chapter 5) and LBP (Chapter 6), and

classification tools Naive Bayes (Chapter 5) and SVM (Chapter 6) have been used to

demonstrate the outcomes in the algorithm.

7.1.4 Practical Contribution

The thesis has implemented the surface-type classification approach on a robotic system

designed for steel bridge maintenance. The robotic system consists of a six

degrees-of-freedom Denso VM-6083 robot manipulator with an RGB-D sensor package

mounted to the end-effector. The RGB-D sensor package setup consists of a Point Grey

Firefly RGB camera, a Microsoft Kinect and a light source. Experiments have been

conducted to explore an environment for surface-types. Different types of robot

manipulator movements were used to collect the RGB-D images for surface-type

classification. The performance of the surface-type classification approach was evaluated

by comparing the classification results generated using different colour features (RGB,

a*b*, Kd) and texture features (LBP). It is important to highlight that various existing

programming libraries and software packages have been used to develop the propose

approach and do not form part of the contribution. The following is a list of the key

softwares and libraries that have been used:

1. Matlab functions (including function to convert from RGB to CIELab colour space)

2. Photoshop for resizing, scaling, and simulated light function

3. OpenNI library and mex functions for Matlab https://github.com/OpenNI/OpenNI

4. LIBSVM www.csie.ntu.edu.tw/~cjlin/libsvm

5. Camera calibration http://www.vision.caltech.edu/bouguetj/calib_doc/
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7.2 Discussion of Limitations

The application of a vision-based system to inspect surfaces in a structurally complex 3D

environment is one of the challenges in robotics research. This thesis has addressed the

challenging issues of classifying surface-types in a structurally complex environment under

various illumination conditions. However, to fully realise a machine vision system capable

of operating in a harsh environment, such as in bridge maintenance, the following issues

need to be further addressed:

• The presented colour feature extraction algorithm is currently limited to planar

surfaces with Lambertian reflectance that can be illuminated using a light source and

captured using an RGB camera. Surface-types that may not be classified correctly by

this presented algorithm include transparent surfaces, highly reflective surfaces and

non-reflective surfaces, because the diffused reflectance values may not be extracted.

However, the lack of diffused reflectance off a surface-type can be used as a feature to

increase the types of surface-types that are currently classifiable. In addition, the

specular reflectance component of an image is another potential feature that can be

used to extract information on surface-types and needs to be further investigated.

• Calculation of viewing distance and viewing angle for complex shaped surfaces in a

field environment is a challenging task when using RGB-D images. The current

generation of RGB-D cameras based on structured-light (Kinect, Xtion, Primesense)

and ToF (Kinect2, PMD Nano) are all capable of providing dense point cloud

representation of surfaces. However, the point cloud can be noisy, especially in an

environment such as a steel bridge grit-blasting environment. For example, the PMD

Nano ToF sensor used in Chapter 5 (also applicable to active stereo vision sensors) can

suffer from multi-path interference depending on the viewing distance and viewing

angle of the sensor to a surface in the environment; thus usable for only a limited

viewing distance and viewing angle range that has been tested to produce good depth

readings. As a result, it is difficult to calculate the viewing distance and viewing angle

for each RGB pixel as required by the two algorithms developed. A potential strategy

to overcome this limitation is to use a priori knowledge about the surface geometry in

the sensed environment. Given a priori knowledge, it is possible to fit template
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surfaces to the point cloud. By using the point cloud to associate a surface shape (i.e.

from a library of CAD shapes) to the position and orientation in the environment, a

noise-less geometry of the surface can be produced. From the noise-less geometry of

the surface, it is possible to calculate the viewing distance and viewing angle for pixels

captured of that surface.

• The use of the RGB-D information to re-render texture on surfaces as if it were

captured at specific image capture conditions is another possibility for texture-based

classification. In work such as [56], the idea of re-rendering the texture of a

surface-type as if it was captured at a specific viewing distance and angle has been

suggested. Given the quality of RGB-D images produced by the current generation of

sensors, it is possible to modify the texture appearance of a surface-type to match it

with the training image dataset, such that classification accuracy can be improved.

However, a limitation of re-rendering surfaces, which can address the issue of spatial

scaling/resolution and perspective distortion, is that it assumes all the surfaces that

appear in an image are in focus. Surfaces in an image that do not originally have focus

quality (i.e. out-of-focus) will not benefit from re-rendering. Therefore, the probability

map produced by the algorithm in Chapter 5, which considers focus quality, can be

applied to determine whether re-rendering the texture appearance of a surface will

improve classification accuracy.

