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Abstract 

Cloud and Big Data are two of the most attractive ICT research topics that have 

emerged in recent years. Requirements of big data processing are now everywhere, 

while the pay-as-you-go model of cloud systems is especially cost efficient in terms of 

processing big data applications. However, there are still concerns that hinder the 

proliferation of cloud, and data security/privacy is a top concern for data owners 

wishing to migrate their applications into the cloud environment. Compared to users 

of conventional systems, cloud users need to surrender the local control of their data 

to cloud servers. Another challenge for big data is the data dynamism which exists in 

most big data applications. Due to the frequent updates, efficiency becomes a major 

issue in data management. As security always brings compromises in efficiency, it is 

difficult but nonetheless important to investigate how to efficiently address security 

challenges over dynamic cloud data. 

Data integrity is an essential aspect of data security. Except for server-side 

integrity protection mechanisms, verification from a third-party auditor is of equal 

importance because this enables users to verify the integrity of their data through the 

auditors at any user-chosen timeslot. This type of verification is also named 'public 

auditing' of data. Existing public auditing schemes allow the integrity of a dataset 

stored in cloud to be externally verified without retrieval of the whole original dataset. 

However, in practice, there are many challenges that hinder the application of such 

schemes. To name a few of these, first, the server still has to aggregate a proof with the 

cloud controller from data blocks that are distributedly stored and processed on cloud 

instances and this means that encryption and transfer of these data within the cloud 

will become time-consuming. Second, security flaws exist in the current designs. The 

verification processes are insecure against various attacks and this leads to concerns 

about deploying these schemes in practice. Third, when the dataset is large, auditing 

of dynamic data becomes costly in terms of communication and storage. This is 

especially the case for a large number of small data updates and data updates on 
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multi-replica cloud data storage.  

In this thesis, the research problem of dynamic public data auditing in cloud is 

systematically investigated. After analysing the research problems, we systematically 

address the problems regarding secure and efficient public auditing of dynamic big 

data in cloud by developing, testing and publishing a series of security schemes and 

algorithms for secure and efficient public auditing of dynamic big data storage on 

cloud. Specifically, our work focuses on the following aspects: cloud internal 

authenticated key exchange, authorisation on third-party auditor, fine-grained update 

support, index verification, and efficient multi-replica public auditing of dynamic 

data. To the best of our knowledge, this thesis presents the first series of work to 

systematically analysis and to address this research problem. Experimental results 

and analyses show that the solutions that are presented in this thesis are suitable for 

auditing dynamic big data storage on cloud. Furthermore, our solutions represent 

significant improvements in  cloud efficiency and security.  
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Chapter 1  

Introduction 

This thesis is concerned with developing efficient and secure public auditing 

schemes for dynamic big data storage in cloud. A suite of novel frameworks, 

strategies, algorithms and protocols is designed and developed with the support of 

new concepts, solid theorems and innovative algorithms. Theoretical analyses and 

experimental evaluation demonstrates that our work helps to dramatically bring down 

overheads and effectively improves the security of public auditing schemes in the 

cloud. 

This chapter introduces the background and key issues of this research. The 

chapter is organised as follows. Section 1.1 gives a brief introduction to big data and 

cloud. Section 1.2 presents the key research issues around security and privacy in big 

data and cloud. Section 1.3 outlines the research problems in the public auditing area 

along with the problems we try to address in this thesis. Section 1.4 provides an 

overview of the remainder of this thesis.  

1.1 Big Data and Cloud Computing 

In recent years, big data has become one of the most attractive research topics in 

information technology. People from almost all major industries are increasingly 

realising the value of their explosively growing datasets. Primary examples of big 

data applications may be seen in the areas of government, manufacturing, media, 

science and research. Research challenges in big data are always summarised into 4 

V's: Velocity, Variety, Veracity and Volume. Velocity means big data is always in a 

dynamic status and flowing at a high speed; Variety means there are various types of 



2 

 

data in big data storage; Veracity indicates the uncertainty of big data; and Volume 

indicates that the size of big data storage is always at a large scale -- 40 Zeta bytes of 

data is estimated to be created by 2020, an increase of 300 times from 2005 . Besides 

this, there is another V -- Value, which is considered to be a fundamental aspect of 

the other V's. Within the explosively growing datasets, there are almost limitless 

value that is being discovered by the developing data mining techniques (Wu et al., 

2014). All in all, it can be seen within these 5 V's that efficiency is an essential factor 

in big data processing, and cloud can help in a big way with all of the various 

challenges.

Cloud computing is a new-generation distributed computing platform that is 

extremely useful for big data storage and processing. Many big data applications as 

mentioned earlier are being migrated or have been migrated into clouds. One of the 

cloud's core concepts is ‘X as a Service’ (XaaS), including Infrastructure-as-a-Service 

(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), which 

means that both individual and enterprise users can use IT services in a pay-as-you-go 

fashion. Compared to traditional distributed systems, this new concept of cloud 

computing brings outstanding advantages. First, a considerable amount of investment 

is saved because there is no need for users to purchase and maintain their own IT 

facilities. Second, it brings exceptional elasticity, scalability and efficiency for task 

executions, especially in big data applications (Agrawal et al., 2011, Chaudhuri, 2012). 

With its virtualisation technology, pay-as-you-go payment model and elastic and 

scalable resource allocation of XaaS, cloud computing is widely recognised as the 

most promising technological backbone for solving big data related problems 

(Armbrust et al., 2010). Indeed, it is envisaged that cloud computing, with its capacity 

to provide computational resources, can one day be integrated into our daily life as 

closely as other resource utilities such as electricity, gas and water (Buyya et al., 

2009). The exceptional scalability and elasticity of cloud make it the ideal platform 

for processing big data streams and handling the complexities of big data applications. 

Datasets in big data applications are always dynamic. In fact, except for a few 
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examples of large static datasets such as those in libraries and e-archives, datasets in 

most big data applications need constant updating. In many big data applications, 

such as in social networks and business transactions, data updates are often very 

frequent. Therefore it is of extreme importance for cloud security mechanisms, such 

as the public auditing schemes studied in this thesis, to be able to support dynamic 

data updates in a secure and efficient way. 

1.2 Security and Privacy Concerns in Cloud 

Security/privacy is one of the major concerns in terms of the utilisation of cloud 

computing (Mather et al., 2009, Subashini and Kavitha, 2010). As data is no longer 

under the users' direct control, users are reluctant to move their valuable data onto the 

cloud -- especially the public cloud with its high consolidation and multi-tenancy. 

Also, from an efficiency perspective, querying and retrieving from cloud servers 

require a lot more effort than it does in local servers. Amongst the many technological 

aspects, the three main dimensions of data security research are confidentiality, 

integrity and availability.  

In this thesis, we will focus on data integrity which is concerned with ensuring 

that data is stored and maintained in its original form. In practice, integrity breaches 

are not only caused by deliberate malicious attacks, but also uncontrollable disasters 

or server/disk failures. Integrity verification and protection is an active research area; 

numerous research problems belonging to this area have been studied intensively in 

the past. The three different aspects form an organic whole. While our focus is 

integrity verification, we will also focus on ensuring that efficiency, confidentiality 

and availability is incorporated in our designs.  

1.3 Public Auditing of Dynamic Cloud Data 

Aiming at integrity assurance, public auditing of cloud data has been an 

extensively investigated research problem in recent years. As user datasets stored on 
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cloud storage servers (CSS) are out of the cloud users' reach, auditing from the client 

herself or a third party auditor is a common request, no matter how secure and 

powerful the server-side mechanisms claim to be. With provable data possession 

(PDP) and proofs of retrieveability (POR), the data owner or a third-party auditor is 

able to verify the integrity of their data without having to retrieve their data. In such 

schemes, a small piece of metadata called 'homomorphic authenticator' or 

'homomorphic tags' are stored along with each data block. When the client needs to 

verify data integrity, the server will generate a proof with the authenticators of the 

selected data blocks, and data auditing is done by the client or a third-party auditor 

through verifying the proof with public keys.  

As stated above, the majority of datasets in big data applications are dynamic. 

Therefore, it is of great importance for public auditing schemes to be scalable and 

capable of supporting dynamic data updates. Existing public auditing schemes can 

already support verification of various kinds of full dynamic data updates (Wang et al., 

2011b, Liu et al., 2014b). However, there are security and efficiency problems that we 

aim to address in our research. Some issues investigated in this thesis are stated as 

follows. 

1) Efficiency issues. First, with virtualisation technology, existing key 

exchange schemes such as Internet Key Exchange (IKE) becomes time-consuming 

when directly deployed in the background of the cloud computing environment (i.e., 

the encrypted communications between virtualised cloud servers and the cloud 

controller), especially for large-scale computing tasks that involve intensive 

user-cloud interactions such as public data auditing. In order to construct an 

aggregated integrity proof, the cloud service provider needs to retrieve 

authenticators from different storage instances. Upon recognising this concern, we 

developed key exchange algorithms in the cloud background which sought to  

provide efficient server-side processing. Second, there is inefficiency in processing 

small updates because the existing authenticated data structures (ADS) only support 

whole-block insertion, deletion and modification, and they lack the ability to support 
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updates with an arbitrary length and starting offset. To achieve this, we designed a 

novel scheme utilising a flexible data segmentation strategy and a weighted Merkle 

hash tree, based on the detailed definition and analysis on fine-grained updates. 

Third, not much work has been done in supporting multiple replicas. Storing 

multiple replicas is a common strategy for data reliability and availability in the 

cloud. For highly dynamic data, each update will lead to updates of every replica. 

Given the fact that update verifications in current verification schemes are of O(logn) 

communication complexity, verifying these replicas one by one will be very costly 

in terms of communication. Accordingly, we developed a multi-replica public 

auditing scheme based on a novel multi-replica Merkle hash tree. 

2) Security issues. First, the challenge message is too simple which may 

enable malicious exploits in practice. To make the public auditing scheme more 

secure and robust, we address this problem by adding an additional authorisation 

process among the three participating parties of the client, CSS and a third-party 

auditor (TPA). Second, current schemes for dynamic public auditing are susceptible 

to attacks from dishonest servers due to the lack of support for verification of block 

indices. To address this problem, we developed a novel public auditing scheme with 

a new ADS which incorporates authentication of level and rank information. 

The research problems we try to address are analysed in detail under a 

systematic lifecycle in Chapter 3, and our solutions are presented in the consecutive 

chapters. The main contributions of this thesis are summarised as follows. 

1) This thesis proposes a thorough investigation into the research problem of 

dynamic public auditing for big data in cloud, and presents a systematic framework 

along with a series of algorithms incorporating analysis and experimental results. To 

the best of our knowledge, this is the first sustained work to systematically analyse 

and address this research problem.  

2) Two novel key exchange schemes for encrypted cloud background 

communications are presented. The schemes are based on the Diffie-Hellman key 
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exchange scheme. Experimental results provided in Section 7 have shown that key 

exchange plays an essential role in the efficiency of secure public auditing and data 

transfer as a whole. Moreover, analysis and experimental results have also shown 

that the newly proposed schemes greatly outperform the existing scheme without 

compromising the level of security. 

3) We present a public auditing scheme based on the BLS signature and 

Merkle hash tree (MHT) that can support fine-grained update requests. For the first 

time, we formally analyse different types of fine-grained dynamic data update 

requests on variable-sized file blocks in a single dataset. Compared to existing 

schemes, our scheme supports updates with a size that is not restricted by the size of 

file blocks. It thereby offers extra flexibility and scalability compared to existing 

schemes. Also, for better security, our scheme incorporates an additional 

authorisation process with the aim of eliminating threats of unauthorised audit 

challenges from malicious or pretending third-party auditors. 

4) To address the efficiency problem in verifiable updates for cloud storage with 

multiple replicas, we present a multi-replica public auditing (MuR-DPA) scheme 

which is based on a novel rank-based multi-replica Merkle hash tree (RMR-MHT). 

To support full dynamic data updates and authentication of block indices, we have 

included rank and level values in the computation of MHT nodes. Experimental 

results show that our scheme can drastically reduce communication overheads for the 

update verification of cloud data storage with multiple replicas. Also, as the previous 

usage of the Merkle hash tree (MHT) in public auditing of dynamic data does not 

involve authentication of node indices, such schemes are susceptible to cheating 

behaviours from a dishonest server. With the support of RMR-MHT, we propose the 

first MHT-based dynamic public auditing scheme with authentication of index 

information that is secure against dishonest servers. The main strategy is top-down 

levelling and the verification of indices from both sides. 
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1.4 Thesis Overview 

This thesis presents novel data structures, algorithms and concepts with solid 

theorems and analyses to form a series of systematic solutions to address the research 

problem of the efficient and secure public auditing of big data storage in cloud. The 

thesis structure is depicted in Figure 1-1.  

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Problem Statement, Analysis

and Problem-solving
Framework

Chapter 4
Authenticated Key Exchange in

Cloud

Chapter 5
Authorised Public Auditing for

Dynamic Big Data in Cloud with
Fine-grained Updates

Chapter 6
Secure Public Auditing for

Dynamic Multi-Replica Big Data
Storage on Cloud

Chapter 7
Experiments and Evaluations

Chapter 8
Conclusions and Future Work

 

Figure 1-1 Thesis structure. 
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In Chapter 2, a comprehensive literature review of existing research is provided. 

Specifically, this literature review includes current research on: 1) Cloud computing, 

big data applications, 2) Security and privacy of cloud data, 3) Authenticated key 

exchange, and 4) Integrity verification mechanisms: digital signatures, and our focus 

on authenticator-based public verification.   

In Chapter 3, a detailed analysis of the series of research problems we try to 

address in this thesis is provided, where representative approaches are also introduced. 

Lastly, I present a framework and lifecycle to systematically address these problems, 

and then outline the problems that will be addressed in the thesis.  

In Chapter 4, I present server-side key exchange schemes which aim at 

supporting efficient proof generation in the public auditing of cloud data. First, we 

propose a key exchange scheme based on the randomness-reuse strategy and Internet 

Key Exchange (IKE) scheme, named CCBKE, for efficient and secure data transfer 

in the background of the cloud. Second, we propose a novel hierarchical key 

exchange scheme, namely Hierarchical Key Exchange for Big data in Cloud 

(HKE-BC), where we have developed a two-phase layer-by-layer iterative key 

exchange strategy to achieve more efficient AKE without sacrificing the level of data 

security. These key exchange schemes will also benefit other security mechanisms 

that involve symmetric encryptions, such as security-aware scheduling. Security and 

efficiency analyses for the new schemes are also provided. 

In Chapter 5, I present the first dynamic public auditing scheme that supports 

fine-grained updates, authorisation of third-party auditors and public auditing at the 

same time. I provide a formal analysis for possible types of fine-grained data updates 

and propose a scheme that can fully support authorised auditing and fine-grained 

update requests. Based on this scheme, I also propose an enhancement that can 

dramatically reduce communication overheads for verifying small updates. After 

scheme description, I provide security and efficiency analysis for the new schemes.  

In Chapter 6, I present research on efficient auditing for dynamic big data 
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storage with multiple replicas. The new scheme incorporates a novel authenticated 

data structure based on the Merkle hash tree (MHT), which is named RMR-MHT. 

For support of full dynamic data updates and authentication of block indices, rank 

and level values in computation for MHT nodes are included. As opposed to existing 

schemes, level values of nodes in RMR-MHT are assigned in a top-down order, and 

all replica blocks for each data block are organised into the same replica sub-tree for 

efficient verification of updates for multiple replicas. Security and efficiency analyses 

for this scheme are also presented in this chapter.  

In Chapter 7, I present experimental results and analysis for our schemes to 

quantitatively demonstrate our research contributions. I firstly introduce U-Cloud, the 

cloud computing environment which is used for all the experiments. Then, I show the 

results from the experiments conducted on U-Cloud. The efficiency improvements of 

our schemes are demonstrated by comparing the computation time, storage overheads 

and communication overheads with existing schemes or their direct extensions.   

Finally, in Chapter 8, I summarize the research presented in this thesis, major 

contributions of all the presented modules that constitute this thesis, and future 

research directions. 

In order to improve the accessibility of this thesis, I also provide a list of 

acronyms in Appendix A and a notation index in Appendix B. 
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Chapter 2  

Literature Review 

In Chapter 2, I will provide a comprehensive literature review on existing 

research and highlight their respective problems. This chapter is organised as follows. 

Section 2.1 discusses the existing research on cloud computing and big data 

applications, along with the security and privacy of cloud data in general. Section 2.2 

discusses existing research on integrity verification mechanisms including digital 

signatures and our focus on authenticator-based public verification. Section 2.3 

discusses authenticated key exchange which greatly impacts the server-side 

performance of public auditing schemes and is also important for all security systems 

that involve symmetric-key encryption.  

2.1 Security and Privacy Research in Cloud and Big Data 

Big data is one of the most popular research topics in recent years (Agrawal et 

al., 2011, Chaudhuri, 2012, 2013, Wu et al., 2014). Examples for big data 

applications are social networks (Naone, 28 September, 2010), scientific research 

applications (Keahey et al., 2008, Heath, 2012), real-time streaming data, big sensor 

data (Yang et al., 2013a, Cuzzocrea et al., 2013, Yang et al., 2013b) and data in the 

Internet of Things (Ma et al., 2012), etc. In recent years, the development of 

distributed systems, or alternatively, cyberinfrastructures (Wang and Fu, 2010), has 

been the main platform for the processing of large-scale big data tasks such as 

scientific applications. To address this kind of big data problems, the cloud is 

currently considered to be the most potent and cost-effective platform. Currently, 

cloud computing is already being widely utilised for large-scale computation tasks in 

big data processing because of its outstanding cost-effectiveness (Agrawal et al., 2011, 
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Chaudhuri, 2012).  

As the most popular paradigm among recently emerging hybrid environments, 

cloud has a significant cost advantage compared to traditional distributed systems 

such as clusters and grids (Armbrust et al.). Scientific applications can utilise this 

advantage by migrating to the cloud (Deelman et al., 2008), which is attracting rapidly 

growing research interest. Recent cloud computing projects for scientific applications 

such as Nimbus (Keahey et al., 2008) and Aneka (Vecchiola et al., 2012) as well as 

some very recent research work (Iosup et al., 2011, Srirama et al., 2012) all aim at the 

transformation from a traditional cluster or data centre to a cloud architecture. Since 

the advent of cloud computing, a number of scheduling algorithms have been 

developed for the purposes of achieving a cost-effective cloud computing 

environment. The most recent examples are the work of Garg et.al (Garg et al., 2011) 

and Yuan et.al (Yuan et al., 2011); the former work assesses the time and cost in cloud 

QoS, while the latter work investigates the trade-off between data storage, 

computation and economical cost in the cloud. However, neither has yet taken into 

account the cost of security enhancement. Data flows are unprotected in their models 

and this means that data security is totally neglected. Some outstanding security issues 

in cloud computing have been surveyed in (Subashini and Kavitha, 2010, Zissis and 

Lekkas, 2011, Mather et al., 2009).  

Data security/privacy, which represents an important metric of QoS, are of 

great concern for cloud users (Zhang et al., 2013c, Mather et al., 2009, Zhang et al., 

2013b). Therefore, data security/privacy constitute some of the most pressing 

concerns related to the cloud (Zissis and Lekkas, 2011, Schmidt, 2012, Yao et al., 

2010) and big data. Generally speaking, as two sides of one coin, privacy and 

security aim at different goals, although both of them roughly aim at the protection 

of data content. Privacy research mainly aims at protect the data user’s sensitive 

information but this technical solution is only one aspect amongst many 

non-technical aspects include policy, legislation, etc.. Technical data privacy 

research can be divided into syntactic privacy and differential privacy (Dwork, 2008, 
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Fan and Xiong, 2012, Clifton and Tassa, 2013). Analysis shows that these two areas 

are irreplaceable by each other (Clifton and Tassa, 2013). Privacy challenges in 

cloud data include parallel and distributed anonymization (Li et al., 2008, Roy et al., 

2010, Zhang et al., 2011, Zhang et al., 2013c, Zhang et al., 2013b), hiding of data 

relations through encryption (Zhang et al., 2013a), hiding of access patterns through 

oblivious RAM (Williams et al., 2012, Stefanov et al., 2013, Stefanov and Shi, 

2013), etc.. Data security research, on the other hand, is mainly technical, definitive 

and does not depend on data content (privacy goals can also be definitive (Wang et 

al., 2013c) in some cases). Encryptions to ensure data confidentiality and digital 

signatures for data integrity verifications are typical examples.  

Data security is a widespread concept that can be everywhere in a computer 

and network system, especially for a complex distributed computer system such as 

the cloud. For example, Zhao et, al. have designed a security framework for big data 

applications in the cloud (Zhao et al., 2014). Along with time, cost and throughput 

etc., security can also be considered an important aspect of QoS. Great efforts have 

been placed on cost-efficient scheduling for distributed computing systems including 

cloud computing (Tang et al., 2011, Young Choon Lee, 2011). For example, the work 

of Lee et.al (Young Choon Lee, 2011) focuses on efficient scheduling with low energy 

consumption in cloud computing and distributed systems. However, they have not 

taken into account the additional costs in enhancing data security. There is also 

research on security-aware scheduling schemes. For example, Tang et.al (Tang et al., 

2011) proposes a cost-effective security-aware scheduling algorithm for distributed 

systems. Although their approach achieves high efficiency by grading data security 

into several levels, their scheme, in fact, compromises security for higher efficiency, 

and it suffers from the inherent cost-inefficiency of existing KE schemes. By 

investigating key exchange efficiency problems, we are therefore making solid steps 

toward not only efficient auditing, but also security-aware QoS and scheduling for 

cloud computing. 



13 

 

2.2 Integrity Verification and Public Auditing 

In the past, intensive research has been undertaken to enhance cloud data 

security/privacy with technological approaches on the cloud server side, such as (Liu 

et al., 2012, Zhang et al., 2012). They are of equal importance to external 

verification approaches such as our focus of public auditing . Although in this thesis 

we focus on public auditing based on homomorphic authenticators (Yang and Jia, 

2012, Liu et al., 2014d, Liu et al., 2013a), please also note that there are other 

auditing methods, for example, log-based database auditing (Hwang et al., 2014, Lu 

et al., 2013). 

