INNOVATIVE MECHANICAL DESIGN WITH A CASE STUDY OF PUMPING SYSTEMS FOR LOW YIELD TUBE WELLS

By

William John Dartnall

A thesis submitted in fulfilment of the requirements for the degree of

Master of Engineering

May, 2003

CERTIFICATE OF AUTHORSHIP / ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

.....

.....

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors Professor Stephen Johnston and Professor John Reizes. Professor Johnston has provided important insights, encouragement and has critically read through several drafts of this work and has made himself readily accessible. I have very much enjoyed and benefited from the practical discussions with both supervisors during this time.

My thesis owes much to the unique combination of colleagues at UTS. I have benefited from people from the Groundwater area and from the Engineering area. Some of these are Drs Rob Mc Laughlan, Bill Milne-Home and Mr Lance Reece.

I would not have been able to have done this work without the support of the Faculty of Engineering, UTS. I am indebted to the faculty, staff, a number of capstone project students, the workshop staff and especially the patient office of the Associate Dean of Research. Alex Revel and the Mechanical Workshop staff were a much appreciated and constant source of help and encouragement throughout the project.

My industrial colleagues, Geoff Moore and Chris Tyree were a great source of help and encouragement. Geoff, taught me that in this business you must understand the meaning of "gently, gently catch-ee monkey" and Chris exercised his outstanding capacity as "devil's advocate".

Finally, I would like to dedicate this dissertation to my wife, Eleanor, my children, Alexander and Stephanie and my friends who have supported my project. Their profound and unconditional faith has made this work worthwhile and rewarding.

Innovative Mechanical Design with a Case Study of Pumping Systems for Low Yield Tube Wells

TABLE OF CONTENTS

CHAPTER 1

<u>INTRO</u>	NTRODUCTION TO THE THESIS		
1.1	INTRODUCTION	1	
1.2	ORIGINS AND MOTIVATION	2	
1.2.1	About Heliseal	2	
1.3	THE ENGINEERING DESIGN PROCESS	3	
1.3.1	Barriers to Success	4	
1.3.2	"Design Science" and the Main Paradigms of Design Methodology	5	
1.4	"TREND-MORPH-PDS" METHODOLOGY	6	
1.5	CONCLUSION	7	

CHAPTER 2

ΜΟΤΙ	MOTIVATION AND BACKGROUND		
2.1	INTRODUCTION	8	
2.2	THE CHALLENGE, THE MARKET AND THE INITIAL DESIGN FOCUS	9	
2.3	MY EARLY FOCUS ON TWO DESIGN ISSUES: EFFICIENCY AND RELIABILITY IN THERMAL SOLAR PUMPS	11	
2.4	COMPLEXITY AND MORPHOLOGY	13	
2.5	THE FUNDAMENTAL MECHANISMS OF ENERGY CONVERSION FROM SOLAR ENERGY TO MECHANICAL ENERGY	16	
2.6	MOTIVATION TO CREATE A BETTER GROUND WATER PUMPING SYSTEM	19	
2.7	THE NEED TO INVESTIGATE DESIGN METHODOLOGY	21	
2.8	CONCLUSIONS	26	

CHAPTER 3

LITERAT	<u>ORE REVIEW</u>	
3.1	INTRODUCTION	28
3.2	SOME DEFINITIONS RELATED TO ENGINEERING DESIGN	29
3.3	THE NATURE OF ENGINEERING DESIGN	30
3.4	DESIGN SCIENCE	31
3.5	DESIGN PARADIGMS AND DESIGN PROCESS MODELS	33
3.5.1	The Analysis - Synthesis - Evaluation (ASE) Design Paradigm	34
3.5.1.1	The Model of Pahl and Beitz (Pahl and Beitz, B1-1997)	35
3.5.1.2	Cross Model of the Design process	37
3.5.1.3	Burger Model of the Design Process (Burger, B1-1995)	38
3.5.2	Case - based Design Paradigm	41
3.5.3	The Cognitive Design Paradigm	43
3.5.4	The Creative Design Paradigm	47
3.5.4.1	TRIZ (Theory of Inventive Problem Solving)	48
3.5.4.2	SIT (Structured Inventive Thinking)	50
3.5.5	The Algorithmic Design Paradigm	52
3.5.6	The Artificial Intelligence Paradigm	54
3.5.7	The Paradigm of Design as a Social Process	59
3.6	CONCLUSIONS	61