• The current use of a probability map is to assess if the surface-type of each pixel has

been classified accurately. However, the current probability map provides a conservative

probability value of a pixel being a specific surface-type. For example, the threshold

range to calculate the probability value (based on viewing distance and viewing angle)

can be set to a smaller and more conservative range than the actual range, which

can be used to classify surface-types accurately. Therefore, classification results that

are actually accurate may be discarded given the selected threshold. Currently, the

probability map is used to provide an assessment of the classification results. Further

investigation will be necessary to examine how to use the probability map to assess

classification results for improved surface-type classification accuracy.

One possibility is to generate the probability map to provide probability values for each

pixel of being each surface-type. Then the most probable surface-type(s) for each pixel
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can be identified and used as additional information to make an assessment on whether

the classification result for a pixel is accurate. This can be further improved by capturing

the training image for surface-types at different image capture conditions (currently all

training images are captured with the same image capture conditions). For example, if

the training image for surface-type 1 is captured at a viewing distance of 100 mm, and

surface-type 2 at a viewing distance 200 mm, a probability map generated for an image

captured at viewing distance 100 mm can identify for each pixel that surface-type 1 is

most probable. The use of this most probable surface-type information can be combined

with the current use of a probability map to assess the classification result. This needs

to be investigated as part of future work.

• The optimal use of the combination of features (colour-based and texture-based) and

the machine learning algorithms, including the naive Bayes and SVM, have not been

explored in this thesis. It is understood that the selected classifiers require parameter

tuning to maximise accuracy. Parameter tuning such as pixel window size selection,

feature reduction, dataset normalisation, and kernel selection, can all be performed to

improve accuracy. However, for the presented algorithms, the selected classifiers were

used to demonstrate the relative accuracy improvement gained from using different

features. Therefore, parameter tuning of the classifier has not been a primary focus in

this research.

7.3 Future Work

Based on the research of this thesis, a number of future works have been identified. These

areas are beyond the scope of this current thesis, but it is hoped that these topics will

inspire future work in this interesting area of field robotics.

• At the current stage, the computational performance of the approach when implemented

in robotic grit-blasting in a steel bridge has not been evaluated. As part of future work

suitable hardware for a small form-factor sensor package and processing unit will be

selected, fitted to a grit-blasting robot, and computational performance tests will be

conducted to determine whether the approach meets the online inspection challenge.
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• It is currently challenging to calculate accurate surface normals for points on non-planar

surfaces given the clutter of the scene and sensor noise. Therefore, potential future

work of surface template matching to improve the accuracy of the viewing distance and

viewing angle for each pixel is possible.

• A robot manipulator can be used to position the sensor package in various positions,

which is very useful in complex environments. It is also possible to implement 3D point

matching algorithms to identify the coordinate frame of the RGB-D sensor package

relative to a global frame. Given an application environment suitable for 3D point

matching algorithms, it is possible to implement the surface-type classification approach

in a portable manner without the need for a robot manipulator.

• In terms of improving the time-efficiency of the approach, it is possible to investigate

a viewpoint selection algorithm that can reduce the number of observations required

to explore an environment for surface-types. Provided with a geometric map of the

environment prior to surface-type exploration and the means to position the sensor

package at exact positions and orientations, it is possible to generate a minimal number

of viewpoints that can be used to completely inspect an environment for surface-types.

• Future work for bridge maintenance applications should extend this approach to address

the issues of dust and vibration, where grit-blasting creates a dust laden environment

and vehicle traffic on the top deck creates vibration on the steel structure.



Appendix A

IR Camera Hand-eye Calibration

Appendix A is an extract from the published works [84] on an automated and

cost-effective method of hand-eye calibrating an IR depth camera to the end-effector of a

robot manipulator. The work is additional to the approaches and algorithms presented

in this thesis that utilises a RGB-D sensor package mounted to a six degree-of-freedom

robot manipulator to collect RGB-D image. This Appendix is intended as supplementary

material for the setup of an IR depth camera to the end-effector of a robot manipulator

for surface-type classification.