Integrity verification for outsourced data storage has attracted extensive 

research interest. The concept of proofs of retrievability (POR) and its first model 

was proposed by Jules et, al. (Juels and B. S. Kaliski, 2007). Unfortunately, their 

scheme can only be applied to static data storage such as an archive or library. In the 

same year, Ateniese et, al. proposed a similar model named ‘provable data possession’ 

(PDP) (Ateniese et al., 2007). Their schemes offers ‘blockless verification’ which 

means the verifier can verify the integrity of a proportion of the outsourced file 

through verifying a combination of pre-computed file tags which they call 

homomorphic verifiable tags (HVTs) or homomorphic linear authenticators (HLAs). 

Work by Shacham et, al. (Shacham and Waters, 2008) proposed the first public 

verification scheme in the literature that is based on the BLS signature scheme 

(Boneh et al., 2004). In this scheme, the generation and verification of integrity 

proofs are developed from signing and verification of BLS signatures. When 

wielding the same security strength (say, 80-bit security), a BLS signature (160 bit) is 

much shorter than an RSA signature (1024 bit), which in turn brings a shorter proof 

size for a POR scheme. They have also provided an improved POR model with 

stateless verification. and proved the security of both their schemes and the PDP 

scheme by Ateniese et, al. (Ateniese et al., 2007, Ateniese et al., 2011). The security 

model for auditing schemes is further analysed in (Yu et al., 2014b). Ateniese et, al. 
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extended their scheme for enhanced scalability (Ateniese et al., 2008), but only 

partial data dynamics and a predefined number of challenges is supported.  

Although the schemes discussed above can support blockless verification and 

public verifiability, data dynamics is not supported. Erway et, al. proposed the first 

PDP scheme that can support verification for full dynamic data updates (Erway et al., 

2009) while retaining blockless verifiability. A modified authenticated data structure 

(ADS) is used for verification of updates, which became a common way of 

supporting verifiable updates in the following PDP/POR works. The ADS they used 

is called rank-based authenticated skip list (RASL). However, public auditability and 

variable-sized file blocks are not supported in their framework. Yang et, al. proposed 

a scheme (Yang and Jia, 2013) that claims to support secure public verifiability over 

dynamic data. However, there are a number of problems in this work. Ni et, al. have 

shown that their scheme is not secure against an active adversary (Ni et al., 2014). 

Furthermore, no index verification is provided. Therefore, a dishonest sever is able to 

manipulate the tags and original data to cheat the client. Wang et, al. (Wang et al., 

2011b) proposed a scheme based on the BLS signature that can support public 

auditing (especially from a third-party auditor, TPA) and full data dynamics. To 

support verification of updates, they used another ADS called the Merkle hash tree 

(MHT). However, their usage of ADS also has security problems regarding the 

non-existence of authentication of block indices. A follow-up work by Wang et al. 

(Wang et al., 2010) added a random masking technology on top of (Wang et al., 

2011b) to ensure the TPA cannot infer the raw data file from a series of integrity 

proofs. In their scheme, they also incorporated a strategy first proposed in (Shacham 

and Waters, 2008) to segment file blocks into multiple ‘sectors’ for trading-off of 

storage and communication costs. However, none of the above schemes has 

considered the commonly employed multi-replica strategy in clouds. For availability, 

data in the cloud is usually stored with multiple replicas distributed on multiple 

servers. Curtmola et, al. proposed a scheme named MR-PDP (Curtmola et al., 2008) 

that can prove the integrity of multiple replicas along with the original data file. 

Although the scheme requires only one authenticator for each block, it has two severe 
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drawbacks. First, since the verification process requires secret material, there will be 

security problems when extending the MR-PDP scheme to support public auditing. 

Second, it does not support verification for dynamic data updates. In order to allow a 

third-party auditor to verify datasets with multiple replicas without any secret 

material, the client still needs to store and build different ADS for every replica, 

which will incur heavy communication overheads. As an improvement to MR-PDP, 

Barsoum et, al. proposed a series of PDP schemes (Barsoum and Hasan, 2011, 

Barsoum and Hasan, 2012). These schemes are based on the BLS signature with 

support of public verifiability, data dynamics and multiple replicas at the same time. 

However, they do not provide a verification process for updates. Furthermore, their 

construction of the MHT structure is not efficient for update verifications as each 

single update will incur updates on all branches. Etemad et, al. proposed a 

multi-replica PDP scheme (Etemad and Küpçü, 2013a, Etemad and Küpçü, 2013b) 

with index authentication based on Erway et, al.'s RASL. However, their scheme 

does not support public verifiability. Furthermore, their efficiency analysis is mainly 

about computation time, and does not include discussion of the important efficiency 

factors of communication overheads. 

Research in this area also includes the work of Ateniese et, al. (Ateniese et al., 

2009) on how to transform a mutual identification protocol to a PDP scheme; and a 

scheme by Zhu et, al. (Zhu et al., 2012) which allows different service providers in a 

hybrid cloud to cooperatively prove data integrity to the data owner (a security 

problem was later found in this scheme, as indicated in (Wang and Zhang, 2014)). As 

cloud data sharing is happening in many scenarios, Wang et, al. worked on secure 

data verification of shared data storage (Wang et al., 2013a, Wang et al., 2014) and 

also with efficient user management (Wang et al., 2013b) and user privacy protection 

(Wang et al., 2012, Wang et al., 2014). Zhang et, al. proposed a scheme with a new 

data structure called the update tree (Zhang and Blanton, 2012, Zhang and Blanton, 

2013). Without conventional authenticated data structures such as MHT, the 

proposed scheme has a constant proof size and fully supports data dynamics. 

However, the scheme also does not support public auditing. Yuan et, al. proposed a 
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public auditing scheme with a de-duplication property (Yuan and Yu, 2013). Hanser 

et, al. proposed a robust public auditing scheme based on elliptic curves (Hanser and 

Slamanig, 2013). Cash et, al. (Cash et al., 2013) proposed a novel POR scheme based 

on oblivious RAM (ORAM). ORAM, or oblivious file system which was mostly 

used to hide data access patterns through shuffling and noise addition on outsourced 

data storage (Stefanov et al., 2013, Williams et al., 2012). Shi et, al. also proposed a 

more efficient scheme based on ORAM (Shi et al., 2013), but practical usage of such 

schemes is still under investigation. After our contributions in this thesis are proposed 

in publications, there are a number of new developments in public auditing for 

outsourced data (Yu et al., 2014b, Yu et al., 2014a, Worku et al., 2014, Hwang et al., 

2014, Camenisch et al., 2014). This indicates that the problem has not been 

completely solved. Accordingly, this area of research remains very active and 

attractive to computer scientists.  
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2.3 Authenticated Key Exchange in Cloud 

Recently, much research work has been done to address cloud security/privacy 

issues. Most of the approaches, however, focus on cloud storage service. Yao et.al 

(Yao et al., 2010) propose a scheme to ensure cloud storage security by separating the 

encryption keys from the stored data which are encrypted by the keys. In (Cao et al., 

2011), a privacy-preserving cloud data querying scheme is generally proposed from a 

data prospect of view, which aims to protect privacy-sensitive outsourced data. In 

(Wang et al., 2011b) Wang et.al propose a scheme to protect data integrity based on 

bilinear-pairing-based public-key cryptology, which allows a third-party authority to 

check the outsourced data on the cloud service users’ behalf. However, to the best of 

our knowledge, none has analysed data encryption on the backstage of cloud 

computing from an efficiency point of view. Our work starts to try and bridge the gap. 

Encryption-based data security protection approaches for cloud storage services 

have been proposed, such as (Yao et al., 2010, Puttaswamy et al., 2011). However, in a 

cloud computing environment, original data input needs to be processed on the cloud 

side. Some encryption schemes allow processing over encrypted data, and it can still 

be decrypted using the same key thereafter. However, in these schemes only limited 

operations are allowed. For example, the approach in (Wong et al., 2009) only allows 

the k-NN (k nearest neighbours) algorithm to be applied over encrypted data. Fully 

homomorphic encryption (Gentry, 2009) allows all operations on an encrypted dataset; 

However, no homomorphic encryption scheme with reasonable complexity has yet 

been published. Therefore, the efficiency of key exchange still remains a major 

obstacle to efficiency overall. 

Key exchange over a distrustful communication environment has been an 

extensively researched problem in public-key cryptography since Diffie and Hellman 

proposed the very first key exchange scheme (Diffie and Hellman, 1976) in 1976. Our 

problem here, essentially, is looking for an efficient key exchange scheme for 

exchanging different keys over participating parties. Although the topic of extending 
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key exchange schemes in multi-party scenarios has been studied a lot in the past, to 

the best of our knowledge, this problem has not been well-addressed. This is probably 

because there was no requirement for doing research on this problem in the past, as a 

single key exchange process takes almost no time on modern hardware facilities. 

However, with thousands of independent instances executing different tasks in the 

cloud, it is now essential to develop an optimised key exchange scheme under this 

scenario if we are to use hybrid encryption to enhance cloud data security. Some 

existing key exchange schemes try to optimise the multi-party-same-key scenario 

with users joining and leaving dynamically, such as (Bresson et al., 2002, Zhou and 

Huang, 2010, Katz and Shin, 2005, Katz and Yung, 2007). In (Küsters and 

Tuengerthal, 2009, Zhao and Gu, 2010), extended security standards are formalised 

and researched for key exchange schemes for the basic 2-party scenario. Some of the 

most recent research on authenticated key exchange schemes focus on 

password-based key exchange (Groce and Katz, 2010, Katz and Vaikuntanathan, 

2011), which allows two parties to share a session key through exchanging a 

low-entropy password. These approaches are advantageous when humans are 

involved because a low-entropy password can be easily remembered. Unfortunately, 

no human action is required in our research problem. Many existing key exchange 

schemes try to optimise the multi-party-same-key scenario as we do. Kurosawa 

(Kurosawa, 2002) and then Bellare et.al (Bellare et al., 2003) studied the problem of 

asymmetric-key encryption in the multi-user-different-data scenario with the 

randomness reuse strategy. Due to the low efficiency of asymmetric-key encryption 

over large datasets, their schemes cannot be directly applied into cloud computing 

environments. However, this problem is essentially the KE problem in the 

background of the cloud. IKE is a widely-adopted authenticated key exchange 

scheme which is used along with IPSec as the default network-level data protection 

standard in TCP/IP Suite. The latest updated description of IKE can be found in 

(Kaufman et al., September 2010). It is known for its high security level (Canetti and 

Krawczyk, 2002), but it lacks efficiency in distributed environments, especially in the 

cloud. We developed a key exchange scheme named CCBKE for security-aware 
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scheduling in cloud computing (Liu et al., 2013c). When deployed in cloud, CCBKE 

invokes significantly lower time consumption compared to IKE, but it still takes a 

considerable amount of time. Therefore, we developed another KE scheme for further 

performance evaluation . We will introduce these schemes in Chapter 4. 
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Chapter 3  

Background, Problem Analysis and 

Framework  

In this chapter, I will provide framework and detailed analysis on the research 

problems we aim to address in this thesis. This chapter is organized as follows. 

Section 3.1 introduces preliminaries for the remainder of this thesis. Section 3.2 

provides motivating examples and the framework of our research. Section 3.3 

provides a brief introduction of existing representative public auditing approaches 

for the purposes of background knowledge. Section 3.4 presents problem analysis for 

the specific research problems that are addressed in this thesis. 

3.1 Preliminaries 

I will now introduce preliminaries in presenting the research in the area of 

public auditing on cloud data. The preliminaries include the Diffie-Hellman key 

exchange, RSA signature, bilinear pairing, BLS signature and authenticated data 

structure. Most of them are the foundation stones for not only public auditing 

schemes, but also cryptography and information security research in general. 

3.1.1 Diffie-Hellman Key Exchange 

The Diffie-Hellman key exchange scheme presented in 1976 (Diffie and 

Hellman, 1976) is commonly considered to be the earliest key exchange protocol, 

and the beginning of the public-key cryptography era. For two users, Alice and Bob, 
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sharing an insecure communication channel, they can communicate to establish a 

shared secret key with the protocol. Its security is based on the computational 

difficulty of the discrete logarithm problem.  

The public keying materials are a big integer  and one of its primitive root 

, i.e.,  is a generator of group . For key exchange, Alice will choose its secret 

material  and send  to Bob, while Bob will choose its secret material  

and send  to Alice. Through these procedures, Alice can obtain the key 

 through , and Bob can also obtain  through . If 

 is sufficiently large, compute  with  is computationally impossible. 

As  and  are kept secret, any third party cannot figure out the exchanged key 

through communication sniffing.  

3.1.2 RSA Signature 

The RSA signature is a classic and one of the earliest signature schemes; it is 

also one of the foundation stones of public-key cryptography. Its security is based on 

the computational difficulty of the factoring problem. While the textbook version is 

not semantically secure and not resilient to existential forgery attacks, there is a 

large body of research work on its improvements later on, and this ultimately makes 

it a robust signature scheme. For example, a basic improvement is to use  

instead of  where  is a one-way hash function.  

The setup is based on an integer  where  and  are two large 

primes, and two integers  and  where ;  is kept as the secret 

key and  is the public key. The signature  of a message  is computed as 

. Along with , the signature can be verified through verifying 

whether the equation  holds.  
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3.1.3 Bilinear Pairing and BLS Signature 

Assume a group  is a gap Diffie-Hellman (GDH) group with prime order . 

A bilinear map is a map constructed as  where  is a 

multiplicative cyclic group with prime order. A useful  should have the following 

properties: bilinearity – ; non-degeneracy – 

; and computability –  should be efficiently 

computable. For simplicity, we will use this symmetric bilinear map in our scheme 

description. Alternatively, the more efficient asymmetric bilinear map 

 may also be applied, as was pointed out in (Boneh et al., 2004). 

BLS signature is proposed by Boneh, Lynn and Shacham (Boneh et al., 2004) 

in 2004. In addition to the basic soundness of digital signature, this scheme has a 

greatly reduced signature length, but also increased overheads due to the 

computationally expensive paring operations. Its security is based on the gap 

Diffie-Hellman problem on bilinear maps. Based on a bilinear map , 

a basic BLS signature scheme works as follows. Keys are computed as  

where ,  is the secret key and  is the public key. Signature  for a 

message  is computed as . People can then verify this signature 

through verifying whether . 

3.1.4 Authenticated Data Structures 

Authenticated data structures (ADS) are used to efficiently verify data position 

through verification of all data in the verification path from the root. It is employed 

in integrity verification schemes to enable the verifier to check whether the storage 

server has performed the data update correctly. Now we briefly introduce ADS used 

in integrity verification. Iterative hashing is the core idea in these ADS's; their 

security is based on pre-image resistance, second pre-image resistance and the 

collision resistance of the chosen cryptographic hash function. 
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Merkle Hash Tree (MHT) (Merkle, 1987) is an authenticated data structure 

which has been intensively studied in the past and later utilised to support 

verification of dynamic data updates. Similar to a binary tree, each node  will 

have a maximum of 2 child nodes. Information contained in one node  in a MHT 

 is  -- a hash value.  is constructed as follows. For a leaf node  based on 

a message , we have , ; A parent node of  

and  is constructed as  where  and  are 

information contained in  and  respectively. A leaf node ’s AAI  is 

defined as a set of hash values chosen from all of its upper level (only one per level) 

so that the root value  can be computed through . For example, for the 

MHT demonstrated in Fig. 3-1, ’s AAI .  

Rank-based authenticated skip list (RASL) (Erway et al., 2009) is an 

authenticated data structure that can be authenticated not only through the content, 

but also the indices of the data block. Based on this structure, Erway et, al. proposed 

the first PDP scheme that can support full dynamic data operations. An example can 

also be found in Fig. 3-1, where the 'rank' value of a node is defined as the 

maximum number of leaf nodes it can reach. Its average complexity is also 

logarithmic to the number of blocks, similar to MHT. 

There are also other authenticated data structures. Mo et, al. designed Merkle 

B+ tree (Mo et al., 2012) which also has logarithm complexity for updates. Our 

work on fine-grained updates (Liu et al., 2014b) have proposed the ranked Merkle 

hash tree (RMHT) for fine-grained updates. However, the rank value is not for 

authentication of indices, but for authentication of variable block sizes. To make this 

concept clear, we will term it the weighted Merkle hash tree (WMHT) and introduce 

it in detail in Chapter 5. In Chapter 6, we will also introduce another authenticated 

data structure, namely the rank-based multi-replica Merkle hash tree (RMR-MHT), 

designed for efficient index verification and the update of multiple replicas. 
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3.2 Motivating Examples and Research Framework  

3.2.1 Motivating Examples 

Big data and cloud computing are currently receiving more and more attention 

from both industry and academia. They have been recently listed as important 

strategies by the Australian Government (Department of Finance and Deregulation, 

2013, Department of Finance and Deregulation, 2011). One example in big data 

applications is sensor data and surveillance data gathered from sensors and 

surveillance cameras. Each individual sensor has the potential to stream back 

gigabytes of data per second. Much of this data is “unstructured” or “semi-structured,” 

which means it is difficult or costly to either store in traditional data warehouses or 

routinely query and analyse. This data tsunami phenomenon is being described as a 

new grand challenge in computing: The ‘Big Data’ problem, which is defined as the 

practice of collecting complex data sets so large that it becomes difficult to analyse 

 

 

Figure 3-1 ADS examples: MHT and RASL. 
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and interpret manually or use on-hand data management applications (e.g., Microsoft 

Excel). Mining industry faces big challenges in quickly manipulating large volumes 

of data and mining them for relevant information. Supporting rapid decision making 

for key operations must be obtained in real time. These operations in the mining 

industry, for example, include yield modelling, production optimisation, fleet 

optimisation, and mine collapse detection. Hence, efficient Information and 

Communication  technologies (ICT) that store, distribute, index, and analyse 

hundreds of petabytes of heterogeneous data streaming from a variety of sensors are 

needed -- in a way that does not compromise QoS in terms of data availability, data 

search delay, data analysis delay, and the like.  

Big data applications are always data-intensive and time-critical. Data from 

scientific research is another important source of big data. Here is an example in 

astrophysics. Australian astrophysics researchers operate a gigantic 64-metre Parkes 

telescope which generates a large amount of data through constant observation. 

Scientists usually need to access the results as early as possible, as a late-coming 

result may cause an enormous waste of resources and loss of scientific discovery. An 

example in astrophysics is gravitational wave detection (Kawata et al., 2007) which is 

especially time-critical. Due to its nature of real-time and streaming, delay in 

returning a result of a task may cause missed detection of an incoming gravitational 

wave; thousands of hours of data-intensive computation would be in vain, which is a 

terrible waste both economically and environmentally. Online web service is another 

example. Although there are less computational tasks in normal web services than in 

scientific applications, user requests normally demand the servers’ response in a few 

seconds, such as in the search engine, etc.. Hence, efficiency is of extreme importance 

in cloud scheduling for most big data applications.  

To address big data problems, cloud computing is believed to be the most 

potent platform. In Australia, big companies such as Vodafone Mobile and News 

Corporation are already moving their business data and its processing tasks to 

Amazon cloud - Amazon Web Services (AWS) (2012). Email systems of many 
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Australian universities are using public clouds as the backbone. To tackle the large 

amount of data in scientific applications, CERN, for example, is already putting the 

processing on petabytes of data into cloud computing (Heath, 2012). There has also 

been a lot of research regarding scientific cloud computing, such as in (Vecchiola et 

al., 2012, Wang et al., 2011a, Wang et al., 2008). For big data applications within 

cloud computing, data security is a problem that should always be properly 

addressed. In fact, data security is one of the biggest reasons why people are 

reluctant in using cloud (Schmidt, 2012, Yao et al., 2010, Zissis and Lekkas, 2011). 

Therefore, more effective and efficient security mechanisms are direly in need to 

help people establish their confidence in all-round cloud usage. 

Cost-efficiency brought by elasticity is one of the most important reasons why 

cloud is being widely adopted for processing big data applications. For example, 

Vodafone Australia is currently using the Amazon cloud to provide their users with 

mobile online-video-watching services. According to their statistics, the number of 

video requests per second (RPS) can reach an average of over 700 during less than 

10% of the time such as Friday nights and public holidays, compared to a mere 70 

on average for the rest (i.e. 90%) of the time. The variation in demand is more than 9 

times (2012). Without cloud computing, Vodafone cannot avoid purchasing 

computing facilities that can process 700 RPS, but it would be a total waste for most 

of the time. This is where cloud computing can save a significant amount of expense 

-- cloud’s elasticity allows the user-purchased computation capacity to scale up or 

down on-the-fly at any time. Therefore, user requests can be fulfilled without 

wasting investment on computational powers. Two other large companies who own 

news.com.au and realestate.com.au, respectively, are using the Amazon cloud for the 

same reason (2012). We can see through these cases that scalability and elasticity are 

of extreme importance for the processing of the big data application in cloud 

computing. As stated above, efficiency, as an important factor of QoS, must not be 

compromised. Support for data dynamics is an important aspect in these examples. 

Therefore, the capability and efficiency in supporting data dynamics is essential for 

big data applications in the cloud, which is also applicable to public auditing 
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mechanisms for cloud data storage. 

Many big data applications will keep user data stored on the cloud for 

small-sized but very frequent updates. A typical example is Twitter, where each 

tweet is restricted to 140 characters long (which equals 140 bytes in ASCII code). 

They can add up to a total of 12 terabytes of data per day (Naone, 28 September, 

2010). Storage of transaction records in banking or securities markets is a similar 

and more security-heavy example. Moreover, cloud users may need to split 

large-scale datasets into smaller chunks before uploading to the cloud for 

privacy-preservation (He et al., 2011) or efficient scheduling (Yuan et al., 2010). In 

this regard, efficiency in processing small updates will affect the performance of 

many big data applications. To better support scalability and elasticity of cloud 

computing, some recent public data auditing schemes support data dynamics. 

However, the types of updates that are supported are limited. Therefore previous 

schemes may not be suitable for some practical scenarios. Besides, there is a 

potential security threat in the existing schemes. We will discuss these problems in 

detail in the following chapters. 