CHAPTER 4

TECHN	TECHNOLOGY EVOLUTION AND THE CLASSIFICATION OF TECHNOLOGICAL FAMILIES			
4.1	INTRODUCTION	64		
4.2	CLASSIFICATION TABLES AND CHARTS FOUND IN DESIGN HANDBOOKS	65		
4.3	SOURCES OF DESIGN INFORMATION	66		
4.4	CLASSIFICATIONS AND TAXONOMIES IN DESIGN SCIENCE	68		
4.5	EVOLUTIONARY HISTORY OF TECHNOLOGIES	73		
4.6	CLASSIFICATIONS, TAXOMOMIES AND EVOLUTIONARY TENDENCIES IN TECHNOLOGIES	76		
4.7	STAGE ONE OF THE TREND-MORPH-PDS METHODOLOGY	84		
4.7.1	A design example where conceptual sub-modules are generally well known and have few options	85		
4.7.2	The case study of this thesis: the majority of the conceptual sub-modules are not well known or have a large number of options	87		
4.8	FROST'S PAPER AND THE NEED TO CHARACTERIZE THE DESIGN PROBLEM	88		
4.9	DIFFICULTIES WITH DECOMPOSING (AND SPECIFYING) THE DESIGN PROBLEM	89		
4.1	CONCLUSION	90		

CHAPTER 5

MORPHOLOGICAL APPROACHES

5.1	INTRODUCTION	92
5.2	WERE DID THE IDEAS OF MORPHOLOGICAL AND COMBINATIVE CONCEPTUAL DESIGN ORIGINATE?	93
5.3	HOW MAY MORPHOLOGICAL METHODS BE APPLIED IN CONCEPTUAL MECHANICAL DESIGN?	95
5.3.1	The Long Stroke Reciprocatory/Rotary Motion Converter of the Case Study of this thesis.	96
5.4	RAPID SKETCHING AND MORPHOLOGICAL ANALYSIS IN CONCEPTUAL DESIGN.	99
5.5	CONCLUSIONS	101

CHAPTER 6

PROD	RODUCT DESIGN SPECIFICATION (PDS)		
6.1	INTRODUCTION	102	
6.2	GOALS: BROAD STATEMENT OF THE DESIGN INTENT	102	
6.3	SUMMARY - A GENERAL CHECK LIST FOR THE PDS	103	
6.4	CONSTRUCTION OF THE (PRODUCT) PDS	104	
6.5	TYPES OF PDS	106	
6.6	THE VALUE OF THE PDS TO THE DESIGNER	106	
6.7	CONCLUSIONS	107	

CHAPTER 7 - CASE STUDY:

<u>INNOVA</u>	<u>TION, DESIGN, DEVELOPMENT AND TESTING OF A RANGE OF RECIPROCATING GROUND-WATER PU</u>	MPS
7.1	INTRODUCTION	108
7.2	BACKGROUND TO THIS CASE STUDY	108
7.3	THE USEFULNESS TO THE DESIGNER OF INVESTIGATING THE HISTORY OF THE SPECIFIC ART (GROUND WATER PUMPING)	111
7.4	HISTORY OF WATER PUMPING	113
7.5	ADVANTAGES OF RECIPROCATING GROUND-FLUID PUMPS.	116
7.6	PROBLEMS WITH RECIPROCATING GROUND-FLUID PUMPS.	117
7.7	THE TECHNICAL PROBLEMS WITH RECIPROCATING PUMPS CAN BE OVERCOME	119
7.8	DECISION IN FAVOUR OF RECIPROCATING GROUND WATER PUMPS	120
7.9	DETAILED EXAMINATION OF EVOLUTIONARY TRENDS RELATED TO THE CATEGORIES OF FIGURE 7.2 (a) & (b)	121
7.10	FUNCTIONAL REQUIREMENTS FOR REMOTELY LOCATED LOW VOLUME FLOW RATE GROUND WATER PUMPS	123
7.11	SUMMARY AND CONCLUSIONS	132