A.1 Methodologies

There are three main assumptions that must be made to calibrate the hand-eye transform

eTs for an IR depth camera mounted to a robot manipulator. Firstly the model of the

robot manipulator must be accurate [109] [110]. Secondly, the intrinsic of the IR depth

camera must be known [111]. Finally, reflector discs must be installed such that the robot

base-to-object relationship can be established using the technique [112]. Figure A.1 shows

the overview of the hand-eye calibration approach. A set of robot manipulator poses are

selected so the IR depth camera on the end-effector is positioned and orientated to capture

IR images containing all the reflector discs. The pixels representing the reflector discs in

the IR image have significantly higher intensity values than the pixels of the surrounding

150
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environment, and thus the location in the image can be extracted. A 3D point cloud is

generated from the depth image and IR camera’s intrinsic model. Using the IR image and

3D point cloud, a feature point in 3D can be selected from the centre of each reflector disc

using a combined approach of image processing, plane fitting, and circle fitting techniques.

The camera-to-robot base transform oTs is calculated through feature correspondence by

matching the extracted feature points (in the camera frame) with the established ground

truth location (in the robot base frame) of the feature points. The hand-eye transform eTs

is then calculated using the camera-to-robot base transform and the end-effector-to-robot

base transform oTe(Q) is calculated from the model of the robot manipulator.

IR Range camera 
data capture

Identify the reflector 
discs in IR image

Identify 3D featuresIR image

Selected  
pixels

Calculate the oTs
transform 

Calculate eTs
transform

3D point cloud

Features
Transform

 matrix

Figure A.1: Overview of the process for hand-eye calibration

A.2 Feature Points Identification

3D features corresponding to reflector discs are extracted from the IR image and the

3D point cloud. The captured IR image of the reflector discs (shown in Figure A.2a)

is processed using a median filter to isolate the reflector disc pixel from the projected

IR pattern. An incrementally increasing filter kernel is used to remove the projected IR

pattern gradually from the IR image and terminates when only the reflector disc blobs

remain in the IR image. Region fill is then applied to the filtered image to remove the

holes in the reflector disc blobs and then the image is converted from greyscale to black &

white by thresholding the intensity values. The resulting binary image is shown in Figure

A.2b. Each of the pixel in the blobs are indexed to the corresponding 3D coordinate in

the point cloud to represent the reflector discs’ location in 3D as shown in Figure A.3a.

β = arccos(Vn • Vx) (A.1)
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γ = arccos(Vn • Vy) (A.2)

(a) (b)

Figure A.2: a) IR image; b) Binary image of reflector discs

Reflector disc datasets

Centre point of fitted circle
Fitted circle

(a) (b)

Figure A.3: a) Datasets of points in 3D representing the reflector discs; b) Circle fit on
a dataset

A geometric least-squares fitting of a circle [113] is applied to extract the centre point [Xc,

Yc], of the fitted circle as shown in Figure A.3b. Since the radius, r is known a priori, the

following error function is minimised to identify [Xc, Yc],

F (Xc, Yc) =

N∑
j=1

√
(Xj −Xc)2 + (Yj − Yc)2 − r (A.3)

The depth value of the centre point, Zc is calculated using the plane coefficients from the

dataset Dj and Xc, Yc,

Zc =
aXc + bYc + d

−c
(A.4)
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The 3D feature point is calculated for each reflector disc and used to match against the

known ground truth location of the reflector discs relative to the robot base, further

discussed in section A.3.

A.3 Camera-to-robot Transform through 3D Feature

Matching

In order to calculate the camera-to-robot base transform, oTs, a feature matching

technique is used to relate the IR depth camera frame with the robot base frame. The

robot base-to-object relationship describing the object in the robot base frame is

assumed to be static and in a position and orientation that can be easily measured, and

the camera-to-object relationship describing the object in the IR depth camera frame is

dynamic. As shown in Figure A.4a, the transform oTs describes the translation and

rotation required to match the object in the IR depth camera frame to the measured

location of the object in the robot base frame.

M number of reflector discs placed in a specific configuration on a flat plane are used to

determine the correspondence between the two coordinate frames. The location of the

reflector discs relative to the robot base is known accurately by moving an end-effector

pointer tool to the reflector disc positions as in [112] and the camera-to-object

relationship is obtained using the method described in Section A.2. Feature point

matching is performed using Singular Value Decomposition (SVD) [114] to find the

least-square fit of feature points in the IR depth camera frame, fi with the feature points

in robot base frame, f ′
i where i = 1, 2, ...M , using the equation

f ′
i =

oRsfi +
ots +Ni (A.5)

where oRs is the rotation matrix, ots is the translation vector and Ni the noise vector.