To sum up, the motivation for many research works on cloud data security is 

the fact that data is stored in cloud and away from the user's direct control. Therefore, 

cloud data is susceptible to more types of malicious attacks, including the malicious 

cloud server. As in conventional systems, data security in cloud and big data is also 

an endless game of attack and defend with constant evolvements in the spear and 

shield. Therefore, there is always the possibility for new security exploits to be 

discovered from conventional security models. In this thesis, the main focus is 

public data auditing. The desired properties discussed in these examples are the main 

design motivations and evaluation factors for our innovative schemes. 
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3.2.2 Research Problems with Public Auditing of Cloud Data -- 

Lifecycle and Framework 

Data security includes many dimensions; the three main dimensions are 

confidentiality, integrity and availability. In this thesis, we will focus on data 

integrity. Data integrity means that data is needed to be maintained in its original 

form. Integrity verification and protection is an active research area; numerous 

research problems belonging to this area have been studied intensively in the past. 

As a result, the integrity of data storage can now be effectively verified in traditional 

systems through the deployments of Reed-Solomon code, checksums, trapdoor hash 

functions, message authentication code (MAC), digital signatures, etc. However, as 

stated above, the data owner (cloud user) still needs a method to verify their data 

stored remotely on a semi-trusted cloud server, no matter how secure the cloud 

claims to be. In other words, a cloud service provider must enable verifications from 

an external party that is independent to the cloud. The party could be the client 

herself, or a third party auditor. A straightforward approach is to retrieve and 

download from the server all the data the client wants to verify. Unfortunately, when 

data size is large, it is very inefficient in the sense of both time consumption and 

communication overheads. Moreover, when the client needs a third party to verify 

the data on her behalf, all data will be exposed to the third party. To address these 

problems, scientists are developing schemes based on traditional digital signatures to 

help users verify the integrity of their data without having to retrieve it, which they 

term as provable data possession (PDP) or proofs of retrievability (POR).  

In this thesis, we will focus on integrity protection and verification from 

external parties, which we also term 'public auditing' of data. We only discuss the 

auditing to data itself; other auditing methods, such as log auditing (Hwang et al., 

2014, Waters et al., 2004), are out of the scope of this thesis. There are 3 

participating parties in an integrity verification game: client, CSS and TPA. The 

client stores her data on CSS, while TPA's objective is to verify the integrity of the 
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client's data stored on CSS. Having a specialised TPA to verify data integrity is 

more efficient, but it may also introduce additional risks as the third-party auditor 

may not be completely trustworthy by itself. Fig 3-2 shows the relations between the 

participating parties in public auditing, which demonstrates that the three parties in a 

public auditing game -- the client, the cloud service provider and third-party auditor -- 

do not fully trust each other. This has been a widely researched problem over recent 

years.  

A framework of integrity protection on cloud data is presented in Fig. 3-3, 

where we can see ensuring data integrity can involve many aspects, ranging from 

internal and external verifications, data encryption and data anonymization. While 

this framework is only a wide static overview for the research area, we present a 

common lifecycle for the detailed dynamic process of a remote integrity verification 

 

Figure 3-2 Participating parties in public auditing of cloud data. 

Relations between the participating parties in public auditing of cloud data. The client 
authorises the TPA to audit data stored on CSS, where the three parties are not fully trusted by each 
other. 
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scheme (with support for dynamic data updates). Security of a public auditing 

scheme may be jeopardised in every step in the entire auditing process. In the mean 

time, efficiency of the entire auditing scheme will benefit from efficiency 

improvement at every step. Therefore, the lifecycle that describes every step of the 

verification process is essential for analysing the research problems in this area. The 

lifecycle can be analysed in the following steps: Setup and data upload; 

Authorization for TPA; Challenge for integrity proof; Proof integration; Proof 

verification; Updated data upload; Updated metadata upload; and Verification of 

updated data. The relationship and order of these steps are illustrated in Fig. 3-4. We 

now analyse in detail how these steps work and why they are essential to integrity 

verification of cloud data storage. 

Setup and data upload: In cloud, the user data is stored remotely on CSS. In 

order to verify the data without retrieving it, the client will need to prepare 

verification metadata, namely homomorphic linear authenticator (HLA) or 

homomorphic verifiable tag (HVT), based on homomorphic signatures (Johnson et 
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    Figure 3-3 Integrity verification for outsourced data -- a framework 



31 

 

al., 2002). Then, the metadata will be uploaded and stored alongside the original 

datasets. These tags are computed from the original data; they must be small in size 

in comparison to the original dataset for practical use.  

Authorisation for TPA: This step is not required in a two-party scenario where 

clients verify their data for themselves, but it is important when users require a 

semi-trusted TPA to verify the data on their behalf. If a third party can infinitely ask 

for integrity proofs over a certain piece of data, there will always be security risks in 

existence such as plaintext extraction. To address this problem, we present a novel 

solution in Chapter 5. 

Challenge and verification of data storage: This step is where the main 

requirement -- integrity verification -- is fulfilled. The client will send a challenge 

message to the server, and the server will compute a response over the pre-stored 

data (HLA) and the challenge message. This response is computed and is based on 

all message blocks, which we call 'proof integration' in the cycle. The client can then 

verify the response to find out whether the data is intact. The scheme has public 

 

Figure 3-4 Integrity verification for outsourced data -- the lifecycle.  
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verifiability if this verification can be done without the client's secret key. When 

data is dynamic and the auditing is from a third party, a malicious server may cheat 

the client with other healthy blocks when the challenged block is corrupted. We will 

discuss this further in Chapter 6. Note that if the data storage is static, the whole 

process would have ended here. However, as discussed earlier, data is always 

dynamic in many big data contexts (often denoted as velocity, one of the four v's). In 

these scenarios, we will need the rest of the steps to complete the lifecycle.  

Data update: Occurs in dynamic data contexts. The client needs to perform 

updates to some of the cloud data storage. The updates could be roughly categorised 

as insertion, deletion and modification; if the data is stored in blocks with varying 

size for efficiency reasons, there will be more types of updates to address, which we 

will discuss in Chapter 5. Also, when there are multiple replicas in storage, one 

update will impact all replicas. We will discuss how to improve efficiency in 

Chapter 6. 

Metadata update: In order to keep the data storage stay verifiable without 

retrieving all the data stored and/or re-running the entire setup phase, the client will 

need to update the verification metadata (HLA or HVT's) according to the existing 

keys.  

Verification of updated data: This is also an essential step in the dynamic data 

context. As the CSS is not completely trusted, the client needs to verify the data 

update process to see if the updating of both user data and verification metadata has 

been performed successfully in order to ensure the updated data can still be verified 

correctly in the future. Note that communications inside the cloud will take place in 

both this step and the challenge/verification step for integrating a proof, where 

encryption and key exchange are needed to ensure security. We will discuss how to 

improve the efficiency of key exchange schemes inside the cloud without 

compromising security in Chapter 4. 

We will show in Sections 3.3 and 3.4 how each step in this lifecycle was 
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developed and how it evolved. This will be done by analysing representative 

approaches in this research area and showing our contributions in the following 

chapters. 

3.3 Representative Public Auditing Schemes In Sketch  

Now we introduce and analyse some representative schemes. These schemes 

are basically presented in chronological order, and the scheme presented later will 

support improved properties which will be analyse at the end of this section. Note 

that all computations are within the cyclic group  or . 

3.3.1 PDP 

Proposed by Ateniese, et, al. in 2007, PDP (provable data possession) can 

provide authors with efficient verification over their outsourced data storage 

(Ateniese et al., 2007, Ateniese et al., 2011). It is the first scheme to provide 

blockless verification and public verifiability at the same time. 

The tag construction is based on the RSA signature, therefore all computations 

are modulo  by default. Let  be defined as the same as in RSA signature 

(See Section 3.1),  is a generator of , and  is a random secret value; 

 is the public key and  is the secret key. The tag is computed as 

. To challenge CSS, the client sends the indices (or, 

coordinates) of the blocks they want to verify, and correspondingly chooses a set of 

coefficients , as well as a  where  is a random number, and 

these are sent to CSS along with the indices. To prove data integrity, CSS will 

compute , along with a value , and this will be sent 

back  as the proof. To verify this proof, the client (or TPA) will compute 

 , then verify if .  

The authors have also proposed a light version called E-PDP, in contrast to the 
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formal S-PDP scheme, for better efficiency. The basic idea is to throw away the 

coefficients  and compute the proof  as . The verification 

equation is therefore . However, the light version has  proved to be not 

secure under the compact POR model. Nevertheless, as a milestone in this research 

area, a lot of settings continue to be used by the following work. Mixing in random 

coefficients is one of the examples. Another example is that the paper proposed a 

probability analysis and found that only a constant small number of blocks are to be 

verified, and if the client needs to have 95% or even 99% confidence, the integrity of 

the entire file is good. This analysis has also become a default setting in the 

following schemes. 

3.3.2 Compact POR 

Compact POR is proposed by Shacham, et, al. in 2008 (Shacham and Waters, 

2008). Compared to the original POR, the authors have provided an improved 

rigorous security proof. The schemes they introduced in the paper also suit the PDP 

model. 

They firstly proposed a construction for private verification. In this case, data 

can only be verified with the secret key, therefore no other party can verify it except 

for the client. The metadata HVT is computed as , where  is 

a pseudo-random function (PRF).  and the PRF key k is kept as the secret key. 

When the server is challenged with a set of block coordinates and a set of 

corresponding public coefficients  (same definition as  in PDP above), it will 

compute  and  to return  as the proof. Upon 

receiving the proof, the client can simply verify if . The 

scheme is efficient because it admits short response length and fast computation.  

The other construction with public verification is even more impressive 

compared to schemes at that time. It is the first BLS-based scheme that supports 

public verification. Due to the shortened length of BLS signature, the proof size is 
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also greatly reduced compared to RSA-based schemes. Similar to BLS signature, the 

tag construction is based on a bilinear map  where  is a group of 

prime order . Two generators  and  of  are chosen to be the public key, as 

another value  where  is the secret key for the client. The tag is computed 

as ,. Just as the one with private verification, a set of coefficients 

 is also chosen with the designated block coordinates. When challenged, the proof 

 is computed as  and . The client can then verify the 

data integrity through verifying if . 

Another great contribution of this work is the rigorous security framework it 

provides. In their model, a verification scheme is secure only when it is secure 

against an arbitrary adversary with a polynomial extraction algorithm to reveal the 

message from the integrity proof. To prove the security, they also defined a series of 

interactive games under the random oracle model. Compared to the previous 

security frameworks in first PDP and first POR schemes, the adversary defined in 

this framework is stronger and stateless, and the definition of the extraction 

algorithm (therefore the overall soundness) is stronger. Also, their framework 

perfectly suits the public verification, and even the multi-replica storage and 

multi-prover scenarios. To date, this model is considered the strongest and it is very 

frequently used to prove the security of newly-proposed verification algorithms.  

3.3.3 DPDP 

DPDP (Dynamic PDP), proposed in 2009, is the first integrity verification 

scheme to support full data dynamics (Erway et al., 2009). It is from this scheme 

that the processes in integrity verification schemes started to form a self-closed 

lifecycle. They utilised another authenticated data structure -- rank-based 

authenticated skip list -- for verification of updates. A rank-based skip list is similar 

to MHT in the sense that they both incur a logarithm amount of operations when an 

update occurs. All types of updates -- insertion, deletion and modification -- are 

supported for the first time. This design is essentially carried on by all the following 



36 

 

schemes with dynamic data support. However, public verifiability was not supported 

by the scheme, and there was no follow-up work to fill the blank. Therefore, we only 

give a brief introduction here. The readers can refer to the next subsection to see 

how data dynamics is supported with an authenticated data structure such as MHT. 

3.3.4 Public Auditing of Dynamic Data 

As the DPDP scheme did not provide support for public verifiability, Wang, et, 

al. proposed a new scheme that can support both dynamic data and public 

verifiability at the same time (Wang et al., 2011b). They term the latter 'public 

auditability', as the verification is often done by a sole-duty third-party auditor 

(TPA). As this scheme offers no optimisation for auditing of multiple replicas for 

dynamic datasets, we name the scheme SiR-DPA (Single-Replica Dynamic Public 

Auditing). 

A MHT is utilised to verify the updates where the root  is critical 

authentication information. The tree structure is constructed on blocks, and the 

structure is stored along with the verification metadata. Compared to compact POR, 

it computes the tags using  instead of  in order to support dynamic data, 

otherwise all tags in the following blocks must be changed upon each insertion or 

deletion update, which would be very inefficient. Aside from this, the tag 

construction and verification are similar: . The proof is also 

computed as  . While the verification is to verify whether 

, TPA will first verify 's signature to ensure 

the MHT is correct at the server side.  

To verify data updates, the client will first generate the tag for the new block: 

, then upload it to CSS along with the update request. CSS will 

update the metadata as requested, and send back  along with the old block 

, the AAI  (note  will stay unchanged if  is the only block that has 

changed) and the client-signed old MHT root . The client can then verify the 
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signed  to ensure CSS has not manipulated it, then it can verify  with  

and  to see if the update of data and metadata is correct. Apart from the main 

scheme, they also proposed a scheme that can perform efficient batch auditing with 

experimental results. 

There was also a follow-up work to improve this scheme for privacy 

preserving public auditing (Wang et al., 2013c). When computing integrity proof, 

they added a random masking technique to prevent the part of the original file from 

being extracted from several integrity proofs over this specific part of the data. 

Although it is one of the earliest works to support public auditability and data 

dynamics at the same time, there are still weaknesses which exist. The main 

weaknesses have been introduced in Section 3.3. We will show how these problems 

are addressed with our newly proposed public auditing schemes in the following 

chapters. 

 

3.4 Detailed Analysis of Research problems  

3.4.1 Authenticated Key Exchange in Cloud 

As stated in Chapter 1, cloud users will need to audit their data in cloud servers 

during utilisation of cloud services, where efficiency is also an important factor. From 

a server's perspective, if a user wants to retrieve the data for verification, CLC must 

gather data blocks from distributed storage or virtualised instances, and integrate them 

to respond to the user. To ensure data confidentiality, the data also needs to be 

encrypted during transit between CLC and the cloud server, just the same as for task 

scheduling. Although current research allows users to verify data integrity without 

retrieving the dataset itself (Wang et al., 2011b, Ateniese et al., 2007, Liu et al., 

2014b), the server still needs to compute an integrity proof based on the pre-stored 

authenticator and the dataset itself. For example, in (Wang et al., 2011b, Liu et al., 
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2014b), a part of the proof is computed as  where  are the cloud data 

blocks and  are random vectors selected by the verifier. In cloud, data blocks are 

distributedly stored on different storage servers. Therefore, CLC needs to retrieve data 

from their distributed locations (virtualised instances) and compute  before it can 

respond to the auditing request, no matter it is from the user or a third-party auditor. 

For the same reason discussed before, this user data also needs to be encrypted. In 

public auditing schemes, while the verification itself is usually very fast because of 

pre-processing, efficiency in communications between CLC and instances becomes a 

predominant factor. At the same time, the data must be well-protected to avoid 

additional risks to data security within the auditing process itself. For these reasons, 

efficiency of key exchange between CLC and instances also greatly affects the overall 

efficiency of integrity verification and public auditing schemes, which is why this 

research is a part of this thesis. 

The unique characteristics of virtualisation, consolidation and multi-tenancy 

bring unpredictable challenges to data security. For example, a malicious party can 

easily be another legitimate user who is using the same cloud and has even more 

opportunities for successful malicious behaviours (Ristenpart et al., 2009). As 

discussed in Section I, data in scientific research represents valuable intellectual 

property which can either be people’s privacy-sensitive information or directly related 

to scientific discovery. Therefore, we suggest that all user data always stays encrypted 

in the cloud. Decryptions may only be applied right before data is used for task 

execution.  

In a typical cloud computing infrastructure, a central server is employed for not 

only receiving and processing user requests at the front, but also being responsible for 

scheduling and splitting tasks through MapReduce at the back. This server is named 

cloud controller (CLC) in the Eucalyptus system (Nurmi et al., 2009), we will use this 

denotation in this paper. Virtualised server instances running on clusters of servers are 

responsible for processing the divided tasks in a parallel fashion and returning the 

results afterwards, and then CLC is capable of assembling the results and return to the 
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user. For more effective data management and processing, a structure of additional 

hierarchical levels is often employed between CLC and end server instances as well. 

We will discuss KE schemes in both the two-layered control structure and 

multi-layered structure in our CCBKE and HKE-BC schemes which will be 

presented in Chapter 4. 

Because of encryptions, interaction between users and cloud servers in big data 

applications requires constant and repeated key exchange operations. As a result, a 

large percentage of time is devoted to the security system. As demonstrated in (Liu et 

al., 2013c), the standardised IKE key exchange scheme can take up to 76% of the total 

time consumption in the security system (depending on the actual parameters) when 

the size of user datasets and the number of instances involved are large. This is why 

we need to improve the efficiency of key exchange schemes. In every KE session, a 

distinct session key is needed for every virtual machine. This is because the risk of 

additional information being exposed against malicious users needs to be minimised. 

The existence of virtual machine hijacks (Ristenpart et al., 2009) further intensifies 

this risk. For example, if a single session key is utilised for data encryption on 100 

virtualised instances, the information on all 100 nodes will all be exposed when only 

one of the instances is hijacked and the key is revealed. If we use different keys for 

different instances, the total information leakage will be reduced by 99%. For this 

reason, the computation cost and time consumption of key exchange operations in 

cloud are much more than those in other distributed computing systems.  

Computations on server instances in key exchange processes can be completed 

almost instantly, because there is only one exponentiation needed for each instance. In 

addition, data communications in KE schemes via networking take almost no time 

because only kilobytes of data need to be transferred between the cloud controller and 

server instances in order to complete key exchange. Digital signatures are always 

necessary in key exchange schemes for identity authentication. In key exchange 

schemes, messages to be signed are usually of a short fixed length (typically 128 bits 

which is the output size of a hash-based message authentication code (HMAC)). In 
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this regard, time consumption in signing and verification of messages is negligible 

when compared to modular exponentiations over 1024-bit keying materials related to 

key exchanges. Based on this view, we know that the modular exponentiations in KE 

operations act as the predominant factor in the efficiency of a distributed KE scheme.  

For scheduling purposes, a large-scale cloud computing infrastructure often 

employs a hierarchical control structure, which fits the philosophy of distributed 

storage and computation within the cloud. Following the acronyms defined in the 

early Eucalyptus cloud system (Nurmi et al., 2009), a typical cloud computing 

structure employs a CLC (cloud controller) as the interface between user and cloud, 

several CC (cluster controllers) for cluster control, a bunch of NC (node controllers) 

for virtualisation, and then virtualised instances for actual task execution. There are at 

least three layers for control, and the number of control layers can increase further 

with the scaling of the cloud environment (see Fig. 3-5 for an example of a hybrid 

cloud which consists of multiple clouds with multiple control layers). In CCBKE (Liu 

et al., 2013c) (which we also introduce in Chapter 4 in this thesis), CLC needs to 

perform all the KE operations for exchanging a distinct key for each instance, while 

the intermediate layers are required to do nothing other than pass messages. In this 

regard, the efficiency of KE will be further improved by re-designing the scheme to 

distribute the modular exponentiations to other control nodes. 

3.4.2 Public Auditing of Verifiable Fine-grained Updates 

Some of the existing public auditing schemes can already support full data 

dynamics (Erway et al., 2009, Wang et al., 2011b, Wang et al., 2010). In their 

models, only insertions, deletions and modifications on fixed-sized blocks are 

discussed. Particularly, in BLS-signature-based schemes (Wang et al., 2010, Wang et 

al., 2011b, Zhu et al., 2012, Shacham and Waters, 2008) with 80-bit security, the size 

of each data block is either restricted by the 160-bit prime group order , as each 

block is segmented into a fixed number of 160-bit sectors. This design is inherently 

unsuitable to support variable-sized blocks, despite their remarkable advantage of 
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shorter integrity proofs. In fact, as described in Section 2, existing schemes can only 

support insertion, deletion or modification of one or multiple fixed-sized blocks, 

which we call ‘coarse-grained’ updates.  

Although support for coarse-grained updates can provide an integrity 

verification scheme with basic scalability, data updating operations in practice can 

always be more complicated. For example, the verifiable update process introduced 

in (Wang et al., 2011b, Erway et al., 2009) cannot handle deletions or modifications 

in a size lesser than a block. For insertions, there is a simple extension that enables 

insertion of an arbitrary-sized dataset – CSS can always create a new block (or 

several blocks) for every insertion. However, when there are a large number of small 

upgrades (especially insertions), the amount of wasted storage will be huge. For 

example, in (Wang et al., 2011b, Erway et al., 2009) the recommended size for a 

data block is 16k bytes. For each insertion of a 140-byte Twitter message, more than 

99% of the newly allocated storage is wasted -- they cannot be reused until the block 

is deleted. These problems can all be resolved if fine-grained data updates are 

supported. According to this observation, supporting fine-grained updates can bring 
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not only additional flexibility, but also improved efficiency. Details are provided 

when the FU-DPA scheme is introduced in Chapter 5. 

3.4.3 Multi-replica Big Data in Cloud 

For availability, storing multiple replicas is a default setting for cloud service 

providers. Storing replicas at different servers and/or locations will make user data 

easily recoverable from service failures. A straightforward way for users to verify the 

integrity of multiple replicas is to store them as separate files and verify them one by 

one. Currently, the most common technique used to support dynamic data is 

authenticated data structure (ADS).  Given the  communication complexity 

and storage complexity of ADS (n is the total number of blocks, a very large number 

when the file is large), there are different replicas. More importantly, an update for 

each data block will require an update of the corresponding block in every replica. If 

all replicas are indexed in their own separated ADS, the client must verify these 

updates one by one to maintain verifiability. The 'proof of update' for each block 

contains log(n) hash values as auxiliary authentication information (AAI). Therefore, 

the communication cost in update verifications will easily become disastrous for users 

whose cloud datasets are highly dynamic. In previous schemes, researchers have 

considered support for public auditing, data dynamics and efficient verification of 

multiple replicas, but none have considered them all together. In this work, we try to 

address this problem with a new ADS which links together all replicas for each block. 

In (Curtmola et al., 2008), the authors proposed a multi-replica verification 

scheme, named MR-PDP, with great efficiency by associating only one authenticator 

(HLA) for each block and all replica blocks. Although this approach can bring great 

benefits such as lower storage cost at the server side and less pre-processing time at 

the client side, their scheme is not secure when replacing the verifier with a TPA. The 

verification process needs to privately keep the random padding values  (or at 

least the pseudo-random function  that is used to generate them). If they are leaked, 

another party will know how to compute the original message based on any replica as 
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well as how to compute an arbitrary replica based on an original file block. To make 

things worse, if  is known by the cloud server (or if there are collusions between 

cloud server and TPA), the cloud server will be able to fake an integrity proof of a 

given replica block based on any other replica block, even if the challenged replica 

block is corrupted. Therefore, the MR-PDP scheme is not secure in a setting with 

public verifications.  