CHAPTER 8

<u>SUMMAF</u>	RY AND CONCLUSIONS	
8.1	INTRODUCTION	134
8.2	SUMMARY OF THE CONTRIBUTIONS OF THIS THESIS IN THE AREA OF LOW YIELD GROUND WATER PUMPING AND MECHANICAL TECHNOLOGY	134
8.3	SUMMARY OF MY CONTRIBUTIONS TO THE AREA OF DESIGN METHODOLOGY.	136
8.3.1	Problem Break-down and TREND Analysis	137
8.3.2	MORPH(ological) Analysis	138
8.3.3	Evolutionary Construction of the PDS	140
8.4	THE DESIGN	140
8.5	WHAT ELSE?	141
8.6	FINAL COMMENT	141

APPENDIX A7.1

CASE ST	CASE STUDY BREAK-DOWN OF PROBLEM AND EVOLUTIONARY TREND ANALYSIS OF SUB-PROBLEMS/SYSTEMS		
A7.1.1	INTRODUCTION	142	
A7.1.2	EXTERNAL (SOCIO-ECONOMIC, DEMOGRAPHIC ETC) EVENTS AND THEIR INFLUENCE ON WATER-WELL PUMPS	143	
A7.1.2.1	DESIGN IDEAS RESULTING FROM THIS RESEARCH ON THE EXTERNAL INFLUENCES ON WATER- WELL PUMPS	147	
A7.1.3	THE WATER WELL CONSTRUCTION	146	
A7.1.3.1	DESIGN IDEAS RESULTING FROM THIS RESEARCH ON WATER-WELL CONSTRUCTION	150	
A7.1.4	POWER SOURCE	150	
A7.1.4.1	DESIGN IDEAS RESULTING FROM THIS RESEARCH ON POWER SOURCE	152	
A7.1.5	PRIME MOVER	152	
A7.1.5.1	DESIGN IDEAS RESULTING FROM THIS RESEARCH ON PRIME MOVER EVOLUTION	153	
A7.1.6	GEARING, BALANCING AND MATCHING	154	
A7.1.6.1	DESIGN IDEAS RESULTING FROM RESEARCH INTO GEARING, BALANCING AND MATCHING	155	
A7.1.7	TRANSMISSION OF POWER DOWN THE WELL	157	
A7.1.7.1	DESIGN IDEAS RESULTING FROM RESARCH INTO TRANSMISSION OF POWER DOWN THE WELL	158	
A7.1.8	DOWN-HOLE PUMP	159	
A7.1.8.1	DESIGN IDEAS RESULTING FROM RESEARCH INTO DOWN-HOLE PUMPS	160	
A7.1.9	CONTROL SYSTEM	160	
A7.1.9.1	DESIGN IDEAS RESULTING FROM TREND ANALYSIS OF CONTROLSYSTEM	161	

APPENDIX A7.2

CASE ST	<u>"UDY: MORPHOLOGICAL ANALYSIS OF DOWN-HOLE PUMP</u>			
A7.2.1	INTRODUCTION	163		
A7.2.2	MORPHOLOGICAL APPROACH APPLIED TO THE DOWN - HOLE RECIPROCATING PUMP.	163		
A7.2.3	NECESSARY TIME CONSUMING DETAIL AND MARCHING EVALUATION	172		
A7.2.4	THE HISTORY AND LOGIC OF THE DEVELOPMENT OF THE COLUMN SYSTEM FOR (TUBE WELL) RECIPROCATING PUMPS	177		
A7.2.4.1	Main functional and specification requirements of the pump column	178		
A7.2.4.2	Derivation of critical parameters involved in column buckling	180		
A7.2.4.3	Pump column design diagrams	181		
A7.2.4.4	Derivations related to the above figures	181		
A7.2.4.5	Spreadsheets for design of the column	183		
A7.2.5	RARE DIAGRAMS FROM OLD BOOKS AND MANUFACTURERS, CATALOGUES	188		
A7.2.6	SUMMARY AND COMMENTS	198		
APPEN	APPENDIX A7.3			

CASE STUDY: EARLY SOLAR THERAMAL PUMP PHOTOGRAPHS AND PATENT MATERIAL.	200

Innovative Mechanical Design with a Case Study of Pumping Systems for Low Yield Tube Wells

BIBLIOGRAPHIES AND REFERENCES

B2: Bibliography and References for Pumps, Ground Fluid Technology, Technology and Relevant 22: History	B1:	Bibliography and References for Engineering Design Process, Methodology and Science	207
	B2:		228