The least-square solution to oRs and
ots is taken as the camera-to-robot base homogeneous

transform oTs,

oTs =

⎡
⎣ oRs

ots

0 0 0 1

⎤
⎦ (A.6)
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A.4 Hand-Eye Transform and Point Cloud Registration

In order to register a point cloud from the IR depth camera frame to the robot base frame,

the hand-eye transform eTs is calculated. As shown in Figure A.4b, the hand-eye transform

is constant between the camera-to-robot base frame and the end-effector-to-robot base

frame for any given robot manipulator pose. Using the camera-to-robot base transform

oTs (Section A.3) and the end-effector-to-robot base transform oTe(Q) calculated from the

corresponding robot manipulator pose with joint angles, Q = [q1, q2, ...q6]
T using the D-H

model of the robot manipulator,

oTe(Q) =

6∏
i=1

i−1Ti(qi) (A.7)

the following expression is solved for the hand-eye transform.

eTs =
oTs × oTe(Q)−1 (A.8)

Using the calculated eTs, the registration of a point cloud Pk in the IR depth camera

frame to the robot base frame, P ′
k where k = 1, 2, ...N , is achieved by determining the

camera-to-robot base transform oTs(Q) for the end effector-to-robot base transform

oTe(Q), specific to a robot manipulator pose with joint angles, Q = [q1, q2, ...q6]
T ,

oTs(Q) = oTe(Q)× eTs (A.9)

where

[P ′
k,1] = [Pk, 1]× oTs(Q) (A.10)

It is noted that the vector of ones is the same length as the point cloud. The hand-eye

transform is used to register point clouds, from the IR depth camera frame into the robot

base frame. A rich geometry map of the environment can be constructed using a single

IR depth camera by moving the manipulator into different poses [7].
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Camera-to-robot base transform

End effector-to-robot base transform 

(a) (b)

Figure A.4: a) An IR depth camera attached to a robot manipulator observing the
calibration plate; b) Camera-to-robot base frame and end-effector-to-robot base frame

A.5 Limitations and Concluding Note

Currently the hand-eye calibration approach is limited by the viewing distance. Due to

intensity saturation of pixels in the IR image at close viewing distances, an accurate depth

reading of the reflector disc is not possible. Thus, the feature extraction scheme could be

modified to select 3D dataset points from the surface surrounding each reflector disc as

opposed to the surface on each reflector disc. The depth returns for pixels surrounding

each reflector disc does not suffer from intensity saturation; therefore feature extraction

should be possible for a closer viewing distances. A redesign of the calibration plate is

necessary to provide the surface plane around each reflector disc.
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Texture Features

B.1 Grey Level Co-occurrence Matrix

Grey Level Co-occurrence Matrix (GLCM) texture features [10] are used in this thesis

to demonstrate the effect of image capture condition changes on texture consistency and

surface-type classification accuracy. Comparative studies have demonstrated that GLCM

features can provide high classification accuracy results [71][115]. More specifically, GLCM

texture features for steel surface classification has been demonstrated in [9][70].

A GLCM is created based on a spatial relationship defined between a reference and

neighbour pixel, which can include the direction (i.e. 0◦, 45◦, 90◦) and the number of

offset pixels between the reference and neighbour. Given a spatial relationship between

pixels, the occurrence of different combinations of intensity levels between the compared

reference and neighbour pixels are tallied and recorded in the corresponding position of

the GLCM. The following GLCM features can be extracted: contrast, correlation, energy

and homogeneity.

Contrast is defined as the sum of square variances where u and v are the respective row and

column value of the matrix and D is the normalised co-occurrence value in each GLCM

element,

Contrast = Σu,v|u− v|2D(u, v) (B.1)
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a contrast value of 0 indicates a uniform image.

Correlation measures the linear dependency of grey levels between neighbouring pixels

where μu and μv are the GLCM column and row mean values, and σu and σv are the

GLCM column and row standard deviations. The correlation value indicates the quality

of the linear relationship, where a value of 1 indicates a perfectly correlated image,

Correlation = Σu,v
(u− μu)(v − μv)D(u, v)

σuσv
(B.2)

Energy is calculated as the sum of squared co-occurrence values, D. The energy value

indicates the textural uniformity observed from the repetition of pairs of pixel in the

image. An energy value of 1 indicates a constant image.