To sum up, from our considerations, desired properties of a multi-replica 

verification scheme should (simultaneously) include the following: 

1. Public Auditability and Support for Dynamic Data -- Enables a third-party 

auditor to do the regular verification for the client without requiring any secret 

material, and allows the client to verify data updates. It will be unreasonable for the 

client to conduct verification herself on a regular basis, where she only wants to know 

when something went wrong with her data. Meanwhile, support for dynamic data is 

important as it exists in most big data applications. 

2. All-round Auditing -- Enables efficient verification for all replicas at once so 

that the verifier will feel more confident. If any of the replicas fails, the server will be 

notified in time. 

3. Single-Replica Auditing -- Enables verification for an arbitrary replica for 

some specific blocks; because the verifier may only want to know if at least one 

replica is intact for less important data.   

 

3.4.4 Security of Public Auditing Schemes 

Authorised Public Auditing 

Fig 3-2 displays relations between the three parties in auditing games, where 

both CSS and TPA only semi-trust the client. In the old model, the challenge 
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message is very simple so that everyone can send a challenge to CSS for the proof of 

a certain set of file blocks, which can enable malicious exploits in practice. First, a 

malicious party can launch distributed denial-of-service (DDOS) attacks by sending 

multiple challenges from multiple clients at a time in order to cause additional 

overheads on CSS and congestion to its network connections, and thereby  

degeneration of service quality. Second, an adversary may get privacy-sensitive 

information from the integrity proofs returned by CSS. By challenging the CSS 

multiple times, an adversary can either get considerable information about user data 

(due to the fact that returned integrity proofs are computed with client-selected data 

blocks), or gather statistical information about cloud service status. To this end, 

traditional PDP models cannot quite meet the security requirements of 

‘auditing-as-a-service’, even though they support public verifiability. This problem 

will be addressed in the FU-DPA scheme in Chapter 5. 

Security Against Distrustful Server 

Fig. 3-2 shows the relations between the participating parties in public auditing, 

which demonstrates that the three parties in a public auditing game -- the client, the 

cloud service provider and third-party auditor -- do not fully trust each other. 

Authenticated data structures (ADS) such as MHT or RASL can enable other parties 

to verify the content and updates of data blocks. The authentication for a block is 

accomplished with the data node itself and its auxiliary authentication information 

(AAI) which is constructed with node values on or near its verification path.  Without 

verification of block indices, a dishonest server can easily take another intact block 

and its AAI to fake a proof that could pass authentication. This will cause several 

security holes. First, the proofs of updates are no longer reliable. A dishonest server 

can store a new data block anywhere, as long as it transfers back a consistent pair of 

hash  and AAI that can be used to compute the correct root value. Second, for 

auditing of dynamic data, , the hash value of the block itself, is needed in 

authenticator computation instead of a hash of any value that contains block indices 

such as  or , otherwise an insert/delete will cause changes to 
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authenticators of all the following blocks, which will be disastrous, especially if the 

client is the only one who can compute authenticators. Therefore, in order for each 

authenticator to include a block-specific hash value,  seems to be the only 

viable choice. In this case, as the verifier (client or TPA) does not possess the original 

dataset, the client will solely rely on the cloud server -- which keeps the actual dataset 

-- to compute  for verification of data integrity. As the only way for the client 

to verify the correctness of  is through ADS, the server can cheat the client 

with another hash and AAI pair. In other words, the server can take any other healthy 

block to replace the block that should be verified, which denies the primary aim of 

integrity verification. To the best of our knowledge, there is no existing public 

auditing scheme that supports full dynamic data which can deal with this problem. 

Erway et, al.'s RASL (Erway et al., 2009) (see Fig. 3-1 for an example) can 

provide authentication for indices, which is resilient to the above attacks. Aside from 

the effective ADS, they propose a scheme where the authenticator/tag  is computed 

as  where  is a generator and  is the message to be audited, however this 

is too simple to support public auditing. Without a hash value, they can be over-easily 

integrated or separated. In fact, the RASL cannot be directly applied into a public 

auditing scheme supporting dynamic data. As stated earlier,  -- the hash value 

of message block  -- is to be used in authenticators for support of dynamic data. 

Therefore, the client needs  computed by (and later transferred from) the cloud 

server for verification. In order to achieve verifiability of index information, the leaf 

nodes no longer store the hash value of file blocks, but the hash value of a 

concatenation of multiple values in the form of 

. Therefore, the server needs to send back 

both values of  and , and the client will need to verify . In an RASL, 

a common case is that multiple leaf nodes are in the same verification path, such as 

 in Fig. 3-1. Let's say  represents message blocks . As 

stated earlier, the client needs  computed by and transferred from the cloud 

server for verification. In this case, if verification of  is needed, the server not only 
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needs to return all 3 values on  as part of AAI, but also needs to compute 

and transfer all . As there is only a small fraction of 

blocks (460 for 99% confidence when auditing a 1GB file), it is not likely that these 

consecutive blocks will be chosen for one audit, which means there will be excessive 

overheads. Also the bottom-up levelling restricts the insertions. If leaf nodes are level 

0 as defined in (Erway et al., 2009), any insertion that creates a new level below level 

0 will cause an update of all level values (therefore all hash values of all nodes), which 

is hardly possible for the client to verify. For these reasons, in our MuR-DPA scheme 

introduced in Chapter 6, we choose to use MHT with top-down levelling instead of 

RASL to design the new ADS. Now that the leaf nodes are on different levels, we  

need both the client and verifier to remember the total number of blocks and verify the 

block index from both directions (leftmost to rightmost, rightmost to leftmost) to 

make sure the server does not cheat the client with another node on the verification 

path.   
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Chapter 4  

Authenticated Key Exchange Schemes in 

Cloud  

As analysed in Chapters 2 and 3, an authenticated key exchange (AKE) scheme 

in the background of the cloud is essential for secure proof integration where 

symmetric encryption is involved. Its efficiency will greatly impact the overall 

efficiency for public auditing as well as the other security-aware mechanisms of 

cloud. In Chapter 4, I will demonstrate two AKE schemes which have been designed 

for efficient and secure cloud auditing.  

This chapter is organised as follows. Section 4.1 presents a key exchange 

scheme with the randomness-reuse strategy; the work is published in (Liu et al., 2011, 

Liu et al., 2013c). Section 4.2 presents a more efficient hierarchical key exchange 

scheme; the work is published in (Liu et al., 2014a, Liu et al., 2013b). Section 4.3 

presents security and efficiency analyses for both of the schemes presented in this 

chapter.  

4.1 CCBKE: Cloud Computing Background Key Exchange 

4.1.1 System setup 

The system chooses a large prime integer  to construct a Diffie-Hellman 

group, and a generator  of group , i.e.,  is a primitive root modulo . Normally 

 is a Sophie Germain prime where  is also prime, so that the group  
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maximises its resilience against square root attack to the discrete logarithm problem. 

A certificate authority (CA) as in PKI is still needed in our security framework so that 

communicating parties can identify each other through exchanging verifiable 

certificates  and  , as the certificates contain public keys which can be 

used to verify the session partners’ signatures, and thereby their identities. Certificates 

are relatively long-term data which are issued to all participants of communication 

before the commencement of communication, and CA won’t participate itself unless 

re-verification of identities and revocation and re-issuing certificates for participants 

are needed. As these should be done in a much lower frequency (e.g. once a day) than 

key exchanging (e.g. re-exchanging the key in every new session), they won’t affect 

the efficiency of a key exchange scheme for scheduling in general. Therefore, we will 

ignore all communications involving CA in our scheme and won’t be discussing 

further details on issuing and revoking certificates.  

4.1.2 Key Exchange 

Initial exchange is used when a new task is to be executed, because that is when 

CLC needs to decide how to distribute this new task to be executed on existing 

computation infrastructure, i.e., which of the server instances are involved. CLC picks 

a secret value , computes its public keying material  in  , and broadcasts 

the following message to the domain of server instances S which contains  

instances : 

Round 1, C -> S:  ,  , ,  

where  and  are for algorithm negotiation,  is for Diffie-Hellman 

key exchange, and  is for freshness verification. The initiator of a normal IKE 

scheme will generate  secret values  , then compute and send out 

, either through multicast or one by one, to establish separated 

security channels with each receiver. In our scheme, although we still establish one 

 for each server instance  where  , we use only one single secret 
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value  for CLC in all  messages in order to reduce cost. We further analyse 

security and cost reduction for this variation in section 4 and 5, respectively.  

Upon receiving Message 1, each server instance generates their secret value 

, compute key material , then responds within Round 2 as follows: 

 

Round 2, S -> C:  ,  ,  ,  ,  ,  for 

 

Note that round 2 involves  different messages sent from  separately. 

After exchanging the first two rounds of messages, the session keys  

are computed for all parties as follows: 

 

 

… 

 

The session keys are now shared between CLC and each server instance for the 

use of encryption of later communications. Although the Diffie-Hellman key 

exchange is completed, the CCBKE initial exchange is not finished as the participants 

have to authenticate each other in order to prevent man-in-the-middle (MITM) attacks. 

Similar to IKE, CLC generates signatures  which are the signatures for these  

messages, and use its secret key from the key pair issued by CA: 

, for  

and broadcasts the following message to S: 

Round 3, C -> S: 
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 , 

 

 , for  

The server instances can then verify the identity of the initiator of this 

conversation by using its session key  to decrypt its own part of this message. 

Signatures can be verified through the public key contained in the certificate. 

Similarly, server instances will send out their own encrypted ID, signature and 

certificate to CLC for verification: 

Round 4, S -> C:  ,  , for  

where, similar to round 3 but only signed separately,  is signatures by  

to messages: 

, for  

Note that this round involves  messages as well. After the identities of both 

CLC and server instances are authenticated through round 3 and 4, CLC will send to 

 the split task data which are encrypted with session keys  

using symmetric encryption such as AES. After task execution,  returns to 

CLC the results which are encrypted using   as well. The prf function 

is often implemented as an HMAC function such as SHA-1 or MD5, which outputs a 

fixed-length short message (commonly 128 bits) and has high efficiency (around 

200MB/s on today’s desktop PCs) itself.  

4.1.3 Rekeying 

Rekeying is often accomplished by running initial exchange all over again. 

However, in the following cases, alternative strategies need to be applied. We’ll also 

analyse in this section the efficiency of these strategies. 



51 

 

a) Failure Recovery: 

If any message that constitutes the initial exchange fails to arrive, the CLC will 

simply start a one-on-one IKE key exchange session with this specific instance. As 

this is only an accidental situation and can be tackled on-the-run, this additional time 

consumption can be considered negligible.  

b) Multi-step Tasks 

In a multi-step task, data need to be transferred back and forth. In this situation it 

is not necessary for the participants to re-authenticate each other after the successful 

authentication in the first round because of the high dependency of data in a similar 

task. Therefore, only rounds 1 and 2 are needed to be performed, with new keying 

materials and minor changes to the SA and HDR fields. Following the analyses in 

Section 3, as rounds 3 and 4 only contain fast operations such as signature and 

verification over short messages as well as symmetric-key encryption/decryption and 

HMAC functions, the computational overhead of the rekeying process on the CLC is 

almost identical to the initial exchange from an efficiency point of view.  

4.2 HKE-BC: Hierarchical Key Exchange for Big data in 

Cloud 

An overview of the HKE-BC scheme is shown in Figs. 4-1 and 4-2. Generally 

speaking, the scheme can be described as a layer-by-layer structure just as its name 

indicates. In the first phase, every control node will exchange a temporary key 

 with its parent node and  with its child node, and then 

undertake mutual authentications. In the second phase, CLC will send the final 

session keying encrypted with the temporary keys established in the first phase. 

Through these operations, the expensive exponentiation operations can be securely 

distributed to the intermediate control nodes. 
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4.2.1 System Setup 

The system chooses a large prime integer  and selects a generator  of group 

. Normally  is a Sophie Germain prime where  is also prime, so that 

the group  has maximum resilience against square root attack.  

4.2.2 Key Exchange 

This is a generalised description for a cloud infrastructure that has  control 

layers, from CLC to end NC. Layer  has  nodes, namely  , ,  

. CLC is on layer 1, where . Let  be the numbers of 

sub-nodes for nodes  on layer . 

Overview: The scheme can be divided into two phases. Phase 1 is KE between 

control nodes, which aims at secure delivery of CLC's secret keying material to NCs; 

 
 

Figure 4-1 Process of HKE-BC Phase1. 
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while Phase 2 is for the actual key exchange between NC and the instances. NCs 

interact with virtualised instances on CLC’s behalf, get responses from them, and then 

send back the results to CLC to deliver back the instances' keying materials to finalise 

the key exchange procedure. Brief graphs indicating the processes of both phases are 

provided in Figs. 4-1 and 4-2. 

Phase 1: This phase is for KE between all control nodes from CLC (layer ) to 

the th control layer (layer , i.e., NC layer). This exchanged session key will be 

used for encrypting the real keying material in Phase 2. 

All control nodes pick their own private key  and one-time nonce . 

They compute their public key for KE as follows: 

 

Then CLC broadcasts the very first message : 

 

  

 

to all nodes in layer 2.  is a flag for message identification, indicating the request 

for keying material.  

For the nodes  in layer , upon receiving message 

 from their parent-node in   (  ), they send messages 

 to their sub-nodes in the next layer :  
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Meanwhile, they respond  to their parent node: 

 

  

 

After receiving  , every node in layers  will know its parent 

node ’s public key , and compute the session key for communicating with its 

parent: 

 

  

  

For nodes in layer , upon receiving  from their sub-nodes, they’ll 

know the public keys of their sub-nodes, namely . We denote the public key of 

node ’s sub-nodes  as .  compute the following 

session keys for communicating with their sub-nodes:  

  

  

For authentication, all nodes in    broadcast  to its 

sub-nodes : 
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where the structure of message for signatures is also an output of , similar to IKE. 

All nodes on , (  ) will receive this message, and respond with  

if signature verification is successful: 

: 

   

The reason that only the receiver of  and  can decrypt them is 

that, for every parent-child node pair  and , we already have: 

 

which concludes phase 1. 

Phase 2: This phase is for the eventual goal of our scheme – KE between CLC 

and virtualised instances. The outcome of Phase 1 will play a vital role here. 

CLC picks its secret value  as its keying material for KE with those 

virtualised instances. CLC encrypts  with the session key negotiated in phase 1 and 

broadcasts the following message to the next layer: 

 

   

Upon receiving message  from their parent-nodes in   

(  ), the nodes in  broadcast similar  to their sub-nodes in : 
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because the recipients can obtain  by decrypting the received  using its 

 . For security reasons, all nodes in  should destroy  after 

sending  in Phase 2 where they re-encrypt  with  and send to 

their sub-nodes. 

After these operations, once nodes on layer , i.e., NCs, get to know the  

value. They now use this secret value to perform a 4-round CCBKE to finish the final 

KE: 

 

NC-VM:  ,  , ,  

VM-NC:  ,  ,  ,  ,  

NC-VM:  ,  

  

 

Figure 4-2 Process of HKE-BC Phase2.  
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VM-NC:  ,   

 

The final session key for data encryption is  where . After this 

step, not only  but all  virtualised instances will have the desired session key 

for data encryption/decryption. 

Now all virtualised instances have exchanged a key with their control nodes. 

For each NC, i.e. ( ), they combine and encrypt the final session keys 

in this format: 

:  

and send it to its upper level. Then, nodes in every level from  

compute and send the following message to their parent nodes, after receiving from 

their sub-nodes: 

: 

 

After this layer-by-layer operations, CLC, i.e., , will know the session keys 

 that have been negotiated with all virtualised instances, thereby concluding the 

KE scheme. The task data stored at CLC can now be split, encrypted and distributed to 

the virtualised instances for execution. After the execution, the server instances may 

follow an inverse procedure to exchange session keys with CLC and send back the 

encrypted results, or will keep using keys that have been changed in this procedure 

and re-exchanging keys in the next server-client interaction. 
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4.3 Security and Efficiency Analysis 

The security of our schemes is analysed in Dolev-Yao’s threat model with a bit 

extension. As we are dealing with communication security only, all the data stored on 

CLC and intermediate control nodes is assumed to be safe against the adversary in this 

model. We will analyse the security of our schemes in two ways, in that we will show 

that our scheme is safe against both outside and inside attackers while maintaining 

perfect forward secrecy. The abilities of the adversaries, or attackers, are defined as 

follows. 

4.3.1 Security Proofs 

As cryptanalysis on symmetric-key encryption algorithms is outside the scope 

of this thesis, the following discussions are under 2 standard cryptographic 

assumptions as follows. 

Assumption 4.1: Any participant in our scheme cannot retrieve any data that 

was encrypted by any symmetric-key algorithm, unless it has the session key which 

was used to encrypt the data in the first place. i.e., cryptanalysis is beyond this security 

discussion. 

Assumption 4.2 (CDH assumption): Given a cyclic group  of order , a 

generator  of  and two random integers , retrieving  

in polynomial time using only  is computationally impossible. 

 Similar to most security analyses of public-key communication protocols, we 

now define the capabilities of an outsider attacker and an inside attacker. 

Definition 4.1 (cloud outside attacker): A malicious cloud outside attacker  

aims to retrieve the session keys in exchange. An outside attacker  is an adversary 

who is capable of monitoring, intercepting, and changing all communication traffic in 

the whole cloud background structure, in order to gain access to protected data in 
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transit. However,  does not have access to any of the node machines, and its 

identity is not legitimate, i.e.  cannot obtain a valid certificate to let itself be 

authenticated by CLC or any server instance. 

Definition 4.2 (cloud inside attacker): A malicious inside attacker  aims to 

steal the data of other users of the same cloud.  is an adversary who not only has 

the same ability as , but also can be authenticated by the cloud and act as a 

legitimate server instance of the communication. However,  does not have access 

to any other legitimate participants’ private information, including server instances’ 

private information and CLC’s private information. 

We now prove that our scheme is secure against both these types of attackers. 

Theorem 4.1: A cloud outside attacker  cannot retrieve in polynomial time 

any exchanged session key  in CCBKE.  

Proof: Following Definition 1, we know that an outside attacker  can gain 

access to all public keying materials  by monitoring the entire 

network, but  cannot get secret information such as . Considering the 

computational hardness of computational Diffie-Hellman (CDH) problem, we know 

that  cannot compute any  where , in polynomial time, with  

. □ 

Theorem 4.2: Assume  is the session key negotiated between a cloud 

inside attacker  and CLC.  cannot retrieve in polynomial time any session key 

 other than , unless there is a negligible probability. 

Proof: According to Definition 2,  has its own secret value  in addition 

to information controlled by . Since all secret values  are generated by 

individual server instances themselves instead of allocated, there is a probability that 

the same secret value is generated and used for key exchange by different server 

instances, and we call this a ‘collision’. For example, when a collision between  
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and a legitimate server instance  (with its secret value ) happens, we have 

. Therefore  can easily retrieve data sent by  using its own key . 

Since  are randomly chosen over , the probability  for a collision 

occurrence will be:  

 

This is a similar situation to the famous birthday attack where  depends on  

as well. In our CCBKE scheme, p is commonly 1024-bit and n (number of server 

instances) is usually several thousand which can be considered negligible compared 

to . To this end,  is very close to 0. Thus, the probability for a collision is 

negligible, which means an inside attacker cannot retrieve any of the others’ session 

keys except when there is a negligible possibility. Combining this conclusion with 

Theorem 1, we have finished proving Theorem 2. □ 

Since all identity information are encrypted with the session keys in 

authentication rounds 3 and 4 and both outside attackers and inside attackers cannot 

retrieve the session key of others, we have the following lemma. 

 

Lemma 4.1 Any pretended participant will fail authentication in rounds 3 and 4.  

 

Once the authentication of rounds 3 or 4 fail, the communication will be 

terminated. Hence, a man-in-the-middle attack or any kind of identity forgery attack 

to our scheme will not be successful.  
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Derived from these theorems, we now have the following lemma regarding the 

security of the HKE-BC scheme: 

Lemma 4.2: The adversaries defined above have a negligible chance of 

breaking the HKE-BC scheme. Specifically, a cloud outside attacker  cannot 

retrieve any session key, while a cloud inside attacker  cannot retrieve any session 

key other than her/his own. 

Proof: The key exchange procedures for each node and its sub-nodes in both the 

HKE-BC Phase 1 and Phase 2 are actually minimised and iterative CCBKE processes. 

As CCBKE is secure against cloud inside and outside attackers according to 

Theorems 1 and 2, all the KE operations in HKE-BC scheme are secure against these 

attackers. Therefore, all the encrypted messages in our HKE-BC scheme are securely 

encrypted. Hence, we can say that our new HKE-BC scheme is secure against 

attackers from either outside or inside the cloud, as defined in Definition 1. □ 

In addition, if we use different parameters and keying materials for every 

execution and re-keying in the HKE-BC scheme, it will also hold perfect forward 

security just the same as in CCBKE and IKE. 

4.3.2 Perfect Forward Secrecy 

Similar to IKE, session keys used for encrypting communications are only used 

once until they are expired and destroyed. Thus, a previously used session key or 

secret keying material is worthless to a malicious opponent even if a previously-used 

key or a secret keying material is somehow exposed. This is one of the major 

advantages of using a key exchange scheme in hybrid encryption, which is why we 

did not choose to simply encrypt the session key with an asymmetric-key encryption 

algorithm, even though it can be easily done through PKI considering the fact that we 
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have adopted a CA in our CCBKE and architecture. 

 
4.3.3 Efficiency Analysis for HKE-BC 

We now analyse the efficiency improvements in the HKE-BC scheme when 

compared to its predecessors. As analysed in section II, the majority of time 

consumption is from modular exponentiations, e.g. . Compared to them, the 

symmetric-key encryptions and decryptions in phase 2 take virtually no time because 

those concatenated keying materials to be encrypted are only several kilobytes long. 

Hence, we will analyse the efficiency advantage of our scheme by calculating the total 

number of modular exponentiations. 

