

Toward Efficient and Secure

Public Auditing for Dynamic Big

Data Storage on Cloud

by

Chang Liu

B. Sci. (Shandong University)

M. Eng. (Shandong University)

A thesis submitted to

Faculty of Engineering and Information Technology

University of Technology, Sydney

for the degree of

Doctor of Philosophy

December 2014

i

To my family and friends

ii

CERTIFICATE OF ORIGINAL

AUTHORSHIP

I certify that the work in this thesis has not previously been

submitted for a degree nor has it been submitted as part of requirements

for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I

have received in my research work and the preparation of the thesis itself

has been acknowledged. In addition, I certify that all information sources

and literature used are indicated in the thesis.

Chang Liu

21 July 2015

Production Note:
Signature removed
prior to publication.

iii

Acknowledgements

I sincerely express my deepest gratitude to my primary supervisor, A/Prof.

Jinjun Chen, for his seasoned supervision and continuous encouragement throughout

my PhD study. Prof. Chen was a consistent inspiration and taught me a great deal

about how to become a good researcher and a good person. I also thank my associate

supervisors Dr. Rajiv Ranjan, Prof. Yun Yang and Prof. Chengfei Liu for their

whole-hearted supervision and continuous support of my study.

I thank the Australian Research Council (ARC), Australia Commonwealth

Scientific and Industrial Research Organization (CSIRO) and the University of

Technology, Sydney (UTS) for offering me a full research scholarship throughout my

doctoral program. I also thank the CSIRO Digital Productivity Flagship (DPF) and

the Research Committee of the UTS Faculty of Engineering and Information

Technology (FEIT) for research publication funding support and for providing me

with financial support to attend conferences.

My thanks also goes to staff members and researchers at UTS FEIT, CSIRO

DPF, Swinburne University of Technology and Nanjing University for their help,

suggestions, friendship and encouragement, particularly: Prof. Igor Hawryszkiewycz,

A/Prof. Maolin Huang, Indrawati Nataatmadja, Xuyun Zhang, Chi Yang, Miranda

Qian Zhang, Adrian Johannes, Nazanin Borhan, A. Ali, Xiao Liu, Dong Yuan, Qiang

He, Rui Zhou, Jianxin Li, Minyi Li, Wei Dong, Dahai Cao, Miao Du, Feifei Chen,

Prof. Wanchun Dou, Wenmin Lin.

Last but not least, I am deeply grateful to my parents Hongbo Liu and Li Zheng

for raising me, teaching me to be a good person, and supporting my studies abroad.

Sadly, my dear father Hongbo passed away in 2013 during my PhD study. May he

rest in peace.

iv

Abstract

Cloud and Big Data are two of the most attractive ICT research topics that have

emerged in recent years. Requirements of big data processing are now everywhere,

while the pay-as-you-go model of cloud systems is especially cost efficient in terms of

processing big data applications. However, there are still concerns that hinder the

proliferation of cloud, and data security/privacy is a top concern for data owners

wishing to migrate their applications into the cloud environment. Compared to users

of conventional systems, cloud users need to surrender the local control of their data

to cloud servers. Another challenge for big data is the data dynamism which exists in

most big data applications. Due to the frequent updates, efficiency becomes a major

issue in data management. As security always brings compromises in efficiency, it is

difficult but nonetheless important to investigate how to efficiently address security

challenges over dynamic cloud data.

Data integrity is an essential aspect of data security. Except for server-side

integrity protection mechanisms, verification from a third-party auditor is of equal

importance because this enables users to verify the integrity of their data through the

auditors at any user-chosen timeslot. This type of verification is also named 'public

auditing' of data. Existing public auditing schemes allow the integrity of a dataset

stored in cloud to be externally verified without retrieval of the whole original dataset.

However, in practice, there are many challenges that hinder the application of such

schemes. To name a few of these, first, the server still has to aggregate a proof with the

cloud controller from data blocks that are distributedly stored and processed on cloud

instances and this means that encryption and transfer of these data within the cloud

will become time-consuming. Second, security flaws exist in the current designs. The

verification processes are insecure against various attacks and this leads to concerns

about deploying these schemes in practice. Third, when the dataset is large, auditing

of dynamic data becomes costly in terms of communication and storage. This is

especially the case for a large number of small data updates and data updates on

v

multi-replica cloud data storage.

In this thesis, the research problem of dynamic public data auditing in cloud is

systematically investigated. After analysing the research problems, we systematically

address the problems regarding secure and efficient public auditing of dynamic big

data in cloud by developing, testing and publishing a series of security schemes and

algorithms for secure and efficient public auditing of dynamic big data storage on

cloud. Specifically, our work focuses on the following aspects: cloud internal

authenticated key exchange, authorisation on third-party auditor, fine-grained update

support, index verification, and efficient multi-replica public auditing of dynamic

data. To the best of our knowledge, this thesis presents the first series of work to

systematically analysis and to address this research problem. Experimental results

and analyses show that the solutions that are presented in this thesis are suitable for

auditing dynamic big data storage on cloud. Furthermore, our solutions represent

significant improvements in cloud efficiency and security.

vi

The Author’s Publications

Book Chapters:

1. C. Liu, R. Ranjan, X. Zhang, C. Yang and J. Chen, A Big Picture of Integrity

Verification of Big Data in Cloud Computing, Handbook on Data Centers (Book),

Springer, in press, 2014.

2. X. Zhang, C. Liu, S. Nepal, C. Yang and J. Chen, Privacy Preservation over Big

Data in Cloud Systems, Security, Privacy and Trust in Cloud Systems (Book),

Springer, in press, ISBN: 978-3-642-38585-8, 2013.

Journals:

3. C. Liu, R. Ranjan, C. Yang, X. Zhang, L. Wang and J. Chen, MuR-DPA:

Top-down Levelled Multi-replica Merkle Hash Tree Based Secure Public Auditing

for Dynamic Big Data Storage on Cloud, IEEE Transactions on Computers,

accepted on 27 October, 2014

4. C. Liu, N. Beaugeard, C. Yang, X. Zhang and J. Chen, HKE-BC: Hierarchical

Key Exchange for Secure Scheduling and Auditing of Big Data in Cloud

Computing, Concurrency and Computation: Practice and Experience, accepted

on 3 October, 2014

5. X. Zhang, W. Dou, J. Pei, S. Nepal, C. Yang, C. Liu and J. Chen,

Proximity-Aware Local-Recoding Anonymization with MapReduce for Scalable

Big Data Privacy Preservation in Cloud, IEEE Transactions on Computers,

accepted on 18 August, 2014.

6. C. Liu, C. Yang, X. Zhang and J. Chen, External Integrity Verification for

Outsourced Big Data in Cloud and IoT: A Big Picture, Future Generation

vii

Computer Systems (FGCS), Elsevier, to appear, accepted on 16 August, 2014.

doi: 10.1016/j.future.2014.08.007

7. W. Lin, W. Dou, Z. Zhou and C. Liu, A Cloud-based Framework for

Home-diagnosis Service over Big Medical Data, Journal of Systems and

Software (JSS), to appear, accepted on 22 May, 2013. (ERA Rank A)

8. C. Yang, C. Liu, X. Zhang, S. Nepal and J. Chen, A Time Efficient Approach for

Detecting Errors in Big Sensor Data on Cloud, IEEE Transactions on Parallel

and Distributed Systems (TPDS), to appear, accepted on 7 December, 2013.

(ERA Rank A*)

9. C. Liu, J. Chen, L. T. Yang, X. Zhang, C. Yang, R. Ranjan and K.

Ramamohanarao, Authorized Public Auditing of Dynamic Big Data Storage on

Cloud with Efficient Verifiable Fine-grained Updates, IEEE Transactions on

Parallel and Distributed Systems (TPDS), vol. 25, no. 9, pp. 2234-2244, 2014.

(ERA Rank A*)

10. X. Zhang, C. Liu, S. Nepal, C. Yang, W. Dou and J. Chen, A Hybrid Approach

for Scalable Sub-Tree Anonymization over Big Data using MapReduce on Cloud,

Journal of Computer and System Sciences (JCSS), vol. 80, no. 5, pp. 1008–1020,

2014. (ERA Rank A*)

11. C. Yang, X. Zhang, C. Zhong, C. Liu, J. Pei, K. Ramamohanarao and J. Chen, A

Spatiotemporal Compression based Approach for Efficient Big Data Processing

on Cloud, Journal of Computer and System Sciences (JCSS), to appear, 2013.

(ERA Rank A*)

12. C. Yang, X. Zhang, C. Liu, J. Pei, K. Ramamohanarao and J. Chen, A

Spatiotemporal Compression based Approach for Efficient Big Data Processing

on Cloud, Journal of Computer and System Sciences (JCSS), to appear, 2013.

(ERA Rank A*)

viii

13. X. Zhang, C. Liu, S. Nepal, C. Yang, W. Dou and J. Chen, SaC-FRAPP: A

Scalable and Cost-effective Framework for Privacy Preservation over Big Data

on Cloud, Concurrency and Computation: Practice and Experience (CCPE), vol.

25, no. 18, pp. 2561-2576, 2013. (ERA Rank A)

14. X. Zhang, L. T. Yang, C. Liu and J. Chen, A Scalable Two-Phase Top-Down

Specialization Approach for Data Anonymization using MapReduce on Cloud,

IEEE Transactions on Parallel and Distributed Systems (TPDS), 25(2): 363-373,

2014. (ERA Rank A*)

15. X. Zhang, C. Liu, S. Nepal and J. Chen, An Efficient Quasi-identifier Index

based Approach for Privacy Preservation over Incremental Data Sets on Cloud,

Journal of Computer and System Sciences (JCSS), 79(5): 542-555, 2013. (ERA

Rank A*)

16. X. Zhang, C. Liu, S. Nepal, S. Panley and J. Chen, A Privacy Leakage

Upper-bound Constraint based Approach for Cost-effective Privacy Preserving

of Intermediate Datasets in Cloud, IEEE Transactions on Parallel and

Distributed Systems (TPDS), vol. 24, no. 6, pp. 1192-1202, 2013. (ERA Rank

A*)

17. C. Liu, X. Zhang, C. Yang and J. Chen, CCBKE - Session Key Negotiation for

Fast and Secure Scheduling of Scientific Applications in Cloud Computing,

Future Generation Computer Systems (FGCS), Elsevier, vol. 29, no. 5, pp.

1300-1308, 2013. (ERA Rank A)

Conferences:

18. C. Liu, R. Ranjan, X. Zhang, C. Yang, D. Georgakopoulos and J. Chen, Public

Auditing for Big Data Storage in Cloud Computing -- A Survey, in Proc. The

16th IEEE International Conference on Computational Science and Engineering

(CSE 2013), pp. 1128-1135, December, 2013, Sydney, Australia.

ix

19. C. Yang, C. Liu, X. Zhang, S. Nepal and J. Chen, Querying Streaming XML Big

Data with Multiple Filters on Cloud, in Proc. The 2nd International Conference

on Big Data and Engineering (BDSE 2013), pp. 1121-1127, December, 2013,

Sydney, Australia.

20. X. Zhang, C. Yang, S. Nepal, C. Liu, W. Dou and J. Chen, A MapReduce Based

Approach of Scalable Multidimensional Anonymization for Big Data Privacy

Preservation on Cloud, in Proc. 3rd International Conference on Cloud and

Green Computing (CGC 2013), pp: 105 - 112, September, 2013, Karlsurhe,

Germany.

21. C. Liu, X. Zhang, C. Liu, Y. Yang, R. Ranjan, D. Georgakopoulos and J. Chen,

An Iterative Hierarchical Key Exchange Scheme for Secure Scheduling of Big

Data Applications in Cloud Computing, in Proc. 12th IEEE International

Conference on Trust, Security and Privacy in Computing and Communications

(IEEE TrustCom2013), pp: 9-16, July, 2013, Melbourne, Australia. (ERA Rank

A)

22. X. Zhang, C. Liu, S. Nepal, C. Yang, W. Dou and J. Chen, Combining

Top-Down and Bottom-Up: Scalable Sub-Tree Anonymization over Big Data

using MapReduce on Cloud, in Proc. 12th IEEE International Conference on

Trust, Security and Privacy in Computing and Communications (IEEE

TrustCom2013), pp: 501-508, July, 2013, Melbourne, Australia. (ERA Rank A)

23. X. Zhang, C. Liu, S. Nepal, W. Dou and J. Chen, Privacy-preserving Layer over

MapReduce on Cloud, in Proc. 2nd International Conference on Cloud and

Green Computing (CGC 2012), pp: 304-310, November, 2012, Xiangtan, China.

24. G. Zhang, Y. Yang, X. Zhang, C. Liu and J. Chen, Key Research Issues for

Privacy Protection and Preservation in Cloud Computing, in Proc. 2nd

International Conference on Cloud and Green Computing (CGC 2012), pp:

304-310, November, 2012, Xiangtan, China.

x

25. G. Zhang, Y. Yang, X. Zhang, C. Liu and J. Chen, An Association Probability

based Noise Generation Strategy for Privacy Protection in Cloud Computing, in

Proc. 10th International Conference on Service Oriented Computing

(ICSOC2012), November, 2012, Shanghai, China. (ERA Rank A)

26. C. Liu, X. Zhang, J. Chen and C. Yang, An Authenticated Key Exchange Scheme

for Efficient Security-Aware Scheduling of Scientific Applications in Cloud

Computing, In Proc. 9th IEEE International Conference on Dependable,

Autonomic and Secure Computing (DASC2011). pp: 372-379, December, 2011,

Sydney, Australia.

27. X. Zhang, C. Liu, J. Chen and W. Dou, An Upper-Bound Control Approach for

Cost-Effective Privacy Protection of Intermediate Dataset Storage in Cloud, In

Proc. 9th IEEE International Conference on Dependable, Autonomic and Secure

Computing (DASC2011). pp: 518-525, December, 2011, Sydney, Australia.

28. C. Yang, K. Ren, Z. Yang, P. Gong and C. Liu, A CSMA-based Approach for

Detecting Composite Data Aggregate Events with Collaborative Sensors in WSN,

In Proc. 15th International Conference on Computer Supported Cooperative

Work in Design (CSCWD2011). pp: 489-496, June, 2011, Lausanne,

Switzerland.

29. C. Yang, Z. Yang, K. Ren and C. Liu, Transmission Reduction based on Order

Compression of Compound Aggregate Data over Wireless Sensor Networks, In

Proc. 6th International Conference on Pervasive Computing and Applications

(ICPCA2011). October, 2011, Port Elizabeth, South Africa.

xi

Table of Contents

Figures ... xiv

Tables .. xvii

Chapter 1 Introduction .. 1

1.1 Big Data and Cloud Computing ... 1

1.2 Security and Privacy Concerns in Cloud .. 3

1.3 Public Auditing of Dynamic Cloud Data .. 3

1.4 Thesis Overview ... 7

Chapter 2 Literature Review ... 10

2.1 Security and Privacy Research in Cloud and Big Data 10

2.2 Integrity Verification and Public Auditing.. 13

2.3 Authenticated Key Exchange in Cloud ... 17

Chapter 3 Background, Problem Analysis and Framework 20

3.1 Preliminaries ... 20

3.1.1 Diffie-Hellman Key Exchange .. 20

3.1.2 RSA Signature ... 21

3.1.3 Bilinear Pairing and BLS Signature .. 22

3.1.4 Authenticated Data Structures ... 22

3.2 Motivating Examples and Research Framework .. 24

3.2.1 Motivating Examples .. 24

3.2.2 Research Problems with Public Auditing of Cloud Data -- Lifecycle and
Framework ... 28

3.3 Representative Public Auditing Schemes In Sketch 33

3.3.1 PDP ... 33

3.3.2 Compact POR ... 34

3.3.3 DPDP .. 35

3.3.4 Public Auditing of Dynamic Data ... 36

3.4 Detailed Analysis of Research problems .. 37

3.4.1 Authenticated Key Exchange in Cloud ... 37

xii

3.4.2 Public Auditing of Verifiable Fine-grained Updates 40

3.4.3 Multi-replica Big Data in Cloud ... 42

3.4.4 Security of Public Auditing Schemes ... 43

Chapter 4 Authenticated Key Exchange Schemes in Cloud 47

4.1 CCBKE: Cloud Computing Background Key Exchange 47

4.1.1 System setup ... 47

4.1.2 Key Exchange ... 48

4.1.3 Rekeying ... 50

4.2 HKE-BC: Hierarchical Key Exchange for Big data in Cloud 51

4.2.1 System Setup ... 52

4.2.2 Key Exchange ... 52

4.3 Security and Efficiency Analysis .. 58

4.3.1 Security Proofs .. 58

4.3.2 Perfect Forward Secrecy ... 61

4.3.3 Efficiency Analysis for HKE-BC .. 62

Chapter 5 FU-DPA: Public Auditing for Dynamic Data with Fine-grained
Updates ...65

5.1 Introduction .. 65

5.2 Preliminaries ... 67

5.2.1 Bilinear Pairing ... 67

5.2.2 Weighted Merkle Hash Tree .. 67

5.3 Framework and Definitions for Supporting Fine-grained Updates 68

5.4 The Proposed Scheme .. 70

5.4.1 First Scheme .. 70

5.4.2 Analysis on Fine-grained Dynamic Data Updates 76

5.4.3 Further Modification for Better Support of Small Updates 83

5.4.4 Further Discussions ... 84

5.5 Security and Efficiency Analysis .. 85

5.5.1 Security Analysis .. 85

5.5.2 Efficiency Analysis ... 89

Chapter 6 MuR-DPA: Secure Public Auditing for Dynamic Multi-replica Big

xiii

Data Storage on Cloud .. 93

6.1 Introduction .. 93

6.2 Preliminaries ... 95

6.2.1 Bilinear Pairing ... 95

6.2.2 Rank-based Multi-Replica Merkle Hash Tree 95

6.3 Verification of All Replicas at Once ... 98

6.4 Efficient Verifiable Updates on Multi-replica Cloud Data 100

6.5 Discussions and Extensions .. 104

6.6 Security and Efficiency Analysis .. 106

6.6.1 Verifiable Multi-Replica Updates ... 106

6.6.2 All-at-once Multi-Replica Verification 108

Chapter 7 Experimental Results and Evaluations ... 111

7.1 Qualitative Comparison of Public Auditing Schemes 111

7.2 Experimental Environment ... 111

7.3 Experimental Results for Key Exchange Schemes 113

7.3.1 Comparison of Key Exchange schemes .. 113

7.3.2 Efficiency improvements of CCBKE and HKE-BC 116

7.4 Experimental Results for FU-DPA ... 120

7.5 Experimental Results for MuR-DPA .. 124

Chapter 8 Conclusions and Future Work .. 131

8.1 Conclusions .. 131

8.2 Future Work .. 131

8.2.1 Aspects for Measurements and Improvements 131

8.2.2 Future Research Problems .. 134

Bibliography .. 138

Appendix A Acronyms .. 148

Appendix B Notation Index .. 150

xiv

Figures

Figure 1-1 Thesis structure. ... 7

Figure 3-1 ADS examples: MHT and RASL. ... 24

Figure 3-2 Participating parties in public auditing of cloud data. 29

Figure 3-3 Integrity verification for outsourced data -- a framework 30

Figure 3-4 Integrity verification for outsourced data -- the lifecycle. 31

Figure 3-5 An example of hybrid cloud structures. ... 41

Figure 4-1 Process of HKE-BC Phase1. ... 52

Figure 4-2 Process of HKE-BC Phase2. ... 56

Figure 5-1 An example of a weighted Merkle hash tree (WMHT). 68

Figure 5-2 Verifiable PM-typed data update in FU-DPA. 74

Figure 5-3 Challenge, proof generation and verification in FU-DPA. 77

Figure 5-4 The algorithm to find a block in F with a given offset o. 78

Figure 5-5 Example: fine-grained insertion. ... 80

Figure 5-6 Example: fine-grained deletion. .. 82

Figure 5-7 Example: fine-grained modification. ... 83

xv

Figure 5-8 Verifiable PM-typed data update in modified (final) FU-DPA. 85

Figure 6-1 An example of RMR-MHT ... 97

Figure 6-2 Public auditing of all replicas at once.. 101

Figure 6-3 Update examples to RMR-MHT ... 103

Figure 6-4 Dynamic data update and verification ... 105

Figure 7-1 U-Cloud environment .. 114

Figure 7-2 Structures of two cloud instantiations of U-Cloud. 118

Figure 7-3 Time efficiency of HKE-BC, CCBKE and IKE in the two cloud

instantiations.. 119

Figure 7-4. Efficiency advantage of HKE-BC .. 120

Figure 7-5 Auditing communication overhead in FU-DPA for different block size.

 ... 121

Figure 7-6 FU-DPA: Comparison of storage overhead. 121

Figure 7-7 FU-DPA: Comparison of storage overhead (continued). 122

Figure 7-8 FU-DPA: Reduction of communication overhead. 122

Figure 7-9 MuR-DPA: Length of server response for one verifiable

modification/insertion of one block. ... 126

Figure 7-10 MuR-DPA: Total communication for one verifiable update. 127

Figure 7-11 MuR-DPA: Extra storage overhead at server side for support of

public auditability and data dynamics ... 128

Figure 7-12 MuR-DPA: Total communication overhead for auditing of all

xvi

replicas. ... 129

Figure 7-13 MuR-DPA: Communication for auditing of 1 chosen replica for a

dataset with 1, 4 and 8 total replicas with different s value. 130

xvii

Tables

Table 7-1 Comparison of public auditing schemes - to be continued. 112

Table 7-2 Continued - comparison of public auditing schemes. 113

Table 7-3 Time consumption comparisons of IKE and AES encryption on CLC.

 ... 116

Table 7-4 Time consumption comparisons of IKE and Salsa encryption on CLC.

 ... 116

Table 7-5 Price of dynamism. ... 125

Table 8-1 Future Work... 132

1

Chapter 1

Introduction

This thesis is concerned with developing efficient and secure public auditing

schemes for dynamic big data storage in cloud. A suite of novel frameworks,

strategies, algorithms and protocols is designed and developed with the support of

new concepts, solid theorems and innovative algorithms. Theoretical analyses and

experimental evaluation demonstrates that our work helps to dramatically bring down

overheads and effectively improves the security of public auditing schemes in the

cloud.

This chapter introduces the background and key issues of this research. The

chapter is organised as follows. Section 1.1 gives a brief introduction to big data and

cloud. Section 1.2 presents the key research issues around security and privacy in big

data and cloud. Section 1.3 outlines the research problems in the public auditing area

along with the problems we try to address in this thesis. Section 1.4 provides an

overview of the remainder of this thesis.

1.1 Big Data and Cloud Computing

In recent years, big data has become one of the most attractive research topics in

information technology. People from almost all major industries are increasingly

realising the value of their explosively growing datasets. Primary examples of big

data applications may be seen in the areas of government, manufacturing, media,

science and research. Research challenges in big data are always summarised into 4

V's: Velocity, Variety, Veracity and Volume. Velocity means big data is always in a

dynamic status and flowing at a high speed; Variety means there are various types of

2

data in big data storage; Veracity indicates the uncertainty of big data; and Volume

indicates that the size of big data storage is always at a large scale -- 40 Zeta bytes of

data is estimated to be created by 2020, an increase of 300 times from 2005 . Besides

this, there is another V -- Value, which is considered to be a fundamental aspect of

the other V's. Within the explosively growing datasets, there are almost limitless

value that is being discovered by the developing data mining techniques (Wu et al.,

2014). All in all, it can be seen within these 5 V's that efficiency is an essential factor

in big data processing, and cloud can help in a big way with all of the various

challenges.

Cloud computing is a new-generation distributed computing platform that is

extremely useful for big data storage and processing. Many big data applications as

mentioned earlier are being migrated or have been migrated into clouds. One of the

cloud's core concepts is ‘X as a Service’ (XaaS), including Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), which

means that both individual and enterprise users can use IT services in a pay-as-you-go

fashion. Compared to traditional distributed systems, this new concept of cloud

computing brings outstanding advantages. First, a considerable amount of investment

is saved because there is no need for users to purchase and maintain their own IT

facilities. Second, it brings exceptional elasticity, scalability and efficiency for task

executions, especially in big data applications (Agrawal et al., 2011, Chaudhuri, 2012).

With its virtualisation technology, pay-as-you-go payment model and elastic and

scalable resource allocation of XaaS, cloud computing is widely recognised as the

most promising technological backbone for solving big data related problems

(Armbrust et al., 2010). Indeed, it is envisaged that cloud computing, with its capacity

to provide computational resources, can one day be integrated into our daily life as

closely as other resource utilities such as electricity, gas and water (Buyya et al.,

2009). The exceptional scalability and elasticity of cloud make it the ideal platform

for processing big data streams and handling the complexities of big data applications.

Datasets in big data applications are always dynamic. In fact, except for a few

3

examples of large static datasets such as those in libraries and e-archives, datasets in

most big data applications need constant updating. In many big data applications,

such as in social networks and business transactions, data updates are often very

frequent. Therefore it is of extreme importance for cloud security mechanisms, such

as the public auditing schemes studied in this thesis, to be able to support dynamic

data updates in a secure and efficient way.

1.2 Security and Privacy Concerns in Cloud

Security/privacy is one of the major concerns in terms of the utilisation of cloud

computing (Mather et al., 2009, Subashini and Kavitha, 2010). As data is no longer

under the users' direct control, users are reluctant to move their valuable data onto the

cloud -- especially the public cloud with its high consolidation and multi-tenancy.

Also, from an efficiency perspective, querying and retrieving from cloud servers

require a lot more effort than it does in local servers. Amongst the many technological

aspects, the three main dimensions of data security research are confidentiality,

integrity and availability.

In this thesis, we will focus on data integrity which is concerned with ensuring

that data is stored and maintained in its original form. In practice, integrity breaches

are not only caused by deliberate malicious attacks, but also uncontrollable disasters

or server/disk failures. Integrity verification and protection is an active research area;

numerous research problems belonging to this area have been studied intensively in

the past. The three different aspects form an organic whole. While our focus is

integrity verification, we will also focus on ensuring that efficiency, confidentiality

and availability is incorporated in our designs.

1.3 Public Auditing of Dynamic Cloud Data

Aiming at integrity assurance, public auditing of cloud data has been an

extensively investigated research problem in recent years. As user datasets stored on

4

cloud storage servers (CSS) are out of the cloud users' reach, auditing from the client

herself or a third party auditor is a common request, no matter how secure and

powerful the server-side mechanisms claim to be. With provable data possession

(PDP) and proofs of retrieveability (POR), the data owner or a third-party auditor is

able to verify the integrity of their data without having to retrieve their data. In such

schemes, a small piece of metadata called 'homomorphic authenticator' or

'homomorphic tags' are stored along with each data block. When the client needs to

verify data integrity, the server will generate a proof with the authenticators of the

selected data blocks, and data auditing is done by the client or a third-party auditor

through verifying the proof with public keys.

As stated above, the majority of datasets in big data applications are dynamic.

Therefore, it is of great importance for public auditing schemes to be scalable and

capable of supporting dynamic data updates. Existing public auditing schemes can

already support verification of various kinds of full dynamic data updates (Wang et al.,

2011b, Liu et al., 2014b). However, there are security and efficiency problems that we

aim to address in our research. Some issues investigated in this thesis are stated as

follows.

1) Efficiency issues. First, with virtualisation technology, existing key

exchange schemes such as Internet Key Exchange (IKE) becomes time-consuming

when directly deployed in the background of the cloud computing environment (i.e.,

the encrypted communications between virtualised cloud servers and the cloud

controller), especially for large-scale computing tasks that involve intensive

user-cloud interactions such as public data auditing. In order to construct an

aggregated integrity proof, the cloud service provider needs to retrieve

authenticators from different storage instances. Upon recognising this concern, we

developed key exchange algorithms in the cloud background which sought to

provide efficient server-side processing. Second, there is inefficiency in processing

small updates because the existing authenticated data structures (ADS) only support

whole-block insertion, deletion and modification, and they lack the ability to support

5

updates with an arbitrary length and starting offset. To achieve this, we designed a

novel scheme utilising a flexible data segmentation strategy and a weighted Merkle

hash tree, based on the detailed definition and analysis on fine-grained updates.

