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modified series resistance flux decline (MSRFD) constant with Langmuir
MSRFD constant with Langmuir
bulk organic concentration (ML)
bulk concentration (ML?)
equilibrium organic concentration (ML)
interfacial membrane concentration (ML™)
permeate concentration (ML™)
saturation organic concentration (ML)
flux decline kinetic constant (T™)
organic diffusion coefficient (L*T™)
equivalent hydraulic diameter (L)
surface diffusion coefficient of organic (L*T™)
adsorption constant, function of temperature
permeate flux at a given time of operation (MT™)
pure water permeate flux (MT™)
apparent photodegradation rate constant (T™)
Talu reaction constant
flux decline potential which is dimensionless
rate constant (T™)
external film mass transfer coefficient of organic (LT
Freundlich constant
series resistance flux decline (SRFD) constant with Freundlich constant
MSRFD constant with Freundlich isotherm constant
energy of adsorption
MSRFD constants with Sips
Boltzmann constant (ML*T? K ™)
channel length (L)
pure water permeability (MT'kPa™)
weight of the adsorbent (M)
11s an incrementing index over all MW present (Da)

number-average molecular weight (Da)
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coefficient

Flux,, =

simulated __
coefficient

u =

Pp =

weight-average molecular weight (Da)
z-average molecular weight (Da)

number of molecules having a MW

Freundlich constant

SRFD constant with Freundlich constant
MSRFD constants with Freundlich isotherm constant
polydispersivity

measured amount organic adsorbed (MM™)
sorption capacity (MM™)

sorption capacity with Sips

resistance due to strong adsorption (L)
resistance due to weak adsorption (L)
resistance due to concentration polarization (L™)
resistance due to the gel layer (L)

radius of adsorbent particle (L)

illumination (operation) time (T)

absolute temperature (K)

average velocity of the feed fluid (ML™)

volume of the solution in batch reactor (L*)

average adsorbed phase organic concentration (MM™)
duration of permeate production cycle (T)

duration of cleaning cycle (T)
experimental value of the flux decline

productivity of the cross-flow membrane system operating with periodic
cleaning

simulated flux values for different model coefficients

dynamic viscosity (kPaT™)

viscosity of the organic phase (L*N"'T™)

zeta potential (mV)

particle density of adsorbent (ML™)

concentration spreading parameter
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ABSTRACT

Wastewater reuse is increasingly seen as an essential strategy for making better use of
limited freshwater resources, and as a means of preventing deterioration of the aquatic
environment from wastewater disposal. Membrane processes are now being
successfully used to obtain water of recyclable quality. However, membrane fouling is a
critical limitation on the application of membranes to wastewater reuse. Pretreatment of
biologically treated sewage effluent (BTSE) prior to membrane processes will reduce
organic deposition and subsequent biogrowth on membranes due to dissolved organic
matter. Pretreatment also reduces the need for frequent chemical cleaning, which is a
major factor that impacts on membrane life. From these perspectives, pretreatment

offers significant potential for improving the efficiency of membrane processes.

The main objectives in this study are i) to evaluate different pretreatment methods of
removing effluent organic matter (EfOM) from BTSE and in reducing membrane fouling,
il) to investigate the variation in the ultrafiltration (UF) and nanofiltration (NF)
membrane foulant characteristics in terms of molecular weight (MW) distribution of
foulants and the characteristics of fouled membrane, iii) to examine the effect of semi
flocculation and semi adsorption (with partial doses of flocculants and adsorbents,
respectively) on the membrane filtration, iv) to study the phenomena of membrane
filtration and pretreatment using different fractions (hydrophobic (HP), transphilic (TP)
and hydrophilic (HL)) of BTSE, v) to assess the effect of hybrid hydrodynamic cleaning
with high rate crossflow and relaxation modes in comparison with pretreatment to
membrane, vi) to evaluate the merits/demerits photocatalysis hybrid system in
comparison with NF and UF with pretreatment and vii) to develop different flux decline

models to quantitatively compare different pretreatments.

The highest removal of organic matter was observed when flocculation followed by
adsorption was used as pretreatment. The flocculation and adsorption removed 68.5%
and 71.4% of hydrophobic organic matter. After the flocculation pretreatment, the
majority of large MW EfOM was removed. The pretreatment of the flocculation
followed by adsorption led to very high removal of both small and large organic matter.
Further, this pretreatment led to practically no filtration flux decline. The weight

averaged MW (M,,) of the organics in the foulant on the membrane surface was 510
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daltons (UF) and 190 (NF) without pretreatment and 350 (UF) and 180 (NF) after
pretreatment with flocculation followed by adsorption, respectively. The flux decline with
the HP fraction was high compared with the TP and HL fractions. It was observed that
a particular amount of flocculant and adsorbent to UF was necessary below which the
UF membrane became heavily fouled. The detailed analysis of My, indicated that the M,
values of organic matter in the synthetic wastewater and in the flocculated effluent
were 29800 daltons (initial), > 25000 (after flocculation with 40 mg/L FeCl; or less)
and < 1000 (after flocculation with 50 mg/L FeCl; or more). The My, values suggested
the reason why the permeate flux was decreased with 40 mg/L FeCls semi flocculation

followed by semi adsorption due to the remaining large M,.

A detailed investigation of the utilisation of two automated cleaning techniques to
reduce fouling problems was explored. The two cleaning techniques studied were
periodic membrane relaxation and a periodic high rate cross-flow. The study found that
an optimised usage of these two de-clogging techniques, with a 1 hour production
period followed by a 1 minute relaxation period and then a 1 minute high cross-flow
rate period resulted in a net productivity increase of 14.8%. Three different semi-
empirical mathematical models were investigated to partially quantify the effects of
different pressures and pretreatments. The three different models used were 1) empirical
flux decline (EFD) model, ii) series resistance flux decline (SRFD) model and iii)
modified series resistance flux decline (MSRFD) model. The flux decline coefficient
values determined from the EFD and SRFD models can be used as an index to assess
flux decline and compare different operating conditions and pretreatments. With the
MSRFD model, when flocculation of 21 mg-Fe/L was used as a pretreatment at a
pressure of 300 kPa, the values of the bulk concentration (Cy), the concentration on the
membrane surface (C,,) and adsorption resistance (R,) significantly decreased by 4.4,
3.1 and 12.9 times, respectively. After 0.1 g/L adsorption as a pretreatment, the values
decreased by 2.2, 2.0 and 1.8 times, respectively. Thus, pretreatment can significantly

decrease membrane fouling.
Although pretreatment reduces flux decline caused by membrane fouling, it cannot

completely prevent membrane fouling. Further, as time proceeds, membrane fouling by

organic matter is converted into biofouling and the concentration from the retentate
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constantly increases. To resolve these problems, this study recommends three near-zero

fouling systems with an integrated photocatalysis membrane hybrid system.
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