Let 

 

be the maximum number of sub-nodes for each node on level . Starting from  

 , we have 

 

then the total number of VM instances is , with at most  VMs controlled 

by one NC. Assume the maximum time consumption of one modular exponentiation 

on one node is , then the total time consumption of CCBKE is close 

to  given that VM holds similar computational ability. In HKE-BC, 

the upper bound of the total time consumption in KE modular exponentiations in one 

round should be . Given the fact that each NC can launch and control a 

large number of VMs (much more than the number of control nodes controlled by a 

higher-level control node), the following inequality will hold: 
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Besides, because we have  (otherwise HKE-BC will have the exact same 

efficiency as CCBKE), we will have 

 

if the NCs have similar computational capability that can launch a similar amount of 

VMs. Therefore: 

 

then we have 

 

which means in practical cloud settings, HKE-BC always has increased efficiency 

compared to CCBKE. In fact, in most cases we have: 

 

then 

 

In this case, the time consumption of HKE-BC is even only a fraction of 

CCBKE. Although IKE, HKE-BC and CCBKE are all of linear time complexity to the 

scale of the task, the efficiency advantage of HKE-BC is nonetheless tremendous. 

A detailed quantitative analysis with experimental results for the proposed key 
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exchange schemes is provided in Section 7.3.  
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Chapter 5  

FU-DPA: Public Auditing for Dynamic 

Data with Fine-grained Updates  

This chapter presents our research published in (Liu et al., 2014b) - the 

FU-DPA scheme for public auditing of dynamic cloud data storage. The chapter is 

organised as follows. Section 5.1 provides an introduction and states the main 

research contributions of this work. Section 5.2 presents a necessary preliminary for 

presenting our scheme -- the weighted Merkle hash tree. Section 5.3 provides our 

framework and definitions for the fine-grained updates supported in our scheme. 

Section 5.4 provides a detailed description of our proposed FU-DPA scheme. Section 

5.5 provides a security and efficiency analysis.  

5.1 Introduction 

As analysed in Chapters 2 and 3, existing research work already allows data 

integrity to be verified without possession of the actual data file. As stated in Section 

3, when the verification is done by a trusted third party, this verification process is 

also called data auditing, and the third party is called an auditor. However, such 

schemes in existence suffer from several common drawbacks. First, a necessary 

authorisation/authentication process is missing between the auditor and the cloud 

service provider, i.e., anyone can challenge the cloud service provider for a proof of 

the integrity of a certain file, which potentially puts the quality of the so-called 

‘auditing-as-a-service’ at risk; Second, although some of the recent work based on 

the BLS signature can already support fully dynamic data updates over fixed-size 
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data blocks, they only support updates with fixed-sized blocks as basic units, which 

we call coarse-grained updates. As a result, every small update will cause 

re-computation and updating of the authenticator for an entire file block, which in 

turn causes higher storage and communication overheads. In this chapter, we 

provide a formal analysis for possible types of fine-grained data updates and propose 

a scheme that can fully support authorized auditing and fine-grained update requests. 

Based on our scheme, we also propose an enhancement that can dramatically reduce 

communication overheads for verifying small updates. Theoretical analysis and 

experimental results demonstrate that this scheme can offer not only enhanced 

security and flexibility, but also significantly lower overheads for big data 

applications with a large number of frequent small updates, such as applications in 

social media and business transactions. The research contribution of our scheme can 

be summarised as follows: 

1. For the first time, we formally analyse different types of fine-grained 

dynamic data update requests on variable-sized file blocks in a single dataset. To 

the best of our knowledge, we are the first to propose a public auditing scheme 

based on the BLS signature and Merkle hash tree (MHT) that can support 

fine-grained update requests. Compared to existing schemes, our scheme supports 

updates with a size that is not restricted by the size of the file blocks, thereby it 

offers extra flexibility and scalability compared to existing schemes. 

2. For better security, our scheme incorporates an additional authorisation 

process with the aim of eliminating threats of unauthorized audit challenges from 

malicious or pretended third-party auditors, which we term ‘authorised auditing’.  

3. We investigate how to improve the efficiency in terms of verifying frequent 

small updates which exist in many popular cloud and big data contexts such as 

social media. Accordingly, we propose a further enhancement for our scheme to 

make it more suitable for this situation than existing schemes. Compared to existing 

schemes, both theoretical analysis and experimental results demonstrate that our 
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modified scheme can significantly lower communication overheads. 

 

5.2 Preliminaries 

5.2.1 Bilinear Pairing 

Bilinear pairing is a foundation stone for the FU-DPA scheme introduced in 

this chapter. It was already introduced in Chapter 3. Therefore, details are omitted 

here to avoid duplication. Please refer to Section 3.1.3 for a detailed introduction of 

bilinear pairing. 

5.2.2 Weighted Merkle Hash Tree 

The Merkle Hash Tree (MHT) (Merkle, 1987) has been intensively studied in 

the past. In this thesis we utilise an extended MHT with weight values. The new 

authenticated data structure is named WMHT. Similar to a binary tree, each node  

has a maximum of 2 child nodes. In fact, according to the update algorithm, every 

non-leaf node constantly has 2 child nodes.  Information contained in one node  

in an WMHT  is represented as  where  is a hash value and  is the 

weight of this node.  is constructed as follows. For a leaf node  based on a 

message , we have , ; A parent node of  

and  is constructed as  where  is 

a concatenation operator. A leaf node ’s AAI  is a set of hash values chosen 

from every one of its upper level so that the root value  can be computed through 

.  For example, for the WMHT demonstrated in Fig. 5-1, ’s AAI 

. According to the property of WMHT, we know that the 

number of hash values included in  equals the depth of  in . 
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5.3 Framework and Definitions for Supporting 

Fine-grained Updates 

We first define the following block-level fine-grained update operations:  

Definition 1 (Types of Block-level Operations in Fine-grained Updates): 

Block-level operations in fine-grained dynamic data updates may contain the 

following 6 types of operations: partial modification  -- a consecutive part of a 

certain block needs to be updated; whole-block modification  -- a whole block 

needs to be replaced by a new set of data; block deletion  -- a whole block needs 

to be deleted from the tree structure; block insertion -- a whole block needs to be 

created on the tree structure to contain newly inserted data; and block splitting  

– a part of data in a block needs to be taken out to form a new block to be inserted 

next to it. 1 

                                                 

1 There are other possible operations such as block merging  -- two blocks need to be merged 

 

Figure 5-1 An example of a weighted Merkle hash tree (WMHT). 
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The framework of the public auditing scheme with data dynamics support 

consists of a series of algorithms. Similar to (Erway et al., 2009), the algorithms in 

our framework are: , , , , , 

 and . 

: This algorithm is performed by the client for key 

generation. It outputs the secret key  and public key  based on a predefined 

security requirement. 

: This algorithm is 

performed by the client before uploading the file to CSS. It takes the file , 

segmentation request  and the client’s secret key as input, and outputs the 

segmented file , the set of homomorphic linear authenticators , a WMHT  

construction based on , the root hash  of , ’s signature , and a file tag . 

: This algorithm is 

performed by the CSS to perform an update request  from the client. 

An update request here means one operation in one single block in the format of 

.  indicates the type 

of operation as defined in Definition 1;  indicates the index of the block that needs 

to be verified (namely );  is the starting offset of this update (only used when 

); and  is the new data that need to be added in  (only 

used in ). We will show in Section 4.4 how these operations can 

compose fine-grained updates requests.  

: This is for the client to 

                                                                                                                                          

into the first block before the second block is deleted, and data moving  -- moves a part of data 
from one block to another, if the size of the second block does not exceed  after this update. 
However, the fine-grained update requests discussed in this paper do not involve these operations, 
thus we will omit them in our current discussion. We will leave the problem of how to exploit them to 
future work. 
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verify dynamic data updating based on the proof  returned by CSS. 

: The client or a third party 

authorised by it (e.g. a TPA) can use this algorithm to generate a challenge message 

 to the CSS to verify data integrity.  is an 

auditing accuracy parameter that is determined by the client, which will determine 

the subset  of  that needs to be verified this time. 

: The CSS will use this 

algorithm to generate a proof  to respond to the verifier. The algorithm will return 

 if the verification of  with  fails. 

: The verifier, either client or TPA, 

will verify the integrity proof  provided by CSS using this algorithm.  

Based on this framework, we now present the main FU-DPA scheme. 

5.4 The Proposed Scheme 

5.4.1 First Scheme 

We now describe our proposed scheme with the aim of supporting 

variable-sized data blocks, authorszed third-party auditing and fine-grained dynamic 

data updates. 

Overview: Our scheme is described in three parts:  

1) Setup: the client will generate keying materials via  and 

, then upload the data to CSS. Unlike previous schemes, the client will 

store a WMHT instead of an MHT as metadata. Moreover, the client will authorise 

the TPA by sharing a value . 

2) Verifiable Data Updating: the CSS performs the client’s fine-grained update 
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requests via , then the client runs  to check 

whether CSS has performed the updates on both the data blocks and their 

corresponding authenticators (used for auditing) honestly.  

3) Challenge, Proof Generation and Verification: Describes how the integrity 

of the data stored on CSS is verified by TPA via ,  and 

. 

We now describe our scheme in detail as follows. 

Setup: This phase is similar to the existing BLS-based schemes except for the 

segmentation of file blocks. Let  be a bilinear map defined in 

Section 4.1, where  is a GDH group supported by 2.  is a 

collision-resistant hash function, and  is another cryptographic hash function.  

After all parties have finished negotiating the fundamental parameters above, 

the client runs the following algorithms: 

 : The client generates a secret value  and a generator  

of , then computes . A secret signing key pair  is chosen with 

respect to a designated provably secure signature scheme whose signing algorithm is 

denoted as . This algorithm outputs  as the secret key  and 

 as the public key . For simplicity, in our settings, we use the same 

key pair for signatures, i.e., , .  

: According to the preemptively determined 

segmentation requirement  (including , a predefined upper-bound of 

the number of segments per block), segments file  into 

                                                 

2 Most exponential operations in this paper are modulo . Therefore, from now on, for simplicity, 
we will use  instead of  unless otherwise specified. 
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, i.e.,  is segmented into a total of  blocks, with the th block 

having  segments. In our settings, every file segment should be of the same size 

 and as large as possible (see (Shacham and Waters, 2008)). Since 

 bytes is used in a BLS signature with 80-bit security (sufficient in 

practice),  bytes is a common choice. According to , a set 

 is chosen so that the client can compute the HLAs  for 

each block:  which constitutes the ordered set 

. This is similar to signing a message with the BLS signature. The 

client also generates a root  based on the construction of a WMHT  over 

 and computes . Finally, let , the client 

computes the file tag for  as  and then 

outputs . 

Prepare for Authorisation: The client asks (her choice of) TPA for its ID  

(for security,  is used for authorisation only). TPA will then return its ID, 

encrypted with the client’s public key. The client will then compute 

 and sends  along with the auditing delegation 

request to TPA for it to compose a challenge later on. 

Different from existing schemes, after the execution of the above two 

algorithms, the client will keep the WMHT ‘skeleton’ with only the weights of each 

node and indices of each file block in order to reduce fine-grained update requests to 

block-level operations. We will show how this can be done in Section 4.4. The client 

then sends  to CSS and deletes  from its local 

storage. The CSS will construct a WMHT  based on  and keep  stored with 

 for later verification, which should be identical to the tree 

spawned at the client-side shortly before. 

Verifiable Data Updating:  Same as Setup, this process will also be between 

the client and the CSS. We discuss 5 types of block-level updates (operations) that 
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will affect :  (see Definition 1). We will discuss how these 

requests can form fine-grained update requests in general in Section 4.4.  

The verifiable data update process for a -typed update is as follows (see 

Fig. 5-2): 

1. The client composes an update quest  defined in Section 4.2 

and sends it to CSS.  

2. CSS executes the following algorithm:  

: CSS parses and get 

. When , CSS will update  and  accordingly, 

then output  (note that  stays the same during the 

update) and the updated file .  

Upon finishing this algorithm, CSS will send  to the client. 

3. After receiving , the client executes the following algorithm: 

: The client computes  using 

, then parses  to , compute  (and 

) and  use  and  respectively. It verifies  use 

, and checks if . If either of these two verifications fails, then the 

output is  and it returns to CSS, otherwise the output is . 

 If the output of the algorithms is , then the client computes  

  and  then sends  to CSS.  

4. The CSS will update  to  and  to  accordingly and delete  

if it receives , or it will run  again if it receives 

FALSE. A cheating CSS will fail the verification and constantly receive  

until it performs the update as the client requested.  
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Due to their similarity to the process described above, other types of 

operations are only briefly discussed as follows. For whole-block operations 

, as in the model in the existing work (Wang et al., 2011b), the client can 

directly compute  without retrieving data from the original file  stored on CSS, 

thus the client can send  along with the  in the first phase. For 

responding to an update request, CSS only needs to send back  instead of . 

Other operations will be similar to where . For a -typed update, in 

addition to updating  to , a new block  needs to be inserted to  after 

. Nonetheless, as the contents in  is a part of the old , the CSS still needs 

to send  back to the client. The process afterwards will be similar to a 

-typed upgrade, with the only exception that the client will compute  

 

Figure 5-2 Verifiable PM-typed data update in FU-DPA. 
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using  to compare to , instead of using  as in the 

-typed update.  

Challenge, Proof Generation and Verification: In our setting, TPA must 

show CSS that it is indeed authorised by the file owner before it can challenge a 

certain file.  

1. TPA runs the following algorithm: 

: According to the accuracy required in 

this auditing, TPA will decide to verify  out of the total  blocks. Then, a 

challenge message  is generated where 

 is TPA’s ID,   is a randomly selected subset of  with  elements and 

 are  randomly-chosen coefficients. Note that VID is encrypted with 

the CSS’s public key  so that CSS can later decrypt  with the 

corresponding secret key. 

TPA then sends  to CSS. 

2. After receiving , CSS will run the following algorithm: 

: Let . CSS will first 

verify  with , ,  and the client’s public key , and output 

 if it fails. Otherwise, CSS will compute   

and  and compose the proof  as 

 , then output . Note that during the 

computation of  , we will let  if .  

After execution of this algorithm, CSS will send  to TPA. 3. After receiving 

, TPA will run the following algorithm: 

: TPA will compute  using  and then 

verify  using the public keys  and  by comparing  with 
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 . If they are equal, let , TPA will further 

check if  equals , which is similar to verifying a BLS signature. If 

all the two equations hold then the algorithm returns , otherwise it returns 

. 

An illustration of Challenge and Verification processes can be found in Fig. 

5-3. 

5.4.2 Analysis on Fine-grained Dynamic Data Updates 

Following the settings in our proposed scheme, we now define a fine-grained 

update request for an outsourced file divided into  variable-sized blocks, where 

each block consists of  segments of a fixed size  each. Assume a 

WMHT  is built upon  for authentication, which means  must keep 

updated with each WMHT operation in order for CSS to send back the root  for 

the client to verify the correctness of this operation (see Section 4.3).  We now try 

to define and categorise all types of fine-grained updates, and then analyse the 

WMHT operations with  that will be invoked along 

with the update of the data file.  

Definition 2 (Fine-grained Data Update Request): A fine-grained update 

request is defined as , where  indicates the starting offset 

of this update in ,  indicates the data length after  that needs to be updated 

(so that  can characterise an exact proportion of the original file  that 

needs to be updated, which we will later call ), and  is the new message 

to be inserted into  from offset .  

We assume the data needed to be obsolete and the new data to be added shares 

a common starting offset  in , as otherwise it can be split into multiple updates 

defined in Definition 2 commencing in sequence. We now introduce a rule to follow 

during all update processes: 
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Condition 1 (Block Size Limits in Updates): An update operation must not 

cause the size of any block to exceed ; After any operation, a block that has 0 

bit data remaining must be deleted from . 

For the convenience of a clearer discussion and implementation, we add an 

additional parameter indicating the type of update. A request is thereby formatted 

as .  indicates 

whether this update is a Modify, Insert or Delete. We assume the offset  is located 

in block , which can be efficiently located using  and  through algorithm 

findBlock() (see Fig. 5-4). That is to say, let  be the length of data between  

and the start offset of , i.e., we assume . The 

situation where  or  will be a little different from the majority 

 

Figure 5-3 Challenge, proof generation and verification in FU-DPA. 
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of cases where . Note that when we have an average of several 

hundreds of segments per block, the probability for a random update request  

to satisfy  or  is so slim that it can be neglected 3 . 

Nevertheless, for completeness, we will still include these cases in the discussion, 

but we will not consider these cases in the efficiency analysis. We now analyse the 

three types of fine-grained updates separately.  

1) : In this case we have . As Condition 1 

must be complied, we will classify the update into several possible cases as follows 

and discuss them separately. We will use a variable  for 

measurement. 

(1-a) We first discuss the majority case where .  

(1-a-i) When ,  a direct insertion into  will not cause a 

breach of the upper bound  . Therefore, only one  operation is needed.  

(1-a-ii) When , a direct insertion will contradict with 

condition 1, therefore one split operation  and 2  operations are required. 

                                                 

3 The probability is  when  is counted in bits. If  is counted in segments, this probability will become  

which is still a tiny percentage when the average number of segments per block is high. 

 

Figure 5-4 The algorithm to find a block in F with a given offset o. 
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The split point in  depends on the length of . As a result,  is split into 2 

blocks  and  with data in  inserted into  and the new block  

separately. Note that after the update  will reach the upper bound . 

(1-a-iii) When  being larger, e.g.,  for some 

, there will be a total of  new blocks  inserted 

between the old  and  to store the remaining of  after the operations 

in (1-a-ii). This will be a straightforward extension to where 

 -- there will be a total of 1  operation, 2  operations, and  

whole-block insertion ( ) operations.  

We now discuss the case when  and . For simplicity, we 

will only provide the results.  

(1-b) When ,  there will be 1  operation, 

same as (1-a); for  there will be 1  operation, 1  

operation and 1  operation if , or 1  

operation and 1  operation if  ; for 

, there will be one  operation and   

operations. 

(1-c) When ,  there will be 1  operation, 

same as (1-a); for  there will be one  operation 

and   operations. 

An example of this type of update (1-a-ii, to be representative) is demonstrated 

in Fig. 5-5.   

2) : In this case , and the measurement variable we 

use here is . 

(2-a) As in 1), we will first discuss the case when .  
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(2-a-i) When , similar to (1-a-i), there will be one  

operation on .  

(2-a-ii) When , there will be 2  operations 

as both of the two blocks  and  have data remaining after deletion. 

(2-a-iii) When , on top of t he  

operation in , all the contents in block  needs to be erased, thus one  

operation of  is required. In addition, when , another 

 operation is needed because a part of the next block  needs to be deleted 

as well. Similarly, we will generalise this case to that of when 

  for some , there will be 2 

 operations and   operations in total; when , there 

will be 1  operation and    operations in total.  

(2-b) When , there will be one more  operation and one less  

operation when , the remaining of the operations will stay the same.  

Figure 5-5 Example: fine-grained insertion. 

An example of a (1-a-ii)-insert operation for  where , 
,  and , in a WMHT where (bytes).
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 (2-c) When , the discussion will be parallel to where  , 

which we will omit here.  

An example for (2-a-iii)-deletion is shown in Fig.5-6.  

3) : We will only discuss the case where 

 and . If , 

a   request can be easily split into a  request where 

 and a  request.  Therefore, we 

believe a discussion on the case of where  will be sufficient. In 

this case, we choose , then the 

classified discussion will be extremely similar to where , therefore 

we will only list the results as follows.  

(3-a) When :  

(3-a-i) When , similar to 1-a), there will be one  operation 

in .  

(3-a-ii) When   for some , 

there will be 2  operations and   operations in total; when 

, there will be 1  operation and    operations in 

total.  

(3-b) When , there will be one more  operation and one less 

 operation when , the remaining of the operations will stay the same.  

(3-c) When , the discussion will be just parallel to where 

 therefore which we will omit here.  

An example for the (3-a-ii)-modify operation is shown in Fig.5-7.   
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Theorem 1: Any valid fine-grained update request  that is in the form 

of  can either directly belong to, or be split into some smaller 

requests that belong to, the following 5 types of block-level update requests: 

  and . 

Proof: Let , , then we can always 

reduce to  and  where . If 

, then ; if , then 

; if , then . 

Therefore, according to our analysis in this section, and  can be split into 

the 5 block-level operations in all cases, which concludes our proof. □ 

Through the analysis above, we know that a large number of small updates, no 

matter whether they are insert, delete or modify, will always invoke a large number 

of  operations. We now try to optimise  operations in the next section to 

make them more efficient. 

 

Figure 5-6 Example: fine-grained deletion. 

An example of a (2-a-iii)-delete operation for  where , 
 and , in a WMHT where  (bytes). 
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5.4.3 Further Modification for Better Support of Small Updates 

Although our proposed scheme can support fine-grained update requests, the 

client still needs to retrieve the entire file block from CSS in order to compute the 

new HLA, in the sense that the client is the only party that has the secret key  to 

compute the new HLA but clients do not have  stored locally. Therefore, the 

additional cost in communication will be immense for frequent updates. In this 

section, we will propose a modification to address this problem, utilising the fact 

that CSS only needs to send back data in the block that stayed unchanged.  

The framework we use here is identical to the one used in our scheme 

introduced in Section 4.2 (which we will also name as ‘the basic scheme’ hereafter). 

Changes are made in  and ; Setup, Challenge, 

Proof Generation and Verification phases are the same as in our basic scheme. 

Therefore, we will only describe the two algorithms in the following phase:  

Verifiable Data Updating: We also discuss  operations here first.  

: After CSS has received the update request  

 

Figure 5-7 Example: fine-grained modification. 

An example of a (3-a-ii)-modify operation for  where , 
 and , in a WMHT where  (bytes). 
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from the client, it will parse it as  and use  to gather 

the sectors that are not involved in this update, which we denote as . CSS 

will then perform the update to get , then compute , then send the proof of 

update    to the client. 

: After the client receives , it will first compute  

using  and verify , then it will compute  using  

and then compute  with  and compare  with . If , 

then the client will return  to CSS for it to update accordingly.  

For an  operation the process will be the same as our basic scheme as 

there are no new data inserted into , therefore the retrieving of the entire data 

block is inevitable when computations of  and  are required. For other types 

of operations, no old data is involved in new blocks; therefore the processes will also 

remain the same. The process is shown in Fig. 5-8. 