Third, not much work has been done in supporting multiple replicas. Storing

multiple replicas is a common strategy for data reliability and availability in the

cloud. For highly dynamic data, each update will lead to updates of every replica.

Given the fact that update verifications in current verification schemes are of O(logn)

communication complexity, verifying these replicas one by one will be very costly

in terms of communication. Accordingly, we developed a multi-replica public

auditing scheme based on a novel multi-replica Merkle hash tree.

2) Security issues. First, the challenge message is too simple which may

enable malicious exploits in practice. To make the public auditing scheme more

secure and robust, we address this problem by adding an additional authorisation

process among the three participating parties of the client, CSS and a third-party

auditor (TPA). Second, current schemes for dynamic public auditing are susceptible

to attacks from dishonest servers due to the lack of support for verification of block

indices. To address this problem, we developed a novel public auditing scheme with

a new ADS which incorporates authentication of level and rank information.

The research problems we try to address are analysed in detail under a

systematic lifecycle in Chapter 3, and our solutions are presented in the consecutive

chapters. The main contributions of this thesis are summarised as follows.

1) This thesis proposes a thorough investigation into the research problem of

dynamic public auditing for big data in cloud, and presents a systematic framework

along with a series of algorithms incorporating analysis and experimental results. To

the best of our knowledge, this is the first sustained work to systematically analyse

and address this research problem.

2) Two novel key exchange schemes for encrypted cloud background

communications are presented. The schemes are based on the Diffie-Hellman key

6

exchange scheme. Experimental results provided in Section 7 have shown that key

exchange plays an essential role in the efficiency of secure public auditing and data

transfer as a whole. Moreover, analysis and experimental results have also shown

that the newly proposed schemes greatly outperform the existing scheme without

compromising the level of security.

3) We present a public auditing scheme based on the BLS signature and

Merkle hash tree (MHT) that can support fine-grained update requests. For the first

time, we formally analyse different types of fine-grained dynamic data update

requests on variable-sized file blocks in a single dataset. Compared to existing

schemes, our scheme supports updates with a size that is not restricted by the size of

file blocks. It thereby offers extra flexibility and scalability compared to existing

schemes. Also, for better security, our scheme incorporates an additional

authorisation process with the aim of eliminating threats of unauthorised audit

challenges from malicious or pretending third-party auditors.

4) To address the efficiency problem in verifiable updates for cloud storage with

multiple replicas, we present a multi-replica public auditing (MuR-DPA) scheme

which is based on a novel rank-based multi-replica Merkle hash tree (RMR-MHT).

To support full dynamic data updates and authentication of block indices, we have

included rank and level values in the computation of MHT nodes. Experimental

results show that our scheme can drastically reduce communication overheads for the

update verification of cloud data storage with multiple replicas. Also, as the previous

usage of the Merkle hash tree (MHT) in public auditing of dynamic data does not

involve authentication of node indices, such schemes are susceptible to cheating

behaviours from a dishonest server. With the support of RMR-MHT, we propose the

first MHT-based dynamic public auditing scheme with authentication of index

information that is secure against dishonest servers. The main strategy is top-down

levelling and the verification of indices from both sides.

7

1.4 Thesis Overview

This thesis presents novel data structures, algorithms and concepts with solid

theorems and analyses to form a series of systematic solutions to address the research

problem of the efficient and secure public auditing of big data storage in cloud. The

thesis structure is depicted in Figure 1-1.

Chapter 1
Introduction

Chapter 2
Literature Review

Chapter 3
Problem Statement, Analysis

and Problem-solving
Framework

Chapter 4
Authenticated Key Exchange in

Cloud

Chapter 5
Authorised Public Auditing for

Dynamic Big Data in Cloud with
Fine-grained Updates

Chapter 6
Secure Public Auditing for

Dynamic Multi-Replica Big Data
Storage on Cloud

Chapter 7
Experiments and Evaluations

Chapter 8
Conclusions and Future Work

Figure 1-1 Thesis structure.

8

In Chapter 2, a comprehensive literature review of existing research is provided.

Specifically, this literature review includes current research on: 1) Cloud computing,

big data applications, 2) Security and privacy of cloud data, 3) Authenticated key

exchange, and 4) Integrity verification mechanisms: digital signatures, and our focus

on authenticator-based public verification.

In Chapter 3, a detailed analysis of the series of research problems we try to

address in this thesis is provided, where representative approaches are also introduced.

Lastly, I present a framework and lifecycle to systematically address these problems,

and then outline the problems that will be addressed in the thesis.

In Chapter 4, I present server-side key exchange schemes which aim at

supporting efficient proof generation in the public auditing of cloud data. First, we

propose a key exchange scheme based on the randomness-reuse strategy and Internet

Key Exchange (IKE) scheme, named CCBKE, for efficient and secure data transfer

in the background of the cloud. Second, we propose a novel hierarchical key

exchange scheme, namely Hierarchical Key Exchange for Big data in Cloud

(HKE-BC), where we have developed a two-phase layer-by-layer iterative key

exchange strategy to achieve more efficient AKE without sacrificing the level of data

security. These key exchange schemes will also benefit other security mechanisms

that involve symmetric encryptions, such as security-aware scheduling. Security and

efficiency analyses for the new schemes are also provided.

In Chapter 5, I present the first dynamic public auditing scheme that supports

fine-grained updates, authorisation of third-party auditors and public auditing at the

same time. I provide a formal analysis for possible types of fine-grained data updates

and propose a scheme that can fully support authorised auditing and fine-grained

update requests. Based on this scheme, I also propose an enhancement that can

dramatically reduce communication overheads for verifying small updates. After

scheme description, I provide security and efficiency analysis for the new schemes.

In Chapter 6, I present research on efficient auditing for dynamic big data

9

storage with multiple replicas. The new scheme incorporates a novel authenticated

data structure based on the Merkle hash tree (MHT), which is named RMR-MHT.

For support of full dynamic data updates and authentication of block indices, rank

and level values in computation for MHT nodes are included. As opposed to existing

schemes, level values of nodes in RMR-MHT are assigned in a top-down order, and

all replica blocks for each data block are organised into the same replica sub-tree for

efficient verification of updates for multiple replicas. Security and efficiency analyses

for this scheme are also presented in this chapter.

In Chapter 7, I present experimental results and analysis for our schemes to

quantitatively demonstrate our research contributions. I firstly introduce U-Cloud, the

cloud computing environment which is used for all the experiments. Then, I show the

results from the experiments conducted on U-Cloud. The efficiency improvements of

our schemes are demonstrated by comparing the computation time, storage overheads

and communication overheads with existing schemes or their direct extensions.

Finally, in Chapter 8, I summarize the research presented in this thesis, major

contributions of all the presented modules that constitute this thesis, and future

research directions.

In order to improve the accessibility of this thesis, I also provide a list of

acronyms in Appendix A and a notation index in Appendix B.

10

Chapter 2

Literature Review

In Chapter 2, I will provide a comprehensive literature review on existing

research and highlight their respective problems. This chapter is organised as follows.

Section 2.1 discusses the existing research on cloud computing and big data

applications, along with the security and privacy of cloud data in general. Section 2.2

discusses existing research on integrity verification mechanisms including digital

signatures and our focus on authenticator-based public verification. Section 2.3

discusses authenticated key exchange which greatly impacts the server-side

performance of public auditing schemes and is also important for all security systems

that involve symmetric-key encryption.

2.1 Security and Privacy Research in Cloud and Big Data

Big data is one of the most popular research topics in recent years (Agrawal et

al., 2011, Chaudhuri, 2012, 2013, Wu et al., 2014). Examples for big data

applications are social networks (Naone, 28 September, 2010), scientific research

applications (Keahey et al., 2008, Heath, 2012), real-time streaming data, big sensor

data (Yang et al., 2013a, Cuzzocrea et al., 2013, Yang et al., 2013b) and data in the

Internet of Things (Ma et al., 2012), etc. In recent years, the development of

distributed systems, or alternatively, cyberinfrastructures (Wang and Fu, 2010), has

been the main platform for the processing of large-scale big data tasks such as

scientific applications. To address this kind of big data problems, the cloud is

currently considered to be the most potent and cost-effective platform. Currently,

cloud computing is already being widely utilised for large-scale computation tasks in

big data processing because of its outstanding cost-effectiveness (Agrawal et al., 2011,

11

Chaudhuri, 2012).

As the most popular paradigm among recently emerging hybrid environments,

cloud has a significant cost advantage compared to traditional distributed systems

such as clusters and grids (Armbrust et al.). Scientific applications can utilise this

advantage by migrating to the cloud (Deelman et al., 2008), which is attracting rapidly

growing research interest. Recent cloud computing projects for scientific applications

such as Nimbus (Keahey et al., 2008) and Aneka (Vecchiola et al., 2012) as well as

some very recent research work (Iosup et al., 2011, Srirama et al., 2012) all aim at the

transformation from a traditional cluster or data centre to a cloud architecture. Since

the advent of cloud computing, a number of scheduling algorithms have been

developed for the purposes of achieving a cost-effective cloud computing

environment. The most recent examples are the work of Garg et.al (Garg et al., 2011)

and Yuan et.al (Yuan et al., 2011); the former work assesses the time and cost in cloud

QoS, while the latter work investigates the trade-off between data storage,

computation and economical cost in the cloud. However, neither has yet taken into

account the cost of security enhancement. Data flows are unprotected in their models

and this means that data security is totally neglected. Some outstanding security issues

in cloud computing have been surveyed in (Subashini and Kavitha, 2010, Zissis and

Lekkas, 2011, Mather et al., 2009).

Data security/privacy, which represents an important metric of QoS, are of

great concern for cloud users (Zhang et al., 2013c, Mather et al., 2009, Zhang et al.,

2013b). Therefore, data security/privacy constitute some of the most pressing

concerns related to the cloud (Zissis and Lekkas, 2011, Schmidt, 2012, Yao et al.,

2010) and big data. Generally speaking, as two sides of one coin, privacy and

security aim at different goals, although both of them roughly aim at the protection

of data content. Privacy research mainly aims at protect the data user’s sensitive

information but this technical solution is only one aspect amongst many

non-technical aspects include policy, legislation, etc.. Technical data privacy

research can be divided into syntactic privacy and differential privacy (Dwork, 2008,

12

Fan and Xiong, 2012, Clifton and Tassa, 2013). Analysis shows that these two areas

are irreplaceable by each other (Clifton and Tassa, 2013). Privacy challenges in

cloud data include parallel and distributed anonymization (Li et al., 2008, Roy et al.,

2010, Zhang et al., 2011, Zhang et al., 2013c, Zhang et al., 2013b), hiding of data

relations through encryption (Zhang et al., 2013a), hiding of access patterns through

oblivious RAM (Williams et al., 2012, Stefanov et al., 2013, Stefanov and Shi,

2013), etc.. Data security research, on the other hand, is mainly technical, definitive

and does not depend on data content (privacy goals can also be definitive (Wang et

al., 2013c) in some cases). Encryptions to ensure data confidentiality and digital

signatures for data integrity verifications are typical examples.

Data security is a widespread concept that can be everywhere in a computer

and network system, especially for a complex distributed computer system such as

the cloud. For example, Zhao et, al. have designed a security framework for big data

applications in the cloud (Zhao et al., 2014). Along with time, cost and throughput

etc., security can also be considered an important aspect of QoS. Great efforts have

been placed on cost-efficient scheduling for distributed computing systems including

cloud computing (Tang et al., 2011, Young Choon Lee, 2011). For example, the work

of Lee et.al (Young Choon Lee, 2011) focuses on efficient scheduling with low energy

consumption in cloud computing and distributed systems. However, they have not

taken into account the additional costs in enhancing data security. There is also

research on security-aware scheduling schemes. For example, Tang et.al (Tang et al.,

2011) proposes a cost-effective security-aware scheduling algorithm for distributed

systems. Although their approach achieves high efficiency by grading data security

into several levels, their scheme, in fact, compromises security for higher efficiency,

and it suffers from the inherent cost-inefficiency of existing KE schemes. By

investigating key exchange efficiency problems, we are therefore making solid steps

toward not only efficient auditing, but also security-aware QoS and scheduling for

cloud computing.

13

2.2 Integrity Verification and Public Auditing

In the past, intensive research has been undertaken to enhance cloud data

security/privacy with technological approaches on the cloud server side, such as (Liu

et al., 2012, Zhang et al., 2012). They are of equal importance to external

verification approaches such as our focus of public auditing . Although in this thesis

we focus on public auditing based on homomorphic authenticators (Yang and Jia,

2012, Liu et al., 2014d, Liu et al., 2013a), please also note that there are other

auditing methods, for example, log-based database auditing (Hwang et al., 2014, Lu

et al., 2013).

Integrity verification for outsourced data storage has attracted extensive

research interest. The concept of proofs of retrievability (POR) and its first model

was proposed by Jules et, al. (Juels and B. S. Kaliski, 2007). Unfortunately, their

scheme can only be applied to static data storage such as an archive or library. In the

same year, Ateniese et, al. proposed a similar model named ‘provable data possession’

(PDP) (Ateniese et al., 2007). Their schemes offers ‘blockless verification’ which

means the verifier can verify the integrity of a proportion of the outsourced file

through verifying a combination of pre-computed file tags which they call

homomorphic verifiable tags (HVTs) or homomorphic linear authenticators (HLAs).

Work by Shacham et, al. (Shacham and Waters, 2008) proposed the first public

verification scheme in the literature that is based on the BLS signature scheme

(Boneh et al., 2004). In this scheme, the generation and verification of integrity

proofs are developed from signing and verification of BLS signatures. When

wielding the same security strength (say, 80-bit security), a BLS signature (160 bit) is

much shorter than an RSA signature (1024 bit), which in turn brings a shorter proof

size for a POR scheme. They have also provided an improved POR model with

stateless verification. and proved the security of both their schemes and the PDP

scheme by Ateniese et, al. (Ateniese et al., 2007, Ateniese et al., 2011). The security

model for auditing schemes is further analysed in (Yu et al., 2014b). Ateniese et, al.

14

extended their scheme for enhanced scalability (Ateniese et al., 2008), but only

partial data dynamics and a predefined number of challenges is supported.

Although the schemes discussed above can support blockless verification and

public verifiability, data dynamics is not supported. Erway et, al. proposed the first

PDP scheme that can support verification for full dynamic data updates (Erway et al.,

2009) while retaining blockless verifiability. A modified authenticated data structure

(ADS) is used for verification of updates, which became a common way of

supporting verifiable updates in the following PDP/POR works. The ADS they used

is called rank-based authenticated skip list (RASL). However, public auditability and

variable-sized file blocks are not supported in their framework. Yang et, al. proposed

a scheme (Yang and Jia, 2013) that claims to support secure public verifiability over

dynamic data. However, there are a number of problems in this work. Ni et, al. have

shown that their scheme is not secure against an active adversary (Ni et al., 2014).

Furthermore, no index verification is provided. Therefore, a dishonest sever is able to

manipulate the tags and original data to cheat the client. Wang et, al. (Wang et al.,

2011b) proposed a scheme based on the BLS signature that can support public

auditing (especially from a third-party auditor, TPA) and full data dynamics. To

support verification of updates, they used another ADS called the Merkle hash tree

(MHT). However, their usage of ADS also has security problems regarding the

non-existence of authentication of block indices. A follow-up work by Wang et al.

(Wang et al., 2010) added a random masking technology on top of (Wang et al.,

2011b) to ensure the TPA cannot infer the raw data file from a series of integrity

proofs. In their scheme, they also incorporated a strategy first proposed in (Shacham

and Waters, 2008) to segment file blocks into multiple ‘sectors’ for trading-off of

storage and communication costs. However, none of the above schemes has

considered the commonly employed multi-replica strategy in clouds. For availability,

data in the cloud is usually stored with multiple replicas distributed on multiple

servers. Curtmola et, al. proposed a scheme named MR-PDP (Curtmola et al., 2008)

that can prove the integrity of multiple replicas along with the original data file.

Although the scheme requires only one authenticator for each block, it has two severe

15

drawbacks. First, since the verification process requires secret material, there will be

security problems when extending the MR-PDP scheme to support public auditing.

Second, it does not support verification for dynamic data updates. In order to allow a

third-party auditor to verify datasets with multiple replicas without any secret

material, the client still needs to store and build different ADS for every replica,

which will incur heavy communication overheads. As an improvement to MR-PDP,

Barsoum et, al. proposed a series of PDP schemes (Barsoum and Hasan, 2011,

Barsoum and Hasan, 2012). These schemes are based on the BLS signature with

support of public verifiability, data dynamics and multiple replicas at the same time.

However, they do not provide a verification process for updates. Furthermore, their

construction of the MHT structure is not efficient for update verifications as each

single update will incur updates on all branches. Etemad et, al. proposed a

multi-replica PDP scheme (Etemad and Küpçü, 2013a, Etemad and Küpçü, 2013b)

with index authentication based on Erway et, al.'s RASL. However, their scheme

does not support public verifiability. Furthermore, their efficiency analysis is mainly

about computation time, and does not include discussion of the important efficiency

factors of communication overheads.

Research in this area also includes the work of Ateniese et, al. (Ateniese et al.,

2009) on how to transform a mutual identification protocol to a PDP scheme; and a

scheme by Zhu et, al. (Zhu et al., 2012) which allows different service providers in a

hybrid cloud to cooperatively prove data integrity to the data owner (a security

problem was later found in this scheme, as indicated in (Wang and Zhang, 2014)). As

cloud data sharing is happening in many scenarios, Wang et, al. worked on secure

data verification of shared data storage (Wang et al., 2013a, Wang et al., 2014) and

also with efficient user management (Wang et al., 2013b) and user privacy protection

(Wang et al., 2012, Wang et al., 2014). Zhang et, al. proposed a scheme with a new

data structure called the update tree (Zhang and Blanton, 2012, Zhang and Blanton,

2013). Without conventional authenticated data structures such as MHT, the

proposed scheme has a constant proof size and fully supports data dynamics.

However, the scheme also does not support public auditing. Yuan et, al. proposed a

16

public auditing scheme with a de-duplication property (Yuan and Yu, 2013). Hanser

et, al. proposed a robust public auditing scheme based on elliptic curves (Hanser and

Slamanig, 2013). Cash et, al. (Cash et al., 2013) proposed a novel POR scheme based

on oblivious RAM (ORAM). ORAM, or oblivious file system which was mostly

used to hide data access patterns through shuffling and noise addition on outsourced

data storage (Stefanov et al., 2013, Williams et al., 2012). Shi et, al. also proposed a

more efficient scheme based on ORAM (Shi et al., 2013), but practical usage of such

schemes is still under investigation. After our contributions in this thesis are proposed

in publications, there are a number of new developments in public auditing for

outsourced data (Yu et al., 2014b, Yu et al., 2014a, Worku et al., 2014, Hwang et al.,

2014, Camenisch et al., 2014). This indicates that the problem has not been

completely solved. Accordingly, this area of research remains very active and

attractive to computer scientists.

17

2.3 Authenticated Key Exchange in Cloud

Recently, much research work has been done to address cloud security/privacy

issues. Most of the approaches, however, focus on cloud storage service. Yao et.al

(Yao et al., 2010) propose a scheme to ensure cloud storage security by separating the

encryption keys from the stored data which are encrypted by the keys. In (Cao et al.,

2011), a privacy-preserving cloud data querying scheme is generally proposed from a

data prospect of view, which aims to protect privacy-sensitive outsourced data. In

(Wang et al., 2011b) Wang et.al propose a scheme to protect data integrity based on

bilinear-pairing-based public-key cryptology, which allows a third-party authority to

check the outsourced data on the cloud service users’ behalf. However, to the best of

our knowledge, none has analysed data encryption on the backstage of cloud

computing from an efficiency point of view. Our work starts to try and bridge the gap.

Encryption-based data security protection approaches for cloud storage services

have been proposed, such as (Yao et al., 2010, Puttaswamy et al., 2011). However, in a

cloud computing environment, original data input needs to be processed on the cloud

side. Some encryption schemes allow processing over encrypted data, and it can still

be decrypted using the same key thereafter. However, in these schemes only limited

operations are allowed. For example, the approach in (Wong et al., 2009) only allows

the k-NN (k nearest neighbours) algorithm to be applied over encrypted data. Fully

homomorphic encryption (Gentry, 2009) allows all operations on an encrypted dataset;

However, no homomorphic encryption scheme with reasonable complexity has yet

been published. Therefore, the efficiency of key exchange still remains a major

obstacle to efficiency overall.

Key exchange over a distrustful communication environment has been an

extensively researched problem in public-key cryptography since Diffie and Hellman

proposed the very first key exchange scheme (Diffie and Hellman, 1976) in 1976. Our

problem here, essentially, is looking for an efficient key exchange scheme for

exchanging different keys over participating parties. Although the topic of extending

18

key exchange schemes in multi-party scenarios has been studied a lot in the past, to

the best of our knowledge, this problem has not been well-addressed. This is probably

because there was no requirement for doing research on this problem in the past, as a

single key exchange process takes almost no time on modern hardware facilities.

However, with thousands of independent instances executing different tasks in the

cloud, it is now essential to develop an optimised key exchange scheme under this

scenario if we are to use hybrid encryption to enhance cloud data security. Some

existing key exchange schemes try to optimise the multi-party-same-key scenario

with users joining and leaving dynamically, such as (Bresson et al., 2002, Zhou and

Huang, 2010, Katz and Shin, 2005, Katz and Yung, 2007). In (Küsters and

Tuengerthal, 2009, Zhao and Gu, 2010), extended security standards are formalised

and researched for key exchange schemes for the basic 2-party scenario. Some of the

most recent research on authenticated key exchange schemes focus on

password-based key exchange (Groce and Katz, 2010, Katz and Vaikuntanathan,

2011), which allows two parties to share a session key through exchanging a

low-entropy password. These approaches are advantageous when humans are

involved because a low-entropy password can be easily remembered. Unfortunately,

no human action is required in our research problem. Many existing key exchange

schemes try to optimise the multi-party-same-key scenario as we do. Kurosawa

(Kurosawa, 2002) and then Bellare et.al (Bellare et al., 2003) studied the problem of

asymmetric-key encryption in the multi-user-different-data scenario with the

randomness reuse strategy. Due to the low efficiency of asymmetric-key encryption

over large datasets, their schemes cannot be directly applied into cloud computing

environments. However, this problem is essentially the KE problem in the

background of the cloud. IKE is a widely-adopted authenticated key exchange

scheme which is used along with IPSec as the default network-level data protection

standard in TCP/IP Suite. The latest updated description of IKE can be found in

(Kaufman et al., September 2010). It is known for its high security level (Canetti and

Krawczyk, 2002), but it lacks efficiency in distributed environments, especially in the

cloud. We developed a key exchange scheme named CCBKE for security-aware

19

scheduling in cloud computing (Liu et al., 2013c). When deployed in cloud, CCBKE

invokes significantly lower time consumption compared to IKE, but it still takes a

considerable amount of time. Therefore, we developed another KE scheme for further

performance evaluation . We will introduce these schemes in Chapter 4.

20

Chapter 3

Background, Problem Analysis and

Framework

In this chapter, I will provide framework and detailed analysis on the research

problems we aim to address in this thesis. This chapter is organized as follows.

Section 3.1 introduces preliminaries for the remainder of this thesis. Section 3.2

provides motivating examples and the framework of our research. Section 3.3

provides a brief introduction of existing representative public auditing approaches

for the purposes of background knowledge. Section 3.4 presents problem analysis for

the specific research problems that are addressed in this thesis.

3.1 Preliminaries

I will now introduce preliminaries in presenting the research in the area of

public auditing on cloud data. The preliminaries include the Diffie-Hellman key

exchange, RSA signature, bilinear pairing, BLS signature and authenticated data

structure. Most of them are the foundation stones for not only public auditing

schemes, but also cryptography and information security research in general.

3.1.1 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange scheme presented in 1976 (Diffie and

Hellman, 1976) is commonly considered to be the earliest key exchange protocol,

and the beginning of the public-key cryptography era. For two users, Alice and Bob,

21

sharing an insecure communication channel, they can communicate to establish a

shared secret key with the protocol. Its security is based on the computational

difficulty of the discrete logarithm problem.

The public keying materials are a big integer and one of its primitive root

, i.e., is a generator of group . For key exchange, Alice will choose its secret

material and send to Bob, while Bob will choose its secret material

and send to Alice. Through these procedures, Alice can obtain the key

 through , and Bob can also obtain through . If

 is sufficiently large, compute with is computationally impossible.

As and are kept secret, any third party cannot figure out the exchanged key

through communication sniffing.

3.1.2 RSA Signature

The RSA signature is a classic and one of the earliest signature schemes; it is

also one of the foundation stones of public-key cryptography. Its security is based on

the computational difficulty of the factoring problem. While the textbook version is

not semantically secure and not resilient to existential forgery attacks, there is a

large body of research work on its improvements later on, and this ultimately makes

it a robust signature scheme. For example, a basic improvement is to use

instead of where is a one-way hash function.

The setup is based on an integer where and are two large

primes, and two integers and where ; is kept as the secret

key and is the public key. The signature of a message is computed as

. Along with , the signature can be verified through verifying

whether the equation holds.

22

3.1.3 Bilinear Pairing and BLS Signature

Assume a group is a gap Diffie-Hellman (GDH) group with prime order .

A bilinear map is a map constructed as where is a

multiplicative cyclic group with prime order. A useful should have the following

properties: bilinearity – ; non-degeneracy –

; and computability – should be efficiently

computable. For simplicity, we will use this symmetric bilinear map in our scheme

description. Alternatively, the more efficient asymmetric bilinear map

 may also be applied, as was pointed out in (Boneh et al., 2004).

BLS signature is proposed by Boneh, Lynn and Shacham (Boneh et al., 2004)

in 2004. In addition to the basic soundness of digital signature, this scheme has a

greatly reduced signature length, but also increased overheads due to the

computationally expensive paring operations. Its security is based on the gap

Diffie-Hellman problem on bilinear maps. Based on a bilinear map ,

a basic BLS signature scheme works as follows. Keys are computed as

where , is the secret key and is the public key. Signature for a

message is computed as . People can then verify this signature

through verifying whether .

3.1.4 Authenticated Data Structures

Authenticated data structures (ADS) are used to efficiently verify data position

through verification of all data in the verification path from the root. It is employed

in integrity verification schemes to enable the verifier to check whether the storage

server has performed the data update correctly. Now we briefly introduce ADS used

in integrity verification. Iterative hashing is the core idea in these ADS's; their

security is based on pre-image resistance, second pre-image resistance and the

collision resistance of the chosen cryptographic hash function.

23

Merkle Hash Tree (MHT) (Merkle, 1987) is an authenticated data structure

which has been intensively studied in the past and later utilised to support

verification of dynamic data updates. Similar to a binary tree, each node will

have a maximum of 2 child nodes. Information contained in one node in a MHT

 is -- a hash value. is constructed as follows. For a leaf node based on

a message , we have , ; A parent node of

and is constructed as where and are

information contained in and respectively. A leaf node ’s AAI is

defined as a set of hash values chosen from all of its upper level (only one per level)

so that the root value can be computed through . For example, for the

MHT demonstrated in Fig. 3-1, ’s AAI .

Rank-based authenticated skip list (RASL) (Erway et al., 2009) is an

authenticated data structure that can be authenticated not only through the content,

but also the indices of the data block. Based on this structure, Erway et, al. proposed

the first PDP scheme that can support full dynamic data operations. An example can

also be found in Fig. 3-1, where the 'rank' value of a node is defined as the

maximum number of leaf nodes it can reach. Its average complexity is also

logarithmic to the number of blocks, similar to MHT.