Energy = Σu,vD(u, v)2 (B.3)

Homogeneity is the inverse difference moment measuring the distribution closeness of

elements in the GLCM to the matrix diagonal. The weighting of values decreases

exponentially away from the diagonal of the matrix,

Homogeneity = Σu,v
D(u, v)

1 + |u− v|2 (B.4)

B.2 Local Binary Patterns

Local Binary Patterns (LBP) is a texture operator which labels the pixels of an image

by thresholding the neighbourhood of each pixel with the value of the centre pixel [47].

LBP has been demonstrated to be robust towards monotonic grey scale changes caused

by illumination variations [105][116], hence used in this thesis to provide texture features

to classify surface-types in images with non-uniformly illuminated surfaces

Figure B.1 shows how the LBP operator is applied by comparing a pixel to its eight

surrounding neighbour pixels and threshold labelling the comparison result as one if the
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pixel is greater than the neighbour’s value, and zero otherwise. The resulting set of labels

for the neighbour pixels are interpreted as an 8-bit binary number that can be converted

into a decimal value. The calculation of the decimal value for a pixel can be expressed as,

LBPP,R =
P−1∑
p=0

s(gp − gc)2
P (B.5)

where

s(x) =

⎧⎪⎨
⎪⎩
1 if x ≥ 0

0 if x < 0

(B.6)
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Figure B.1: The calculation of a decimal value for a pixel using the LBP operator

where gc, is the centre pixel and gp, are the neighbour pixels. For a sample window

size (e.g 20 × 20 pixels) selected to extract texture features, the LBP decimal value is

calculated for each pixel to compute a histogram showing the frequency of each LBP

decimal value occurring (8-bit = 256 possible LBP decimal values). The histogram can

be used as the feature vector to describe the texture in the sample window. In this thesis,

a histogram is produced that contains the frequency of 59 LBP decimal values (uniform

LBP, neighbours = 8, radius = 1, mapping = 8 [105]) and is used as the feature vector to

classify surface-types.
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Multi-class Surface-type Classifier

The following is a summary of the machine learning algorithms used to perform

surface-type classification including the naive Bayes classifier and the Support Vector

Machine (SVM) classifier. The naive Bayes classifier is selected to provide a simple

probabilistic approach to classify large feature vectors and the SVM is used to

demonstrate a powerful classification approach based on the Vapnik-Chervonenkis theory

[34].

C.1 Naive Bayes Classifier

A naive Bayes approach assumes feature independence, and an initial uniform probability

for all surface-type defined within the environment [117][118][119]. Given a particular

surface-type, Mk ε M where M contains all the surface-types for a given environment, the

probability that the surface-type is Mk is given by,

P (Mk|f) = P (f |Mk)P (Mk)

P (f)
(C.1)

The denominator in Equation (C.1) is invariant across all surface-types, and is considered

as a normalisation parameter so Equation (C.1) can be rewritten as,

P (Mk|f) ∝ P (f |Mk)P (Mk) (C.2)

159



Appendix C. Multi-class Surface-type Classifier 160

Feature independence is assumed for the surface-type features, fn. Thus, the classifier can

be expressed as,

P (Mk|f) ∝
n∏

t=1

P (ft|Mk)P (Mk) (C.3)

where P(ft|Mk) is the conditional probability describing the probability of the surface-type

feature, ft given the surface-type, Mk. The class prior, P(Mk) is defined to be uniform

across all the surface-type that exists in the environment.

The maximum a posteriori decision rule is applied for the selection of the most probable

hypothesis as the candidate class,

m = maxm(P (M = m|f)) (C.4)

Additionally, a reject option is applied to the candidate class to safeguard against

misclassification if the labelling confidence of the most probable hypothesis is low.

C.2 Support Vector Machines

The support vector machine (SVM) is a popular classifier and has been applied in

various image recognition tasks [13][120]. It has been shown to robustly perform

(two-class) classification performance using a limited training dataset. However, a

multi-class SVM classifier is complicated to formulate and can be intractable. To achieve

multi-class classification with SVM, the approach of combining several binary SVM

classifiers is used. Several approaches are available including; one-versus-all method

using winner-takes-all strategy (WTA-SVM), one-versus-one method using max-wins

voting (MWV-SVM), and error correcting output codes with pairwise coupling by

combining posterior probabilities of individual SVMs PWC-PSVM. An empirical study