5.4.4 Further Discussions 

Our strategy can also be applied in RSA-based PDP or POR schemes to achieve 

authorised auditing and fine-grained data update requests. As RSA can inherently 

support variable-sized blocks, the process will be even easier.  The batch auditing 

variation in (Wang et al., 2011b, Wang et al., 2010) can also be applied to our scheme, 

as we did not change the construction of HLAs and the verifications on them.  

For the same reason, the random masking strategy for privacy preservation 

proposed in (Wang et al., 2010) can also be incorporated into our scheme to prevent 

TPA from parsing the challenged file blocks through a series of integrity proofs to a 

same set of blocks. Alternatively, we can also restrict the number of challenges to the 

same subset of data blocks. When data updates are frequent enough, the success rate 

of this attack will drop dramatically, because there is a high probability that one or 
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many of the challenged blocks have already updated before  challenges are 

completed, which is the reason we did not incorporate this strategy into our scheme. 

 

5.5 Security and Efficiency Analysis 

5.5.1 Security Analysis 

In this section, the soundness and security of our scheme are discussed 

separately in each phase, as the aim and behaviour of the malicious adversary in each 

phase of our scheme is different. Our model assumes the following: 

Assumption 5.1: CSS will honestly answer all data queries to its clients. In 

 

Figure 5-8 Verifiable PM-typed data update in modified (final) FU-DPA. 
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other words, if a user asks to retrieve a certain piece of her data stored on CSS, CSS 

will not try to cheat her with an incorrect answer. 

This assumption -- reliability -- is a reasonable one because it should be 

provided as a basic service quality guarantee by all cloud service providers.  

Challenge, Verification and TPA Authorisation 

In the challenge/verification process of our scheme, we try to secure the scheme 

against a malicious CSS who tries to cheat the verifier TPA about the integrity status 

of the client’s data, which is the same as previous work on both PDP and POR. In this 

step, aside from the new authorisation process (which will be discussed in detail later 

in this section), the only difference compared to (Wang et al., 2011b) is the WMHT 

and variable-sectored blocks. Therefore, the security of this phase can be proven 

through a process highly similar to (Wang et al., 2011b), using the same framework, 

adversarial model and interactive games defined in (Wang et al., 2011b). A detailed 

security proof for this phase is therefore omitted here.   

Security of the new authorisation strategy in our scheme is based on the 

existential unforgeability of the chosen signature scheme. We first define the 

behaviour of a malicious third-party auditor.  

Definition 3 (Malicious TPA): A malicious TPA is a third party who aims at 

challenging a user’s data stored on CSS for integrity proof without the user’s 

permission. The malicious TPA has access to the entire network.  

According to this definition, none of the previous data auditing schemes is 

resilient against a malicious TPA. Now, in our scheme, we have the following 

theorem: 

Theorem 2: Through the authorisation process, no malicious TPA can cause the 

CSS to respond with an integrity proof  over an arbitrary subset of file , namely 

, unless there is a negligible probability. 
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Proof: According to our scheme design, TPA must submit 

 computed by the client as a part of the challenge message 

 to CSS. For a malicious TPA , all three of the following secret materials are 

needed to forge a valid authorisation message: client’s secret key , secretly 

negotiated message , and TPA’s ID . According to the scheme design, 

the following two statements are true: 

1) Given that the signature scheme we use is existentially unforgeable,  

cannot forge any signature for an arbitrary message  without .  

2)  is encrypted with the recipient’s public key before being sent to the 

client or CSS. Therefore, if , the probability for  to get to know  

is only . Similarly, as  is shared securely between client and CSS, the 

chance for  to know another’s  is also negligible. 

Based on the facts above, we know that a malicious TPA  cannot compute a 

valid  on any cloud user’s behalf. Even when  intercepts some valid 

 sent by other user,  is still required to send the corresponding  

along with this  in order to convince CSS, which also exceeds ’s 

capability. Thus, we can say that our newly added authorisation process is secure 

against any malicious TPA defined above. □ 

From this theorem, we can see that the security of a public auditing scheme is 

strengthened by adding the authorisation process. In fact, the scheme is now resilient 

against malicious or pretended auditing requests, as well as potential DDOS attacks 

launched by malicious auditors. 

For even higher security, the client may mix in a nonce to the authorisation 

message to make every auditing message distinct, so that no one can utilise a 

previous authorisation message. However, this setting may not be appropriate for 

many scenarios, as the client must stay online when each auditing happens.  
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Verifiable Data Updating: 

In the verifiable updating process, the main adversary is the untrustworthy 

CSS who did not carry out the data update successfully, but still manages to return a 

satisfactory response to the client thereafter. We now illustrate the security of this 

phase of our scheme in the following theorem:  

Theorem 3: In the verifiable update process in both our basic scheme and the 

modification, CSS cannot provide the client with the satisfactory result, i.e.,  

cannot match the  computed by the client with , if CSS did not 

update the data as requested.  

Proof: 1) In our scheme, the block indices are stored locally and ‘findBlock()’ 

are executed also locally by the client. Therefore, there is no added risk in the phase 

of finding the right file block.  

2) In our basic scheme, according to Assumption 1, the returned  is the 

correct data block and  will be the correct AAI metadata associated to . 

Therefore , computed at client-side with  and , will be the correct new 

block stored at CSS after this update. Note that  contains only unaffected WMHT 

nodes, which stays unchanged during the update. Therefore, During the updating of 

, any intentional or unintentional mistake made by CSS will cause  be 

different from  , thereby leading to a failure of client-side authentication.  

3) In our modified scheme, CSS will not cheat the client on the query response 

 according to Assumption 1. Therefore, the new block  will also be the 

correct block after the update. In this regard, just as in our basic scheme, any 

mistake made in updating the data will result in . This concludes our 

proof for the theorem. □ 

Note that in the verifiable update process, data retrieval is a part of the verifiable 

update process. According to Assumption 1, CSS will respond to this query with the 
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correct . If not with Assumption 1, it is recommended to independently retrieve 

 before the update so that CSS cannot cheat the client intentionally, as it 

cannot distinguish whether the following update is based on this retrieval. 

If CSS can be trusted even more, the client may let CSS compute  

(where  are the sectors that did not change) and send it back to the client, then 

the client will be able to compute  using it along with  and . This 

will keep the communication cost of this phase on a constantly low level. However, 

as the CSS is only considered semi-trustworthy and it is difficult for the client to 

verify  without , this assumption is unfortunately too strong for the 

majority of scenarios. 

5.5.2 Efficiency Analysis 

We analyse the efficiency of our scheme from computation, storage and 

communication perspectives. The efficiency of each phase is analysed separately as 

follows.  

Setup: 

Compared to previous schemes, the client will have to keep some additional 

metadata of , i.e., the block indices and weight of each node in the WMHT, to 

decompose a fine-grained update request to several verifiable block-level operations 

for CSS to perform one by one with . This data will be kept in 

the form of a binary tree, structured identically as the WMHT stored along with the 

original dataset on CSS. CSS has the capability of taking over this task to analyse 

fine-grained update requests for the client without requiring additional storage, but it 

is hard for the client to verify whether CSS did it incorrectly either intentionally or 

by mistake. The data to store one client will not take much storage anyway. In 

implementation, in consideration of the proof size,  cannot be too large. For 
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example, let the dataset size be 1GB and , then there are 500,000 blocks 

in total. A 2-byte unsigned integer will be sufficient in practice to store the weight 

for each leaf nodes, and a 4-byte integer is sufficient to store the weight of non-leaf 

nodes. In addition, for a typical binary tree implementation, 2 pointers with 4 bytes 

each are also stored on non-leaf nodes. Therefore, even for a full binary tree, only 

around 0.7% data is stored at the client side for each 1GB of cloud data, which is 

only 7MB. Considering the computing capabilities of the latest client machines such 

as PCs, laptops, or even smart phones, this is a small requirement. Note that the 

client in the dynamic PDP model should have some computing capability anyway, 

because it should be able to play its role in verifying the update operations and 

computing HLAs. The amount of data stored on CSS will also increase because the 

weight of each node is needed to be stored along with every node. However, this 

increase can be considered negligible compared to the data itself, especially with the 

storage advantage of our scheme during updates. 

TPA Authorization: 

In the authorisation process, TPA is the one who needs to be authorised by the 

client. 3 main steps are included:  

1) The client needs to compute  and send to TPA. The computational 

overhead is trivial, because  is only computed once, no matter how large 

the actual data storage is.  

2) TPA needs to send  along with its ID: , which takes no 

computation. 

3) CSS needs to verify . The total number of verifications only 

depends on the number of users who are requiring the auditing service at a time, not 

the size of the total data storage.  In addition, the overheads of several verifications 

can be negligible for the powerful hardware of CSS. Therefore, the total overhead 

for this verification on CSS is also negligible. 
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From the analysis above, it can be observed that our newly added authorisation 

process can indeed be considered efficient and practical. 

Challenge and Verification: 

In existing schemes, a global variable  is applied on all file blocks. The 

proof size therefore stays constant. As our scheme supports variable-sized blocks, 

the proof size may fluctuate, because the size of  (where ) 

depends on  which further depends on . If managed correctly, this 

difference will not affect the total communication. First, we can restrict the size of 

file blocks to be chosen for auditing. When updates are conducted frequently where 

block sizes vary from time to time, this strategy will not affect the overall 

randomness. Second, we will show in Section 6 that the size of  is a far 

more influential factor in the total size of the proof. In this regard, the 

communication overheads of the old and new auditing schemes can be considered 

the same as in this phase. 

Dynamic Data Update: 

There are additional overheads at the client-side in splitting a fine-grained 

update request to block-level operations. However, as discussed before, these can be 

computed very efficiently using findBlock() (see Fig. 5-4) with  complexity 

along with the split method in Lemma 1.  

Both our schemes have advantages over small updates, which we 

demonstrated quantitatively in Section 6. In addition to less storage and 

communications, our WMHT structure will also be more balanced compared to the 

tree in [6] because small insertions will invoke less block insertions. A more 

balanced tree structure means less fluctuation and more predictability in the 

overheads overall. 

Our modified scheme introduced in Section 4.5 will always invoke smaller 

communication overheads in  operations, as it only requires retrieval of a part 
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of the block instead of a whole one. We will test its actual advantage in Chapter 7. 

Specifically, a detailed quantitative analysis with experimental results for the 

proposed FU-DPA scheme are provided in Section 7.4.  
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Chapter 6  

MuR-DPA: Secure Public Auditing for 

Dynamic Multi-replica Big Data Storage 

on Cloud 

This chapter discusses our research presented in (Liu et al., 2014c) where a 

novel public auditing scheme named MuR-DPA is presented. Theoretical analysis and 

experimental results show that the proposed MuR-DPA scheme will not only incur 

less communication overheads for both the update verification and integrity 

verification of cloud datasets with multiple replicas, but will also provide enhanced 

security against dishonest cloud service providers. This chapter is organised as 

follows. Section 6.1 provides an introduction and states the main research 

contributions of this work. Section 6.2 introduces preliminaries, mainly the novel 

authenticated data structure RMR-MHT as it is essential in the MuR-DPA scheme. 

Section 6.3 provides a detailed description for verification of all replicas at once in 

the proposed MuR-DPA scheme. Section 6.4 presents the process for verifiable 

updates in the MuR-DPA scheme. Section 6.5 provides related extensions and 

discussions. Section 6.6 provides a security and efficiency analysis. 

6.1 Introduction 

In order to improve data reliability and availability, storing multiple replicas 

along with original datasets is a common strategy for cloud service providers. Public 
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data auditing schemes allow users to verify their outsourced data storage without 

having to retrieve the whole dataset. Existing public auditing schemes can already 

support verification over data which can be subjected to dynamic updates. Such an 

auditing approach is supported by verifying the auxiliary authentication information 

(AAI) managed by authenticated data structures (ADS) such as Merkle hash trees 

(Wang et al., 2011b, Liu et al., 2014b). However, there still exists a number of 

research gaps in the above mentioned approach. Addressing these gaps is the aim of 

this thesis. First, existing research lacks investigation of efficient public auditing for 

dynamic datasets that maintain multiple replicas. Storing multiple replicas is a 

common strategy for reliability and availability of datasets stored over remote cloud 

storage. For highly dynamic data, each update will lead to updates of every replica. 

Given the fact that update verifications in current auditing schemes are of O(logn) 

communication complexity, verifying these replicas one by one will be very costly in 

terms of communication. Second, current schemes for dynamic public auditing are 

susceptible to attacks from dishonest servers because of a lack of block index 

authentication. Although there is an integrity verification scheme for a dataset with 

replicas (Curtmola et al., 2008) and schemes with index verification such as (Erway et 

al., 2009), there will be security and/or efficiency problems if these schemes are 

extended directly to support public verifiability. 

In this chapter, we present a multi-replica dynamic public auditing (MuR-DPA) 

scheme that can bridge the gaps mentioned above through a newly designed 

authenticated data structure. Research contributions of this work can be summarised 

as follows: 

1. To address the efficiency problem in verifiable updates for cloud storage with 

multiple replicas, we propose a multi-replica public auditing (MuR-DPA) scheme. 

The new scheme is based on a novel rank-based multi-replica Merkle hash tree 

(RMR-MHT). To support full dynamic data updates and authentication of block 

indices, we include rank and level values in computation of MHT nodes. In contrast to 

existing schemes, level values of nodes in RMR-MHT are assigned in a top-down 
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order, and all replica blocks for each data block are organised into the same replica 

sub-tree. Experimental results show that our scheme can drastically reduce 

communication overheads for update verification of cloud data storage with multiple 

replicas. 

2. As the previous usage of the Merkle hash tree (MHT) in public auditing of 

dynamic data did not involve authentication of node indices, such schemes are 

susceptible to cheating behaviours from a dishonest server. In this work, with the 

support of RMR-MHT, we propose the first MHT-based dynamic public auditing 

scheme with authentication of index information that is secure against dishonest 

servers. The main strategy is top-down levelling and verification of indices from both 

sides. 

3. With RMR-MHT, we have also designed a novel public auditing protocol for 

verification of all replicas at once. Experimental results show that our scheme not only 

provides efficient verification for multiple replicas but also incurs less extra storage 

overhead at the server side. 

6.2 Preliminaries  

6.2.1 Bilinear Pairing 

Like the FU-DPA scheme, bilinear pairing is the foundation for the MuR-DPA 

scheme and it has already been introduced in Chapter 3. Therefore the details are 

omitted here to avoid duplication. Please refer to Section 3.1.3 for a detailed 

introduction of bilinear pairing. 

6.2.2 Rank-based Multi-Replica Merkle Hash Tree 

A Rank-based multi-replica Merkle hash tree (RMR-MHT) is a novel 

authenticated data structure designed for efficient verification of data updates, as well 
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as authentication for block indices. Each RMR-MHT is constructed based not only on 

a logically segmented file, but also on all of its replicas, as well as a pre-defined 

cryptographic hash function H. An example of RMR-MHT, constructed based on a 

file with 4 blocks and 3 replicas, is shown in Fig. 6-1. Similar to an RASL, the rank 

value  of a node  is defined as the maximum number of nodes in the leaf 

(bottom) level that can be reached from . The differences from RMR-MHT and 

MHT are as follows: 

1. Value stored in the leaf nodes are hash values of stored replica blocks. In 

RMR-MHT, leaf nodes represent replica blocks , namely the jth replica of the ith 

file block. 

2. Value stored in a node v from a none-leaf level is computed from the hash 

values of its child nodes and two other indices  and .  is the level of 

node  and  is the rank of , i.e. the maximum number of leaf nodes that can 

be reached from v. Different to RASL in (Erway et al., 2009), the levels are defined 

in an top-down order, i.e., the level of root node  is defined as 0, and levels of its 

child nodes are defined as 1, etc.. The values stored in leaf nodes 

are ; the value in each none-leaf node is computed 

as  where  and  denotes the values stored in its 

left child node and right child node, respectively. In Fig. 6-1, under our definition, 

 (and for all leaf nodes) is 4, . For example, the value  is 

computed as: 

 

and , , etc.. 

3. The AAI  is different from the MHT in (Wang et al., 2011b) as follows. 

They now contain not only hash values of the intermediate nodes, but tuples in the 

format of , one tuple for each node. h is the hash value stored on this node, 
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l is the level of this node, q is the maximum number of leaf nodes reachable from 

this node, and d is a Boolean value that indicates this node is to the right (0) or left 

(1) of the node on the verification path, i.e. the nodes from leaf node to the root . 

For example, in Fig. 6-1,  for replica block  is defined as 

 

, and its verification path is  .  

4. All replicas of one file block are organised into a same sub-tree which we 

call replica sub-tree (RST), see Fig. 6-1. Note that each RST has the same structure. 

Each block has exactly c replicas because there are c replica files for the original 

data file. The total number of leaf nodes for every RST is the total replica number c. 

Different from (Curtmola et al., 2008), replica blocks are treated independently and 

each replica block has its own authenticator. The root of each RST, which we denote 

as , will play a vital role in the newly proposed multi-replica verification and 

update verification in the following sections. We use  to denote the AAI for , 

i.e., one can verify the content and index of  with  and , similar to  as 

discussed earlier but this has less hash values. Although roots of RSTs are non-leaf 

nodes, they can still be authenticated in the same way as leaf nodes. In addition, we 

 

Figure 6-1 An example of RMR-MHT 
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define  as the set of tuples  for all intermediate nodes in each RST , 

where  are defined the same as above, and t is the sequence number for the 

nodes, ordered from top to bottom and left to right in . For example, in Fig. 6-1, 

 contains only one node  where . As the number of replicas 

is only a small number (less than 10), for simplicity of description, we assume the 

structure of  is stored at the client (and TPA) side, which applies to every RST 

and takes only a negligible amount of storage. In this case, the client can compute , 

therefore , based on  and  without requesting  from the server. 

For less client-side storage, the client may also request  from the server and 

verify them via  and . 

Based on this new ADS, the MuR-DPA scheme will now be described in 

detail. 

6.3 Verification of All Replicas at Once 

Setup: 

The user and cloud server will first establish common parameters, including a 

bilinear map , and a cryptographic hash function H. 

: The client generates a secret value  and a generator  

of , then computes  where  are the public key and  is the secret 

key. Another secret signing key pair  is chosen with respect to a 

designated provably secure signature scheme whose signing algorithm is denoted as 

. This algorithm outputs  as the secret key  and  as the 

public key . 

:  

1) For a dataset to be stored on cloud server, the client will first make c 

replicas based on the original files. In order to enable the verifiability of these 
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replicas, they should be different from one another; otherwise, the server may cheat 

the client by responding to challenges with the correct proofs but actually storing 

only one replica. From an original file , we denote its jth 

replica file as . The replica blocks  are 

transformed from , and the transformation is reversible, i.e., the client can 

recover the original file  through retrieval and the reversed transformation of any 

replica . Therefore, the client does not have to upload ; she can recover  with 

any intact replica if needed. For example, a method described in (Curtmola et al., 

2008) is to choose  pseudo-random functions  to compute random values 

 then output   as ; the replicas may also be 

computed with other methods such as public-key techniques.  

2) The client constructs an RMR-MHT based on , computes the root value 

R, and computes its signature  with .  

3) The client will compute an authenticator  for every 

replica block .  

Finally, this algorithm outputs   and then uploads them all to 

the cloud server. 

Challenge and Verification: 

Within our top-down levelled setting, the verifier will need  to verify 

the auditing equation as it is not stored in the RMR-MHT. Here we discuss how to 

conduct verification on all replica blocks for a given set of indices in one go.  

: The third-party auditor TPA generates a 

challenge message with the given accuracy Acc, and sends an authorisation. For 

example, just as before, for a 99% accuracy, the verifier needs to verify 460 blocks out 

of a 1GB file. The challenge message is  where  is for 
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authorisation, I is the random set of indices chosen for verification, and  are 

random numbers for integration of .  

: The cloud server will first verify  , same 

as in (Liu et al., 2014b). Then, it will compute  and  

for every replica, and send   back to TPA.  

: Since the verifier knows the structure of RSTs, it will compute 

R with  and verify  for each ith chosen block. The verification 

process is similar as in section 4.2.3, with iterative triples and verification of  

 of . Also, it needs to verify the authenticity of  by verifying if 

, where  can be inferred from  which 

equals level of the first node in . For example, in Fig. 6-1, . When we know 

that  from  ( is the first node in ), we can easily derive 

. If these verifications are passed, TPA will trust 

the retrieved  are genuine, then it can verify c replicas one by one by verifying 

the following c equations: 

 

If these equations hold then the verification will output 'ACCEPT', otherwise it 

will output 'REJECT'. The process is demonstrated in Fig. 6-2. 

 

6.4 Efficient Verifiable Updates on Multi-replica Cloud 

Data 

In this chapter, the types of updates considered are whole-block insertion I, 

deletion D and modification M. These are the minimum requirements for support of 
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full data dynamics (Erway et al., 2009). In multi-replica scenario, when a block  

needs to be updated, all its corresponding replica blocks  are also needed to be 

updated in the same way to maintain consistency. For insertion and modification, the 

client needs to upload a new data block. As the only one that has the capability to 

compute replica blocks  based on the original file block , the client will 

compute the new replica blocks  then send them to the server along with the 

update type I, D or M.  

: The server will parse   into 

 and perform the update to file blocks, indices and ADS according to 

the update request. Specifically, the server will need to update the  value for nodes in 

insertions and deletions. Note that values in none-leaf nodes in  stays the same 

after the update process.  

For insertions and deletions, the situations are more complex than in the past 

 

Figure 6-2 Public auditing of all replicas at once 
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schemes (Erway et al., 2009, Wang et al., 2011b, Liu et al., 2014b). In a traditional 

MHT, level or rank information is not contained in the nodes; in an RASL, all leaf 

nodes stay constantly on level 0. Therefore, there is no need to change the hash value 

in other nodes. In this top-down levelled MHT however, the levels of all leaf nodes in 

the adjacent RST have also changed by +1 with insertion/-1 with deletion, as the level 

value is a part in computation of a node value. For example, in Fig. 6-3 (a), with the 

insertion of , the levels of  have increased by 1, which will cause changes 

to all ; while in Fig. 6-3 (b), with the deletion of , levels of the old 

 (i.e., old ) have decreased by 1. To output the correct , these updates 

are needed to be performed in the hash tree as well. For insertions and modifications, 

The server will then output  and return it to the 

client. For deletions, the server will need to additionally transfer  . 