There are also other authenticated data structures. Mo et, al. designed Merkle

B+ tree (Mo et al., 2012) which also has logarithm complexity for updates. Our

work on fine-grained updates (Liu et al., 2014b) have proposed the ranked Merkle

hash tree (RMHT) for fine-grained updates. However, the rank value is not for

authentication of indices, but for authentication of variable block sizes. To make this

concept clear, we will term it the weighted Merkle hash tree (WMHT) and introduce

it in detail in Chapter 5. In Chapter 6, we will also introduce another authenticated

data structure, namely the rank-based multi-replica Merkle hash tree (RMR-MHT),

designed for efficient index verification and the update of multiple replicas.

24

3.2 Motivating Examples and Research Framework

3.2.1 Motivating Examples

Big data and cloud computing are currently receiving more and more attention

from both industry and academia. They have been recently listed as important

strategies by the Australian Government (Department of Finance and Deregulation,

2013, Department of Finance and Deregulation, 2011). One example in big data

applications is sensor data and surveillance data gathered from sensors and

surveillance cameras. Each individual sensor has the potential to stream back

gigabytes of data per second. Much of this data is “unstructured” or “semi-structured,”

which means it is difficult or costly to either store in traditional data warehouses or

routinely query and analyse. This data tsunami phenomenon is being described as a

new grand challenge in computing: The ‘Big Data’ problem, which is defined as the

practice of collecting complex data sets so large that it becomes difficult to analyse

Figure 3-1 ADS examples: MHT and RASL.

25

and interpret manually or use on-hand data management applications (e.g., Microsoft

Excel). Mining industry faces big challenges in quickly manipulating large volumes

of data and mining them for relevant information. Supporting rapid decision making

for key operations must be obtained in real time. These operations in the mining

industry, for example, include yield modelling, production optimisation, fleet

optimisation, and mine collapse detection. Hence, efficient Information and

Communication technologies (ICT) that store, distribute, index, and analyse

hundreds of petabytes of heterogeneous data streaming from a variety of sensors are

needed -- in a way that does not compromise QoS in terms of data availability, data

search delay, data analysis delay, and the like.

Big data applications are always data-intensive and time-critical. Data from

scientific research is another important source of big data. Here is an example in

astrophysics. Australian astrophysics researchers operate a gigantic 64-metre Parkes

telescope which generates a large amount of data through constant observation.

Scientists usually need to access the results as early as possible, as a late-coming

result may cause an enormous waste of resources and loss of scientific discovery. An

example in astrophysics is gravitational wave detection (Kawata et al., 2007) which is

especially time-critical. Due to its nature of real-time and streaming, delay in

returning a result of a task may cause missed detection of an incoming gravitational

wave; thousands of hours of data-intensive computation would be in vain, which is a

terrible waste both economically and environmentally. Online web service is another

example. Although there are less computational tasks in normal web services than in

scientific applications, user requests normally demand the servers’ response in a few

seconds, such as in the search engine, etc.. Hence, efficiency is of extreme importance

in cloud scheduling for most big data applications.

To address big data problems, cloud computing is believed to be the most

potent platform. In Australia, big companies such as Vodafone Mobile and News

Corporation are already moving their business data and its processing tasks to

Amazon cloud - Amazon Web Services (AWS) (2012). Email systems of many

26

Australian universities are using public clouds as the backbone. To tackle the large

amount of data in scientific applications, CERN, for example, is already putting the

processing on petabytes of data into cloud computing (Heath, 2012). There has also

been a lot of research regarding scientific cloud computing, such as in (Vecchiola et

al., 2012, Wang et al., 2011a, Wang et al., 2008). For big data applications within

cloud computing, data security is a problem that should always be properly

addressed. In fact, data security is one of the biggest reasons why people are

reluctant in using cloud (Schmidt, 2012, Yao et al., 2010, Zissis and Lekkas, 2011).

Therefore, more effective and efficient security mechanisms are direly in need to

help people establish their confidence in all-round cloud usage.

Cost-efficiency brought by elasticity is one of the most important reasons why

cloud is being widely adopted for processing big data applications. For example,

Vodafone Australia is currently using the Amazon cloud to provide their users with

mobile online-video-watching services. According to their statistics, the number of

video requests per second (RPS) can reach an average of over 700 during less than

10% of the time such as Friday nights and public holidays, compared to a mere 70

on average for the rest (i.e. 90%) of the time. The variation in demand is more than 9

times (2012). Without cloud computing, Vodafone cannot avoid purchasing

computing facilities that can process 700 RPS, but it would be a total waste for most

of the time. This is where cloud computing can save a significant amount of expense

-- cloud’s elasticity allows the user-purchased computation capacity to scale up or

down on-the-fly at any time. Therefore, user requests can be fulfilled without

wasting investment on computational powers. Two other large companies who own

news.com.au and realestate.com.au, respectively, are using the Amazon cloud for the

same reason (2012). We can see through these cases that scalability and elasticity are

of extreme importance for the processing of the big data application in cloud

computing. As stated above, efficiency, as an important factor of QoS, must not be

compromised. Support for data dynamics is an important aspect in these examples.

Therefore, the capability and efficiency in supporting data dynamics is essential for

big data applications in the cloud, which is also applicable to public auditing

27

mechanisms for cloud data storage.

Many big data applications will keep user data stored on the cloud for

small-sized but very frequent updates. A typical example is Twitter, where each

tweet is restricted to 140 characters long (which equals 140 bytes in ASCII code).

They can add up to a total of 12 terabytes of data per day (Naone, 28 September,

2010). Storage of transaction records in banking or securities markets is a similar

and more security-heavy example. Moreover, cloud users may need to split

large-scale datasets into smaller chunks before uploading to the cloud for

privacy-preservation (He et al., 2011) or efficient scheduling (Yuan et al., 2010). In

this regard, efficiency in processing small updates will affect the performance of

many big data applications. To better support scalability and elasticity of cloud

computing, some recent public data auditing schemes support data dynamics.

However, the types of updates that are supported are limited. Therefore previous

schemes may not be suitable for some practical scenarios. Besides, there is a

potential security threat in the existing schemes. We will discuss these problems in

detail in the following chapters.

To sum up, the motivation for many research works on cloud data security is

the fact that data is stored in cloud and away from the user's direct control. Therefore,

cloud data is susceptible to more types of malicious attacks, including the malicious

cloud server. As in conventional systems, data security in cloud and big data is also

an endless game of attack and defend with constant evolvements in the spear and

shield. Therefore, there is always the possibility for new security exploits to be

discovered from conventional security models. In this thesis, the main focus is

public data auditing. The desired properties discussed in these examples are the main

design motivations and evaluation factors for our innovative schemes.

28

3.2.2 Research Problems with Public Auditing of Cloud Data --

Lifecycle and Framework

Data security includes many dimensions; the three main dimensions are

confidentiality, integrity and availability. In this thesis, we will focus on data

integrity. Data integrity means that data is needed to be maintained in its original

form. Integrity verification and protection is an active research area; numerous

research problems belonging to this area have been studied intensively in the past.

As a result, the integrity of data storage can now be effectively verified in traditional

systems through the deployments of Reed-Solomon code, checksums, trapdoor hash

functions, message authentication code (MAC), digital signatures, etc. However, as

stated above, the data owner (cloud user) still needs a method to verify their data

stored remotely on a semi-trusted cloud server, no matter how secure the cloud

claims to be. In other words, a cloud service provider must enable verifications from

an external party that is independent to the cloud. The party could be the client

herself, or a third party auditor. A straightforward approach is to retrieve and

download from the server all the data the client wants to verify. Unfortunately, when

data size is large, it is very inefficient in the sense of both time consumption and

communication overheads. Moreover, when the client needs a third party to verify

the data on her behalf, all data will be exposed to the third party. To address these

problems, scientists are developing schemes based on traditional digital signatures to

help users verify the integrity of their data without having to retrieve it, which they

term as provable data possession (PDP) or proofs of retrievability (POR).

In this thesis, we will focus on integrity protection and verification from

external parties, which we also term 'public auditing' of data. We only discuss the

auditing to data itself; other auditing methods, such as log auditing (Hwang et al.,

2014, Waters et al., 2004), are out of the scope of this thesis. There are 3

participating parties in an integrity verification game: client, CSS and TPA. The

client stores her data on CSS, while TPA's objective is to verify the integrity of the

29

client's data stored on CSS. Having a specialised TPA to verify data integrity is

more efficient, but it may also introduce additional risks as the third-party auditor

may not be completely trustworthy by itself. Fig 3-2 shows the relations between the

participating parties in public auditing, which demonstrates that the three parties in a

public auditing game -- the client, the cloud service provider and third-party auditor --

do not fully trust each other. This has been a widely researched problem over recent

years.

A framework of integrity protection on cloud data is presented in Fig. 3-3,

where we can see ensuring data integrity can involve many aspects, ranging from

internal and external verifications, data encryption and data anonymization. While

this framework is only a wide static overview for the research area, we present a

common lifecycle for the detailed dynamic process of a remote integrity verification

Figure 3-2 Participating parties in public auditing of cloud data.

Relations between the participating parties in public auditing of cloud data. The client
authorises the TPA to audit data stored on CSS, where the three parties are not fully trusted by each
other.

30

scheme (with support for dynamic data updates). Security of a public auditing

scheme may be jeopardised in every step in the entire auditing process. In the mean

time, efficiency of the entire auditing scheme will benefit from efficiency

improvement at every step. Therefore, the lifecycle that describes every step of the

verification process is essential for analysing the research problems in this area. The

lifecycle can be analysed in the following steps: Setup and data upload;

Authorization for TPA; Challenge for integrity proof; Proof integration; Proof

verification; Updated data upload; Updated metadata upload; and Verification of

updated data. The relationship and order of these steps are illustrated in Fig. 3-4. We

now analyse in detail how these steps work and why they are essential to integrity

verification of cloud data storage.

Setup and data upload: In cloud, the user data is stored remotely on CSS. In

order to verify the data without retrieving it, the client will need to prepare

verification metadata, namely homomorphic linear authenticator (HLA) or

homomorphic verifiable tag (HVT), based on homomorphic signatures (Johnson et

Data Upload & Update

Cloud Data Storage

Storage
Service
Provider

Third-party
Auditor

Client /
Data Owner

Data Encryption
Anonymization
Authentication

Internal Verification
(MAC, Erasure
Encoding, etc.)

Public Verification / Auditing

Private Verification

External Verification

 Figure 3-3 Integrity verification for outsourced data -- a framework

31

al., 2002). Then, the metadata will be uploaded and stored alongside the original

datasets. These tags are computed from the original data; they must be small in size

in comparison to the original dataset for practical use.

Authorisation for TPA: This step is not required in a two-party scenario where

clients verify their data for themselves, but it is important when users require a

semi-trusted TPA to verify the data on their behalf. If a third party can infinitely ask

for integrity proofs over a certain piece of data, there will always be security risks in

existence such as plaintext extraction. To address this problem, we present a novel

solution in Chapter 5.

Challenge and verification of data storage: This step is where the main

requirement -- integrity verification -- is fulfilled. The client will send a challenge

message to the server, and the server will compute a response over the pre-stored

data (HLA) and the challenge message. This response is computed and is based on

all message blocks, which we call 'proof integration' in the cycle. The client can then

verify the response to find out whether the data is intact. The scheme has public

Figure 3-4 Integrity verification for outsourced data -- the lifecycle.

32

verifiability if this verification can be done without the client's secret key. When

data is dynamic and the auditing is from a third party, a malicious server may cheat

the client with other healthy blocks when the challenged block is corrupted. We will

discuss this further in Chapter 6. Note that if the data storage is static, the whole

process would have ended here. However, as discussed earlier, data is always

dynamic in many big data contexts (often denoted as velocity, one of the four v's). In

these scenarios, we will need the rest of the steps to complete the lifecycle.

Data update: Occurs in dynamic data contexts. The client needs to perform

updates to some of the cloud data storage. The updates could be roughly categorised

as insertion, deletion and modification; if the data is stored in blocks with varying

size for efficiency reasons, there will be more types of updates to address, which we

will discuss in Chapter 5. Also, when there are multiple replicas in storage, one

update will impact all replicas. We will discuss how to improve efficiency in

Chapter 6.

Metadata update: In order to keep the data storage stay verifiable without

retrieving all the data stored and/or re-running the entire setup phase, the client will

need to update the verification metadata (HLA or HVT's) according to the existing

keys.

Verification of updated data: This is also an essential step in the dynamic data

context. As the CSS is not completely trusted, the client needs to verify the data

update process to see if the updating of both user data and verification metadata has

been performed successfully in order to ensure the updated data can still be verified

correctly in the future. Note that communications inside the cloud will take place in

both this step and the challenge/verification step for integrating a proof, where

encryption and key exchange are needed to ensure security. We will discuss how to

improve the efficiency of key exchange schemes inside the cloud without

compromising security in Chapter 4.

We will show in Sections 3.3 and 3.4 how each step in this lifecycle was

33

developed and how it evolved. This will be done by analysing representative

approaches in this research area and showing our contributions in the following

chapters.

3.3 Representative Public Auditing Schemes In Sketch

Now we introduce and analyse some representative schemes. These schemes

are basically presented in chronological order, and the scheme presented later will

support improved properties which will be analyse at the end of this section. Note

that all computations are within the cyclic group or .

3.3.1 PDP

Proposed by Ateniese, et, al. in 2007, PDP (provable data possession) can

provide authors with efficient verification over their outsourced data storage

(Ateniese et al., 2007, Ateniese et al., 2011). It is the first scheme to provide

blockless verification and public verifiability at the same time.

The tag construction is based on the RSA signature, therefore all computations

are modulo by default. Let be defined as the same as in RSA signature

(See Section 3.1), is a generator of , and is a random secret value;

 is the public key and is the secret key. The tag is computed as

. To challenge CSS, the client sends the indices (or,

coordinates) of the blocks they want to verify, and correspondingly chooses a set of

coefficients , as well as a where is a random number, and

these are sent to CSS along with the indices. To prove data integrity, CSS will

compute , along with a value , and this will be sent

back as the proof. To verify this proof, the client (or TPA) will compute

 , then verify if .

The authors have also proposed a light version called E-PDP, in contrast to the

34

formal S-PDP scheme, for better efficiency. The basic idea is to throw away the

coefficients and compute the proof as . The verification

equation is therefore . However, the light version has proved to be not

secure under the compact POR model. Nevertheless, as a milestone in this research

area, a lot of settings continue to be used by the following work. Mixing in random

coefficients is one of the examples. Another example is that the paper proposed a

probability analysis and found that only a constant small number of blocks are to be

verified, and if the client needs to have 95% or even 99% confidence, the integrity of

the entire file is good. This analysis has also become a default setting in the

following schemes.

3.3.2 Compact POR

Compact POR is proposed by Shacham, et, al. in 2008 (Shacham and Waters,

2008). Compared to the original POR, the authors have provided an improved

rigorous security proof. The schemes they introduced in the paper also suit the PDP

model.

They firstly proposed a construction for private verification. In this case, data

can only be verified with the secret key, therefore no other party can verify it except

for the client. The metadata HVT is computed as , where is

a pseudo-random function (PRF). and the PRF key k is kept as the secret key.

When the server is challenged with a set of block coordinates and a set of

corresponding public coefficients (same definition as in PDP above), it will

compute and to return as the proof. Upon

receiving the proof, the client can simply verify if . The

scheme is efficient because it admits short response length and fast computation.

The other construction with public verification is even more impressive

compared to schemes at that time. It is the first BLS-based scheme that supports

public verification. Due to the shortened length of BLS signature, the proof size is

35

also greatly reduced compared to RSA-based schemes. Similar to BLS signature, the

tag construction is based on a bilinear map where is a group of

prime order . Two generators and of are chosen to be the public key, as

another value where is the secret key for the client. The tag is computed

as ,. Just as the one with private verification, a set of coefficients

 is also chosen with the designated block coordinates. When challenged, the proof

 is computed as and . The client can then verify the

data integrity through verifying if .

Another great contribution of this work is the rigorous security framework it

provides. In their model, a verification scheme is secure only when it is secure

against an arbitrary adversary with a polynomial extraction algorithm to reveal the

message from the integrity proof. To prove the security, they also defined a series of

interactive games under the random oracle model. Compared to the previous

security frameworks in first PDP and first POR schemes, the adversary defined in

this framework is stronger and stateless, and the definition of the extraction

algorithm (therefore the overall soundness) is stronger. Also, their framework

perfectly suits the public verification, and even the multi-replica storage and

multi-prover scenarios. To date, this model is considered the strongest and it is very

frequently used to prove the security of newly-proposed verification algorithms.

3.3.3 DPDP

DPDP (Dynamic PDP), proposed in 2009, is the first integrity verification

scheme to support full data dynamics (Erway et al., 2009). It is from this scheme

that the processes in integrity verification schemes started to form a self-closed

lifecycle. They utilised another authenticated data structure -- rank-based

authenticated skip list -- for verification of updates. A rank-based skip list is similar

to MHT in the sense that they both incur a logarithm amount of operations when an

update occurs. All types of updates -- insertion, deletion and modification -- are

supported for the first time. This design is essentially carried on by all the following

36

schemes with dynamic data support. However, public verifiability was not supported

by the scheme, and there was no follow-up work to fill the blank. Therefore, we only

give a brief introduction here. The readers can refer to the next subsection to see

how data dynamics is supported with an authenticated data structure such as MHT.

3.3.4 Public Auditing of Dynamic Data

As the DPDP scheme did not provide support for public verifiability, Wang, et,

al. proposed a new scheme that can support both dynamic data and public

verifiability at the same time (Wang et al., 2011b). They term the latter 'public

auditability', as the verification is often done by a sole-duty third-party auditor

(TPA). As this scheme offers no optimisation for auditing of multiple replicas for

dynamic datasets, we name the scheme SiR-DPA (Single-Replica Dynamic Public

Auditing).

A MHT is utilised to verify the updates where the root is critical

authentication information. The tree structure is constructed on blocks, and the

structure is stored along with the verification metadata. Compared to compact POR,

it computes the tags using instead of in order to support dynamic data,

otherwise all tags in the following blocks must be changed upon each insertion or

deletion update, which would be very inefficient. Aside from this, the tag

construction and verification are similar: . The proof is also

computed as . While the verification is to verify whether

, TPA will first verify 's signature to ensure

the MHT is correct at the server side.

To verify data updates, the client will first generate the tag for the new block:

, then upload it to CSS along with the update request. CSS will

update the metadata as requested, and send back along with the old block

, the AAI (note will stay unchanged if is the only block that has

changed) and the client-signed old MHT root . The client can then verify the

37

signed to ensure CSS has not manipulated it, then it can verify with

and to see if the update of data and metadata is correct. Apart from the main

scheme, they also proposed a scheme that can perform efficient batch auditing with

experimental results.

There was also a follow-up work to improve this scheme for privacy

preserving public auditing (Wang et al., 2013c). When computing integrity proof,

they added a random masking technique to prevent the part of the original file from

being extracted from several integrity proofs over this specific part of the data.

Although it is one of the earliest works to support public auditability and data

dynamics at the same time, there are still weaknesses which exist. The main

weaknesses have been introduced in Section 3.3. We will show how these problems

are addressed with our newly proposed public auditing schemes in the following

chapters.

3.4 Detailed Analysis of Research problems

3.4.1 Authenticated Key Exchange in Cloud

As stated in Chapter 1, cloud users will need to audit their data in cloud servers

during utilisation of cloud services, where efficiency is also an important factor. From

a server's perspective, if a user wants to retrieve the data for verification, CLC must

gather data blocks from distributed storage or virtualised instances, and integrate them

to respond to the user. To ensure data confidentiality, the data also needs to be

encrypted during transit between CLC and the cloud server, just the same as for task

scheduling. Although current research allows users to verify data integrity without

retrieving the dataset itself (Wang et al., 2011b, Ateniese et al., 2007, Liu et al.,

2014b), the server still needs to compute an integrity proof based on the pre-stored

authenticator and the dataset itself. For example, in (Wang et al., 2011b, Liu et al.,

38

2014b), a part of the proof is computed as where are the cloud data

blocks and are random vectors selected by the verifier. In cloud, data blocks are

distributedly stored on different storage servers. Therefore, CLC needs to retrieve data

from their distributed locations (virtualised instances) and compute before it can

respond to the auditing request, no matter it is from the user or a third-party auditor.

For the same reason discussed before, this user data also needs to be encrypted. In

public auditing schemes, while the verification itself is usually very fast because of

pre-processing, efficiency in communications between CLC and instances becomes a

predominant factor. At the same time, the data must be well-protected to avoid

additional risks to data security within the auditing process itself. For these reasons,

efficiency of key exchange between CLC and instances also greatly affects the overall

efficiency of integrity verification and public auditing schemes, which is why this

research is a part of this thesis.

The unique characteristics of virtualisation, consolidation and multi-tenancy

bring unpredictable challenges to data security. For example, a malicious party can

easily be another legitimate user who is using the same cloud and has even more

opportunities for successful malicious behaviours (Ristenpart et al., 2009). As

discussed in Section I, data in scientific research represents valuable intellectual

property which can either be people’s privacy-sensitive information or directly related

to scientific discovery. Therefore, we suggest that all user data always stays encrypted

in the cloud. Decryptions may only be applied right before data is used for task

execution.

In a typical cloud computing infrastructure, a central server is employed for not

only receiving and processing user requests at the front, but also being responsible for

scheduling and splitting tasks through MapReduce at the back. This server is named

cloud controller (CLC) in the Eucalyptus system (Nurmi et al., 2009), we will use this

denotation in this paper. Virtualised server instances running on clusters of servers are

responsible for processing the divided tasks in a parallel fashion and returning the

results afterwards, and then CLC is capable of assembling the results and return to the

39

user. For more effective data management and processing, a structure of additional

hierarchical levels is often employed between CLC and end server instances as well.

We will discuss KE schemes in both the two-layered control structure and

multi-layered structure in our CCBKE and HKE-BC schemes which will be

presented in Chapter 4.

Because of encryptions, interaction between users and cloud servers in big data

applications requires constant and repeated key exchange operations. As a result, a

large percentage of time is devoted to the security system. As demonstrated in (Liu et

al., 2013c), the standardised IKE key exchange scheme can take up to 76% of the total

time consumption in the security system (depending on the actual parameters) when

the size of user datasets and the number of instances involved are large. This is why

we need to improve the efficiency of key exchange schemes. In every KE session, a

distinct session key is needed for every virtual machine. This is because the risk of

additional information being exposed against malicious users needs to be minimised.

The existence of virtual machine hijacks (Ristenpart et al., 2009) further intensifies

this risk. For example, if a single session key is utilised for data encryption on 100

virtualised instances, the information on all 100 nodes will all be exposed when only

one of the instances is hijacked and the key is revealed. If we use different keys for

different instances, the total information leakage will be reduced by 99%. For this

reason, the computation cost and time consumption of key exchange operations in

cloud are much more than those in other distributed computing systems.

Computations on server instances in key exchange processes can be completed

almost instantly, because there is only one exponentiation needed for each instance. In

addition, data communications in KE schemes via networking take almost no time

because only kilobytes of data need to be transferred between the cloud controller and

server instances in order to complete key exchange. Digital signatures are always

necessary in key exchange schemes for identity authentication. In key exchange

schemes, messages to be signed are usually of a short fixed length (typically 128 bits

which is the output size of a hash-based message authentication code (HMAC)). In

40

this regard, time consumption in signing and verification of messages is negligible

when compared to modular exponentiations over 1024-bit keying materials related to

key exchanges. Based on this view, we know that the modular exponentiations in KE

operations act as the predominant factor in the efficiency of a distributed KE scheme.

For scheduling purposes, a large-scale cloud computing infrastructure often

employs a hierarchical control structure, which fits the philosophy of distributed

storage and computation within the cloud. Following the acronyms defined in the

early Eucalyptus cloud system (Nurmi et al., 2009), a typical cloud computing

structure employs a CLC (cloud controller) as the interface between user and cloud,

several CC (cluster controllers) for cluster control, a bunch of NC (node controllers)

for virtualisation, and then virtualised instances for actual task execution. There are at

least three layers for control, and the number of control layers can increase further

with the scaling of the cloud environment (see Fig. 3-5 for an example of a hybrid

cloud which consists of multiple clouds with multiple control layers). In CCBKE (Liu

et al., 2013c) (which we also introduce in Chapter 4 in this thesis), CLC needs to

perform all the KE operations for exchanging a distinct key for each instance, while

the intermediate layers are required to do nothing other than pass messages. In this

regard, the efficiency of KE will be further improved by re-designing the scheme to

distribute the modular exponentiations to other control nodes.

3.4.2 Public Auditing of Verifiable Fine-grained Updates

Some of the existing public auditing schemes can already support full data

dynamics (Erway et al., 2009, Wang et al., 2011b, Wang et al., 2010). In their

models, only insertions, deletions and modifications on fixed-sized blocks are

discussed. Particularly, in BLS-signature-based schemes (Wang et al., 2010, Wang et

al., 2011b, Zhu et al., 2012, Shacham and Waters, 2008) with 80-bit security, the size

of each data block is either restricted by the 160-bit prime group order , as each

block is segmented into a fixed number of 160-bit sectors. This design is inherently

unsuitable to support variable-sized blocks, despite their remarkable advantage of

41

shorter integrity proofs. In fact, as described in Section 2, existing schemes can only

support insertion, deletion or modification of one or multiple fixed-sized blocks,

which we call ‘coarse-grained’ updates.

Although support for coarse-grained updates can provide an integrity

verification scheme with basic scalability, data updating operations in practice can

always be more complicated. For example, the verifiable update process introduced

in (Wang et al., 2011b, Erway et al., 2009) cannot handle deletions or modifications

in a size lesser than a block. For insertions, there is a simple extension that enables

insertion of an arbitrary-sized dataset – CSS can always create a new block (or

several blocks) for every insertion. However, when there are a large number of small

upgrades (especially insertions), the amount of wasted storage will be huge. For

example, in (Wang et al., 2011b, Erway et al., 2009) the recommended size for a

data block is 16k bytes. For each insertion of a 140-byte Twitter message, more than

99% of the newly allocated storage is wasted -- they cannot be reused until the block

is deleted. These problems can all be resolved if fine-grained data updates are

supported. According to this observation, supporting fine-grained updates can bring

Server

Server

Computer Computer

User User

...
Domain Domain

...
Domain Domain

...
Domain Domain

...
Domain Domain

...
Domain Domain

...
Domain Domain

Server

...
DDDomain Domainnn

...
DDDomain Domainnn

Cloud Users
(Scientists)

...

...

Cloud Controller
(CLC)

Cluster Controllers (CC)

Node Controllers
(NC)

Cloud Controller (CLC)

Cluster Controller (CC)

Node Controllers
(NC)

Virtualised
Instances

Virtualised
Instances

Public Cloud

Hybrid Cloud Environment

... ...

...

Control Layer
1

Control Layer
2

Control Layer
3

Control Layer
4

Figure 3-5 An example of hybrid cloud structures.

42

not only additional flexibility, but also improved efficiency. Details are provided

when the FU-DPA scheme is introduced in Chapter 5.

3.4.3 Multi-replica Big Data in Cloud

For availability, storing multiple replicas is a default setting for cloud service

providers. Storing replicas at different servers and/or locations will make user data

easily recoverable from service failures. A straightforward way for users to verify the

integrity of multiple replicas is to store them as separate files and verify them one by

one. Currently, the most common technique used to support dynamic data is

authenticated data structure (ADS). Given the communication complexity

and storage complexity of ADS (n is the total number of blocks, a very large number

when the file is large), there are different replicas. More importantly, an update for

each data block will require an update of the corresponding block in every replica. If

all replicas are indexed in their own separated ADS, the client must verify these

updates one by one to maintain verifiability. The 'proof of update' for each block

contains log(n) hash values as auxiliary authentication information (AAI). Therefore,

the communication cost in update verifications will easily become disastrous for users

whose cloud datasets are highly dynamic. In previous schemes, researchers have

considered support for public auditing, data dynamics and efficient verification of

multiple replicas, but none have considered them all together. In this work, we try to

address this problem with a new ADS which links together all replicas for each block.