[121] comparing the different approaches concludes that WTA-SVM and MWV-SVM are

competitive with no clear superiority, while PWC-PSVM consistently outperforms these

two methods. In this thesis, we have chosen to use an implementation of PWC-PSVM

described in [122] to perform classification of different surface-types in an image.
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Surface Preparation Guideline

D.1 Description

SSPC VIS2: Provides a method to evaluate the degree of rusting on painted steel (or iron)

surfaces. Particularly useful for evaluating rust on test panels or on localized areas of

structures. A scale and description of rust grades are given, and 27 full-colour photographs

and the corresponding black-and-white rust images illustrating the maximum percentage

of rusting allowed for each rust grade from rust grade 9 to rust grade 1 for three different

rust distributions are included. Published in 2000 by SSPC SSPC VIS5: This guide

contains a series of colour photographs that represent various conditions of unpainted

steel surfaces prior to and after surface preparation by wet abrasive blast cleaning (WAB)

(slurry blasting). SSPC Reference Photographs are intended to supplement the written

standards. This guide can be used to clarify the acceptable level of flash rusting allowed

prior to the application of protective coatings.
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Confusion Matrices

This section presents classification result of images used in Chapter 4: Experiment 1,

Chapter 6: Experiment 1 and Chapter 6: Experiment 2

E.1 Chapter 4: Experiment 1

The following forty-eight confusion matrices shows the classification result achieved for

images of a surface-type when using the following feature vectors (RGB, a*b* and Kd).

The presented tables are clearly labelled with the surface-type of the image sample, the

reference name used for the image, the feature vector used and the different classes of

surface-types.

Painted surface: Training image

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 258583 3506 0 13272

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0
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Painted surface: Training image

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 264938 0 7 10416

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Painted surface: Training image

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 269042 0 91 6228

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Painted surface: Image 1

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 214505 19964 1600 41529

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0
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Painted surface: Image 1

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 243104 0 231 34263

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Painted surface: Image 1

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 269785 1 47 7765

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Painted surface: Image 2

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 178144 38199 10608 58386

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0
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Painted surface: Image 2

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 222962 0 1069 61306

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Painted surface: Image 2

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 276510 3 0 8824

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Painted surface: Image 3

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 170465 43786 13228 59782

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0



Appendix E. Confusion Matrices 168

Painted surface: Image 3

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 218499 0 1324 67438

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Painted surface: Image 3

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 278470 6 34 8751

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Timber surface: Training image

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 291208 3832 0

Rusted 0 0 0 0

Blasted 0 0 0 0
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Timber surface: Training image

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 285860 9180 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Timber surface: Training image

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 294601 435 4

Rusted 0 0 0 0

Blasted 0 0 0 0

Timber surface: Image 1

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 273401 20322 0

Rusted 0 0 0 0

Blasted 0 0 0 0
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Timber surface: Image 1

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 258281 35442 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Timber surface: Image 1

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 293616 89 18

Rusted 0 0 0 0

Blasted 0 0 0 0
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Timber surface: Image 2

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 251351 44855 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Timber surface: Image 2

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 240729 55477 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Timber surface: Image 2

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 295899 307 0

Rusted 0 0 0 0

Blasted 0 0 0 0
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Timber surface: Image 3

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 246104 49871 0

Rusted 0 0 0 0

Blasted 0 0 0 0

Timber surface: Image 3

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 1 240462 55510 2

Rusted 0 0 0 0

Blasted 0 0 0 0

Timber surface: Image 3

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 295945 30 0

Rusted 0 0 0 0

Blasted 0 0 0 0
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Rusted surface: Training image

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 5 132741 156187 139

Blasted 0 0 0 0

Rusted surface: Training image

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 57 4 277514 11497

Blasted 0 0 0 0

Rusted surface: Training image

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 10 0 286125 2937

Blasted 0 0 0 0
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Rusted surface: Image 1

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 154588 133592 71

Blasted 0 0 0 0

Rusted surface: Image 1

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 31 2 277746 10472

Blasted 0 0 0 0

Rusted surface: Image 1

Confusion matrix: K

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 3 287060 1188

Blasted 0 0 0 0
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Rusted surface: Image 2

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 1 203818 87879 71

Blasted 0 0 0 0

Rusted surface: Image 2

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 73 0 279776 11920

Blasted 0 0 0 0

Rusted surface: Image 2

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 48 91 288606 3024

Blasted 0 0 0 0
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Rusted surface: Image 3