: In order to verify this update, the client first 

needs to parse . Let the  tuples in  be  for each node  

in an decreasing order of levels, i.e., . A little different 

from the definition,  is the max number of RST roots, instead of leaf nodes, that 

can be reached from . Since the structure of RST  is known to the client, she will 

be able to compute  and , the old and new roots of , with  (got from 

the server) and  alone respectively. 

1. The client will first iteratively compute tuples  for nodes on 

the verification path with nodes  in  as follows, : 

if : , ,  and 

;  

or: 

if : , ,  and 
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where , , , .  

After  is obtained, the client will verify  with , and 

verify if  and  hold at the same time. If the three values pass 

this authentication, the authenticity of  (also ) and its index  can be confirmed.  

 

(a) 

 

(b) 

  Figure 6-3 Update examples to RMR-MHT 

Insertion before the 3rd block and deletion of the 3rd block for the RMR-MHT in Fig. 6-1 
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2. For deletion, the client needs to verify . Note that  represents 

the same block and replicas whose root of RST was stored as the first tuple in , e.g., 

in Fig. 6-3 (b),  and  represented in the same set of data; the only 

difference is that . Therefore, the client has enough information 

to verify  with ,  and R. The verification processes are similar to 

those above. As for insertion,  has already been verified along with ; the 

client can safely compute the new  without additional verifications, see Fig. 

6-3 (a). 

3. With RST structure, the client will then compute  with , then 

compute  with  and  and compare  with .  

If all 3 verifications are passed, it means that the server has performed the 

update to all replicas honestly. The client will update the total block number n, then 

compute  (the authenticators for ) and store them on the server.  

The protocol for verification of updates is demonstrated in Fig. 6-4. 

6.5 Discussions and Extensions 

Since each replica block  has its own authenticator , our scheme also 

supports single replica verification. The process will be similar to the verification in 

(Wang et al., 2011b) with additional verification of  and the index of . 

Except for the rank verifications of  are now  and 

. other details will be similar as the verifications described 

above. 

In (Shacham and Waters, 2008), the authors proposed a value  for trade-off of 

storage and communication overheads. In this strategy, every file block  is 

segmented into s segments  (length of each segment equals the length of a block 

without s, typically 20bytes), and the authenticators are computed as 
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 . In this case, the proof size has increased by  because there 

will be multiple , instead of one, to be included in the proof. However, 

the storage overhead has decreased to 1/s as there is only one authenticator stored 

along with s sectors. As our scheme is also based on the BLS signature, with the same 

block segmentation strategy, the trade-off can easily be applied to our scheme to 

support dynamic data with multiple replicas. We will show our experimental results 

under different s values in Section 6.  

 

Figure 6-4 Dynamic data update and verification 
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Based on the segmented blocks, we have investigated fine-grained updates for 

variable-sized file blocks with different segmentations and WMHT in Chapter 5. If 

we extend RMR-MHT to let the nodes store the 'rank' information computed from 

different sizes of blocks, MuR-MHT can also support fine-grained updates and 

enhance the FU-DPA scheme with efficient support for update of multiple replicas. 

Wang et, al. have proposed a random masking technology for privacy protection 

against the third-party auditor (Wang et al., 2010). In their scheme, the server will 

mask the proof  (integrated blocks) with a random r and generate a new 

 so that TPA will not learn the users’ data from multiple challenging of the same set 

of blocks. In the multi-replica setting, the proof  is computed based on replica 

blocks  instead of the message blocks . Therefore, in most scenarios it is not 

necessary to apply another masking from the server. Even TPA can infer  from 

multiple challenges, it will not get any information of the user data  without 

knowing the transformation method, which is known only by the client, from  to 

. If there is any need to protect replica blocks against the TPA, our scheme can be 

extended with the same server-side padding strategy.  

6.6 Security and Efficiency Analysis 

As before, the security of our scheme is based on: 

1. Collision-resistance of the hash function, 

2. Difficulty of the gap Diffie-Hellman problem, and  

3. Unforgeability of the chosen signature scheme.  

6.6.1 Verifiable Multi-Replica Updates 

Lemma 1. With , RST structure, total number of blocks n and a given block 

index , if a returned block-AAI combination  for an RST root passed 
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the authentication, then either it is computed with the actual replica blocks, or the 

server has found a way to find collisions in the hash function H. 

Proof. The client will first infer , the level of , from . Let  be the 

number of tuples in , then . If a dishonest server does not have the ability 

to find arbitrary collisions of hash functions, it must select an existing node N and its 

corresponding AAI  in the RMR-MHT in order to let the client compute R, 

thereby verify , through iterative hashing. When N is not the queried node, i.e., 

when the server is acting dishonestly, the situation can be covered by the following 3 

cases: 

1. If N is not located on the verification path of , then either the server 

provides the wrong level or rank values, which will lead to failure in computing the 

right R; or the verification of both values of  and  will fail. 

2. When the queried node is a left child node, choosing any other hash value and 

the corresponding AAI from the verification path will let the verification process 

output the correct  (the number of file blocks, i.e., leaf nodes, left of this node), but 

not the correct  (the number of file blocks, i.e., leaf nodes, right of this node). 

Therefore, the verification of  will fail.  

3. When the queried node is a right child node, choosing any hash value and the 

corresponding AAI from the verification path will let the verification process output 

the correct , but not the correct . The reason is similar to the second case. 

Therefore, except for finding hash collisions, the server must return the exact  

 in order to let all three values pass the verification. □                                            

With this Lemma, we can now describe the soundness and security of the update 

verification process in MuR-DPA through the following theorems. 

Theorem 1. If there is any fault to the new data content or index in the server 

execution of an update request , the client verification will fail. 
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Proof. According to Lemma 1, the RST root  and its AAI  returned by the 

server are the correct representatives for the RST where  has resided, otherwise 

the verification of R will fail. 

1. For insertions and modifications, if  was updated incorrectly, then  , 

therefore R', will be computed incorrectly due to the collision resistance of hash 

function H. According to the property of MHT,  stays the same throughout the 

update. As the client has the right  and , the values  and R' at client side will 

be correct. Therefore, the verification will fail.  

2. For deletions, the returned  will be incorrect once there is any fault in 

this update. As  is included in the , the client will identify the 

abnormality if  is incorrect.  

Therefore, through the verification, the client will be able to detect any fault 

caused by accidental or dishonest behaviours in the update. □ 

This concludes the proof that the MuR-DPA scheme can support public auditing 

of dynamic data without being cheated by a dishonest server. As for efficiency, the 

AAI Ω  will take the majority of data transfer because it is composed of log(n) hash 

values and rank/level information for each update. For updating of multiple replicas 

(which is a must for cloud storage with multiple replicas), only one, instead of c AAIs, 

is needed to be transferred for verification of c replica blocks. Therefore, the more 

replicas there are, the more efficiency advantages our scheme will have. 

6.6.2 All-at-once Multi-Replica Verification 

Just as in the verification of updates, there is need for verification of .  

Theorem 3. In the MuR-DPA scheme, if integrity of any replica  of the i-th 

block was breached, the server cannot build a response 
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 that can successfully pass the verification, 

unless any of the 3 assumptions at the beginning of this section fails to hold. 

Proof. As the structure of RST is known by the verifier, the verifier will be able 

to re-build the RST under , and thereby compute  based on . With 

Lemma 1, the authenticity of  can be verified via , i and n. Therefore, if 

 are not all correct, then  will be incorrect; with , the 

verification for R will fail. Because  was computed with  and 

, if all these 3 values are correct, then the returned  must be correct, 

otherwise the client will fail to verify the equation 

. Therefore, our design can make sure the 

returned  are indeed the hash values of the designated replicas for the ith 

block. On the other hand, the soundness and security of the verification 

equation  itself has already been proven in 

(Shacham and Waters, 2008) and (Wang et al., 2011b). Therefore, any integrity breach 

will be identified with MuR-DPA. □  

The proof above is based on the assumption that the verifier knows the structure 

of RST. In fact, even when the RST structure was unknown to the verifier, the 

verification for all replicas may still be resilient to dishonest servers as exchanging the 

orders of replicas under an RST does not affect the verification. We leave this problem 

for future work. 

Our scheme is also based on the Merkle hash tree. Therefore, just as in past 

schemes, the proof size is also dependent of the data size and number of data blocks. 

As a drawback, RMR-MHT introduced more levels (depth of RSTs) than each MHT 

in SiR-DPA to store replica blocks. Therefore, the verification cost for one replica in 

MuR-DPA will be slightly larger than in SiR-DPA. However, as the replica number is 

small (usually less than 10), the depth of RSTs is constant (usually only less than 4 

levels). Therefore, there is no significant additional overhead for the client to verify a 
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single replica. Details will be discussed in the Chapter 7. Specifically, a detailed 

quantitative analysis with experimental results for the proposed MuR-DPA scheme 

are provided in Section 7.5.  
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Chapter 7  

Experimental Results and Evaluations 

In this chapter, experimental results and evaluations of our schemes presented 

above are provided. It can be inferred from these results and analyses that our 

schemes are significantly more efficient than existing schemes. The chapter is 

organised as follows. Section 7.1 provides a qualitative comparison of our public 

auditing schemes against existing representative schemes. Section 7.2 introduces our 

experimental environment. Section 7.3 provides results on key exchange schemes to 

demonstrate the importance of research on key exchange in cloud and public data 

auditing, as well as the efficiency improvement of our KE schemes CCBKE and 

HKE-BC which were introduced in Chapter 4. Section 7.4 presents experimental 

results of our FU-DPA scheme which was introduced in Chapter 5. Section 7.5 

presents experimental results of our MuR-DPA scheme which was introduced in 

Chapter 6.  

7.1 Qualitative Comparison of Public Auditing Schemes 

We first provide a brief comparison between our schemes and existing schemes 

regarding certain properties in public auditing and verification of outsourced data. 

These properties include not only existing ones such as blockless and stateless 

verification, public verifiability etc., but also new properties introduced in this thesis 

such as authorised auditing, fine-grained updates and multi-replica public auditing. 

Please refer to Table 7-1 and Table 7-2 for details, where the improvements of our 

new schemes are demonstrated. 

7.2 Experimental Environment 
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We conducted all our experiments on U-Cloud -- a cloud computing 

environment located in the University of Technology, Sydney (UTS). The computing 

facilities of this system are located in several labs in the Faculty of Engineering and IT, 

UTS. On top of hardware and Linux OS, We installed KVM Hypervisor  which 

virtualises the infrastructure and allows it to provide unified computing and storage 

resources. Upon virtualised data centers, Hadoop  is installed to facilitate the 

MapReduce programming model and distributed file system. Moreover, we installed 

the OpenStack open source cloud platform which is responsible for global 

management, resource scheduling, task distribution and interaction with users (For 

experiments with CCBKE, the platform was Eucalyptus ). The structure of U-Cloud 

is demonstrated in Fig. 7-1. 

 POR 
(Juel
s and 
B. S. 
Kalis
ki, 
2007) 

PDP 
(Ate
niese 
et al., 
2007) 

Scalable 
PDP 
(Ateniese 
et al., 
2008) 

Compact 
POR 
(Shacham 
and 
Waters, 
2008) 

MR- 
PDP 
(Curtmol
a et al., 
2008) 

Blockless Verification No Yes Yes Yes Yes 

Stateless Verification No Yes Yes Yes Yes 

Infinite Verifications No Yes No Yes Yes 

Public Verifiability/Auditability No Yes No Yes No 

Coarse-grained Verifiable Data 
Updating 

No No Partly No No 

Fine-grained Verifiable Data 
Updating 

No No No No No 

Variable-sized Data Blocks No Yes Yes No Yes 

Authorised Auditing No No No No No 

Authentication of Block Indices 
(for schemes with ADS) 

N/A N/A N/A N/A N/A 

One Interaction for Updating No No No No No 
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7.3 Experimental Results for Key Exchange Schemes 

7.3.1 Comparison of Key Exchange schemes  

In this section, we will compare the time consumption of the IKE key 

exchange scheme to the encryption time and public auditing time (specifically, proof 

generation time) through a series of experimental results. Through this comparison, 

the necessity of research on efficient key exchange schemes is demonstrated. 

 DPDP  
(Erway 
et al., 
2009) 

SR-DPA 
(Wang et 
al., 
2011b) 

FU-DPA 
(Liu et al., 
2014b), Ch. 
5 

MuR-DPA 
(Liu et al., 
2014c), Ch. 
6 

Blockless Verification Yes Yes Yes Yes 

Stateless Verification Yes Yes Yes Yes 

Infinite Verifications Yes Yes Yes Yes 

Public Verifiability/Auditability No Yes Yes Yes 

Coarse-grained Verifiable Data 
Updating 

Yes Yes Yes Yes 

Fine-grained Verifiable Data 
Updating 

No No Yes Capable 

Variable-sized Data Blocks Yes No Yes Yes 

Authorised Auditing No No Yes Yes 

Authentication of Block Indices 
(for schemes with ADS) 

Yes No No Yes 

One Interaction for Updating All 
Replicas 

No No No Yes 
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Key exchange vs. encryption 

Key exchange schemes are accompanied by symmetric encryptions. We first 

show that key exchange schemes take a large percentage of run time when running 

under cloud computing, which indicates the significance of research on efficient 

authenticated key exchange schemes. When applying hybrid encryption to traditional 

data-intensive applications, key exchange schemes are always being utilised in 

combination with symmetric-key encryption to ensure data security. In these 

scenarios, time consumption of key exchange schemes can be neglected compared to 

the heavy time consumption on encryption. However, the situation is different in 

cloud computing, and we have demonstrated the difference. A cloud computing 

infrastructure often employs thousands of server instances. For time-critical 

data-intensive applications such as scientific applications, datasets in gigabytes are 

split into blocks in megabytes and then distributed and executed on server instances 

through MapReduce. We use IKE time consumption data from our experiment to 

 

Figure 7-1 U-Cloud environment 
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represent the efficiency of the key exchange scheme. For symmetric-key encryption 

algorithms, we include two algorithms used for dataset encryption: the most 

widely-recognized block cipher, AES, in Galois Counter Mode (GCM) with 64K 

tables, and Salsa20/12, a stream cipher which is a more popular kind in encrypting 

large datasets because of its high efficiency. Both of the two algorithms are proven to 

be secure against various kinds of cryptanalysis.  For the efficiency of encryption 

algorithms, we refer to the performance result from Crypto++ benchmarks  which 

indicates the speed of AES/GCM with 64K tables is 108MB/s, and the speed of 

Salsa20/12 is 643MB/s for data encryption. Experiments are conducted on several 

datasets taken from astrophysics research; and results are listed in Tables 7-3 and 7-4. 

From the results in the tables we can see that with increased dataset size and a 

number of involved server instances, the time consumption of key negotiation 

increases more rapidly than that of data encryption itself. We can also infer from the 

results that, in a hybrid cloud computing environment, key exchange operations in a 

hybrid security scheme do indeed take a large percent of time consumption4. This 

means that the cost of key exchange will indeed take a considerable percentage in 

terms of security-aware large-scale cloud computing applications. In other words, the 

overall performance of such applications will be significantly improved if a key 

exchange scheme with better efficiency is used. 

Key exchange vs. public auditing 

For public auditing schemes, as indicated in Chapter 3, distributed AKE 

schemes must be applied before proof computation if data is encrypted for security. 

For evaluation, we take the FU-DPA scheme introduced in Chapter 5 as an example. 

To ensure 99% assurance, 460 blocks are needed to be challenged. When all blocks 

are stored on separate instances, KE operations will take 7,187ms when the IKE 

                                                 

4 This percentage will be even higher in real-world scenario since KE efficiency depends heavily on scheduling 
algorithm and network status while encryption time stays relatively constant. 



116 

 

scheme is applied, whereas proof computation at CLC afterwards takes only 520ms. 

Therefore, it can be inferred from these experiments that an efficient KE scheme is 

also of great importance to the efficiency of a security-aware public auditing scheme, 

as long as data encryption is needed for data transfer inside the cloud. 

 

7.3.2 Efficiency improvements of CCBKE and HKE-BC 

We implemented HKE-BC, CCBKE and IKE schemes using C++ with 

Dataset Size (GB) 2 8 12 15 32 

Server Instances Involved 100 500 1000 1500 4000 

Data Block Size (MB) 20 16 12 10 8 

AES/GCM Encryption Time (s) 18.52 74.07 111.11 138.89 296.31 

IKE Key Exchange Time (s) 4.04 20.48 41.77 61.92 163.10 

Key Exchange Take Percentage of (%) 17.91 21.66 27.32 30.84 35.50 

Table 7-3 Time consumption comparisons of IKE and AES encryption on 
CLC. 

Dataset Size (GB) 2 8 12 15 32 

Server Instances Involved 100 500 1000 1500 4000 

Data Block Size (MB) 20 16 12 10 8 

Salsa20/12 Encryption Time (s) 3.11 12.44 18.66 23.33 49.77 

IKE Key Exchange Time (s) 4.04 20.48 41.77 61.92 163.10 

Key Exchange Take Percentage of (%) 56.50 62.21 69.12 72.63 76.62 

Table 7-4 Time consumption comparisons of IKE and Salsa encryption on 
CLC. 
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MIRACL cryptography library, and tested them on our U-Cloud environment. On 

each cloud instantiation, we repeatedly ran each of the key exchange scheme 20 times 

to simulate a large-scale computation task with 20 rounds of CLC-VM interactions, 

each encrypted with different keys. The time consumptions of key exchange are 

recorded and demonstrated in Figures 7-3 and 7-4. 

As the HKE-BC scheme performs differently on different cloud layouts, we 

tested our scheme under several differently structured cloud instantiations of U-Cloud. 

The layouts of the two experimental cloud scenarios are shown in Figure 7-2. 

Experimental results are shown in Figure 7-3 where we demonstrate time 

consumption of key exchange operations in the two different cloud scenarios shown 

in Figure 7-2 with an increasing number of instances launched. Cloud instantiation A 

have 3 control layers and 4 NCs where all control nodes are evenly distributed, while 

the instantiation B simulates a hybrid cloud with an uneven structure, a total of 4 

control layers and 6 NCs. The numbers of instances launched by each NC are 

, consecutively.  

We can see from these results that in both cloud scenarios, CCBKE has a 

significant efficiency improvement against the widely-adopted IKE scheme. Further, 

CBHKE outperforms CCBKE and IKE in terms of time efficiency. Compared to IKE 

in U-Cloud, the total average time consumption of KE in CCBKE is decreased to 

52.9% and 51.5% in scenarios A and B, respectively. For HKE BC, the total average 

time consumption in KE is decreased by an average of 85.9% and 89.8% in scenarios 

A and B, respectively. This efficiency advantage of HKE-BC when compared to 

CCBKE in the two scenarios is 70.96% (max: 75.9%; min: 58.9%) and 77.85% (max: 

82.4%; min: 61.3%), respectively. This is a significant improvement in efficiency 

without compromising the level of security. The results match our efficiency analysis 

in section 4. 

More results are shown in Figure 7-4. We tested the key exchange schemes 

under cloud environments with different numbers of control layers: 1, 2, 3 and 4, with 
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a fixed total number of instances (100) launched. The number of sub-nodes for each 

control level (except for end node controller) is chosen as n = 2, because for a larger n 

value the number of servers needed grows at a speed of a geometrical series, which is 

far from practical scenario. All instances are evenly distributed on every node 

controller. U-Cloud instantiation A (see Figure 7-2) is an example of such cloud 

layouts where there are 3 control levels and each NC launches 25 instances. We can 

see that when compared to its predecessors IKE and CCBKE, the HKE-BC scheme 

can drastically reduce time consumption in key exchange for most cloud layouts. The 
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Cloud instantiation A: l = 3 
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Cloud instantiation B: l = 4 

Figure 7-2 Structures of two cloud instantiations of U-Cloud. 
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more layers the cloud environment has, the more efficient the new scheme is. The 

time consumption can even be decreased down to only 9.2% of the time when l = 5. 

However, note that an increase in the layer number will also cause an increase in the 

total network throughput, along with difficulty in terms of scheduling and total 

robustness. This is why practical clouds do not usually employ too many control 

layers, and also why we did not test a cloud with more control layers. Nevertheless, 

 

Results in scenario A 

 

Results in scenario B 

Figure 7-3 Time efficiency of HKE-BC, CCBKE and IKE in the two cloud 
instantiations. 
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results show that the new scheme always has a vast efficiency advantage over the 

existing schemes in most hierarchical cloud environments. 

7.4 Experimental Results for FU-DPA 

We implemented both our scheme and its modification on U-Cloud, using a 

virtual machine with 36 CPU cores, 32GB RAM and 1TB storage in total. As in 

previous work (Wang et al., 2011b, Erway et al., 2009), we also used a 1GB 

randomly generated dataset for testing. The scheme is implemented under 80-bit 

security, i.e., bits. As the number of sectors  (per block) is one of 

the most influential metrics to overall performance, we will use it as our primary 

metric. For saving of the first wave of allocated storage, we used  in the 

initial data splitting and uploading. Note that  decides the total number of 

blocks for an arbitrary . However, according to (Ateniese et al., 2007), the 

number of authenticated blocks is a constant with respect to a certain percentage of 

file tampered and a certain success rate of detection, therefore we will not take the 

number of audited blocks as our primary variable of measurement. All experimental 

results are an average of 20 runs.  

 

Figure 7-4. Efficiency advantage of HKE-BC 

Efficiency advantage of HKE-BC with different numbers of control layers (l) where n = 2 
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We first tested how  can influence the size of proof , which is missing 

in former schemes (Wang et al., 2011b, Wang et al., 2010). From Fig. 7-5, we can 

see that generally the proof size decreases when  increases, because the 

average depth of leaf nodes  of  decreases when  increases to a certain 

 

Figure 7-5 Auditing communication overhead in FU-DPA for 
different block size. 

Communication overhead invoked by an integrity proof with 80-bit security under different  for 
verifying a 1GB dataset.  

 

Figure 7-6 FU-DPA: Comparison of storage overhead. 

Comparison of the total storage overhead invoked by 10* 140-byte insertions to the i-th block in 
FU-DPA, as opposed to the direct extension of SiR-DPA. 
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level, especially when right after the initial uploading of . Note that the storage of 

HLA and WMHT at the CSS side will also decrease with the increase of the average 

number of blocks. Therefore, a relatively large  (but not too large, which we 

will discuss along with the third experiment) is recommended in our dynamic 

 

Figure 7-7 FU-DPA: Comparison of storage overhead (continued). 