In (Curtmola et al., 2008), the authors proposed a multi-replica verification

scheme, named MR-PDP, with great efficiency by associating only one authenticator

(HLA) for each block and all replica blocks. Although this approach can bring great

benefits such as lower storage cost at the server side and less pre-processing time at

the client side, their scheme is not secure when replacing the verifier with a TPA. The

verification process needs to privately keep the random padding values (or at

least the pseudo-random function that is used to generate them). If they are leaked,

another party will know how to compute the original message based on any replica as

43

well as how to compute an arbitrary replica based on an original file block. To make

things worse, if is known by the cloud server (or if there are collusions between

cloud server and TPA), the cloud server will be able to fake an integrity proof of a

given replica block based on any other replica block, even if the challenged replica

block is corrupted. Therefore, the MR-PDP scheme is not secure in a setting with

public verifications.

To sum up, from our considerations, desired properties of a multi-replica

verification scheme should (simultaneously) include the following:

1. Public Auditability and Support for Dynamic Data -- Enables a third-party

auditor to do the regular verification for the client without requiring any secret

material, and allows the client to verify data updates. It will be unreasonable for the

client to conduct verification herself on a regular basis, where she only wants to know

when something went wrong with her data. Meanwhile, support for dynamic data is

important as it exists in most big data applications.

2. All-round Auditing -- Enables efficient verification for all replicas at once so

that the verifier will feel more confident. If any of the replicas fails, the server will be

notified in time.

3. Single-Replica Auditing -- Enables verification for an arbitrary replica for

some specific blocks; because the verifier may only want to know if at least one

replica is intact for less important data.

3.4.4 Security of Public Auditing Schemes

Authorised Public Auditing

Fig 3-2 displays relations between the three parties in auditing games, where

both CSS and TPA only semi-trust the client. In the old model, the challenge

44

message is very simple so that everyone can send a challenge to CSS for the proof of

a certain set of file blocks, which can enable malicious exploits in practice. First, a

malicious party can launch distributed denial-of-service (DDOS) attacks by sending

multiple challenges from multiple clients at a time in order to cause additional

overheads on CSS and congestion to its network connections, and thereby

degeneration of service quality. Second, an adversary may get privacy-sensitive

information from the integrity proofs returned by CSS. By challenging the CSS

multiple times, an adversary can either get considerable information about user data

(due to the fact that returned integrity proofs are computed with client-selected data

blocks), or gather statistical information about cloud service status. To this end,

traditional PDP models cannot quite meet the security requirements of

‘auditing-as-a-service’, even though they support public verifiability. This problem

will be addressed in the FU-DPA scheme in Chapter 5.

Security Against Distrustful Server

Fig. 3-2 shows the relations between the participating parties in public auditing,

which demonstrates that the three parties in a public auditing game -- the client, the

cloud service provider and third-party auditor -- do not fully trust each other.

Authenticated data structures (ADS) such as MHT or RASL can enable other parties

to verify the content and updates of data blocks. The authentication for a block is

accomplished with the data node itself and its auxiliary authentication information

(AAI) which is constructed with node values on or near its verification path. Without

verification of block indices, a dishonest server can easily take another intact block

and its AAI to fake a proof that could pass authentication. This will cause several

security holes. First, the proofs of updates are no longer reliable. A dishonest server

can store a new data block anywhere, as long as it transfers back a consistent pair of

hash and AAI that can be used to compute the correct root value. Second, for

auditing of dynamic data, , the hash value of the block itself, is needed in

authenticator computation instead of a hash of any value that contains block indices

such as or , otherwise an insert/delete will cause changes to

45

authenticators of all the following blocks, which will be disastrous, especially if the

client is the only one who can compute authenticators. Therefore, in order for each

authenticator to include a block-specific hash value, seems to be the only

viable choice. In this case, as the verifier (client or TPA) does not possess the original

dataset, the client will solely rely on the cloud server -- which keeps the actual dataset

-- to compute for verification of data integrity. As the only way for the client

to verify the correctness of is through ADS, the server can cheat the client

with another hash and AAI pair. In other words, the server can take any other healthy

block to replace the block that should be verified, which denies the primary aim of

integrity verification. To the best of our knowledge, there is no existing public

auditing scheme that supports full dynamic data which can deal with this problem.

Erway et, al.'s RASL (Erway et al., 2009) (see Fig. 3-1 for an example) can

provide authentication for indices, which is resilient to the above attacks. Aside from

the effective ADS, they propose a scheme where the authenticator/tag is computed

as where is a generator and is the message to be audited, however this

is too simple to support public auditing. Without a hash value, they can be over-easily

integrated or separated. In fact, the RASL cannot be directly applied into a public

auditing scheme supporting dynamic data. As stated earlier, -- the hash value

of message block -- is to be used in authenticators for support of dynamic data.

Therefore, the client needs computed by (and later transferred from) the cloud

server for verification. In order to achieve verifiability of index information, the leaf

nodes no longer store the hash value of file blocks, but the hash value of a

concatenation of multiple values in the form of

. Therefore, the server needs to send back

both values of and , and the client will need to verify . In an RASL,

a common case is that multiple leaf nodes are in the same verification path, such as

 in Fig. 3-1. Let's say represents message blocks . As

stated earlier, the client needs computed by and transferred from the cloud

server for verification. In this case, if verification of is needed, the server not only

46

needs to return all 3 values on as part of AAI, but also needs to compute

and transfer all . As there is only a small fraction of

blocks (460 for 99% confidence when auditing a 1GB file), it is not likely that these

consecutive blocks will be chosen for one audit, which means there will be excessive

overheads. Also the bottom-up levelling restricts the insertions. If leaf nodes are level

0 as defined in (Erway et al., 2009), any insertion that creates a new level below level

0 will cause an update of all level values (therefore all hash values of all nodes), which

is hardly possible for the client to verify. For these reasons, in our MuR-DPA scheme

introduced in Chapter 6, we choose to use MHT with top-down levelling instead of

RASL to design the new ADS. Now that the leaf nodes are on different levels, we

need both the client and verifier to remember the total number of blocks and verify the

block index from both directions (leftmost to rightmost, rightmost to leftmost) to

make sure the server does not cheat the client with another node on the verification

path.

47

Chapter 4

Authenticated Key Exchange Schemes in

Cloud

As analysed in Chapters 2 and 3, an authenticated key exchange (AKE) scheme

in the background of the cloud is essential for secure proof integration where

symmetric encryption is involved. Its efficiency will greatly impact the overall

efficiency for public auditing as well as the other security-aware mechanisms of

cloud. In Chapter 4, I will demonstrate two AKE schemes which have been designed

for efficient and secure cloud auditing.

This chapter is organised as follows. Section 4.1 presents a key exchange

scheme with the randomness-reuse strategy; the work is published in (Liu et al., 2011,

Liu et al., 2013c). Section 4.2 presents a more efficient hierarchical key exchange

scheme; the work is published in (Liu et al., 2014a, Liu et al., 2013b). Section 4.3

presents security and efficiency analyses for both of the schemes presented in this

chapter.

4.1 CCBKE: Cloud Computing Background Key Exchange

4.1.1 System setup

The system chooses a large prime integer to construct a Diffie-Hellman

group, and a generator of group , i.e., is a primitive root modulo . Normally

 is a Sophie Germain prime where is also prime, so that the group

48

maximises its resilience against square root attack to the discrete logarithm problem.

A certificate authority (CA) as in PKI is still needed in our security framework so that

communicating parties can identify each other through exchanging verifiable

certificates and , as the certificates contain public keys which can be

used to verify the session partners’ signatures, and thereby their identities. Certificates

are relatively long-term data which are issued to all participants of communication

before the commencement of communication, and CA won’t participate itself unless

re-verification of identities and revocation and re-issuing certificates for participants

are needed. As these should be done in a much lower frequency (e.g. once a day) than

key exchanging (e.g. re-exchanging the key in every new session), they won’t affect

the efficiency of a key exchange scheme for scheduling in general. Therefore, we will

ignore all communications involving CA in our scheme and won’t be discussing

further details on issuing and revoking certificates.

4.1.2 Key Exchange

Initial exchange is used when a new task is to be executed, because that is when

CLC needs to decide how to distribute this new task to be executed on existing

computation infrastructure, i.e., which of the server instances are involved. CLC picks

a secret value , computes its public keying material in , and broadcasts

the following message to the domain of server instances S which contains

instances :

Round 1, C -> S: , , ,

where and are for algorithm negotiation, is for Diffie-Hellman

key exchange, and is for freshness verification. The initiator of a normal IKE

scheme will generate secret values , then compute and send out

, either through multicast or one by one, to establish separated

security channels with each receiver. In our scheme, although we still establish one

 for each server instance where , we use only one single secret

49

value for CLC in all messages in order to reduce cost. We further analyse

security and cost reduction for this variation in section 4 and 5, respectively.

Upon receiving Message 1, each server instance generates their secret value

, compute key material , then responds within Round 2 as follows:

Round 2, S -> C: , , , , , for

Note that round 2 involves different messages sent from separately.

After exchanging the first two rounds of messages, the session keys

are computed for all parties as follows:

…

The session keys are now shared between CLC and each server instance for the

use of encryption of later communications. Although the Diffie-Hellman key

exchange is completed, the CCBKE initial exchange is not finished as the participants

have to authenticate each other in order to prevent man-in-the-middle (MITM) attacks.

Similar to IKE, CLC generates signatures which are the signatures for these

messages, and use its secret key from the key pair issued by CA:

, for

and broadcasts the following message to S:

Round 3, C -> S:

50

 ,

 , for

The server instances can then verify the identity of the initiator of this

conversation by using its session key to decrypt its own part of this message.

Signatures can be verified through the public key contained in the certificate.

Similarly, server instances will send out their own encrypted ID, signature and

certificate to CLC for verification:

Round 4, S -> C: , , for

where, similar to round 3 but only signed separately, is signatures by

to messages:

, for

Note that this round involves messages as well. After the identities of both

CLC and server instances are authenticated through round 3 and 4, CLC will send to

 the split task data which are encrypted with session keys

using symmetric encryption such as AES. After task execution, returns to

CLC the results which are encrypted using as well. The prf function

is often implemented as an HMAC function such as SHA-1 or MD5, which outputs a

fixed-length short message (commonly 128 bits) and has high efficiency (around

200MB/s on today’s desktop PCs) itself.

4.1.3 Rekeying

Rekeying is often accomplished by running initial exchange all over again.

However, in the following cases, alternative strategies need to be applied. We’ll also

analyse in this section the efficiency of these strategies.

51

a) Failure Recovery:

If any message that constitutes the initial exchange fails to arrive, the CLC will

simply start a one-on-one IKE key exchange session with this specific instance. As

this is only an accidental situation and can be tackled on-the-run, this additional time

consumption can be considered negligible.

b) Multi-step Tasks

In a multi-step task, data need to be transferred back and forth. In this situation it

is not necessary for the participants to re-authenticate each other after the successful

authentication in the first round because of the high dependency of data in a similar

task. Therefore, only rounds 1 and 2 are needed to be performed, with new keying

materials and minor changes to the SA and HDR fields. Following the analyses in

Section 3, as rounds 3 and 4 only contain fast operations such as signature and

verification over short messages as well as symmetric-key encryption/decryption and

HMAC functions, the computational overhead of the rekeying process on the CLC is

almost identical to the initial exchange from an efficiency point of view.

4.2 HKE-BC: Hierarchical Key Exchange for Big data in

Cloud

An overview of the HKE-BC scheme is shown in Figs. 4-1 and 4-2. Generally

speaking, the scheme can be described as a layer-by-layer structure just as its name

indicates. In the first phase, every control node will exchange a temporary key

 with its parent node and with its child node, and then

undertake mutual authentications. In the second phase, CLC will send the final

session keying encrypted with the temporary keys established in the first phase.

Through these operations, the expensive exponentiation operations can be securely

distributed to the intermediate control nodes.

52

4.2.1 System Setup

The system chooses a large prime integer and selects a generator of group

. Normally is a Sophie Germain prime where is also prime, so that

the group has maximum resilience against square root attack.

4.2.2 Key Exchange

This is a generalised description for a cloud infrastructure that has control

layers, from CLC to end NC. Layer has nodes, namely , ,

. CLC is on layer 1, where . Let be the numbers of

sub-nodes for nodes on layer .

Overview: The scheme can be divided into two phases. Phase 1 is KE between

control nodes, which aims at secure delivery of CLC's secret keying material to NCs;

Figure 4-1 Process of HKE-BC Phase1.

53

while Phase 2 is for the actual key exchange between NC and the instances. NCs

interact with virtualised instances on CLC’s behalf, get responses from them, and then

send back the results to CLC to deliver back the instances' keying materials to finalise

the key exchange procedure. Brief graphs indicating the processes of both phases are

provided in Figs. 4-1 and 4-2.

Phase 1: This phase is for KE between all control nodes from CLC (layer) to

the th control layer (layer , i.e., NC layer). This exchanged session key will be

used for encrypting the real keying material in Phase 2.

All control nodes pick their own private key and one-time nonce .

They compute their public key for KE as follows:

Then CLC broadcasts the very first message :

to all nodes in layer 2. is a flag for message identification, indicating the request

for keying material.

For the nodes in layer , upon receiving message

 from their parent-node in (), they send messages

 to their sub-nodes in the next layer :

54

Meanwhile, they respond to their parent node:

After receiving , every node in layers will know its parent

node ’s public key , and compute the session key for communicating with its

parent:

For nodes in layer , upon receiving from their sub-nodes, they’ll

know the public keys of their sub-nodes, namely . We denote the public key of

node ’s sub-nodes as . compute the following

session keys for communicating with their sub-nodes:

For authentication, all nodes in broadcast to its

sub-nodes :

55

where the structure of message for signatures is also an output of , similar to IKE.

All nodes on , () will receive this message, and respond with

if signature verification is successful:

:

The reason that only the receiver of and can decrypt them is

that, for every parent-child node pair and , we already have:

which concludes phase 1.

Phase 2: This phase is for the eventual goal of our scheme – KE between CLC

and virtualised instances. The outcome of Phase 1 will play a vital role here.

CLC picks its secret value as its keying material for KE with those

virtualised instances. CLC encrypts with the session key negotiated in phase 1 and

broadcasts the following message to the next layer:

Upon receiving message from their parent-nodes in

(), the nodes in broadcast similar to their sub-nodes in :

56

because the recipients can obtain by decrypting the received using its

 . For security reasons, all nodes in should destroy after

sending in Phase 2 where they re-encrypt with and send to

their sub-nodes.

After these operations, once nodes on layer , i.e., NCs, get to know the

value. They now use this secret value to perform a 4-round CCBKE to finish the final

KE:

NC-VM: , , ,

VM-NC: , , , ,

NC-VM: ,

Figure 4-2 Process of HKE-BC Phase2.

57

VM-NC: ,

The final session key for data encryption is where . After this

step, not only but all virtualised instances will have the desired session key

for data encryption/decryption.

Now all virtualised instances have exchanged a key with their control nodes.

For each NC, i.e. (), they combine and encrypt the final session keys

in this format:

:

and send it to its upper level. Then, nodes in every level from

compute and send the following message to their parent nodes, after receiving from

their sub-nodes:

:

After this layer-by-layer operations, CLC, i.e., , will know the session keys

 that have been negotiated with all virtualised instances, thereby concluding the

KE scheme. The task data stored at CLC can now be split, encrypted and distributed to

the virtualised instances for execution. After the execution, the server instances may

follow an inverse procedure to exchange session keys with CLC and send back the

encrypted results, or will keep using keys that have been changed in this procedure

and re-exchanging keys in the next server-client interaction.

58

4.3 Security and Efficiency Analysis

The security of our schemes is analysed in Dolev-Yao’s threat model with a bit

extension. As we are dealing with communication security only, all the data stored on

CLC and intermediate control nodes is assumed to be safe against the adversary in this

model. We will analyse the security of our schemes in two ways, in that we will show

that our scheme is safe against both outside and inside attackers while maintaining

perfect forward secrecy. The abilities of the adversaries, or attackers, are defined as

follows.

4.3.1 Security Proofs

As cryptanalysis on symmetric-key encryption algorithms is outside the scope

of this thesis, the following discussions are under 2 standard cryptographic

assumptions as follows.

Assumption 4.1: Any participant in our scheme cannot retrieve any data that

was encrypted by any symmetric-key algorithm, unless it has the session key which

was used to encrypt the data in the first place. i.e., cryptanalysis is beyond this security

discussion.

Assumption 4.2 (CDH assumption): Given a cyclic group of order , a

generator of and two random integers , retrieving

in polynomial time using only is computationally impossible.

 Similar to most security analyses of public-key communication protocols, we

now define the capabilities of an outsider attacker and an inside attacker.

Definition 4.1 (cloud outside attacker): A malicious cloud outside attacker

aims to retrieve the session keys in exchange. An outside attacker is an adversary

who is capable of monitoring, intercepting, and changing all communication traffic in

the whole cloud background structure, in order to gain access to protected data in

59

transit. However, does not have access to any of the node machines, and its

identity is not legitimate, i.e. cannot obtain a valid certificate to let itself be

authenticated by CLC or any server instance.

Definition 4.2 (cloud inside attacker): A malicious inside attacker aims to

steal the data of other users of the same cloud. is an adversary who not only has

the same ability as , but also can be authenticated by the cloud and act as a

legitimate server instance of the communication. However, does not have access

to any other legitimate participants’ private information, including server instances’

private information and CLC’s private information.

We now prove that our scheme is secure against both these types of attackers.

Theorem 4.1: A cloud outside attacker cannot retrieve in polynomial time

any exchanged session key in CCBKE.

Proof: Following Definition 1, we know that an outside attacker can gain

access to all public keying materials by monitoring the entire

network, but cannot get secret information such as . Considering the

computational hardness of computational Diffie-Hellman (CDH) problem, we know

that cannot compute any where , in polynomial time, with

. □

Theorem 4.2: Assume is the session key negotiated between a cloud

inside attacker and CLC. cannot retrieve in polynomial time any session key

 other than , unless there is a negligible probability.

Proof: According to Definition 2, has its own secret value in addition

to information controlled by . Since all secret values are generated by

individual server instances themselves instead of allocated, there is a probability that

the same secret value is generated and used for key exchange by different server

instances, and we call this a ‘collision’. For example, when a collision between

60

and a legitimate server instance (with its secret value) happens, we have

. Therefore can easily retrieve data sent by using its own key .

Since are randomly chosen over , the probability for a collision

occurrence will be:

This is a similar situation to the famous birthday attack where depends on

as well. In our CCBKE scheme, p is commonly 1024-bit and n (number of server

instances) is usually several thousand which can be considered negligible compared

to . To this end, is very close to 0. Thus, the probability for a collision is

negligible, which means an inside attacker cannot retrieve any of the others’ session

keys except when there is a negligible possibility. Combining this conclusion with

Theorem 1, we have finished proving Theorem 2. □

Since all identity information are encrypted with the session keys in

authentication rounds 3 and 4 and both outside attackers and inside attackers cannot

retrieve the session key of others, we have the following lemma.

Lemma 4.1 Any pretended participant will fail authentication in rounds 3 and 4.

Once the authentication of rounds 3 or 4 fail, the communication will be

terminated. Hence, a man-in-the-middle attack or any kind of identity forgery attack

to our scheme will not be successful.

61

Derived from these theorems, we now have the following lemma regarding the

security of the HKE-BC scheme:

Lemma 4.2: The adversaries defined above have a negligible chance of

breaking the HKE-BC scheme. Specifically, a cloud outside attacker cannot

retrieve any session key, while a cloud inside attacker cannot retrieve any session

key other than her/his own.

Proof: The key exchange procedures for each node and its sub-nodes in both the

HKE-BC Phase 1 and Phase 2 are actually minimised and iterative CCBKE processes.

As CCBKE is secure against cloud inside and outside attackers according to

Theorems 1 and 2, all the KE operations in HKE-BC scheme are secure against these

attackers. Therefore, all the encrypted messages in our HKE-BC scheme are securely

encrypted. Hence, we can say that our new HKE-BC scheme is secure against

attackers from either outside or inside the cloud, as defined in Definition 1. □

In addition, if we use different parameters and keying materials for every

execution and re-keying in the HKE-BC scheme, it will also hold perfect forward

security just the same as in CCBKE and IKE.

4.3.2 Perfect Forward Secrecy

Similar to IKE, session keys used for encrypting communications are only used

once until they are expired and destroyed. Thus, a previously used session key or

secret keying material is worthless to a malicious opponent even if a previously-used

key or a secret keying material is somehow exposed. This is one of the major

advantages of using a key exchange scheme in hybrid encryption, which is why we

did not choose to simply encrypt the session key with an asymmetric-key encryption

algorithm, even though it can be easily done through PKI considering the fact that we

62

have adopted a CA in our CCBKE and architecture.

4.3.3 Efficiency Analysis for HKE-BC

We now analyse the efficiency improvements in the HKE-BC scheme when

compared to its predecessors. As analysed in section II, the majority of time

consumption is from modular exponentiations, e.g. . Compared to them, the

symmetric-key encryptions and decryptions in phase 2 take virtually no time because

those concatenated keying materials to be encrypted are only several kilobytes long.

Hence, we will analyse the efficiency advantage of our scheme by calculating the total

number of modular exponentiations.

Let

be the maximum number of sub-nodes for each node on level . Starting from

 , we have

then the total number of VM instances is , with at most VMs controlled

by one NC. Assume the maximum time consumption of one modular exponentiation

on one node is , then the total time consumption of CCBKE is close

to given that VM holds similar computational ability. In HKE-BC,

the upper bound of the total time consumption in KE modular exponentiations in one

round should be . Given the fact that each NC can launch and control a

large number of VMs (much more than the number of control nodes controlled by a

higher-level control node), the following inequality will hold:

63

Besides, because we have (otherwise HKE-BC will have the exact same

efficiency as CCBKE), we will have

if the NCs have similar computational capability that can launch a similar amount of

VMs. Therefore:

then we have

which means in practical cloud settings, HKE-BC always has increased efficiency

compared to CCBKE. In fact, in most cases we have:

then

In this case, the time consumption of HKE-BC is even only a fraction of

CCBKE. Although IKE, HKE-BC and CCBKE are all of linear time complexity to the

scale of the task, the efficiency advantage of HKE-BC is nonetheless tremendous.

A detailed quantitative analysis with experimental results for the proposed key

64

exchange schemes is provided in Section 7.3.

65

Chapter 5

FU-DPA: Public Auditing for Dynamic

Data with Fine-grained Updates

This chapter presents our research published in (Liu et al., 2014b) - the

FU-DPA scheme for public auditing of dynamic cloud data storage. The chapter is

organised as follows. Section 5.1 provides an introduction and states the main

research contributions of this work. Section 5.2 presents a necessary preliminary for

presenting our scheme -- the weighted Merkle hash tree. Section 5.3 provides our

framework and definitions for the fine-grained updates supported in our scheme.

Section 5.4 provides a detailed description of our proposed FU-DPA scheme. Section

5.5 provides a security and efficiency analysis.

5.1 Introduction

As analysed in Chapters 2 and 3, existing research work already allows data

integrity to be verified without possession of the actual data file. As stated in Section

3, when the verification is done by a trusted third party, this verification process is

also called data auditing, and the third party is called an auditor. However, such

schemes in existence suffer from several common drawbacks. First, a necessary

authorisation/authentication process is missing between the auditor and the cloud

service provider, i.e., anyone can challenge the cloud service provider for a proof of

the integrity of a certain file, which potentially puts the quality of the so-called

‘auditing-as-a-service’ at risk; Second, although some of the recent work based on

the BLS signature can already support fully dynamic data updates over fixed-size

66

data blocks, they only support updates with fixed-sized blocks as basic units, which

we call coarse-grained updates. As a result, every small update will cause

re-computation and updating of the authenticator for an entire file block, which in

turn causes higher storage and communication overheads. In this chapter, we

provide a formal analysis for possible types of fine-grained data updates and propose

a scheme that can fully support authorized auditing and fine-grained update requests.

Based on our scheme, we also propose an enhancement that can dramatically reduce

communication overheads for verifying small updates. Theoretical analysis and

experimental results demonstrate that this scheme can offer not only enhanced

security and flexibility, but also significantly lower overheads for big data

applications with a large number of frequent small updates, such as applications in

social media and business transactions. The research contribution of our scheme can

be summarised as follows:

1. For the first time, we formally analyse different types of fine-grained

dynamic data update requests on variable-sized file blocks in a single dataset. To

the best of our knowledge, we are the first to propose a public auditing scheme

based on the BLS signature and Merkle hash tree (MHT) that can support

fine-grained update requests. Compared to existing schemes, our scheme supports

updates with a size that is not restricted by the size of the file blocks, thereby it

offers extra flexibility and scalability compared to existing schemes.

2. For better security, our scheme incorporates an additional authorisation

process with the aim of eliminating threats of unauthorized audit challenges from

malicious or pretended third-party auditors, which we term ‘authorised auditing’.

3. We investigate how to improve the efficiency in terms of verifying frequent

small updates which exist in many popular cloud and big data contexts such as

social media. Accordingly, we propose a further enhancement for our scheme to

make it more suitable for this situation than existing schemes. Compared to existing

schemes, both theoretical analysis and experimental results demonstrate that our

67

modified scheme can significantly lower communication overheads.

5.2 Preliminaries

5.2.1 Bilinear Pairing

Bilinear pairing is a foundation stone for the FU-DPA scheme introduced in

this chapter. It was already introduced in Chapter 3. Therefore, details are omitted

here to avoid duplication. Please refer to Section 3.1.3 for a detailed introduction of

bilinear pairing.

5.2.2 Weighted Merkle Hash Tree

The Merkle Hash Tree (MHT) (Merkle, 1987) has been intensively studied in

the past. In this thesis we utilise an extended MHT with weight values. The new

authenticated data structure is named WMHT. Similar to a binary tree, each node

has a maximum of 2 child nodes. In fact, according to the update algorithm, every

non-leaf node constantly has 2 child nodes. Information contained in one node

in an WMHT is represented as where is a hash value and is the

weight of this node. is constructed as follows. For a leaf node based on a

message , we have , ; A parent node of

and is constructed as where is

a concatenation operator. A leaf node ’s AAI is a set of hash values chosen

from every one of its upper level so that the root value can be computed through

. For example, for the WMHT demonstrated in Fig. 5-1, ’s AAI

. According to the property of WMHT, we know that the

number of hash values included in equals the depth of in .

68

5.3 Framework and Definitions for Supporting

Fine-grained Updates

We first define the following block-level fine-grained update operations:

Definition 1 (Types of Block-level Operations in Fine-grained Updates):

Block-level operations in fine-grained dynamic data updates may contain the

following 6 types of operations: partial modification -- a consecutive part of a

certain block needs to be updated; whole-block modification -- a whole block

needs to be replaced by a new set of data; block deletion -- a whole block needs

to be deleted from the tree structure; block insertion -- a whole block needs to be

created on the tree structure to contain newly inserted data; and block splitting

– a part of data in a block needs to be taken out to form a new block to be inserted

next to it. 1

1 There are other possible operations such as block merging -- two blocks need to be merged

Figure 5-1 An example of a weighted Merkle hash tree (WMHT).

69

The framework of the public auditing scheme with data dynamics support

consists of a series of algorithms. Similar to (Erway et al., 2009), the algorithms in

our framework are: , , , , ,

 and .

: This algorithm is performed by the client for key

generation. It outputs the secret key and public key based on a predefined

security requirement.

: This algorithm is

performed by the client before uploading the file to CSS. It takes the file ,

segmentation request and the client’s secret key as input, and outputs the

segmented file , the set of homomorphic linear authenticators , a WMHT

construction based on , the root hash of , ’s signature , and a file tag .