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 11 222623 42374 10

Blasted 0 0 0 0

Rusted surface: Image 3

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 75 1 254113 10829

Blasted 0 0 0 0

Rusted surface: Image 3

Confusion matrix: K

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 76 97 256741 8104

Blasted 0 0 0 0
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Blasted surface: Training image

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 28787 14179 22511 209028

Blasted surface: Training image

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 18140 0 3072 253293

Blasted surface: Training image

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 9113 0 727 264665
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Blasted surface: Image 1

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 4840 11690 21731 231565

Blasted surface: Image 1

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 6017 0 5814 257995

Blasted surface: Image 1

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 4540 0 168 265118
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Blasted surface: Image 2

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 777 11076 39619 207491

Blasted surface: Image 2

Confusion matrix: a*b*

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 3608 0 7776 247579

Blasted surface: Image 2

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 5164 0 160 253639
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Blasted surface: Image 3

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 3 36272 65031 131643

Blasted surface: Image 3

Confusion matrix: RGB

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 3 36272 65031 131643

Blasted surface: Image 3

Confusion matrix: Kd

Surface-types Painted Timber Rusted Blasted

Painted 0 0 0 0

Timber 0 0 0 0

Rusted 0 0 0 0

Blasted 3243 0 567 229139

E.2 Chapter 6: Experiment 1

The following five confusion matrices shows the classification result achieved for each

surface-type when using the following feature vectors ({Kd,LBP}, Kd, LBP, a*b* and

RGB). Each confusion matrix contains classification result for all sample instances

extracted from the 16 images used in this experiment.
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Image 1 - 16

Confusion matrix: Combined Kd,LBP

Surface-types Timber Painted Rusted Cardboard

Timber 2762 0 431 354

Painted 51 4178 190 441

Rusted 52 58 2679 277

Cardboard 8411 309 30499 21053

Image 1 - 16

Confusion matrix: Kd, colour-based

Surface-types Timber Painted Rusted Cardboard

Timber 2764 0 350 433

Painted 2 4184 237 437

Rusted 22 69 2655 320

Cardboard 8753 358 30606 20555

Image 1 - 16

Confusion matrix: LBP, texture-based

Surface-types Timber Painted Rusted Cardboard

Timber 2291 0 757 499

Painted 1220 2361 251 1028

Rusted 1230 0 1706 130

Cardboard 37511 2794 3144 16823
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Image 1 - 16

Confusion matrix: a*b*, colour-based

Surface-types Timber Painted Rusted Cardboard

Timber 706 2 2682 157

Painted 0 2501 2155 204

Rusted 0 19 2991 56

Cardboard 74 218 56419 3561

Image 1 - 16

Confusion matrix: RGB, colour-based

Surface-types Timber Painted Rusted Cardboard

Timber 624 2 2579 162

Painted 0 2486 2172 202

Rusted 0 32 2975 59

Cardboard 43 260 56751 3218

E.3 Chapter 6: Experiment 2

The following five confusion matrices shows the classification result achieved for each

surface-type when using the following feature vectors ({Kd,LBP}, Kd, LBP, a*b* and

RGB). Each confusion matrix contains classification result for all sample instances

extracted from the 6 images used in this experiment.

Image 1 - 6

Confusion matrix: Combined Kd,LBP

Surface-types Timber Painted Rusted Cardboard

Timber 52 2 870 15

Painted 0 16 2797 2

Rusted 20 8 1659 14

Cardboard 426 233 26406 3218



Appendix E. Confusion Matrices 183

Image 1 - 6

Confusion matrix: Kd, colour-based

Surface-types Timber Painted Rusted Cardboard

Timber 41 2 886 10

Painted 0 16 2799 0

Rusted 3 12 1668 18

Cardboard 353 236 26894 3493

Image 1 - 6

Confusion matrix: LBP, texture-based

Surface-types Timber Painted Rusted Cardboard

Timber 687 1 211 38

Painted 2424 167 77 147

Rusted 1286 15 373 27

Cardboard 18189 4225 2372 6190

Image 1 - 6

Confusion matrix: a*b*, texture-based

Surface-types Timber Painted Rusted Cardboard

Timber 0 0 937 0

Painted 0 12 2803 0

Rusted 0 2 1699 0

Cardboard 0 20 29909 1047
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Image 1 - 6

Confusion matrix: RGB, texture-based

Surface-types Timber Painted Rusted Cardboard

Timber 0 0 937 0

Painted 0 5 2810 0

Rusted 0 4 1697 0

Cardboard 0 19 30107 850
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