Comparison of the total storage overhead invoked by 10* 280-byte insertions to the i-th block in FU-DPA, 
as opposed to the direct extension of SiR-DPA scheme 

 

 

Figure 7-8 FU-DPA: Reduction of communication overhead. 

The percentage in saving of communication overhead in data retrieval in the modified / final FU-DPA, 
compared to the first proposal. 
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setting.  

Second, we tested the storage overhead for small insertions. Without support 

for fine-grained updates, every small insertion will cause creation of a whole new 

block and an update of related MHT nodes, which is why our scheme has an 

efficiency advantage. We compared our scheme against a representative (and also 

recent) public auditing scheme (Wang et al., 2011b). For comparison, we extended 

the older scheme a bit to let it support the communication-storage trade-off 

introduced in (Shacham and Waters, 2008) so that it can support larger file blocks 

with multiple (but only a predefined constant number of) sectors each. The updates 

chosen for experiments are 10*140 Bytes and 10*280 Bytes, filled with random data. 

Results are shown in Fig. 7-6 and Fig. 7-7. For updates of the same total size, the 

increased storage on CSS for our scheme stays constant, while in the extended old 

scheme (Wang et al., 2011b) (see Section 3.2.2) the storage increases linearly with 

the increase in size of the affected block. These results demonstrated that our scheme 

with fine-grained data update support can incur significantly lower storage overhead 

(down to  in our test scenarios) for small insertions when compared to 

existing scheme.  

Third, we investigated the performance improvement of the modification 

introduced in Section 4.5. We used 3 pieces of random data with sizes of 100 bytes, 

140 bytes and 180 bytes, respectively, to update several blocks that contain 10 to 50 

standard 20-byte sectors each. Data retrieval is a key factor of communication 

overheads in the verifiable update phase. For each update, we recorded the total 

amount of data retrieval for both our modified scheme and our basic scheme. The 

results in comparison are shown in Fig. 7-8. We can see that our modified scheme 

always has better efficiency with respect to data-retrieval-invoked communication 

overheads, and the advantage is more significant for larger updates. However, for an 

update of the same size, the advantage will decrease with the increase of  where 

a larger number of sectors in the original file are needed to be retrieved. Therefore, 

the block size needs to be kept low if less communication in verifiable updates is 



124 

 

demanded. 

From the experimental results on small updates, we can see that our scheme 

can incur significantly lower storage overhead while our modified scheme can 

dramatically reduce communication overheads compared to the existing scheme. In 

practice, the important parameter  should be carefully chosen according to 

different data size and different efficiency demands in storage or communications. 

For example, for general applications with a similar scale (1GB per dataset and 

frequent 140-byte updates), a choice of  will allow the scheme to incur 

significantly lower overheads in both storage and communications during updates. 

7.5 Experimental Results for MuR-DPA 

For quantitative evaluations of MuR-DPA introduced in Chapter 6, we provide 

experimental results to demonstrate the improved efficiency of MuR-DPA when 

deployed on cloud data storage. We compare our new scheme, MuR-DPA, against the 

direct extension of the existing scheme in (Wang et al., 2011b) with tags of each 

replica indexed in separate MHTs and the MHTs have levels and ranks for index 

authentication. We name this scheme SiR-DPA - Dynamic Public Auditing with 

Separately-indexed Replicas. We implemented both schemes on U-Cloud, using a 

virtual machine with 36 CPU cores, 32GB RAM and 1TB storage in total. The design 

of public auditing schemes does not take into account the content of data. Therefore, 

as in previous work, we used a 1GB randomly generated dataset for each testing, with 

the replicas computed as . BLS parameters are chosen with 80-bit 

security, i.e., the length of order of G is 160 bits. All experimental results are an 

average of 20 runs. 

As in previous studies, the computation time is not the primary concern in our 

new scheme, because the challenged blocks are a constant value regardless of the file 

size, and the time consumption in proof computation or proof verification only takes 

less than 1 second. Therefore, we will mainly focus on measuring the communication 
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and storage costs, especially those incurred in the verification of updates.  

We first measured the communication overhead for the verification of updates. 

Table 7-5 shows the total communication overhead for update verification of only one 

replica, where overheads of SiR-DPA and MuR-DPA are the same. The testing dataset 

is 1 GB and we update half of the blocks with 512MB new content in total; with 

adjusting parameter s. Communication overhead for update verification in the 

protocol in (Erway et al., 2009) and the MHT-based scheme in (Wang et al., 2011b) 

will be similar to our SiR-DPA setting, as the communication complexities in MHT 

and RASL are both  with high probability (whp). Note that in this 

experiment, there is only one update for each block for all modifications. Under this 

setting, we can see that this overhead is always a heavy burden. Even for a large 

, there is still 154MB verification data which is needed to be transferred from 

the server for update of the size 512MB. Although the communication overhead will 

decrease for a larger block size (because the number of blocks will be smaller), it may 

take several update processes to update half of its content, where the communication 

overhead will increase beyond the amount in Table 7-5. To make things worse, with 

multiple replicas, the SiR-DPA scheme will multiply this communication overhead, 

s (number of sectors 
per block) 

Data Updated (MB) Total Server Response for 
Verification (MB) 

1 512/1024 19.507 

5 512/1024 3,625 

10 512/1024 1,743 

20 512/1024 837 

50 512/1024 321 

100 512/1024 154 

Table 7-5 Price of dynamism. 

Communication Overhead for Verifying Updates of Half Blocks in a 1GB File. 
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which has to be avoided if possible, given the fact that cloud service providers always 

keep multiple replicas for storage services.  

Second, we tested the communication overhead for updates with different 

numbers of replicas and different sizes of blocks. Results are depicted in Figs. 7-9 and 

7-10. From Fig. 7-9, we can see that the length of server response for modification and 

insertion has been greatly reduced when there are multiple replicas, which means the 

load and utilisation server's crucial downlink bandwidth will be comparatively less. It 

is clear that MuR-DPA will scale gracefully with increases in number of replicas of 

the dataset. We can also safely conclude that overheads for deletions will be similar as 

there is only one more hash value to be included in the server response. Therefore, 

evaluation for the deletion operation is omitted here. The total communication 

overheads for verification of updates to datasets with multiple replicas are also tested. 

For block insertion and modification, the new data block needs to be uploaded. 

Therefore, for a larger s, (i.e. a larger block size), the total communication cost will 

rise. For block deletion, nothing needs to be uploaded since there is no new data block. 

Therefore, the total communication overhead for a single deletion stays unchanged 

with different s values. Either way, for s = 1 and s = 10, our results show that 

communication overheads of verification of updates in MuR-DPA always have 

 

Figure 7-9 MuR-DPA: Length of server response for one verifiable 
modification/insertion of one block. 
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significant advantages compared to SiR-DPA. 

Third, we evaluate the storage overhead for dynamic public auditability, as well 

as communication overheads for auditing multiple replicas simultaneously. Although 

the total number of authenticators stayed the same, now there is only one MHT 

(although with more levels) as opposed to c MHTs in SiR-DPA. We can infer from Fig. 

7-11 that the extra storage cost is reduced by a significant percentage when there are 

    
(a) 

 

(b) 

Figure 7-10 MuR-DPA: Total communication for one verifiable update. 

Total communication overhead for one verifiable update of one block when (a) s = 1; (b) s = 10 
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multiple replicas stored in cloud. Communication overheads for simultaneously 

verifying multiple replicas are depicted in Fig 7-12. We can see that the with increases 

in the number of replicas that a server stores, the MuR-DPA scheme seems to 

outperform SiR-DPA more significantly in terms of communication overheads. We 

also note that with the growth of number of replicas, the communication overheads for 

verifying all replicas with the MuR-DPA scheme is comparable to verifying a single 

replica, while the overhead of SiR-DPA grows at a much faster pace. For example, 

when , verifying all 5 replicas with MuR-DPA takes 26.8% more 

communication than verifying only 1 replica, while this percentage for SiR-DPA is 

398.8%. Therefore, the MuR-DPA scheme is not only useful for verification of 

dynamic data, but also seems to scale much better when subjected to multiple replica 

updates.  

We also tested the communication cost for one replica, under a different s value. 

As analysed in section 5, our scheme will constantly incur more communication 

overheads because of the extended RSTs. However, as can be seen from Fig. 7-13, the 

extra communication overheads are small and can be considered negligible. Even for 

an exaggerated case where  and , the extra communication for 

verification of one replica in MuR-DPA scheme is only 15.3% compared to the  

 

Figure 7-11 MuR-DPA: Extra storage overhead at server side for support 
of public auditability and data dynamics 
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SiR-DPA scheme. For a more common choice of 4 replicas and , this 

percentage is only 8.1%. Given that the MuR-DPA scheme has much less 

communication costs for verification of all replicas at once as well as verification of 

updates, it is always an advantageous trade-off.  

From these analyses and experimental results, we can see that the MuR-DPA 

 
(a) 

 

(b) 

Figure 7-12 MuR-DPA: Total communication overhead for auditing of all 
replicas. 

Total communication overhead for public auditing of all replicas when (a) s = 1 and (b) s = 10. 
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scheme has a significant advantage in auditing cloud storage with multiple replicas. 

The performance of public auditing schemes are not affected by the contents of data. 

Therefore, size of file blocks, s value and the number of replicas are main impact 

factors for the overall performance. As our experiments are based on these metrics, 

we believe the experimental results demonstrated here can accurately present the 

advantage our scheme has when deployed in practice. 

 

  

 

Figure 7-13 MuR-DPA: Communication for auditing of 1 chosen replica for 
a dataset with 1, 4 and 8 total replicas with different s value. 
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Chapter 8  

Conclusions and Future Work 

8.1 Conclusions 

In this thesis, we have analysed the research problems of public data auditing in 

the cloud and big data, and we proposed a framework to address the security and 

efficiency problems in public auditing of dynamic big data in the cloud. Within the 

framework, we have developed, tested and published a series of security schemes and 

algorithms for secure and efficient public auditing of dynamic big data storage on the 

cloud. Specifically, our work focused on the following aspects: cloud internal 

authenticated key exchange, authorisation on third-party auditor, fine-grained update 

support, index verification, and efficient multi-replica public auditing of dynamic 

data. To the best of our knowledge, this thesis is the first sustained work to 

systematically analyse and address this research problem. Experimental results and 

analyses show that our research presented in this thesis is suitable for auditing 

dynamic big data storage on the cloud and they represent significant improvements in 

terms of both efficiency and security.  

8.2 Future Work 

8.2.1 Aspects for Measurements and Improvements 

Aspects and examples of future work discussed in this section are briefly 

summarised in table 8-1. As can be seen from all the discussions above, the topic of 

integrity verification of big data in cloud computing is a flourishing area that is 
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attracting more and more research interest and there is still a lot of research which is 

currently being conducted in this area. Cloud and big data are fast-developing topics. 

Therefore, even though existing research has already achieved some amazing goals, 

we are confident that integrity verification mechanisms will continue to evolve along 

with the development of the cloud and big data applications to meet emerging new 

requirements and address new security challenges. For future developments, the 

following aspects are particularly interesting to look at. 

Efficiency: Due to high efficiency demands in big data processing overall, 

efficiency is one of the most important factors in designing new techniques related 

to big data and cloud. In integrity verification/data auditing, the main costs can come 

from many aspects, including storage, computation and communication, and they 

can all affect the total cost-efficiency due to the pay-as-you-go model in cloud 

computing. We now analyse these three aspects one by one for a scheme with public 

auditability and support of full dynamic verifiable data updates. 

a) Communication and storage: These two are the main efficiency concerns of 

public auditing schemes. One of the most challenging problems is that due to usage 

of ADS, the size of proofs depends logarithmically on the total size of the dataset, 

which constitutes the main communication overhead for verification of updates. 

Similarly, the authenticators take extra storage overhead at the server side, which 

also grows with the growth of the total size of datasets. Although there are works for 

Auditing for streaming 

data  

Data auditing within 

distributed data processing 

Auditing of shared 

data 

Pre-processing Data distribution Levels of privileges 

Application-specific data 

evaluation and selection 

Replication strategy Data consolidation 

Table 8-1 Future Work. 
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their optimisations, the ideal case is that the proof size and storage overhead remains 

constant. To the best of our knowledge, these desirable properties have never been 

achieved by any dynamic public auditing scheme. 

b) Computation time: it is not the primary concern but it is important. The 

computation time for proof generation can be considered negligible in most cases, 

but the pre-processing time can sometimes be considerable for incremental datasets.  

Security: Security is always a problem between spear and shield; that is, 

attack and defense. Although the current formalisations and security model seems 

very rigorous and potent, new exploits can always develop, especially with dynamic 

data streams and varying user groups. Finding the security holes and fixing them can 

be a long-lasting game. The security focus of existing work can be summarised in 

terms of different adversaries: dishonest cloud servers (Erway et al., 2009) (Liu et al., 

2014c), malicious TPA (Liu et al., 2014b), other malicious users (Wang et al., 

2013b), and other general-sense attackers (Liu et al., 2013b, Liu et al., 2013c). With 

the proposed authentication mechanisms in (Erway et al., 2009) and (Liu et al., 

2014c), exploits from dishonest servers can be effectively detected in data updates. 

Based on existing research, a most attractive future research topic will be letting the 

TPA get minimal information on client data during auditing. There may also be big 

potential in addressing security threats from other malicious users. Multi-tenancy is 

one of the cloud's main characteristics, and there is currently not much work 

focusing on investigating this area.  

Scalability/elasticity: As the cloud is a parallel distributed computing system 

in nature, scalability is one of the key factors as well. Programming models for 

parallel and distributed systems, such as MapReduce, are attracting attention from a 

great number of cloud computing researchers. Some of the latest work in integrity 

verification is already considering how to work well with MapReduce for better 

parallel processing (Zhu et al., 2012). On the other hand, elasticity is one of a 

biggest reasons why big companies are moving their business, especially 

service-related businesses, to the cloud (2012). User demands vary all the time, and 
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it would be a waste of money to purchase hardware that can handle the demands at 

peak times. The advent of the cloud solved this problem -- cloud allows their clients 

to deploy their applications on a highly elastic platform whose capabilities can be 

scaled up and down on-the-fly, and the cost is based solely on usage. Therefore, an 

integrity verification mechanism that has the same level of scalability and elasticity 

will be highly resourceful for big data applications in cloud environments. 

8.2.2 Future Research Problems 

Auditing for streaming data. Streaming data is one of the most important 

types of dynamic big data. Examples of streaming data including: 1) sensor data from 

the gathering of geographical data, temperature, humidity, etc.); 2) image data, e.g., 

satellites, video surveillance, etc. 3) Internet data such as video streams and social 

networks. A great proportion of this kind of data needs to be stored or archived for 

future use or further analyses. As the cloud is now the backbone for storing and 

processing of such data, it is essential to maintain the auditability of streaming data for 

cloud users (data owners) to audit their data. To date, not much work has been done in 

this area.  

Streaming data are dynamic and real-time in nature. Like other research 

problems related to streaming data, the main problem in maintaining auditability of 

streaming data is  to perform data processing on-the-fly. In other words, time 

complexity becomes the biggest concern here. To address this concern, future 

research work needs to focus on the following aspects.  

1) In public auditing, pre-processing is very time-consuming due to the 

expensive pairing and exponentiation operations. As new data are constantly being 

produced in data streams, the time-consuming pre-processing contradicts the aim of 

efficient on-the-fly processing of streaming data. Therefore, aiming at developing a 

solution that can efficiently provide public auditability for streaming data while 

maintaining security is essential.  
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2) Not all the data are of the same importance. Therefore, it will be important to 

develop an application-specific data evaluation and selection strategy for public 

auditing of critical data from streaming cloud data. Through this approach, the user 

will be confident in terms of the integrity of the streaming data, or specifically, the 

useful knowledge in the coming data streams.  

Data auditing within distributed data processing. The problems discussed 

above did not take into account the internal data storage strategy. For improved 

efficiency and scalability, big data applications in large-scale data centre clouds are 

always processed in a parallel fashion, which is achieved by distributed programming 

models such as MapReduce. Therefore, cloud systems always employ distributed file 

systems such as the Hadoop Distributed File System (HDFS) for data management 

and storage. In such file systems, data are at first globally partitioned for optimal 

performance in terms of total throughput, latency and efficiency in data processing. 

Then, these partitioned data are indexed and distributed to store in storage nodes. This 

index is stored in the name node, and the storage nodes are located in different storage 

servers and/or data centres. The research challenges in this area are mainly in data 

locality and resource availability. 

First, we look at data distribution strategy. In public auditing schemes, data are 

also segmented into blocks and each block is accompanied by an authenticator used 

for auditing. However, this segmentation is only logical with another index, and it is 

separated from the data partitioning. Current schemes do not take into account data 

locality, i.e., the physical distribution of data in distributed file systems. For example, 

a logical block may contain data from several different storage servers. This will lead 

to excessive communication overheads and disk read/writes.  

As mentioned earlier, a replication strategy is essential for cloud data located in 

separated disk blocks. For availability, replicas are located in different physical 

locations. This has not been considered in existing multi-replica auditing schemes, 

which could potentially lead to many problems. For example, when there is only a 

need to audit one replica, choosing replicas stored on the same server (or the least 
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number of servers possible) will significantly lower the total communication 

overheads.  

According to the analysis, it will be good to develop a public auditing scheme 

with optimised mechanisms (e.g. block segmentation, replica selection) for user 

verification of data stored in distributed file systems. As different applications require 

different data partitioning strategies, our solution will also depend on a specific big 

data application and its partitioning strategy in the distributed file system. 

Auditing of shared data. In public clouds, data from different users are 

consolidated in the same cloud service provider. Data ownership is a big problem. The 

problem can be mainly analysed in terms of two aspects: 1) From the data users' 

perspective, different users will have different levels of privileges to a certain shared 

data pool, and the users' identities and privileges may change from time to time; this 

problem needs to be carefully addressed. 2) Some data to be shared, such as medical 

records or police records, needs to be carefully controlled. These data are only 

allowed to be shared or audited by certain parties. For example, datasets to be shared 

by different parties may not be appropriate to be audited by the same auditor, unless 

they figure out useful logical connections between these datasets. 

These problems have only just begun to be studied. The aim of our future work 

is going to be twofold.  

(1) For privately shared data, the aim is at efficient and secure auditing of the 

dynamic variations of data users' identities and privileges while maintaining different 

levels of auditability of cloud data. To achieve this, efficient key management is 

required as different users and/or user groups will use different sets of public/private 

key pairs.  

(2) For publicly shared data, the aim is at developing not only mechanisms for 

effective user and auditor management, but also strategies for controlling data sharing 

to maintain secure auditability of shared data. This may be achieved by analysis of 
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relationships between data, data users and auditors.  
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Appendix A 

Acronyms 

For the convenience of readers, acronyms used in this thesis are listed in 

alphabetical order in this section. 

AAI Auxiliary Authentication Information 

ADS Authenticated Data Structure 

AKE Authenticated Key Exchange 

BLS Boneh-Lynn-Shacham signature scheme 

CA Certificate Authority 

CSS Cloud Storage Server 

HLA Homomorphic Linear Authenticator 

HVT Homomorphic Verifiable Tag 

MAC Message Authentication Code 

MHT Merkle Hash Tree 

PDP Provable Data Possession 

PKI Public-Key Infrastructure 

POR Proof of Retreivability 
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RASL Rank-based Authenticated Skip List 

RMR-MHT Rank-based Multi-Replica Merkle Hash Tree 

SiR-DPA Public auditing scheme presented in (Wang et al., 

2011b) 

TPA Third-Party Auditor 

WMHT Weighted Merkle Hash Tree 
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Appendix B 

Notation Index 

For the convenience of readers, notations used in this thesis are listed in 

alphabetical order in this section. 

 A message shared between the client and CSS, used for 

authorisation of third-party auditing 

 The ith block of replica . 

 Cloud controller (CLC) 

 Certificate 

 Certificate request 

 Decrypt message  with session key  

 The kth tuple in  where  is the hash value,  is the level 

of node,  is the rank value and  indicates whether this 

node is a left or right child node 

 Raw data file to be uploaded by the client to store in CSS 
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 Segmented file , in the form of . Sometimes we will 

use  and  interchangeably 

The jth replica of file  

 In Chapter 6, hash values stored in node  from RMR-MHT 

T. 

 Header, contains security parameter indexes 

 Identity information 

 Temporary key used by control node  to encrypt the 

communications with its parent node 

 Temporary key used by control node N to encrypt the 

communications with its th sub-node 

 Number of control layers in cloud 

 The level of node  in RMR-MHT 

 Number of sub-nodes for th control node on the th layer 

 The ith file block of . There are a total of n blocks 
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 The th control node (or node, for simplicity) on layer .  

is the cloud controller (CLC). See Figure 3-5 for example 

Control node N’s sub-nodes (children nodes) 

Control node N’s parent node 

 Number of nodes on the th control layer 

 One-time nonce for message freshness 

 An offset in file , its value equals the bit length in the range 

from start point of F to the checkpoint 

 Pseudorandom function 

 Node N’s public key for KE 

 Rank value of node v - the maximum number of nodes in the 

leaf (bottom) level that can be reached from v 

 Padding message used to generate replica block  with the 

original file block  

 The hash value stored in the root node of  
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 Number of segments per block 

 The maximum number of segments per block 

 Server instances domain 

 The th server instance in  

 Security associations, used in negotiating cryptographic 

algorithms 

/

 

Digital signature that can be verified by anyone with a public 

key. In KE schemes in Chapter 4, it can be verified using 

algorithms negotiated in  and a public key obtained from 

 

 A signature used for authorisation of TPA 

 File tag of file , which can be used to uniquely identify  

 The WMHT (in Chapter 5) or RMR-MHT (in Chapter 6) 

developed based on  

 Replica-sub Tree of RMR-MHT  

 Verifier (TPA)’s ID 
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 The set of tuples  for all intermediate nodes in the 

RST  

 Size of each file segment 

 A tuple of variables used for verification in MuR-DPA in 

Chapter 6. For a successful verification, after iterative 

computation with ,   will become the number of total file 

blocks,  will become the root value R,  will become the 

block index and  will become the reversed block index, i.e., 

the block count from right 

 The homomorphic authenticator (verification tag) 

 The ordered set of authenticators for  

 A set of hash values (or tuples that include hash values) that 

are used as ’s auxiliary authentication information (AAI) 

 Encrypt message  with session key  

 Size of message m 
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