: This algorithm is

performed by the CSS to perform an update request from the client.

An update request here means one operation in one single block in the format of

. indicates the type

of operation as defined in Definition 1; indicates the index of the block that needs

to be verified (namely); is the starting offset of this update (only used when

); and is the new data that need to be added in (only

used in). We will show in Section 4.4 how these operations can

compose fine-grained updates requests.

: This is for the client to

into the first block before the second block is deleted, and data moving -- moves a part of data
from one block to another, if the size of the second block does not exceed after this update.
However, the fine-grained update requests discussed in this paper do not involve these operations,
thus we will omit them in our current discussion. We will leave the problem of how to exploit them to
future work.

70

verify dynamic data updating based on the proof returned by CSS.

: The client or a third party

authorised by it (e.g. a TPA) can use this algorithm to generate a challenge message

 to the CSS to verify data integrity. is an

auditing accuracy parameter that is determined by the client, which will determine

the subset of that needs to be verified this time.

: The CSS will use this

algorithm to generate a proof to respond to the verifier. The algorithm will return

 if the verification of with fails.

: The verifier, either client or TPA,

will verify the integrity proof provided by CSS using this algorithm.

Based on this framework, we now present the main FU-DPA scheme.

5.4 The Proposed Scheme

5.4.1 First Scheme

We now describe our proposed scheme with the aim of supporting

variable-sized data blocks, authorszed third-party auditing and fine-grained dynamic

data updates.

Overview: Our scheme is described in three parts:

1) Setup: the client will generate keying materials via and

, then upload the data to CSS. Unlike previous schemes, the client will

store a WMHT instead of an MHT as metadata. Moreover, the client will authorise

the TPA by sharing a value .

2) Verifiable Data Updating: the CSS performs the client’s fine-grained update

71

requests via , then the client runs to check

whether CSS has performed the updates on both the data blocks and their

corresponding authenticators (used for auditing) honestly.

3) Challenge, Proof Generation and Verification: Describes how the integrity

of the data stored on CSS is verified by TPA via , and

.

We now describe our scheme in detail as follows.

Setup: This phase is similar to the existing BLS-based schemes except for the

segmentation of file blocks. Let be a bilinear map defined in

Section 4.1, where is a GDH group supported by 2. is a

collision-resistant hash function, and is another cryptographic hash function.

After all parties have finished negotiating the fundamental parameters above,

the client runs the following algorithms:

 : The client generates a secret value and a generator

of , then computes . A secret signing key pair is chosen with

respect to a designated provably secure signature scheme whose signing algorithm is

denoted as . This algorithm outputs as the secret key and

 as the public key . For simplicity, in our settings, we use the same

key pair for signatures, i.e., , .

: According to the preemptively determined

segmentation requirement (including , a predefined upper-bound of

the number of segments per block), segments file into

2 Most exponential operations in this paper are modulo . Therefore, from now on, for simplicity,
we will use instead of unless otherwise specified.

72

, i.e., is segmented into a total of blocks, with the th block

having segments. In our settings, every file segment should be of the same size

 and as large as possible (see (Shacham and Waters, 2008)). Since

 bytes is used in a BLS signature with 80-bit security (sufficient in

practice), bytes is a common choice. According to , a set

 is chosen so that the client can compute the HLAs for

each block: which constitutes the ordered set

. This is similar to signing a message with the BLS signature. The

client also generates a root based on the construction of a WMHT over

 and computes . Finally, let , the client

computes the file tag for as and then

outputs .

Prepare for Authorisation: The client asks (her choice of) TPA for its ID

(for security, is used for authorisation only). TPA will then return its ID,

encrypted with the client’s public key. The client will then compute

 and sends along with the auditing delegation

request to TPA for it to compose a challenge later on.

Different from existing schemes, after the execution of the above two

algorithms, the client will keep the WMHT ‘skeleton’ with only the weights of each

node and indices of each file block in order to reduce fine-grained update requests to

block-level operations. We will show how this can be done in Section 4.4. The client

then sends to CSS and deletes from its local

storage. The CSS will construct a WMHT based on and keep stored with

 for later verification, which should be identical to the tree

spawned at the client-side shortly before.

Verifiable Data Updating: Same as Setup, this process will also be between

the client and the CSS. We discuss 5 types of block-level updates (operations) that

73

will affect : (see Definition 1). We will discuss how these

requests can form fine-grained update requests in general in Section 4.4.

The verifiable data update process for a -typed update is as follows (see

Fig. 5-2):

1. The client composes an update quest defined in Section 4.2

and sends it to CSS.

2. CSS executes the following algorithm:

: CSS parses and get

. When , CSS will update and accordingly,

then output (note that stays the same during the

update) and the updated file .

Upon finishing this algorithm, CSS will send to the client.

3. After receiving , the client executes the following algorithm:

: The client computes using

, then parses to , compute (and

) and use and respectively. It verifies use

, and checks if . If either of these two verifications fails, then the

output is and it returns to CSS, otherwise the output is .

 If the output of the algorithms is , then the client computes

 and then sends to CSS.

4. The CSS will update to and to accordingly and delete

if it receives , or it will run again if it receives

FALSE. A cheating CSS will fail the verification and constantly receive

until it performs the update as the client requested.

74

Due to their similarity to the process described above, other types of

operations are only briefly discussed as follows. For whole-block operations

, as in the model in the existing work (Wang et al., 2011b), the client can

directly compute without retrieving data from the original file stored on CSS,

thus the client can send along with the in the first phase. For

responding to an update request, CSS only needs to send back instead of .

Other operations will be similar to where . For a -typed update, in

addition to updating to , a new block needs to be inserted to after

. Nonetheless, as the contents in is a part of the old , the CSS still needs

to send back to the client. The process afterwards will be similar to a

-typed upgrade, with the only exception that the client will compute

Figure 5-2 Verifiable PM-typed data update in FU-DPA.

75

using to compare to , instead of using as in the

-typed update.

Challenge, Proof Generation and Verification: In our setting, TPA must

show CSS that it is indeed authorised by the file owner before it can challenge a

certain file.

1. TPA runs the following algorithm:

: According to the accuracy required in

this auditing, TPA will decide to verify out of the total blocks. Then, a

challenge message is generated where

 is TPA’s ID, is a randomly selected subset of with elements and

 are randomly-chosen coefficients. Note that VID is encrypted with

the CSS’s public key so that CSS can later decrypt with the

corresponding secret key.

TPA then sends to CSS.

2. After receiving , CSS will run the following algorithm:

: Let . CSS will first

verify with , , and the client’s public key , and output

 if it fails. Otherwise, CSS will compute

and and compose the proof as

 , then output . Note that during the

computation of , we will let if .

After execution of this algorithm, CSS will send to TPA. 3. After receiving

, TPA will run the following algorithm:

: TPA will compute using and then

verify using the public keys and by comparing with

76

 . If they are equal, let , TPA will further

check if equals , which is similar to verifying a BLS signature. If

all the two equations hold then the algorithm returns , otherwise it returns

.

An illustration of Challenge and Verification processes can be found in Fig.

5-3.

5.4.2 Analysis on Fine-grained Dynamic Data Updates

Following the settings in our proposed scheme, we now define a fine-grained

update request for an outsourced file divided into variable-sized blocks, where

each block consists of segments of a fixed size each. Assume a

WMHT is built upon for authentication, which means must keep

updated with each WMHT operation in order for CSS to send back the root for

the client to verify the correctness of this operation (see Section 4.3). We now try

to define and categorise all types of fine-grained updates, and then analyse the

WMHT operations with that will be invoked along

with the update of the data file.

Definition 2 (Fine-grained Data Update Request): A fine-grained update

request is defined as , where indicates the starting offset

of this update in , indicates the data length after that needs to be updated

(so that can characterise an exact proportion of the original file that

needs to be updated, which we will later call), and is the new message

to be inserted into from offset .

We assume the data needed to be obsolete and the new data to be added shares

a common starting offset in , as otherwise it can be split into multiple updates

defined in Definition 2 commencing in sequence. We now introduce a rule to follow

during all update processes:

77

Condition 1 (Block Size Limits in Updates): An update operation must not

cause the size of any block to exceed ; After any operation, a block that has 0

bit data remaining must be deleted from .

For the convenience of a clearer discussion and implementation, we add an

additional parameter indicating the type of update. A request is thereby formatted

as . indicates

whether this update is a Modify, Insert or Delete. We assume the offset is located

in block , which can be efficiently located using and through algorithm

findBlock() (see Fig. 5-4). That is to say, let be the length of data between

and the start offset of , i.e., we assume . The

situation where or will be a little different from the majority

Figure 5-3 Challenge, proof generation and verification in FU-DPA.

78

of cases where . Note that when we have an average of several

hundreds of segments per block, the probability for a random update request

to satisfy or is so slim that it can be neglected 3 .

Nevertheless, for completeness, we will still include these cases in the discussion,

but we will not consider these cases in the efficiency analysis. We now analyse the

three types of fine-grained updates separately.

1) : In this case we have . As Condition 1

must be complied, we will classify the update into several possible cases as follows

and discuss them separately. We will use a variable for

measurement.

(1-a) We first discuss the majority case where .

(1-a-i) When , a direct insertion into will not cause a

breach of the upper bound . Therefore, only one operation is needed.

(1-a-ii) When , a direct insertion will contradict with

condition 1, therefore one split operation and 2 operations are required.

3 The probability is when is counted in bits. If is counted in segments, this probability will become

which is still a tiny percentage when the average number of segments per block is high.

Figure 5-4 The algorithm to find a block in F with a given offset o.

79

The split point in depends on the length of . As a result, is split into 2

blocks and with data in inserted into and the new block

separately. Note that after the update will reach the upper bound .

(1-a-iii) When being larger, e.g., for some

, there will be a total of new blocks inserted

between the old and to store the remaining of after the operations

in (1-a-ii). This will be a straightforward extension to where

 -- there will be a total of 1 operation, 2 operations, and

whole-block insertion () operations.

We now discuss the case when and . For simplicity, we

will only provide the results.

(1-b) When , there will be 1 operation,

same as (1-a); for there will be 1 operation, 1

operation and 1 operation if , or 1

operation and 1 operation if ; for

, there will be one operation and

operations.

(1-c) When , there will be 1 operation,

same as (1-a); for there will be one operation

and operations.

An example of this type of update (1-a-ii, to be representative) is demonstrated

in Fig. 5-5.

2) : In this case , and the measurement variable we

use here is .

(2-a) As in 1), we will first discuss the case when .

80

(2-a-i) When , similar to (1-a-i), there will be one

operation on .

(2-a-ii) When , there will be 2 operations

as both of the two blocks and have data remaining after deletion.

(2-a-iii) When , on top of t he

operation in , all the contents in block needs to be erased, thus one

operation of is required. In addition, when , another

 operation is needed because a part of the next block needs to be deleted

as well. Similarly, we will generalise this case to that of when

 for some , there will be 2

 operations and operations in total; when , there

will be 1 operation and operations in total.

(2-b) When , there will be one more operation and one less

operation when , the remaining of the operations will stay the same.

Figure 5-5 Example: fine-grained insertion.

An example of a (1-a-ii)-insert operation for where ,
, and , in a WMHT where (bytes).

81

 (2-c) When , the discussion will be parallel to where ,

which we will omit here.

An example for (2-a-iii)-deletion is shown in Fig.5-6.

3) : We will only discuss the case where

 and . If ,

a request can be easily split into a request where

 and a request. Therefore, we

believe a discussion on the case of where will be sufficient. In

this case, we choose , then the

classified discussion will be extremely similar to where , therefore

we will only list the results as follows.

(3-a) When :

(3-a-i) When , similar to 1-a), there will be one operation

in .

(3-a-ii) When for some ,

there will be 2 operations and operations in total; when

, there will be 1 operation and operations in

total.

(3-b) When , there will be one more operation and one less

 operation when , the remaining of the operations will stay the same.

(3-c) When , the discussion will be just parallel to where

 therefore which we will omit here.

An example for the (3-a-ii)-modify operation is shown in Fig.5-7.

82

Theorem 1: Any valid fine-grained update request that is in the form

of can either directly belong to, or be split into some smaller

requests that belong to, the following 5 types of block-level update requests:

 and .

Proof: Let , , then we can always

reduce to and where . If

, then ; if , then

; if , then .

Therefore, according to our analysis in this section, and can be split into

the 5 block-level operations in all cases, which concludes our proof. □

Through the analysis above, we know that a large number of small updates, no

matter whether they are insert, delete or modify, will always invoke a large number

of operations. We now try to optimise operations in the next section to

make them more efficient.

Figure 5-6 Example: fine-grained deletion.

An example of a (2-a-iii)-delete operation for where ,
 and , in a WMHT where (bytes).

83

5.4.3 Further Modification for Better Support of Small Updates

Although our proposed scheme can support fine-grained update requests, the

client still needs to retrieve the entire file block from CSS in order to compute the

new HLA, in the sense that the client is the only party that has the secret key to

compute the new HLA but clients do not have stored locally. Therefore, the

additional cost in communication will be immense for frequent updates. In this

section, we will propose a modification to address this problem, utilising the fact

that CSS only needs to send back data in the block that stayed unchanged.

The framework we use here is identical to the one used in our scheme

introduced in Section 4.2 (which we will also name as ‘the basic scheme’ hereafter).

Changes are made in and ; Setup, Challenge,

Proof Generation and Verification phases are the same as in our basic scheme.

Therefore, we will only describe the two algorithms in the following phase:

Verifiable Data Updating: We also discuss operations here first.

: After CSS has received the update request

Figure 5-7 Example: fine-grained modification.

An example of a (3-a-ii)-modify operation for where ,
 and , in a WMHT where (bytes).

84

from the client, it will parse it as and use to gather

the sectors that are not involved in this update, which we denote as . CSS

will then perform the update to get , then compute , then send the proof of

update to the client.

: After the client receives , it will first compute

using and verify , then it will compute using

and then compute with and compare with . If ,

then the client will return to CSS for it to update accordingly.

For an operation the process will be the same as our basic scheme as

there are no new data inserted into , therefore the retrieving of the entire data

block is inevitable when computations of and are required. For other types

of operations, no old data is involved in new blocks; therefore the processes will also

remain the same. The process is shown in Fig. 5-8.

5.4.4 Further Discussions

Our strategy can also be applied in RSA-based PDP or POR schemes to achieve

authorised auditing and fine-grained data update requests. As RSA can inherently

support variable-sized blocks, the process will be even easier. The batch auditing

variation in (Wang et al., 2011b, Wang et al., 2010) can also be applied to our scheme,

as we did not change the construction of HLAs and the verifications on them.

For the same reason, the random masking strategy for privacy preservation

proposed in (Wang et al., 2010) can also be incorporated into our scheme to prevent

TPA from parsing the challenged file blocks through a series of integrity proofs to a

same set of blocks. Alternatively, we can also restrict the number of challenges to the

same subset of data blocks. When data updates are frequent enough, the success rate

of this attack will drop dramatically, because there is a high probability that one or

85

many of the challenged blocks have already updated before challenges are

completed, which is the reason we did not incorporate this strategy into our scheme.

5.5 Security and Efficiency Analysis

5.5.1 Security Analysis

In this section, the soundness and security of our scheme are discussed

separately in each phase, as the aim and behaviour of the malicious adversary in each

phase of our scheme is different. Our model assumes the following:

Assumption 5.1: CSS will honestly answer all data queries to its clients. In

Figure 5-8 Verifiable PM-typed data update in modified (final) FU-DPA.

86

other words, if a user asks to retrieve a certain piece of her data stored on CSS, CSS

will not try to cheat her with an incorrect answer.

This assumption -- reliability -- is a reasonable one because it should be

provided as a basic service quality guarantee by all cloud service providers.

Challenge, Verification and TPA Authorisation

In the challenge/verification process of our scheme, we try to secure the scheme

against a malicious CSS who tries to cheat the verifier TPA about the integrity status

of the client’s data, which is the same as previous work on both PDP and POR. In this

step, aside from the new authorisation process (which will be discussed in detail later

in this section), the only difference compared to (Wang et al., 2011b) is the WMHT

and variable-sectored blocks. Therefore, the security of this phase can be proven

through a process highly similar to (Wang et al., 2011b), using the same framework,

adversarial model and interactive games defined in (Wang et al., 2011b). A detailed

security proof for this phase is therefore omitted here.

Security of the new authorisation strategy in our scheme is based on the

existential unforgeability of the chosen signature scheme. We first define the

behaviour of a malicious third-party auditor.

Definition 3 (Malicious TPA): A malicious TPA is a third party who aims at

challenging a user’s data stored on CSS for integrity proof without the user’s

permission. The malicious TPA has access to the entire network.

According to this definition, none of the previous data auditing schemes is

resilient against a malicious TPA. Now, in our scheme, we have the following

theorem:

Theorem 2: Through the authorisation process, no malicious TPA can cause the

CSS to respond with an integrity proof over an arbitrary subset of file , namely

, unless there is a negligible probability.

87

Proof: According to our scheme design, TPA must submit

 computed by the client as a part of the challenge message

 to CSS. For a malicious TPA , all three of the following secret materials are

needed to forge a valid authorisation message: client’s secret key , secretly

negotiated message , and TPA’s ID . According to the scheme design,

the following two statements are true:

1) Given that the signature scheme we use is existentially unforgeable,

cannot forge any signature for an arbitrary message without .

2) is encrypted with the recipient’s public key before being sent to the

client or CSS. Therefore, if , the probability for to get to know

is only . Similarly, as is shared securely between client and CSS, the

chance for to know another’s is also negligible.

Based on the facts above, we know that a malicious TPA cannot compute a

valid on any cloud user’s behalf. Even when intercepts some valid

 sent by other user, is still required to send the corresponding

along with this in order to convince CSS, which also exceeds ’s

capability. Thus, we can say that our newly added authorisation process is secure

against any malicious TPA defined above. □

From this theorem, we can see that the security of a public auditing scheme is

strengthened by adding the authorisation process. In fact, the scheme is now resilient

against malicious or pretended auditing requests, as well as potential DDOS attacks

launched by malicious auditors.

For even higher security, the client may mix in a nonce to the authorisation

message to make every auditing message distinct, so that no one can utilise a

previous authorisation message. However, this setting may not be appropriate for

many scenarios, as the client must stay online when each auditing happens.

88

Verifiable Data Updating:

In the verifiable updating process, the main adversary is the untrustworthy

CSS who did not carry out the data update successfully, but still manages to return a

satisfactory response to the client thereafter. We now illustrate the security of this

phase of our scheme in the following theorem:

Theorem 3: In the verifiable update process in both our basic scheme and the

modification, CSS cannot provide the client with the satisfactory result, i.e.,

cannot match the computed by the client with , if CSS did not

update the data as requested.

Proof: 1) In our scheme, the block indices are stored locally and ‘findBlock()’

are executed also locally by the client. Therefore, there is no added risk in the phase

of finding the right file block.

2) In our basic scheme, according to Assumption 1, the returned is the

correct data block and will be the correct AAI metadata associated to .

Therefore , computed at client-side with and , will be the correct new

block stored at CSS after this update. Note that contains only unaffected WMHT

nodes, which stays unchanged during the update. Therefore, During the updating of

, any intentional or unintentional mistake made by CSS will cause be

different from , thereby leading to a failure of client-side authentication.

3) In our modified scheme, CSS will not cheat the client on the query response

 according to Assumption 1. Therefore, the new block will also be the

correct block after the update. In this regard, just as in our basic scheme, any

mistake made in updating the data will result in . This concludes our

proof for the theorem. □

Note that in the verifiable update process, data retrieval is a part of the verifiable

update process. According to Assumption 1, CSS will respond to this query with the

89

correct . If not with Assumption 1, it is recommended to independently retrieve

 before the update so that CSS cannot cheat the client intentionally, as it

cannot distinguish whether the following update is based on this retrieval.

If CSS can be trusted even more, the client may let CSS compute

(where are the sectors that did not change) and send it back to the client, then

the client will be able to compute using it along with and . This

will keep the communication cost of this phase on a constantly low level. However,

as the CSS is only considered semi-trustworthy and it is difficult for the client to

verify without , this assumption is unfortunately too strong for the

majority of scenarios.

5.5.2 Efficiency Analysis

We analyse the efficiency of our scheme from computation, storage and

communication perspectives. The efficiency of each phase is analysed separately as

follows.

Setup:

Compared to previous schemes, the client will have to keep some additional

metadata of , i.e., the block indices and weight of each node in the WMHT, to

decompose a fine-grained update request to several verifiable block-level operations

for CSS to perform one by one with . This data will be kept in

the form of a binary tree, structured identically as the WMHT stored along with the

original dataset on CSS. CSS has the capability of taking over this task to analyse

fine-grained update requests for the client without requiring additional storage, but it

is hard for the client to verify whether CSS did it incorrectly either intentionally or

by mistake. The data to store one client will not take much storage anyway. In

implementation, in consideration of the proof size, cannot be too large. For

90

example, let the dataset size be 1GB and , then there are 500,000 blocks

in total. A 2-byte unsigned integer will be sufficient in practice to store the weight

for each leaf nodes, and a 4-byte integer is sufficient to store the weight of non-leaf

nodes. In addition, for a typical binary tree implementation, 2 pointers with 4 bytes

each are also stored on non-leaf nodes. Therefore, even for a full binary tree, only

around 0.7% data is stored at the client side for each 1GB of cloud data, which is

only 7MB. Considering the computing capabilities of the latest client machines such

as PCs, laptops, or even smart phones, this is a small requirement. Note that the

client in the dynamic PDP model should have some computing capability anyway,

because it should be able to play its role in verifying the update operations and

computing HLAs. The amount of data stored on CSS will also increase because the

weight of each node is needed to be stored along with every node. However, this

increase can be considered negligible compared to the data itself, especially with the

storage advantage of our scheme during updates.

TPA Authorization:

In the authorisation process, TPA is the one who needs to be authorised by the

client. 3 main steps are included:

1) The client needs to compute and send to TPA. The computational

overhead is trivial, because is only computed once, no matter how large

the actual data storage is.

2) TPA needs to send along with its ID: , which takes no

computation.

3) CSS needs to verify . The total number of verifications only

depends on the number of users who are requiring the auditing service at a time, not

the size of the total data storage. In addition, the overheads of several verifications

can be negligible for the powerful hardware of CSS. Therefore, the total overhead

for this verification on CSS is also negligible.

91

From the analysis above, it can be observed that our newly added authorisation

process can indeed be considered efficient and practical.

Challenge and Verification:

In existing schemes, a global variable is applied on all file blocks. The

proof size therefore stays constant. As our scheme supports variable-sized blocks,

the proof size may fluctuate, because the size of (where)

depends on which further depends on . If managed correctly, this

difference will not affect the total communication. First, we can restrict the size of

file blocks to be chosen for auditing. When updates are conducted frequently where

block sizes vary from time to time, this strategy will not affect the overall

randomness. Second, we will show in Section 6 that the size of is a far

more influential factor in the total size of the proof. In this regard, the

communication overheads of the old and new auditing schemes can be considered

the same as in this phase.

Dynamic Data Update:

There are additional overheads at the client-side in splitting a fine-grained

update request to block-level operations. However, as discussed before, these can be

computed very efficiently using findBlock() (see Fig. 5-4) with complexity

along with the split method in Lemma 1.

Both our schemes have advantages over small updates, which we

demonstrated quantitatively in Section 6. In addition to less storage and

communications, our WMHT structure will also be more balanced compared to the

tree in [6] because small insertions will invoke less block insertions. A more

balanced tree structure means less fluctuation and more predictability in the

overheads overall.

Our modified scheme introduced in Section 4.5 will always invoke smaller

communication overheads in operations, as it only requires retrieval of a part

92

of the block instead of a whole one. We will test its actual advantage in Chapter 7.

Specifically, a detailed quantitative analysis with experimental results for the

proposed FU-DPA scheme are provided in Section 7.4.

93

Chapter 6

MuR-DPA: Secure Public Auditing for

Dynamic Multi-replica Big Data Storage

on Cloud

This chapter discusses our research presented in (Liu et al., 2014c) where a

novel public auditing scheme named MuR-DPA is presented. Theoretical analysis and

experimental results show that the proposed MuR-DPA scheme will not only incur

less communication overheads for both the update verification and integrity

verification of cloud datasets with multiple replicas, but will also provide enhanced

security against dishonest cloud service providers. This chapter is organised as

follows. Section 6.1 provides an introduction and states the main research

contributions of this work. Section 6.2 introduces preliminaries, mainly the novel

authenticated data structure RMR-MHT as it is essential in the MuR-DPA scheme.

Section 6.3 provides a detailed description for verification of all replicas at once in

the proposed MuR-DPA scheme. Section 6.4 presents the process for verifiable

updates in the MuR-DPA scheme. Section 6.5 provides related extensions and

discussions. Section 6.6 provides a security and efficiency analysis.

6.1 Introduction

In order to improve data reliability and availability, storing multiple replicas

along with original datasets is a common strategy for cloud service providers. Public

94

data auditing schemes allow users to verify their outsourced data storage without

having to retrieve the whole dataset. Existing public auditing schemes can already

support verification over data which can be subjected to dynamic updates. Such an

auditing approach is supported by verifying the auxiliary authentication information

(AAI) managed by authenticated data structures (ADS) such as Merkle hash trees

(Wang et al., 2011b, Liu et al., 2014b). However, there still exists a number of

research gaps in the above mentioned approach. Addressing these gaps is the aim of

this thesis. First, existing research lacks investigation of efficient public auditing for

dynamic datasets that maintain multiple replicas. Storing multiple replicas is a

common strategy for reliability and availability of datasets stored over remote cloud

storage. For highly dynamic data, each update will lead to updates of every replica.

Given the fact that update verifications in current auditing schemes are of O(logn)

communication complexity, verifying these replicas one by one will be very costly in

terms of communication. Second, current schemes for dynamic public auditing are

susceptible to attacks from dishonest servers because of a lack of block index

authentication. Although there is an integrity verification scheme for a dataset with

replicas (Curtmola et al., 2008) and schemes with index verification such as (Erway et

al., 2009), there will be security and/or efficiency problems if these schemes are

extended directly to support public verifiability.

In this chapter, we present a multi-replica dynamic public auditing (MuR-DPA)

scheme that can bridge the gaps mentioned above through a newly designed

authenticated data structure. Research contributions of this work can be summarised

as follows:

1. To address the efficiency problem in verifiable updates for cloud storage with

multiple replicas, we propose a multi-replica public auditing (MuR-DPA) scheme.

The new scheme is based on a novel rank-based multi-replica Merkle hash tree

(RMR-MHT). To support full dynamic data updates and authentication of block

indices, we include rank and level values in computation of MHT nodes. In contrast to

existing schemes, level values of nodes in RMR-MHT are assigned in a top-down

95

order, and all replica blocks for each data block are organised into the same replica

sub-tree. Experimental results show that our scheme can drastically reduce

communication overheads for update verification of cloud data storage with multiple

replicas.

2. As the previous usage of the Merkle hash tree (MHT) in public auditing of

dynamic data did not involve authentication of node indices, such schemes are

susceptible to cheating behaviours from a dishonest server. In this work, with the

support of RMR-MHT, we propose the first MHT-based dynamic public auditing

scheme with authentication of index information that is secure against dishonest

servers. The main strategy is top-down levelling and verification of indices from both

sides.

3. With RMR-MHT, we have also designed a novel public auditing protocol for

verification of all replicas at once. Experimental results show that our scheme not only

provides efficient verification for multiple replicas but also incurs less extra storage

overhead at the server side.

6.2 Preliminaries

6.2.1 Bilinear Pairing

Like the FU-DPA scheme, bilinear pairing is the foundation for the MuR-DPA

scheme and it has already been introduced in Chapter 3. Therefore the details are

omitted here to avoid duplication. Please refer to Section 3.1.3 for a detailed

introduction of bilinear pairing.

6.2.2 Rank-based Multi-Replica Merkle Hash Tree

A Rank-based multi-replica Merkle hash tree (RMR-MHT) is a novel

authenticated data structure designed for efficient verification of data updates, as well

96

as authentication for block indices. Each RMR-MHT is constructed based not only on

a logically segmented file, but also on all of its replicas, as well as a pre-defined

cryptographic hash function H. An example of RMR-MHT, constructed based on a

file with 4 blocks and 3 replicas, is shown in Fig. 6-1. Similar to an RASL, the rank

value of a node is defined as the maximum number of nodes in the leaf

(bottom) level that can be reached from . The differences from RMR-MHT and

MHT are as follows:

1. Value stored in the leaf nodes are hash values of stored replica blocks. In

RMR-MHT, leaf nodes represent replica blocks , namely the jth replica of the ith

file block.

2. Value stored in a node v from a none-leaf level is computed from the hash

values of its child nodes and two other indices and . is the level of

node and is the rank of , i.e. the maximum number of leaf nodes that can

be reached from v. Different to RASL in (Erway et al., 2009), the levels are defined

in an top-down order, i.e., the level of root node is defined as 0, and levels of its

child nodes are defined as 1, etc.. The values stored in leaf nodes

are ; the value in each none-leaf node is computed

as where and denotes the values stored in its

left child node and right child node, respectively. In Fig. 6-1, under our definition,

 (and for all leaf nodes) is 4, . For example, the value is

computed as:

and , , etc..

3. The AAI is different from the MHT in (Wang et al., 2011b) as follows.

They now contain not only hash values of the intermediate nodes, but tuples in the

format of , one tuple for each node. h is the hash value stored on this node,

97

l is the level of this node, q is the maximum number of leaf nodes reachable from

this node, and d is a Boolean value that indicates this node is to the right (0) or left

(1) of the node on the verification path, i.e. the nodes from leaf node to the root .

For example, in Fig. 6-1, for replica block is defined as

, and its verification path is .

4. All replicas of one file block are organised into a same sub-tree which we

call replica sub-tree (RST), see Fig. 6-1. Note that each RST has the same structure.

Each block has exactly c replicas because there are c replica files for the original

data file. The total number of leaf nodes for every RST is the total replica number c.

Different from (Curtmola et al., 2008), replica blocks are treated independently and

each replica block has its own authenticator. The root of each RST, which we denote

as , will play a vital role in the newly proposed multi-replica verification and

update verification in the following sections. We use to denote the AAI for ,

i.e., one can verify the content and index of with and , similar to as

discussed earlier but this has less hash values. Although roots of RSTs are non-leaf

nodes, they can still be authenticated in the same way as leaf nodes. In addition, we

Figure 6-1 An example of RMR-MHT

98

define as the set of tuples for all intermediate nodes in each RST ,

where are defined the same as above, and t is the sequence number for the

nodes, ordered from top to bottom and left to right in . For example, in Fig. 6-1,

 contains only one node where . As the number of replicas

is only a small number (less than 10), for simplicity of description, we assume the

structure of is stored at the client (and TPA) side, which applies to every RST

and takes only a negligible amount of storage. In this case, the client can compute ,

therefore , based on and without requesting from the server.

For less client-side storage, the client may also request from the server and

verify them via and .

Based on this new ADS, the MuR-DPA scheme will now be described in

detail.

6.3 Verification of All Replicas at Once

Setup:

The user and cloud server will first establish common parameters, including a

bilinear map , and a cryptographic hash function H.

: The client generates a secret value and a generator

of , then computes where are the public key and is the secret

key. Another secret signing key pair is chosen with respect to a

designated provably secure signature scheme whose signing algorithm is denoted as

. This algorithm outputs as the secret key and as the

public key .

:

1) For a dataset to be stored on cloud server, the client will first make c

replicas based on the original files. In order to enable the verifiability of these

99

replicas, they should be different from one another; otherwise, the server may cheat

the client by responding to challenges with the correct proofs but actually storing

only one replica. From an original file , we denote its jth

replica file as . The replica blocks are

transformed from , and the transformation is reversible, i.e., the client can

recover the original file through retrieval and the reversed transformation of any

replica . Therefore, the client does not have to upload ; she can recover with

any intact replica if needed. For example, a method described in (Curtmola et al.,

2008) is to choose pseudo-random functions to compute random values

 then output as ; the replicas may also be

computed with other methods such as public-key techniques.

2) The client constructs an RMR-MHT based on , computes the root value

R, and computes its signature with .

3) The client will compute an authenticator for every

replica block .

Finally, this algorithm outputs and then uploads them all to

the cloud server.

Challenge and Verification:

Within our top-down levelled setting, the verifier will need to verify

the auditing equation as it is not stored in the RMR-MHT. Here we discuss how to

conduct verification on all replica blocks for a given set of indices in one go.

: The third-party auditor TPA generates a

challenge message with the given accuracy Acc, and sends an authorisation. For

example, just as before, for a 99% accuracy, the verifier needs to verify 460 blocks out

of a 1GB file. The challenge message is where is for

100

authorisation, I is the random set of indices chosen for verification, and are

random numbers for integration of .

: The cloud server will first verify , same

as in (Liu et al., 2014b). Then, it will compute and

for every replica, and send back to TPA.

: Since the verifier knows the structure of RSTs, it will compute

R with and verify for each ith chosen block. The verification

process is similar as in section 4.2.3, with iterative triples and verification of

 of . Also, it needs to verify the authenticity of by verifying if

, where can be inferred from which

equals level of the first node in . For example, in Fig. 6-1, . When we know

that from (is the first node in), we can easily derive

. If these verifications are passed, TPA will trust

the retrieved are genuine, then it can verify c replicas one by one by verifying

the following c equations:

If these equations hold then the verification will output 'ACCEPT', otherwise it

will output 'REJECT'. The process is demonstrated in Fig. 6-2.

6.4 Efficient Verifiable Updates on Multi-replica Cloud

Data

In this chapter, the types of updates considered are whole-block insertion I,

deletion D and modification M. These are the minimum requirements for support of

101

full data dynamics (Erway et al., 2009). In multi-replica scenario, when a block

needs to be updated, all its corresponding replica blocks are also needed to be

updated in the same way to maintain consistency. For insertion and modification, the

client needs to upload a new data block. As the only one that has the capability to

compute replica blocks based on the original file block , the client will

compute the new replica blocks then send them to the server along with the

update type I, D or M.

: The server will parse into

 and perform the update to file blocks, indices and ADS according to

the update request. Specifically, the server will need to update the value for nodes in

insertions and deletions. Note that values in none-leaf nodes in stays the same

after the update process.

For insertions and deletions, the situations are more complex than in the past

Figure 6-2 Public auditing of all replicas at once

102

schemes (Erway et al., 2009, Wang et al., 2011b, Liu et al., 2014b). In a traditional

MHT, level or rank information is not contained in the nodes; in an RASL, all leaf

nodes stay constantly on level 0. Therefore, there is no need to change the hash value

in other nodes. In this top-down levelled MHT however, the levels of all leaf nodes in

the adjacent RST have also changed by +1 with insertion/-1 with deletion, as the level

value is a part in computation of a node value. For example, in Fig. 6-3 (a), with the

insertion of , the levels of have increased by 1, which will cause changes

to all ; while in Fig. 6-3 (b), with the deletion of , levels of the old

 (i.e., old) have decreased by 1. To output the correct , these updates

are needed to be performed in the hash tree as well. For insertions and modifications,

The server will then output and return it to the

client. For deletions, the server will need to additionally transfer .

: In order to verify this update, the client first

needs to parse . Let the tuples in be for each node

in an decreasing order of levels, i.e., . A little different

from the definition, is the max number of RST roots, instead of leaf nodes, that

can be reached from . Since the structure of RST is known to the client, she will

be able to compute and , the old and new roots of , with (got from

the server) and alone respectively.

1. The client will first iteratively compute tuples for nodes on

the verification path with nodes in as follows, :

if : , , and

;

or:

if : , , and

103

where , , , .

After is obtained, the client will verify with , and

verify if and hold at the same time. If the three values pass

this authentication, the authenticity of (also) and its index can be confirmed.

(a)

(b)

 Figure 6-3 Update examples to RMR-MHT

Insertion before the 3rd block and deletion of the 3rd block for the RMR-MHT in Fig. 6-1

104

2. For deletion, the client needs to verify . Note that represents

the same block and replicas whose root of RST was stored as the first tuple in , e.g.,

in Fig. 6-3 (b), and represented in the same set of data; the only

difference is that . Therefore, the client has enough information

to verify with , and R. The verification processes are similar to

those above. As for insertion, has already been verified along with ; the

client can safely compute the new without additional verifications, see Fig.

6-3 (a).

3. With RST structure, the client will then compute with , then

compute with and and compare with .

If all 3 verifications are passed, it means that the server has performed the

update to all replicas honestly. The client will update the total block number n, then

compute (the authenticators for) and store them on the server.

The protocol for verification of updates is demonstrated in Fig. 6-4.

6.5 Discussions and Extensions

Since each replica block has its own authenticator , our scheme also

supports single replica verification. The process will be similar to the verification in

(Wang et al., 2011b) with additional verification of and the index of .

Except for the rank verifications of are now and

. other details will be similar as the verifications described

above.

In (Shacham and Waters, 2008), the authors proposed a value for trade-off of

storage and communication overheads. In this strategy, every file block is

segmented into s segments (length of each segment equals the length of a block

without s, typically 20bytes), and the authenticators are computed as

105

 . In this case, the proof size has increased by because there

will be multiple , instead of one, to be included in the proof. However,

the storage overhead has decreased to 1/s as there is only one authenticator stored

along with s sectors. As our scheme is also based on the BLS signature, with the same

block segmentation strategy, the trade-off can easily be applied to our scheme to

support dynamic data with multiple replicas. We will show our experimental results

under different s values in Section 6.

Figure 6-4 Dynamic data update and verification

106

Based on the segmented blocks, we have investigated fine-grained updates for

variable-sized file blocks with different segmentations and WMHT in Chapter 5. If

we extend RMR-MHT to let the nodes store the 'rank' information computed from

different sizes of blocks, MuR-MHT can also support fine-grained updates and

enhance the FU-DPA scheme with efficient support for update of multiple replicas.

Wang et, al. have proposed a random masking technology for privacy protection

against the third-party auditor (Wang et al., 2010). In their scheme, the server will

mask the proof (integrated blocks) with a random r and generate a new

 so that TPA will not learn the users’ data from multiple challenging of the same set

of blocks. In the multi-replica setting, the proof is computed based on replica

blocks instead of the message blocks . Therefore, in most scenarios it is not

necessary to apply another masking from the server. Even TPA can infer from

multiple challenges, it will not get any information of the user data without

knowing the transformation method, which is known only by the client, from to

. If there is any need to protect replica blocks against the TPA, our scheme can be

extended with the same server-side padding strategy.

6.6 Security and Efficiency Analysis

As before, the security of our scheme is based on:

1. Collision-resistance of the hash function,

2. Difficulty of the gap Diffie-Hellman problem, and

3. Unforgeability of the chosen signature scheme.

6.6.1 Verifiable Multi-Replica Updates

Lemma 1. With , RST structure, total number of blocks n and a given block

index , if a returned block-AAI combination for an RST root passed

107

the authentication, then either it is computed with the actual replica blocks, or the

server has found a way to find collisions in the hash function H.

Proof. The client will first infer , the level of , from . Let be the

number of tuples in , then . If a dishonest server does not have the ability

to find arbitrary collisions of hash functions, it must select an existing node N and its

corresponding AAI in the RMR-MHT in order to let the client compute R,

thereby verify , through iterative hashing. When N is not the queried node, i.e.,

when the server is acting dishonestly, the situation can be covered by the following 3

cases:

1. If N is not located on the verification path of , then either the server

provides the wrong level or rank values, which will lead to failure in computing the

right R; or the verification of both values of and will fail.

2. When the queried node is a left child node, choosing any other hash value and

the corresponding AAI from the verification path will let the verification process

output the correct (the number of file blocks, i.e., leaf nodes, left of this node), but

not the correct (the number of file blocks, i.e., leaf nodes, right of this node).

Therefore, the verification of will fail.

3. When the queried node is a right child node, choosing any hash value and the

corresponding AAI from the verification path will let the verification process output

the correct , but not the correct . The reason is similar to the second case.

Therefore, except for finding hash collisions, the server must return the exact

 in order to let all three values pass the verification. □

With this Lemma, we can now describe the soundness and security of the update

verification process in MuR-DPA through the following theorems.

Theorem 1. If there is any fault to the new data content or index in the server

execution of an update request , the client verification will fail.

108

Proof. According to Lemma 1, the RST root and its AAI returned by the

server are the correct representatives for the RST where has resided, otherwise

the verification of R will fail.

1. For insertions and modifications, if was updated incorrectly, then ,

therefore R', will be computed incorrectly due to the collision resistance of hash

function H. According to the property of MHT, stays the same throughout the

update. As the client has the right and , the values and R' at client side will

be correct. Therefore, the verification will fail.

2. For deletions, the returned will be incorrect once there is any fault in

this update. As is included in the , the client will identify the

abnormality if is incorrect.

Therefore, through the verification, the client will be able to detect any fault

caused by accidental or dishonest behaviours in the update. □

This concludes the proof that the MuR-DPA scheme can support public auditing

of dynamic data without being cheated by a dishonest server. As for efficiency, the

AAI Ω will take the majority of data transfer because it is composed of log(n) hash

values and rank/level information for each update. For updating of multiple replicas

(which is a must for cloud storage with multiple replicas), only one, instead of c AAIs,

is needed to be transferred for verification of c replica blocks. Therefore, the more

replicas there are, the more efficiency advantages our scheme will have.

6.6.2 All-at-once Multi-Replica Verification

Just as in the verification of updates, there is need for verification of .

Theorem 3. In the MuR-DPA scheme, if integrity of any replica of the i-th

block was breached, the server cannot build a response

109

 that can successfully pass the verification,

unless any of the 3 assumptions at the beginning of this section fails to hold.

Proof. As the structure of RST is known by the verifier, the verifier will be able

to re-build the RST under , and thereby compute based on . With

Lemma 1, the authenticity of can be verified via , i and n. Therefore, if

 are not all correct, then will be incorrect; with , the

verification for R will fail. Because was computed with and

, if all these 3 values are correct, then the returned must be correct,

otherwise the client will fail to verify the equation

. Therefore, our design can make sure the

returned are indeed the hash values of the designated replicas for the ith

block. On the other hand, the soundness and security of the verification

equation itself has already been proven in

(Shacham and Waters, 2008) and (Wang et al., 2011b). Therefore, any integrity breach

will be identified with MuR-DPA. □

The proof above is based on the assumption that the verifier knows the structure

of RST. In fact, even when the RST structure was unknown to the verifier, the

verification for all replicas may still be resilient to dishonest servers as exchanging the

orders of replicas under an RST does not affect the verification. We leave this problem

for future work.

Our scheme is also based on the Merkle hash tree. Therefore, just as in past

schemes, the proof size is also dependent of the data size and number of data blocks.

As a drawback, RMR-MHT introduced more levels (depth of RSTs) than each MHT

in SiR-DPA to store replica blocks. Therefore, the verification cost for one replica in

MuR-DPA will be slightly larger than in SiR-DPA. However, as the replica number is

small (usually less than 10), the depth of RSTs is constant (usually only less than 4

levels). Therefore, there is no significant additional overhead for the client to verify a

110

single replica. Details will be discussed in the Chapter 7. Specifically, a detailed

quantitative analysis with experimental results for the proposed MuR-DPA scheme

are provided in Section 7.5.

111

Chapter 7

Experimental Results and Evaluations

In this chapter, experimental results and evaluations of our schemes presented

above are provided. It can be inferred from these results and analyses that our

schemes are significantly more efficient than existing schemes. The chapter is

organised as follows. Section 7.1 provides a qualitative comparison of our public

auditing schemes against existing representative schemes. Section 7.2 introduces our

experimental environment. Section 7.3 provides results on key exchange schemes to

demonstrate the importance of research on key exchange in cloud and public data

auditing, as well as the efficiency improvement of our KE schemes CCBKE and

HKE-BC which were introduced in Chapter 4. Section 7.4 presents experimental

results of our FU-DPA scheme which was introduced in Chapter 5. Section 7.5

presents experimental results of our MuR-DPA scheme which was introduced in

Chapter 6.

7.1 Qualitative Comparison of Public Auditing Schemes

We first provide a brief comparison between our schemes and existing schemes

regarding certain properties in public auditing and verification of outsourced data.

These properties include not only existing ones such as blockless and stateless

verification, public verifiability etc., but also new properties introduced in this thesis

such as authorised auditing, fine-grained updates and multi-replica public auditing.

Please refer to Table 7-1 and Table 7-2 for details, where the improvements of our

new schemes are demonstrated.

7.2 Experimental Environment

112

We conducted all our experiments on U-Cloud -- a cloud computing

environment located in the University of Technology, Sydney (UTS). The computing

facilities of this system are located in several labs in the Faculty of Engineering and IT,

UTS. On top of hardware and Linux OS, We installed KVM Hypervisor which

virtualises the infrastructure and allows it to provide unified computing and storage

resources. Upon virtualised data centers, Hadoop is installed to facilitate the

MapReduce programming model and distributed file system. Moreover, we installed

the OpenStack open source cloud platform which is responsible for global

management, resource scheduling, task distribution and interaction with users (For

experiments with CCBKE, the platform was Eucalyptus). The structure of U-Cloud

is demonstrated in Fig. 7-1.

 POR
(Juel
s and
B. S.
Kalis
ki,
2007)

PDP
(Ate
niese
et al.,
2007)

Scalable
PDP
(Ateniese
et al.,
2008)

Compact
POR
(Shacham
and
Waters,
2008)

MR-
PDP
(Curtmol
a et al.,
2008)

Blockless Verification No Yes Yes Yes Yes

Stateless Verification No Yes Yes Yes Yes

Infinite Verifications No Yes No Yes Yes

Public Verifiability/Auditability No Yes No Yes No

Coarse-grained Verifiable Data
Updating

No No Partly No No

Fine-grained Verifiable Data
Updating

No No No No No

Variable-sized Data Blocks No Yes Yes No Yes

Authorised Auditing No No No No No

Authentication of Block Indices
(for schemes with ADS)

N/A N/A N/A N/A N/A

One Interaction for Updating No No No No No

113

7.3 Experimental Results for Key Exchange Schemes

7.3.1 Comparison of Key Exchange schemes

In this section, we will compare the time consumption of the IKE key

exchange scheme to the encryption time and public auditing time (specifically, proof

generation time) through a series of experimental results. Through this comparison,

the necessity of research on efficient key exchange schemes is demonstrated.

 DPDP
(Erway
et al.,
2009)

SR-DPA
(Wang et
al.,
2011b)

FU-DPA
(Liu et al.,
2014b), Ch.
5

MuR-DPA
(Liu et al.,
2014c), Ch.
6

Blockless Verification Yes Yes Yes Yes

Stateless Verification Yes Yes Yes Yes

Infinite Verifications Yes Yes Yes Yes

Public Verifiability/Auditability No Yes Yes Yes

Coarse-grained Verifiable Data
Updating

Yes Yes Yes Yes

Fine-grained Verifiable Data
Updating

No No Yes Capable

Variable-sized Data Blocks Yes No Yes Yes

Authorised Auditing No No Yes Yes

Authentication of Block Indices
(for schemes with ADS)

Yes No No Yes

One Interaction for Updating All
Replicas

No No No Yes

114

Key exchange vs. encryption

Key exchange schemes are accompanied by symmetric encryptions. We first

show that key exchange schemes take a large percentage of run time when running

under cloud computing, which indicates the significance of research on efficient

authenticated key exchange schemes. When applying hybrid encryption to traditional

data-intensive applications, key exchange schemes are always being utilised in

combination with symmetric-key encryption to ensure data security. In these

scenarios, time consumption of key exchange schemes can be neglected compared to

the heavy time consumption on encryption. However, the situation is different in

cloud computing, and we have demonstrated the difference. A cloud computing

infrastructure often employs thousands of server instances. For time-critical

data-intensive applications such as scientific applications, datasets in gigabytes are

split into blocks in megabytes and then distributed and executed on server instances

through MapReduce. We use IKE time consumption data from our experiment to

Figure 7-1 U-Cloud environment

115

represent the efficiency of the key exchange scheme. For symmetric-key encryption

algorithms, we include two algorithms used for dataset encryption: the most

widely-recognized block cipher, AES, in Galois Counter Mode (GCM) with 64K

tables, and Salsa20/12, a stream cipher which is a more popular kind in encrypting

large datasets because of its high efficiency. Both of the two algorithms are proven to

be secure against various kinds of cryptanalysis. For the efficiency of encryption

algorithms, we refer to the performance result from Crypto++ benchmarks which

indicates the speed of AES/GCM with 64K tables is 108MB/s, and the speed of

Salsa20/12 is 643MB/s for data encryption. Experiments are conducted on several

datasets taken from astrophysics research; and results are listed in Tables 7-3 and 7-4.

From the results in the tables we can see that with increased dataset size and a

number of involved server instances, the time consumption of key negotiation

increases more rapidly than that of data encryption itself. We can also infer from the

results that, in a hybrid cloud computing environment, key exchange operations in a

hybrid security scheme do indeed take a large percent of time consumption4. This

means that the cost of key exchange will indeed take a considerable percentage in

terms of security-aware large-scale cloud computing applications. In other words, the

overall performance of such applications will be significantly improved if a key

exchange scheme with better efficiency is used.

Key exchange vs. public auditing

For public auditing schemes, as indicated in Chapter 3, distributed AKE

schemes must be applied before proof computation if data is encrypted for security.

For evaluation, we take the FU-DPA scheme introduced in Chapter 5 as an example.

To ensure 99% assurance, 460 blocks are needed to be challenged. When all blocks

are stored on separate instances, KE operations will take 7,187ms when the IKE

4 This percentage will be even higher in real-world scenario since KE efficiency depends heavily on scheduling
algorithm and network status while encryption time stays relatively constant.

116

scheme is applied, whereas proof computation at CLC afterwards takes only 520ms.

Therefore, it can be inferred from these experiments that an efficient KE scheme is

also of great importance to the efficiency of a security-aware public auditing scheme,

as long as data encryption is needed for data transfer inside the cloud.

7.3.2 Efficiency improvements of CCBKE and HKE-BC

We implemented HKE-BC, CCBKE and IKE schemes using C++ with

Dataset Size (GB) 2 8 12 15 32

Server Instances Involved 100 500 1000 1500 4000

Data Block Size (MB) 20 16 12 10 8

AES/GCM Encryption Time (s) 18.52 74.07 111.11 138.89 296.31

IKE Key Exchange Time (s) 4.04 20.48 41.77 61.92 163.10

Key Exchange Take Percentage of (%) 17.91 21.66 27.32 30.84 35.50

Table 7-3 Time consumption comparisons of IKE and AES encryption on
CLC.

Dataset Size (GB) 2 8 12 15 32

Server Instances Involved 100 500 1000 1500 4000

Data Block Size (MB) 20 16 12 10 8

Salsa20/12 Encryption Time (s) 3.11 12.44 18.66 23.33 49.77

IKE Key Exchange Time (s) 4.04 20.48 41.77 61.92 163.10

Key Exchange Take Percentage of (%) 56.50 62.21 69.12 72.63 76.62

Table 7-4 Time consumption comparisons of IKE and Salsa encryption on
CLC.

117

MIRACL cryptography library, and tested them on our U-Cloud environment. On

each cloud instantiation, we repeatedly ran each of the key exchange scheme 20 times

to simulate a large-scale computation task with 20 rounds of CLC-VM interactions,

each encrypted with different keys. The time consumptions of key exchange are

recorded and demonstrated in Figures 7-3 and 7-4.

As the HKE-BC scheme performs differently on different cloud layouts, we

tested our scheme under several differently structured cloud instantiations of U-Cloud.

The layouts of the two experimental cloud scenarios are shown in Figure 7-2.

Experimental results are shown in Figure 7-3 where we demonstrate time

consumption of key exchange operations in the two different cloud scenarios shown

in Figure 7-2 with an increasing number of instances launched. Cloud instantiation A

have 3 control layers and 4 NCs where all control nodes are evenly distributed, while

the instantiation B simulates a hybrid cloud with an uneven structure, a total of 4

control layers and 6 NCs. The numbers of instances launched by each NC are

, consecutively.

We can see from these results that in both cloud scenarios, CCBKE has a

significant efficiency improvement against the widely-adopted IKE scheme. Further,

CBHKE outperforms CCBKE and IKE in terms of time efficiency. Compared to IKE

in U-Cloud, the total average time consumption of KE in CCBKE is decreased to

52.9% and 51.5% in scenarios A and B, respectively. For HKE BC, the total average

time consumption in KE is decreased by an average of 85.9% and 89.8% in scenarios

A and B, respectively. This efficiency advantage of HKE-BC when compared to

CCBKE in the two scenarios is 70.96% (max: 75.9%; min: 58.9%) and 77.85% (max:

82.4%; min: 61.3%), respectively. This is a significant improvement in efficiency

without compromising the level of security. The results match our efficiency analysis

in section 4.

More results are shown in Figure 7-4. We tested the key exchange schemes

under cloud environments with different numbers of control layers: 1, 2, 3 and 4, with

118

a fixed total number of instances (100) launched. The number of sub-nodes for each

control level (except for end node controller) is chosen as n = 2, because for a larger n

value the number of servers needed grows at a speed of a geometrical series, which is

far from practical scenario. All instances are evenly distributed on every node

controller. U-Cloud instantiation A (see Figure 7-2) is an example of such cloud

layouts where there are 3 control levels and each NC launches 25 instances. We can

see that when compared to its predecessors IKE and CCBKE, the HKE-BC scheme

can drastically reduce time consumption in key exchange for most cloud layouts. The

Server

Computer
User

...
Domain Domain

...
Domain Domain

...
Domain Domain

...
Domain Domain

Cloud Controller (CLC)

Virtualised
Instances

Cloud User

Intermediate
Control nodes

N1,1

N2,1 N2,2

N3,1 N3,2 N3,3 N3,4

Cloud instantiation A: l = 3

Server

Computer
User

...
Domain Domain

...
Domain Domain

...
Domain Domain

...
Domain Domain

Cloud Controller (CLC)

Cloud User

...
Domain Domain

...
Domain DomainVirtualised Instances

Server

Intermediate
Control nodes

N1,1

N2,1
N2,2 N2,3

N3,1 N3,2 N3,3 N3,4

N3,5

N4,1 N4,2

Cloud instantiation B: l = 4

Figure 7-2 Structures of two cloud instantiations of U-Cloud.

119

more layers the cloud environment has, the more efficient the new scheme is. The

time consumption can even be decreased down to only 9.2% of the time when l = 5.

However, note that an increase in the layer number will also cause an increase in the

total network throughput, along with difficulty in terms of scheduling and total

robustness. This is why practical clouds do not usually employ too many control

layers, and also why we did not test a cloud with more control layers. Nevertheless,

Results in scenario A

Results in scenario B

Figure 7-3 Time efficiency of HKE-BC, CCBKE and IKE in the two cloud
instantiations.

120

results show that the new scheme always has a vast efficiency advantage over the

existing schemes in most hierarchical cloud environments.

7.4 Experimental Results for FU-DPA

We implemented both our scheme and its modification on U-Cloud, using a

virtual machine with 36 CPU cores, 32GB RAM and 1TB storage in total. As in

previous work (Wang et al., 2011b, Erway et al., 2009), we also used a 1GB

randomly generated dataset for testing. The scheme is implemented under 80-bit

security, i.e., bits. As the number of sectors (per block) is one of

the most influential metrics to overall performance, we will use it as our primary

metric. For saving of the first wave of allocated storage, we used in the

initial data splitting and uploading. Note that decides the total number of

blocks for an arbitrary . However, according to (Ateniese et al., 2007), the

number of authenticated blocks is a constant with respect to a certain percentage of

file tampered and a certain success rate of detection, therefore we will not take the

number of audited blocks as our primary variable of measurement. All experimental

results are an average of 20 runs.

Figure 7-4. Efficiency advantage of HKE-BC

Efficiency advantage of HKE-BC with different numbers of control layers (l) where n = 2

121

We first tested how can influence the size of proof , which is missing

in former schemes (Wang et al., 2011b, Wang et al., 2010). From Fig. 7-5, we can

see that generally the proof size decreases when increases, because the

average depth of leaf nodes of decreases when increases to a certain

Figure 7-5 Auditing communication overhead in FU-DPA for
different block size.

Communication overhead invoked by an integrity proof with 80-bit security under different for
verifying a 1GB dataset.

Figure 7-6 FU-DPA: Comparison of storage overhead.

Comparison of the total storage overhead invoked by 10* 140-byte insertions to the i-th block in
FU-DPA, as opposed to the direct extension of SiR-DPA.

122

level, especially when right after the initial uploading of . Note that the storage of

HLA and WMHT at the CSS side will also decrease with the increase of the average

number of blocks. Therefore, a relatively large (but not too large, which we

will discuss along with the third experiment) is recommended in our dynamic

Figure 7-7 FU-DPA: Comparison of storage overhead (continued).

Comparison of the total storage overhead invoked by 10* 280-byte insertions to the i-th block in FU-DPA,
as opposed to the direct extension of SiR-DPA scheme

Figure 7-8 FU-DPA: Reduction of communication overhead.

The percentage in saving of communication overhead in data retrieval in the modified / final FU-DPA,
compared to the first proposal.

123

setting.

Second, we tested the storage overhead for small insertions. Without support

for fine-grained updates, every small insertion will cause creation of a whole new

block and an update of related MHT nodes, which is why our scheme has an

efficiency advantage. We compared our scheme against a representative (and also

recent) public auditing scheme (Wang et al., 2011b). For comparison, we extended

the older scheme a bit to let it support the communication-storage trade-off

introduced in (Shacham and Waters, 2008) so that it can support larger file blocks

with multiple (but only a predefined constant number of) sectors each. The updates

chosen for experiments are 10*140 Bytes and 10*280 Bytes, filled with random data.

Results are shown in Fig. 7-6 and Fig. 7-7. For updates of the same total size, the

increased storage on CSS for our scheme stays constant, while in the extended old

scheme (Wang et al., 2011b) (see Section 3.2.2) the storage increases linearly with

the increase in size of the affected block. These results demonstrated that our scheme

with fine-grained data update support can incur significantly lower storage overhead

(down to in our test scenarios) for small insertions when compared to

existing scheme.

Third, we investigated the performance improvement of the modification

introduced in Section 4.5. We used 3 pieces of random data with sizes of 100 bytes,

140 bytes and 180 bytes, respectively, to update several blocks that contain 10 to 50

standard 20-byte sectors each. Data retrieval is a key factor of communication

overheads in the verifiable update phase. For each update, we recorded the total

amount of data retrieval for both our modified scheme and our basic scheme. The

results in comparison are shown in Fig. 7-8. We can see that our modified scheme

always has better efficiency with respect to data-retrieval-invoked communication

overheads, and the advantage is more significant for larger updates. However, for an

update of the same size, the advantage will decrease with the increase of where

a larger number of sectors in the original file are needed to be retrieved. Therefore,

the block size needs to be kept low if less communication in verifiable updates is

124

demanded.

From the experimental results on small updates, we can see that our scheme

can incur significantly lower storage overhead while our modified scheme can

dramatically reduce communication overheads compared to the existing scheme. In

practice, the important parameter should be carefully chosen according to

different data size and different efficiency demands in storage or communications.

For example, for general applications with a similar scale (1GB per dataset and

frequent 140-byte updates), a choice of will allow the scheme to incur

significantly lower overheads in both storage and communications during updates.

7.5 Experimental Results for MuR-DPA

For quantitative evaluations of MuR-DPA introduced in Chapter 6, we provide

experimental results to demonstrate the improved efficiency of MuR-DPA when

deployed on cloud data storage. We compare our new scheme, MuR-DPA, against the

direct extension of the existing scheme in (Wang et al., 2011b) with tags of each

replica indexed in separate MHTs and the MHTs have levels and ranks for index

authentication. We name this scheme SiR-DPA - Dynamic Public Auditing with

Separately-indexed Replicas. We implemented both schemes on U-Cloud, using a

virtual machine with 36 CPU cores, 32GB RAM and 1TB storage in total. The design

of public auditing schemes does not take into account the content of data. Therefore,

as in previous work, we used a 1GB randomly generated dataset for each testing, with

the replicas computed as . BLS parameters are chosen with 80-bit

security, i.e., the length of order of G is 160 bits. All experimental results are an

average of 20 runs.

As in previous studies, the computation time is not the primary concern in our

new scheme, because the challenged blocks are a constant value regardless of the file

size, and the time consumption in proof computation or proof verification only takes

less than 1 second. Therefore, we will mainly focus on measuring the communication

125

and storage costs, especially those incurred in the verification of updates.

We first measured the communication overhead for the verification of updates.

Table 7-5 shows the total communication overhead for update verification of only one

replica, where overheads of SiR-DPA and MuR-DPA are the same. The testing dataset

is 1 GB and we update half of the blocks with 512MB new content in total; with

adjusting parameter s. Communication overhead for update verification in the

protocol in (Erway et al., 2009) and the MHT-based scheme in (Wang et al., 2011b)

will be similar to our SiR-DPA setting, as the communication complexities in MHT

and RASL are both with high probability (whp). Note that in this

experiment, there is only one update for each block for all modifications. Under this

setting, we can see that this overhead is always a heavy burden. Even for a large

, there is still 154MB verification data which is needed to be transferred from

the server for update of the size 512MB. Although the communication overhead will

decrease for a larger block size (because the number of blocks will be smaller), it may

take several update processes to update half of its content, where the communication

overhead will increase beyond the amount in Table 7-5. To make things worse, with

multiple replicas, the SiR-DPA scheme will multiply this communication overhead,

s (number of sectors
per block)

Data Updated (MB) Total Server Response for
Verification (MB)

1 512/1024 19.507

5 512/1024 3,625

10 512/1024 1,743

20 512/1024 837

50 512/1024 321

100 512/1024 154

Table 7-5 Price of dynamism.

Communication Overhead for Verifying Updates of Half Blocks in a 1GB File.

126

which has to be avoided if possible, given the fact that cloud service providers always

keep multiple replicas for storage services.

Second, we tested the communication overhead for updates with different

numbers of replicas and different sizes of blocks. Results are depicted in Figs. 7-9 and

7-10. From Fig. 7-9, we can see that the length of server response for modification and

insertion has been greatly reduced when there are multiple replicas, which means the

load and utilisation server's crucial downlink bandwidth will be comparatively less. It

is clear that MuR-DPA will scale gracefully with increases in number of replicas of

the dataset. We can also safely conclude that overheads for deletions will be similar as

there is only one more hash value to be included in the server response. Therefore,

evaluation for the deletion operation is omitted here. The total communication

overheads for verification of updates to datasets with multiple replicas are also tested.

For block insertion and modification, the new data block needs to be uploaded.

Therefore, for a larger s, (i.e. a larger block size), the total communication cost will

rise. For block deletion, nothing needs to be uploaded since there is no new data block.

Therefore, the total communication overhead for a single deletion stays unchanged

with different s values. Either way, for s = 1 and s = 10, our results show that

communication overheads of verification of updates in MuR-DPA always have

Figure 7-9 MuR-DPA: Length of server response for one verifiable
modification/insertion of one block.

127

significant advantages compared to SiR-DPA.

Third, we evaluate the storage overhead for dynamic public auditability, as well

as communication overheads for auditing multiple replicas simultaneously. Although

the total number of authenticators stayed the same, now there is only one MHT

(although with more levels) as opposed to c MHTs in SiR-DPA. We can infer from Fig.

7-11 that the extra storage cost is reduced by a significant percentage when there are

(a)

(b)

Figure 7-10 MuR-DPA: Total communication for one verifiable update.

Total communication overhead for one verifiable update of one block when (a) s = 1; (b) s = 10

128

multiple replicas stored in cloud. Communication overheads for simultaneously

verifying multiple replicas are depicted in Fig 7-12. We can see that the with increases

in the number of replicas that a server stores, the MuR-DPA scheme seems to

outperform SiR-DPA more significantly in terms of communication overheads. We

also note that with the growth of number of replicas, the communication overheads for

verifying all replicas with the MuR-DPA scheme is comparable to verifying a single

replica, while the overhead of SiR-DPA grows at a much faster pace. For example,

when , verifying all 5 replicas with MuR-DPA takes 26.8% more

communication than verifying only 1 replica, while this percentage for SiR-DPA is

398.8%. Therefore, the MuR-DPA scheme is not only useful for verification of

dynamic data, but also seems to scale much better when subjected to multiple replica

updates.

We also tested the communication cost for one replica, under a different s value.

As analysed in section 5, our scheme will constantly incur more communication

overheads because of the extended RSTs. However, as can be seen from Fig. 7-13, the

extra communication overheads are small and can be considered negligible. Even for

an exaggerated case where and , the extra communication for

verification of one replica in MuR-DPA scheme is only 15.3% compared to the

Figure 7-11 MuR-DPA: Extra storage overhead at server side for support
of public auditability and data dynamics

129

SiR-DPA scheme. For a more common choice of 4 replicas and , this

percentage is only 8.1%. Given that the MuR-DPA scheme has much less

communication costs for verification of all replicas at once as well as verification of

updates, it is always an advantageous trade-off.

From these analyses and experimental results, we can see that the MuR-DPA

(a)

(b)

Figure 7-12 MuR-DPA: Total communication overhead for auditing of all
replicas.

Total communication overhead for public auditing of all replicas when (a) s = 1 and (b) s = 10.

130

scheme has a significant advantage in auditing cloud storage with multiple replicas.

The performance of public auditing schemes are not affected by the contents of data.

Therefore, size of file blocks, s value and the number of replicas are main impact

factors for the overall performance. As our experiments are based on these metrics,

we believe the experimental results demonstrated here can accurately present the

advantage our scheme has when deployed in practice.

Figure 7-13 MuR-DPA: Communication for auditing of 1 chosen replica for
a dataset with 1, 4 and 8 total replicas with different s value.

131

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have analysed the research problems of public data auditing in

the cloud and big data, and we proposed a framework to address the security and

efficiency problems in public auditing of dynamic big data in the cloud. Within the

framework, we have developed, tested and published a series of security schemes and

algorithms for secure and efficient public auditing of dynamic big data storage on the

cloud. Specifically, our work focused on the following aspects: cloud internal

authenticated key exchange, authorisation on third-party auditor, fine-grained update

support, index verification, and efficient multi-replica public auditing of dynamic

data. To the best of our knowledge, this thesis is the first sustained work to

systematically analyse and address this research problem. Experimental results and

analyses show that our research presented in this thesis is suitable for auditing

dynamic big data storage on the cloud and they represent significant improvements in

terms of both efficiency and security.

8.2 Future Work

8.2.1 Aspects for Measurements and Improvements

Aspects and examples of future work discussed in this section are briefly

summarised in table 8-1. As can be seen from all the discussions above, the topic of

integrity verification of big data in cloud computing is a flourishing area that is

132

attracting more and more research interest and there is still a lot of research which is

currently being conducted in this area. Cloud and big data are fast-developing topics.

Therefore, even though existing research has already achieved some amazing goals,

we are confident that integrity verification mechanisms will continue to evolve along

with the development of the cloud and big data applications to meet emerging new

requirements and address new security challenges. For future developments, the

following aspects are particularly interesting to look at.

Efficiency: Due to high efficiency demands in big data processing overall,

efficiency is one of the most important factors in designing new techniques related

to big data and cloud. In integrity verification/data auditing, the main costs can come

from many aspects, including storage, computation and communication, and they

can all affect the total cost-efficiency due to the pay-as-you-go model in cloud

computing. We now analyse these three aspects one by one for a scheme with public

auditability and support of full dynamic verifiable data updates.

a) Communication and storage: These two are the main efficiency concerns of

public auditing schemes. One of the most challenging problems is that due to usage

of ADS, the size of proofs depends logarithmically on the total size of the dataset,

which constitutes the main communication overhead for verification of updates.

Similarly, the authenticators take extra storage overhead at the server side, which

also grows with the growth of the total size of datasets. Although there are works for

Auditing for streaming

data

Data auditing within

distributed data processing

Auditing of shared

data

Pre-processing Data distribution Levels of privileges

Application-specific data

evaluation and selection

Replication strategy Data consolidation

Table 8-1 Future Work.

133

their optimisations, the ideal case is that the proof size and storage overhead remains

constant. To the best of our knowledge, these desirable properties have never been

achieved by any dynamic public auditing scheme.

b) Computation time: it is not the primary concern but it is important. The

computation time for proof generation can be considered negligible in most cases,

but the pre-processing time can sometimes be considerable for incremental datasets.

Security: Security is always a problem between spear and shield; that is,

attack and defense. Although the current formalisations and security model seems

very rigorous and potent, new exploits can always develop, especially with dynamic

data streams and varying user groups. Finding the security holes and fixing them can

be a long-lasting game. The security focus of existing work can be summarised in

terms of different adversaries: dishonest cloud servers (Erway et al., 2009) (Liu et al.,

2014c), malicious TPA (Liu et al., 2014b), other malicious users (Wang et al.,

2013b), and other general-sense attackers (Liu et al., 2013b, Liu et al., 2013c). With

the proposed authentication mechanisms in (Erway et al., 2009) and (Liu et al.,

2014c), exploits from dishonest servers can be effectively detected in data updates.

Based on existing research, a most attractive future research topic will be letting the

TPA get minimal information on client data during auditing. There may also be big

potential in addressing security threats from other malicious users. Multi-tenancy is

one of the cloud's main characteristics, and there is currently not much work

focusing on investigating this area.

Scalability/elasticity: As the cloud is a parallel distributed computing system

in nature, scalability is one of the key factors as well. Programming models for

parallel and distributed systems, such as MapReduce, are attracting attention from a

great number of cloud computing researchers. Some of the latest work in integrity

verification is already considering how to work well with MapReduce for better

parallel processing (Zhu et al., 2012). On the other hand, elasticity is one of a

biggest reasons why big companies are moving their business, especially

service-related businesses, to the cloud (2012). User demands vary all the time, and

134

it would be a waste of money to purchase hardware that can handle the demands at

peak times. The advent of the cloud solved this problem -- cloud allows their clients

to deploy their applications on a highly elastic platform whose capabilities can be

scaled up and down on-the-fly, and the cost is based solely on usage. Therefore, an

integrity verification mechanism that has the same level of scalability and elasticity

will be highly resourceful for big data applications in cloud environments.

8.2.2 Future Research Problems

Auditing for streaming data. Streaming data is one of the most important

types of dynamic big data. Examples of streaming data including: 1) sensor data from

the gathering of geographical data, temperature, humidity, etc.); 2) image data, e.g.,

satellites, video surveillance, etc. 3) Internet data such as video streams and social

networks. A great proportion of this kind of data needs to be stored or archived for

future use or further analyses. As the cloud is now the backbone for storing and

processing of such data, it is essential to maintain the auditability of streaming data for

cloud users (data owners) to audit their data. To date, not much work has been done in

this area.

Streaming data are dynamic and real-time in nature. Like other research

problems related to streaming data, the main problem in maintaining auditability of

streaming data is to perform data processing on-the-fly. In other words, time

complexity becomes the biggest concern here. To address this concern, future

research work needs to focus on the following aspects.

1) In public auditing, pre-processing is very time-consuming due to the

expensive pairing and exponentiation operations. As new data are constantly being

produced in data streams, the time-consuming pre-processing contradicts the aim of

efficient on-the-fly processing of streaming data. Therefore, aiming at developing a

solution that can efficiently provide public auditability for streaming data while

maintaining security is essential.

135

2) Not all the data are of the same importance. Therefore, it will be important to

develop an application-specific data evaluation and selection strategy for public

auditing of critical data from streaming cloud data. Through this approach, the user

will be confident in terms of the integrity of the streaming data, or specifically, the

useful knowledge in the coming data streams.

Data auditing within distributed data processing. The problems discussed

above did not take into account the internal data storage strategy. For improved

efficiency and scalability, big data applications in large-scale data centre clouds are

always processed in a parallel fashion, which is achieved by distributed programming

models such as MapReduce. Therefore, cloud systems always employ distributed file

systems such as the Hadoop Distributed File System (HDFS) for data management

and storage. In such file systems, data are at first globally partitioned for optimal

performance in terms of total throughput, latency and efficiency in data processing.

Then, these partitioned data are indexed and distributed to store in storage nodes. This

index is stored in the name node, and the storage nodes are located in different storage

servers and/or data centres. The research challenges in this area are mainly in data

locality and resource availability.

First, we look at data distribution strategy. In public auditing schemes, data are

also segmented into blocks and each block is accompanied by an authenticator used

for auditing. However, this segmentation is only logical with another index, and it is

separated from the data partitioning. Current schemes do not take into account data

locality, i.e., the physical distribution of data in distributed file systems. For example,

a logical block may contain data from several different storage servers. This will lead

to excessive communication overheads and disk read/writes.

As mentioned earlier, a replication strategy is essential for cloud data located in

separated disk blocks. For availability, replicas are located in different physical

locations. This has not been considered in existing multi-replica auditing schemes,

which could potentially lead to many problems. For example, when there is only a

need to audit one replica, choosing replicas stored on the same server (or the least

136

number of servers possible) will significantly lower the total communication

overheads.

According to the analysis, it will be good to develop a public auditing scheme

with optimised mechanisms (e.g. block segmentation, replica selection) for user

verification of data stored in distributed file systems. As different applications require

different data partitioning strategies, our solution will also depend on a specific big

data application and its partitioning strategy in the distributed file system.

Auditing of shared data. In public clouds, data from different users are

consolidated in the same cloud service provider. Data ownership is a big problem. The

problem can be mainly analysed in terms of two aspects: 1) From the data users'

perspective, different users will have different levels of privileges to a certain shared

data pool, and the users' identities and privileges may change from time to time; this

problem needs to be carefully addressed. 2) Some data to be shared, such as medical

records or police records, needs to be carefully controlled. These data are only

allowed to be shared or audited by certain parties. For example, datasets to be shared

by different parties may not be appropriate to be audited by the same auditor, unless

they figure out useful logical connections between these datasets.

These problems have only just begun to be studied. The aim of our future work

is going to be twofold.

(1) For privately shared data, the aim is at efficient and secure auditing of the

dynamic variations of data users' identities and privileges while maintaining different

levels of auditability of cloud data. To achieve this, efficient key management is

required as different users and/or user groups will use different sets of public/private

key pairs.

(2) For publicly shared data, the aim is at developing not only mechanisms for

effective user and auditor management, but also strategies for controlling data sharing

to maintain secure auditability of shared data. This may be achieved by analysis of

137

relationships between data, data users and auditors.

138

Bibliography

Australia Telescope, Parkes Observatory [Online]. Available: http://www.parkes.atnf.csiro.au/
[Accessed 20 December, 2014].

Crypto++ Benchmarks. [Online]. Available: http://www.cryptopp.com/benchmarks.html [Accessed
20 December, 2014].

Eucalyptus Open Source Cloud Platform [Online]. Available: http://www.eucalyptus.com/ [Accessed
20 December, 2014].

The Four V's of Big Data [Online]. Available: IBM Big Data and Analytics Hub,
http://www.ibmbigdatahub.com/infographic/four-vs-big-data [Accessed 20 December,
2014].

Hadoop MapReduce [Online]. Available: http://hadoop.apache.org [Accessed 20 December, 2014].

KVM Hypervisor [Online]. Available: www.linux-kvm.org/ [Accessed 20 December, 2014].

MIRACL Cryptography Library [Online]. Available:
http://certivox.com/index.php/solutions/miracl-crypto-sdk/ [Accessed 20 December, 2014].

OpenStack Open Source Cloud Software [Online]. Available: http://openstack.org/ [Accessed 20
December, 2014].

2012. Available: http://aws.amazon.com/apac/awssummit-au/ [Accessed 20 December, 2014].

2013. Department of Finance and Deregulation, Australian Government, Big Data Strategy – Issues
Paper. Available: http://agimo.gov.au/files/2013/03/Big-Data-Strategy-Issues-Paper1.pdf
[Accessed 5 June, 2014].

AGRAWAL, D., DAS, S. & ABBADI, A. E. Year. Big data and cloud computing: current state and future
opportunities. In: Proceedings of the 14th International Conference on Extending
Database Technology (EDBT/ICDT '11), 2011 Uppsala, Sweden. 530-533.

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R., KONWINSKI, A., LEE, G., PATTERSON,
D., RABKIN, A., STOICA, I. & ZAHARIA, M. 2010. A View of Cloud Computing.
Communications of the ACM, 53, 50-58.

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R. H., KONWINSKI, A., LEE, G., PATTERSON,
D. A., RABKIN, A., STOICA, I. & ZAHARIA, M. 2009. Above the Clouds: A Berkeley View of
Cloud Computing. Technical Report No. UCB/EECS-2009-28, University of California at
Berkeley.

139

ATENIESE, G., BURNS, R., CURTMOLA, R., HERRING, J., KHAN, O., KISSNER, L., PETERSON, Z. & SONG,
D. 2011. Remote Data Checking Using Provable Data Possession. ACM Transactions on
Information and System Security, 14, Article 12.

ATENIESE, G., JOHNS, R. B., CURTMOLA, R., HERRING, J., KISSNER, L., PETERSON, Z. & SONG, D. Year.
Provable Data Possession at Untrusted Stores. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS '07), 2007. 598-609

ATENIESE, G., KAMARA, S. & KATZ, J. Year. Proofs of Storage from Homomorphic Identification
Protocols. In: Proceedings of the 15th International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT '09), 2009 Tokyo, Japan. 319
- 333.

ATENIESE, G., PIETRO, R. D., MANCINI, L. V. & TSUDIK, G. Year. Scalable and Efficient Provable Data
Possession. In: Proceedings of the 4th International Conference on Security and Privacy in
Communication Netowrks (SecureComm '08), 2008 İstanbul, Turkey. 1-10.

BARSOUM, A. F. & HASAN, M. A. 2011. On Verifying Dynamic Multiple Data Copies over Cloud
Servers. IACR Cryptology ePrint Archive, Report 2011/447.

BARSOUM, A. F. & HASAN, M. A. Year. Integrity Verification of Multiple Data Copies over Untrusted
Cloud Servers. In: Proceedings of the12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID '12), 2012 Ottawa, Canada. 829-834.

BELLARE, M., BOLDYREVA, A. & STADDON, J. Year. Randomness Re-use in Multi-recipient Encryption
Schemeas In: Proceedings of the 6th International Workshop on Theory and Practice in
Public Key Cryptography (PKC '03), 2003 Miami, USA. Springer-Verlag

BONEH, D., SHACHAM, H. & LYNN, B. 2004. Short Signatures from the Weil Pairing. Journal of
Cryptology, 17, 297-319.

BRESSON, E., CHEVASSUT, O. & POINTCHEVAL, D. Year. Dynamic Group Diffie-Hellman Key Exchange
under Standard Assumptions. In: Proceedings of the International Conference on the
Theory and Applications of Cryptographic Techniques: Advances in Cryptology (EUROCRYPT
'02), 2002 Amsterdam, Holland.

BUYYA, R., YEO, C. S., VENUGOPAL, S., BROBERG, J. & BRANDIC, I. 2009. Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility.
Future Generation Computer Systems, 25, 599-616.

CAMENISCH, J., LEHMANN, A., NEVEN, G. & RIAL, A. Year. Privacy-Preserving Auditing for
Attribute-Based Credentials. In: Proceedings of the 19th European Symposium on
Research in Computer Security (ESORICS '14), 2014 Wroclaw, Poland. 109-127.

CANETTI, R. & KRAWCZYK, H. Year. Security Analysis of IKE's Signature-Based Key-Exchange Protocol.
In: Proceedings of the 22nd Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO '02), 2002 Santa Barbara, USA. 143-161.

CAO, N., YANG, Z., WANG, C., REN, K. & LOU, W. Year. Privacy-Preserving Query over Encrypted
Graph-Structured Data in Cloud Computing. In: Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS '11), 2011. 393 - 402.

140

CASH, D., KÜPÇÜ, A. & WICHS, D. Year. Dynamic Proofs of Retrievability via Oblivious RAM. In:
Proceedings of the 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques (EUROCRYPT '13), 2013 Athens, Greece. 279-295.

CHAUDHURI, S. Year. What next?: a half-dozen data management research goals for big data and the
cloud. In: Proceedings of the 31st symposium on Principles of Database Systems (PODS
'12), 2012 Scottsdale, Arizona, USA. 1-4.

CLIFTON, C. & TASSA, T. Year. On Syntactic Anonymity and Differential Privacy. In: Proceedings of
the IEEE 29th International Conference on Data Engineering Workshops (ICDEW), 2013.
88-93.

CURTMOLA, R., KHAN, O., BURNS, R. C. & ATENIESE:, G. Year. MR-PDP: Multiple-Replica Provable
Data Possession. . In: Proceedings of the 28th IEEE International Conference on
Distributed Computing Systems (ICDCS '08), 2008 Beijing, China. 411-420.

CUZZOCREA, A., FORTINO, G. & RANA, O. Year. Managing Data and Processes in Cloud-Enabled
Large-Scale Sensor Networks: State-of-the-Art and Future Research Directions. In:
Proceedings of the 13th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGRID '13), 2013. 583-588.

DEELMAN, E., SINGH, G., LIVNY, M., BERRIMAN, B. & GOOD, J. Year. The Cost of Doing Science on the
Cloud: the Montage Example. In: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (SC ’08), 2008 Austin, Texas. 1–12.

DEPARTMENT OF FINANCE AND DEREGULATION, A. G. 2011. Cloud Computing Strategic Direction
Paper: Opportunities and Applicability for Use by the Australian Government. Available:
http://agimo.gov.au/files/2012/04/final_cloud_computing_strategy_version_1.pdf.

DEPARTMENT OF FINANCE AND DEREGULATION, A. G. 2013. Big Data Strategy – Issues Paper.
Available: http://agimo.gov.au/files/2013/03/Big-Data-Strategy-Issues-Paper1.pdf.

DIFFIE, W. & HELLMAN, M. 1976. New Directions in Cryptography. IEEE Transactions on Information
Theory, 22, 644 - 654.

DWORK, C. Year. Differential Privacy: A Survey of Results. In: Proceedings of the 5th International
Conference on Theory and Applications of Models of Computation (TAMC'08), 2008. 1-19.

ERWAY, C., KÜPÇÜ, A., PAPAMANTHOU, C. & TAMASSIA, R. Year. Dynamic Provable Data Possession.
In: Proceedings of the 16th ACM Conference on Computer and Communications Security
(CCS’09), 2009 Chicago, USA. 213-222.

ETEMAD, M. & KÜPÇÜ, A. Year. Transparent, Distributed, and Replicated Dynamic Provable Data
Possession. In: Proceedings of the 11th International Conference on Applied
Cryptography and Network Security (ACNS '13), 2013a Banff, Canada. 1-18.

ETEMAD, M. & KÜPÇÜ, A. 2013b. Transparent, Distributed, and Replicated Dynamic Provable Data
Possession. IACR Cryptology ePrint Archive, Report 2013/225, 1-18.

FAN, L. & XIONG, L. Year. Real-time Aggregate Monitoring with Differential Privacy. In: Proceedings
of the 21st ACM International Conference on Information and Knowledge Management

141

(CIKM '12), 2012. 2169-2173.

GARG, S. K., GOPALAIYENGAR, S. K. & BUYYA, A. R. Year. Virtual Machine Provisioning Based on
Analytical Performance and QoS in Cloud Computing Environments. In: Proceedings of
the 40th International Conference on Parallel Processing (ICPP '11), 2011 Taipei, Taiwan.

GENTRY, C. Year. Fully Homomorphic Encryption Using Ideal Lattices. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing (STOC '09), 2009 Bethesda, USA.

GROCE, A. & KATZ, J. Year. A New Framework for Efficient Password-based Authenticated Key
Exchange. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS '10), 2010 Chicago, USA. 516-525.

HANSER, C. & SLAMANIG, D. Year. Efficient Simultaneous Privately and Publicly Verifiable Robust
Provable Data Possession from Elliptic Curves. In: Proceedings of the 10th International
Conference on Security and Cryptography (SECRYPT '13), 2013 Reykjavik, Iceland. 15 - 26.

HE, Y., BARMAN, S. & NAUGHTON, J. F. Year. Preventing Equivalence Attacks in Updated, Anonymized
Data. In: Proceedings of the 27th IEEE International Conference on Data Engineering
(ICDE '11), 2011. 529-540.

HEATH, N. 2012. Cern: Cloud Computing Joins Hunt for Origins of the Universe [Online]. Available:
http://www.techrepublic.com/blog/european-technology/cern-cloud-computing-joins-hunt
-for-origins-of-the-universe/262 [Accessed 20 December, 2014].

HWANG, M.-S., LEE, C.-C. & SUN, T.-H. 2014. Data Error Locations Reported by Public Auditing in
Cloud Storage Service. Automated Software Engineering, 21, 373-390.

IOSUP, A., OSTERMANN, S., YIGITBASI, M. N., PRODAN, R., FAHRINGER, T. & EPEMA, D. H. J. 2011.
Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Computing.
IEEE Transactions on Parallel and Distributed Systems, 22, 931-945.

JOHNSON, R., MOLNAR, D., SONG, D. & WAGNER, D. 2002. Homomorphic Signature Schemes. Topics
in Cryptology - CT-RSA 2002, Lecture Notes in Computer Science, 2271, 244-262.

JUELS, A. & B. S. KALISKI, J. Year. PORs: Proofs of Retrievability for Large Files. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security (CCS '07), 2007
Alexandria, USA. 584-597.

KATZ, J. & SHIN, J. S. Year. Modeling Insider Attacks on Group Key-exchange Protocols. In:
Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’05), 2005 Alexandria, USA. 180-189.

KATZ, J. & VAIKUNTANATHAN, V. Year. Round-optimal Password-based Authenticated Key Exchange.
In: Proceedings of the 8th conference on Theory of cryptography (TCC'11), 2011
Providence, USA. 293-310.

KATZ, J. & YUNG, M. 2007. Scalable Protocols for Authenticated Group Key Exchange. Journal of
Cryptology, 20, 85 - 113.

KAUFMAN, C., HOFFMAN, P., NIR, Y. & ERONEN, P. September 2010. Internet Key Exchange Protocol

142

Version 2 (IKEv2). Available: http://tools.ietf.org/html/rfc5996 [Accessed 10 April, 2012].

KAWATA, D., CEN, R. & HO, L. C. 2007. Gravitational Stability of Circumnuclear Disks in Elliptical
Galaxies. The Astrophysical Journal 669(1), 232-240.

KEAHEY, K., FIGUEIREDO, R., FORTES, J., FREEMAN, T. & TSUGAWA, M. Year. Science Clouds: Early
Experiences in Cloud Computing for Scientific Applications. In: Proceedings of the First
Workshop on Cloud Computing and its Applications (CCA ’08), 2008 Chicago, USA. 1 - 6.

KUROSAWA, K. Year. Multi-recipient Public-Key Encryption with Shortened Ciphertext. In:
Proceedings of the 5th International Workshop on Practice and Theory in Public Key
Cryptosystems: Public Key Cryptography (PKC '02), 2002 Paris, France. 321–336.

KÜSTERS, R. & TUENGERTHAL, M. Year. Computational Soundness for Key Exchange Protocols with
Symmetric Encryption. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS '09), 2009 Chicago, USA. 91-100.

LI, J., OOI, B. C. & WANG, W. Year. Anonymizing Streaming Data for Privacy Protection. In: IEEE 24th
International Conference on Data Engineering (ICDE '08), 2008.

LIU, C., BEAUGEARD, N., YANG, C., ZHANG, X. & CHEN, J. 2014a. HKE-BC: Hierarchical Key Exchange
for Secure Scheduling and Auditing of Big Data in Cloud Computing. Concurrency and
Computation: Practice and Experience.

LIU, C., CHEN, J., YANG, L. T., ZHANG, X., YANG, C., RANJAN, R. & RAMAMOHANARAO, K. 2014b.
Authorized Public Auditing of Dynamic Big Data Storage on Cloud with Efficient Verifiable
Fine-grained Updates. IEEE Transactions on Parallel and Distributed Systems, 25, 2234 -
2244.

LIU, C., RANJAN, R., YANG, C., ZHANG, X., WANG, L. & CHEN, J. 2014c. MuR-DPA: Top-down Levelled
Multi-replica Merkle Hash Tree Based Secure Public Auditing for Dynamic Big Data Storage
on Cloud. IACR Cryptology ePrint Archive, Report 2014/391.

LIU, C., RANJAN, R., ZHANG, X., YANG, C., GEORGAKOPOULOS, D. & CHEN, J. Year. Public Auditing for
Big Data Storage in Cloud Computing - A Survey. In: Proceedings of the 16th IEEE
International Conference on Computational Science and Engineering (CSE '13), 2013a
Sydney, Australia. 1128-1135.

LIU, C., YANG, C., ZHANG, X. & CHEN, J. 2014d. External Integrity Verification for Outsourced Big Data
in Cloud and IoT: A Big Picture. Future Generation Computer Systems.

LIU, C., ZHANG, X., CHEN, J. & YANG, C. Year. An Authenticated Key Exchange Scheme for Efficient
Security-Aware Scheduling of Scientific Applications in Cloud Computing. In: Proceedings
of the 2011 IEEE International Conference on Dependable, Autonomic and Secure
Computing (DASC '11), 12-14 Dec. 2011 2011. 372-379.

LIU, C., ZHANG, X., LIU, C., YANG, Y., RANJAN, R., GEORGAKOPOULOS, D. & CHEN, J. Year. An Iterative
Hierarchical Key Exchange Scheme for Secure Scheduling of Big Data Applications in Cloud
Computing. In: Proceedings of the 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications (IEEE TrustCom '13), 2013b. 9-16.

143

LIU, C., ZHANG, X., YANG, C. & CHEN, J. 2012. CCBKE - Session Key Negotiation for Fast and Secure
Scheduling of Scientific Applications in Cloud Computing. Future Generation Computer
Systems.

LIU, C., ZHANG, X., YANG, C. & CHEN, J. 2013c. CCBKE - Session Key Negotiation for Fast and Secure
Scheduling of Scientific Applications in Cloud Computing. Future Generation Computer
Systems, 29, 1300-1308.

LU, W., MIKLAU, G. & IMMERMAN, N. 2013. Auditing A Database under Retention Policies. The VLDB
Journal, 22, 203-228.

MA, Y., RAO, J., HU, W., MENG, X., HAN, X., ZHANG, Y., CHAI, Y. & LIU, C. Year. An Efficient Index for
Massive IOT Data in Cloud Environment. In: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management (CIKM '12), 2012 Hawaii, USA.
2129-2133.

MATHER, T., KUMARASWAMY, S. & LATIF, S. 2009. Cloud Security and Privacy: An Enterprise
Perspective on Risks and Compliance, Sebastopol, O'Reilly Media.

MERKLE, R. C. Year. A Digital Signature Based on a Conventional Encryption Function. In:
Proceedings of A Conference on the Theory and Applications of Cryptographic Techniques
on Advances in Cryptology (CRYPTO '87), 1987. 369-378.

MO, Z., ZHOU, Y. & CHEN, S. Year. A Dynamic Proof of Retrievability (PoR) Scheme with O(logn)
Complexity. In: Proceedings of the 2012 IEEE International Conference on
Communications (ICC '12), 2012. 912-916.

NAONE, E. 28 September, 2010. What Twitter Learns from All Those Tweets [Online]. MIT. Available:
http://www.technologyreview.com/view/420968/what-twitter-learns-from-all-those-tweet
s/ [Accessed 20 December, 2014].

NI, J., YU, Y., MU, Y. & XIA, Q. 2014. On the Security of an Efficient Dynamic Auditing Protocol in
Cloud Storage. IEEE Transactions on Parallel and Distributed Systems, 25, 2760-2761.

NURMI, D., WOLSKI, R., GRZEGORCZYK, C., OBERTELLI, G., SOMAN, S., YOUSEFF, L. & ZAGORODNOV,
D. Year. The Eucalyptus Open-Source Cloud-Computing System. In: Proceedings of the
2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID
'09), 2009. 124-131.

PUTTASWAMY, K. P. N., KRUEGEL, C. & ZHAO, B. Y. 2011. Silverline: Toward Data Confidentiality in
Storage-Intensive Cloud Applications. 2nd ACM Symposium on Cloud Computing (SOCC '11).
Cascais, Portugal.

RISTENPART, T., TROMER, E., SHACHAM, H. & SAVAGE, S. Year. Hey, You, Get off of My Cloud:
Exploring Information Leakage in Third-party Compute Clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security (CCS '09), 2009 Chicago,
USA. 199-212.

ROY, I., SETTY, S. T. V., KILZER, A., SHMATIKOV, V. & WITCHEL, E. Year. Airavat: Security and Privacy for
MapReduce. In: Proceedings of the 7th USENIX Conference on Networked Systems Design
and Implementation (NSDI'10), 2010. 297-312.

144

SCHMIDT, S. E. 2012. Security and Privacy in the AWS Cloud [Online]. Available:
http://aws.amazon.com/apac/awssummit-au/ [Accessed 20 December, 2014].

SHACHAM, H. & WATERS, B. Year. Compact Proofs of Retrievability. In: Proceedings of the 14th
International Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT '08), 2008. 90 - 107

SHI, E., STEFANOV, E. & PAPAMANTHOU, C. Year. Practical Dynamic Proofs of Retrievability. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security
(CCS '13), 2013. 325-336.

SRIRAMA, S. N., JAKOVITS, P. & VAINIKKO, E. 2012. Adapting Scientific Computing Problems to Clouds
Using MapReduce. Future Generation Computer Systems, 28, 184-192.

STEFANOV, E., DIJK, M. V., SHI, E., FLETCHER, C., REN, L., YU, X. & DEVADAS, S. Year. Path ORAM: An
Extremely Simple Oblivious RAM Protocol. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (CCS '13), 2013. 299-310.

STEFANOV, E. & SHI, E. Year. ObliviStore: High Performance Oblivious Cloud Storage. In:
Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP '13), 2013. 253-267.

SUBASHINI, S. & KAVITHA, V. 2010. A Survey on Security Issues in Service Delivery Models of Cloud
Computing. Journal of Network and Computer Applications, 34, 1-11.

TANG, X., KENLI, L., ZENG, Z. & VEERAVALLI, B. 2011. A Novel Security-Driven Scheduling Algorithm
for Precedence-Constrained Tasks in Heterogeneous Distributed Systems. IEEE Transactions
on Computers, 60, 1017-1029.

VECCHIOLA, C., CALHEIROS, R. N., KARUNAMOORTHY, D. & BUYYA, R. 2012. Deadline-driven
Provisioning of Resources for Scientific Applications in Hybrid Clouds with Aneka. Future
Generation Computer Systems, 28, 58-65.

WANG, B., CHOW, S. S. M., LI, M. & LI, H. Year. Storing Shared Data on the Cloud via
Security-Mediator. In: 33rd IEEE International Conference on Distributed Computing
Systems (ICDCS '13), 2013a Philadelphia, USA.

WANG, B., LI, B. & LI, H. Year. Oruta: Privacy-Preserving Public Auditing for Shared Data in the Cloud.
In: Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing
(CLOUD '12), 2012 Hawaii, USA. 295-302.

WANG, B., LI, B. & LI, H. Year. Public Auditing for Shared Data with Efficient User Revocation in the
Cloud. In: Proceedings of the 32nd Annual IEEE International Conference on Computer
Communications (INFOCOM'13), 2013b Turin, Italy. 2904-2912.

WANG, B., LI, B. & LI, H. 2014. Oruta: Privacy-Preserving Public Auditing for Shared Data in the Cloud.
IEEE Transactions on Cloud Computing, 2, 43-56.

WANG, C., CHOW, S. M., WANG, Q., REN, K. & LOU, W. 2013c. Privacy-Preserving Public Auditing for
Secure Cloud Storage. IEEE Transactions on Computers, 62, 362-375.

WANG, C., WANG, Q., REN, K. & LOU, W. Year. Privacy-Preserving Public Auditing for Data Storage

145

Security in Cloud Computing. In: Proceedings of the 29th Annual IEEE International
Conference on Computer Communications (INFOCOM'10), 2010 San Diego, USA. 1 - 9.

WANG, H. & ZHANG, Y. 2014. On the Knowledge Soundness of a Cooperative Provable Data
Possession Scheme in Multicloud Storage. IEEE Transactions on Parallel and Distributed
Systems, 25, 264-267.

WANG, L. & FU, C. 2010. Research Advances in Modern Cyberinfrastructure. New Generation
Computing, 28, 111-112.

WANG, L., KUNZE, M., TAO, J. & LASZEWSKI, G. V. 2011a. Towards Building A Cloud for Scientific
Applications. Advances in Engineering Software, 42, 714-722.

WANG, L., TAO, J., KUNZE, M., CASTELLANOS, A. C., KRAMER, D. & KARL, W. Year. Scientific Cloud
Computing: Early Definition and Experience. In: Proceedings of the 10th IEEE
International Conference on High Performance Computing and Communications (HPCC '08)
2008 Dalian, China. 825 - 830.

WANG, Q., WANG, C., REN, K., LOU, W. & LI, J. 2011b. Enabling Public Auditability and Data Dynamics
for Storage Security in Cloud Computing. IEEE Transactions on Parallel and Distributed
Systems, 22, 847 - 859.

WATERS, B. R., BALFANZ, D., DURFEE, G. & SMETTERS, D. K. Year. Building an Encrypted and
Searchable Audit Log. In: Proceedings of the 11th Annual Network and Distributed System
Security Symposium (NDSS '04), 2004 San Diego, USA.

WILLIAMS, P., SION, R. & TOMESCU, A. Year. PrivateFS: A Parallel Oblivious File System. In:
Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS
'12), 2012. 977-988.

WONG, W. K., CHEUNG, D. W.-L., KAO, B. & MAMOULIS, N. Year. Secure kNN Computation on
Encrypted Databases. In: Proceedings of the 35th SIGMOD international conference on
Management of data (SIGMOD '09), 2009 Providence, USA. 139-152.

WORKU, S. G., XU, C. & ZHAO, J. 2014. Cloud Data Auditing with Designated Verifier. Frontiers of
Computer Science, 8, 503-512.

WU, X., ZHU, X., WU, G.-Q. & DING, W. 2014. Data Mining with Big Data. IEEE Transactions on
Knowledge and Data Engineering, 26, 97-107.

YANG, C., LIU, C., ZHANG, X., NEPAL, S. & CHEN, J. 2013a. A Time Efficient Approach for Detecting
Errors in Big Sensor Data on Cloud. IEEE Transactions on Parallel and Distributed Systems.

YANG, C., ZHANG, X., ZHONG, C., LIU, C., PEI, J., RAMAMOHANARAO, K. & CHEN, J. 2013b. A
Spatiotemporal Compression based Approach for Efficient Big Data Processing on Cloud.
Journal of Computer and System Sciences (JCSS).

YANG, K. & JIA, X. 2012. Data Storage Auditing Service in Cloud Computing: Challenges, Methods and
Opportunities. World Wide Web, 15, 409-428.

YANG, K. & JIA, X. 2013. An Efficient and Secure Dynamic Auditing Protocol for Data Storage in Cloud

146

Computing. IEEE Transactions on Parallel and Distributed Systems, 24, 1717-1726.

YAO, J., CHEN, S., NEPAL, S., LEVY, D. & ZIC, J. Year. TrustStore: Making Amazon S3 Trustworthy with
Services Composition. In: Proceedings of the 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGRID '10), 2010 Melbourne, Australia. 600-605.

YOUNG CHOON LEE, A. Y. Z. 2011. Energy Conscious Scheduling for Distributed Computing Systems
under Different Operating Conditions. IEEE Transactions on Parallel and Distributed Systems,
22, 1374-1381.

YU, Y., MU, Y., NI, J., DENG, J. & HUANG, K. Year. Identity Privacy-Preserving Public Auditing with
Dynamic Group for Secure Mobile Cloud Storage. In: Proceedings of the 8th International
Conference on Network and System Security (NSS 2014), 2014a Xi'an, China. 28-40.

YU, Y., NIU, L., YANG, G., MU, Y. & SUSILO, W. 2014b. On the Security of Auditing Mechanisms for
Secure Cloud Storage. Future Generation Computer Systems, 30, 127-132.

YUAN, D., YANG, Y., LIU, X. & CHEN, J. 2010. A Data Placement Strategy in Scientific Cloud Workflows.
Future Generation Computer Systems, 26, 1200-1214.

YUAN, D., YANG, Y., LIU, X. & CHEN, J. 2011. On-demand Minimum Cost Benchmarking for
Intermediate Dataset Storage in Scientific Cloud Workflow Systems. Journal of Parallel and
Distributed Computing, 71, 316-332.

YUAN, J. & YU, S. Year. Secure and Constant Cost Public Cloud Storage Auditing with Deduplication.
In: Proceedings of the First IEEE Conference on Communications and Network Security
(CNS '13), 2013 Washington D.C., USA. 145-153.

ZHANG, K., ZHOU, X., CHEN, Y., WANG, X. & RUAN, Y. Year. Sedic: Privacy-aware Data Intensive
Computing on Hybrid Clouds. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS '11), 2011. 515-526.

ZHANG, X., LIU, C., NEPAL, S., PANLEY, S. & CHEN, J. 2012. A Privacy Leakage Upper-bound Constraint
based Approach for Cost-effective Privacy Preserving of Intermediate Datasets in Cloud.
IEEE Transactions on Parallel and Distributed Systems.

ZHANG, X., LIU, C., NEPAL, S., PANLEY, S. & CHEN, J. 2013a. A Privacy Leakage Upper-bound
Constraint based Approach for Cost-effective Privacy Preserving of Intermediate Datasets in
Cloud. IEEE Transactions on Parallel and Distributed Systems, 24, 1192-1202.

ZHANG, X., LIU, C., NEPAL, S., YANG, C., DOU, W. & CHEN, J. 2013b. A Hybrid Approach for Scalable
Sub-Tree Anonymization over Big Data using MapReduce on Cloud. Journal of Computer
and System Sciences (JCSS), in press.

ZHANG, X., YANG, L. T., LIU, C. & CHEN, J. 2013c. A Scalable Two-Phase Top-Down Specialization
Approach for Data Anonymization using MapReduce on Cloud. IEEE Transactions on Parallel
and Distributed Systems.

ZHANG, Y. & BLANTON, M. 2012. Efficient Dynamic Provable Possession of Remote Data via Update
Trees. IACR Cryptology ePrint Archive, Report 2012/291.

147

ZHANG, Y. & BLANTON, M. Year. Efficient dynamic provable possession of remote data via balanced
update trees. In: Proceedings of the 8th ACM Symposium on Information, Computer and
Communications Security (ASIACCS '13), 2013 Hangzhou, China. 183-194.

ZHAO, J. & GU, D. 2010. Provably Secure Authenticated Key Exchange Protocol under the CDH
Assumption. Journal of Systems and Software, 83, 2297-2304.

ZHAO, J., WANG, L., TAO, J., CHEN, J., SUN, W., RANJAN, R., KOLODZIEJ, J., STREIT, A. &
GEORGAKOPOULOS, D. 2014. A Security Framework in G-Hadoop for Big Data Computing
Across Distributed Cloud Data Centres. Journal of Computer and System Sciences, 80,
994-1007.

ZHOU, Z. & HUANG, D. Year. An Optimal Key Distribution Scheme for Secure Multicast Group
Communication. In: Proceedings of the 2010 IEEE Conference on Computer
Communications (INFOCOM '10), 2010 San Diego, USA.

ZHU, Y., HU, H., AHN, G.-J. & YU, M. 2012. Cooperative Provable Data Possession for Integrity
Verification in Multi-Cloud Storage. IEEE Transactions on Parallel and Distributed Systems,
23, 2231-2244.

ZISSIS, D. & LEKKAS, D. 2011. Addressing Cloud Computing Security Issues. Future Generation
Computer Systems, 28, 583-592.

148

Appendix A

Acronyms

For the convenience of readers, acronyms used in this thesis are listed in

alphabetical order in this section.

AAI Auxiliary Authentication Information

ADS Authenticated Data Structure

AKE Authenticated Key Exchange

BLS Boneh-Lynn-Shacham signature scheme

CA Certificate Authority

CSS Cloud Storage Server

HLA Homomorphic Linear Authenticator

HVT Homomorphic Verifiable Tag

MAC Message Authentication Code

MHT Merkle Hash Tree

PDP Provable Data Possession

PKI Public-Key Infrastructure

POR Proof of Retreivability

149

RASL Rank-based Authenticated Skip List

RMR-MHT Rank-based Multi-Replica Merkle Hash Tree

SiR-DPA Public auditing scheme presented in (Wang et al.,

2011b)

TPA Third-Party Auditor

WMHT Weighted Merkle Hash Tree

150

Appendix B

Notation Index

For the convenience of readers, notations used in this thesis are listed in

alphabetical order in this section.

 A message shared between the client and CSS, used for

authorisation of third-party auditing

 The ith block of replica .

 Cloud controller (CLC)

 Certificate

 Certificate request

 Decrypt message with session key

 The kth tuple in where is the hash value, is the level

of node, is the rank value and indicates whether this

node is a left or right child node

 Raw data file to be uploaded by the client to store in CSS

151

 Segmented file , in the form of . Sometimes we will

use and interchangeably

The jth replica of file

 In Chapter 6, hash values stored in node from RMR-MHT

T.

 Header, contains security parameter indexes

 Identity information

 Temporary key used by control node to encrypt the

communications with its parent node

 Temporary key used by control node N to encrypt the

communications with its th sub-node

 Number of control layers in cloud

 The level of node in RMR-MHT

 Number of sub-nodes for th control node on the th layer

 The ith file block of . There are a total of n blocks

152

 The th control node (or node, for simplicity) on layer .

is the cloud controller (CLC). See Figure 3-5 for example

Control node N’s sub-nodes (children nodes)

Control node N’s parent node

 Number of nodes on the th control layer

 One-time nonce for message freshness

 An offset in file , its value equals the bit length in the range

from start point of F to the checkpoint

 Pseudorandom function

 Node N’s public key for KE

 Rank value of node v - the maximum number of nodes in the

leaf (bottom) level that can be reached from v

 Padding message used to generate replica block with the

original file block

 The hash value stored in the root node of

153

 Number of segments per block

 The maximum number of segments per block

 Server instances domain

 The th server instance in

 Security associations, used in negotiating cryptographic

algorithms

/

Digital signature that can be verified by anyone with a public

key. In KE schemes in Chapter 4, it can be verified using

algorithms negotiated in and a public key obtained from

 A signature used for authorisation of TPA

 File tag of file , which can be used to uniquely identify

 The WMHT (in Chapter 5) or RMR-MHT (in Chapter 6)

developed based on

 Replica-sub Tree of RMR-MHT

 Verifier (TPA)’s ID

154

 The set of tuples for all intermediate nodes in the

RST

 Size of each file segment

 A tuple of variables used for verification in MuR-DPA in

Chapter 6. For a successful verification, after iterative

computation with , will become the number of total file

blocks, will become the root value R, will become the

block index and will become the reversed block index, i.e.,

the block count from right

 The homomorphic authenticator (verification tag)

 The ordered set of authenticators for

 A set of hash values (or tuples that include hash values) that

are used as ’s auxiliary authentication information (AAI)

 Encrypt message with session key

 Size of message m

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Abstract
	The Author’s Publications
	Table of Contents
	Figures
	Tables
	Chapter 1 Introduction
	1.1 Big Data and Cloud Computing
	1.2 Security and Privacy Concerns in Cloud
	1.3 Public Auditing of Dynamic Cloud Data
	1.4 Thesis Overview

	Chapter 2 Literature Review
	2.1 Security and Privacy Research in Cloud and Big Data
	2.2 Integrity Verification and Public Auditing
	2.3 Authenticated Key Exchange in Cloud

	Chapter 3 Background, Problem Analysis and Framework
	3.1 Preliminaries
	3.1.1 Diffie-Hellman Key Exchange
	3.1.2 RSA Signature
	3.1.3 Bilinear Pairing and BLS Signature
	3.1.4 Authenticated Data Structures

	3.2 Motivating Examples and Research Framework
	3.2.1 Motivating Examples
	3.2.2 Research Problems with Public Auditing of Cloud Data -- Lifecycle and Framework

	3.3 Representative Public Auditing Schemes In Sketch
	3.3.1 PDP
	3.3.2 Compact POR
	3.3.3 DPDP
	3.3.4 Public Auditing of Dynamic Data

	3.4 Detailed Analysis of Research problems
	3.4.1 Authenticated Key Exchange in Cloud
	3.4.2 Public Auditing of Verifiable Fine-grained Updates
	3.4.3 Multi-replica Big Data in Cloud
	3.4.4 Security of Public Auditing Schemes

	Chapter 4 Authenticated Key Exchange Schemes in Cloud
	4.1 CCBKE: Cloud Computing Background Key Exchange
	4.1.1 System setup
	4.1.2 Key Exchange
	4.1.3 Rekeying

	4.2 HKE-BC: Hierarchical Key Exchange for Big data in Cloud
	4.2.1 System Setup
	4.2.2 Key Exchange

	4.3 Security and Efficiency Analysis
	4.3.1 Security Proofs
	4.3.2 Perfect Forward Secrecy
	4.3.3 Efficiency Analysis for HKE-BC

	Chapter 5 FU-DPA: Public Auditing for Dynamic Data with Fine-grained Updates
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Bilinear Pairing
	5.2.2 Weighted Merkle Hash Tree

	5.3 Framework and Definitions for Supporting Fine-grained Updates
	5.4 The Proposed Scheme
	5.4.1 First Scheme
	5.4.2 Analysis on Fine-grained Dynamic Data Updates
	5.4.3 Further Modification for Better Support of Small Updates
	5.4.4 Further Discussions

	5.5 Security and Efficiency Analysis
	5.5.1 Security Analysis
	5.5.2 Efficiency Analysis

	Chapter 6 MuR-DPA: Secure Public Auditing for Dynamic Multi-replica Big Data Storage on Cloud
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Bilinear Pairing
	6.2.2 Rank-based Multi-Replica Merkle Hash Tree

	6.3 Verification of All Replicas at Once
	6.4 Efficient Verifiable Updates on Multi-replica Cloud Data
	6.5 Discussions and Extensions
	6.6 Security and Efficiency Analysis
	6.6.1 Verifiable Multi-Replica Updates
	6.6.2 All-at-once Multi-Replica Verification

	Chapter 7 Experimental Results and Evaluations
	7.1 Qualitative Comparison of Public Auditing Schemes
	7.2 Experimental Environment
	7.3 Experimental Results for Key Exchange Schemes
	7.3.1 Comparison of Key Exchange schemes
	7.3.2 Efficiency improvements of CCBKE and HKE-BC

	7.4 Experimental Results for FU-DPA
	7.5 Experimental Results for MuR-DPA

	Chapter 8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work
	8.2.1 Aspects for Measurements and Improvements
	8.2.2 Future Research Problems

	Bibliography
	Appendix A Acronyms
	Appendix B Notation Index