B3: Bibliography and References for Historical Research

240

FIGURES AND TABLES

CHAPTER 2

Figure 2.1:	2.1: Feasible options for solar powered pumping systems, adapted from Fraenkel, (B2-1986)		
Figure 2.2:	Model of my 1975 thermal solar pump	12	
Figure 2.3: A table produced in 1995 showing the range of knowledge, tools, procedures, activities and representat engineering designer deals with		22	
Figure 2.4:	The long stroke Canadian Imperial pump manufactured in the late 1800s	24	
Figure 2.5:	A Yellowtail pump of conventional design produced by W D Moore and Co. of Western Australia	25	
Table 2.1:	Typical component and overall efficiencies of solar thermal pumps	14	
Table 2.2:	Some published examples of overall efficiencies of solar thermal pumps	15	
	CHAPTER 3		
Figure 3.1:	Shared Memory in Design	32	
Figure 3.2:	Pahl and Beitz model of their systematic process	37	
Figure 3.3:	Cross model of his more flexible ASE process	38	
Figure 3.4:	Burger model of his process involving parameter analysis	39	
Figure 3.5:	Creative synthesis in the Burger Process	40	
Figure 3.6:	ure 3.6: Ullman's diagram related to design decisions		
Figure 3.7:	ure 3.7: TRIZ Principle of Solution by Abstraction		
Figure 3.8:	gure 3.8: SIT Example of Wear Problem in Elbow of Hydraulic or Pneumatic Solids Transport System		
Figure 3.9:	gure 3.9: Summary of the SIT idea provoking process for inventive problem solving		
Figure 3.10:	Algorithmic application in CAE	53	
Figure 3.11:	Schematic of the design process after Dixon, B1-1984	55	
Figure 3.12	Iterative model of the design process after Dixon, B1-1984	56	
Figure 3.13:	Dixon's redesign architecture, B1-1984	56	
Figure 3.14:	Architecture of a knowledge-based system showing an inference engine	57	
Figure 3.15:	Overall architecture of the "Schemebuilder" environment, after Bracewell and Sharpe, B1-1996	58	
Figure 3.16:	"Schemebuilder" computer skills compared with human designer skills	58	
Figure 3.17:	Pugh's Total design activity model	61	

continued over

FIGURES AND TABLES continued

CHAPTER 4	ŀ
-----------	---

	CHAFTER 4		
Figure 4.1:	Pump classification chart (after Karassic, B2-1986)	66	
Figure 4.2:	Taxonomy of Technical Systems, Hubka and Eder, B1-1999		
Figure 4.3:	Example of the various models of technical systems (after Hubka and Eder, B1-1999)	70	
Figure 4.4:	Classification of Connecting Organs containing the Genus: Ball Bearings, (Hubka and Eder, 1999)	71	
Figure 4.5:	gure 4.5: Showing master function and master organ structure, master layout and detail for the genus of hydrodynam journal bearings (Hubka and Eder, B1-1999)		
Figure 4.6:	Tracing the evolution of the common bucket pump used in water wells	79	
Figure 4.7 (a):	Description of some of the series of US patents about long stroke rotary/reciprocatory motion converters. In each case the main new element of the invention and its function(s) are listed	80	
Figure 4.7 (b):	Earlier US patents of the long stroke rotary/reciprocatory motion converter class	81	
Figure 4.7 (c):	Later US patents of the long stroke rotary/reciprocatory motion converter class	82	
Figure 4.8:	Diagram summarising the elements of TREND analysis, stage one of the author's TREND-MORPH-PDS methodology	85	
Table 4.1:	Sub-modules for a three-wheeled vehicle for use on small holdings	86	
<i>Table 4.2:</i>	Sub-modules for a pump design case study (Chapter 7)	88	
	CHAPTER 5	100	
Figure 3.6:	Ullman's diagram related to design decisions	100	
	CHAPTER 6		
Table 6.1:	A general check list to assist the development of the PDS	105	
	CHAPTER 7 - CASE STUDY		
Figure 7.1:	This chart is derived from an updated version from Karrassik (1986) of a chart originally known as the "Wislicenus Chart". Note: US parameters including specific speed. The chart is for bare shaft single impeller pumps	110	
Figure 7.2 part (a):	Chronological classification from ancient times to the nineteenth century of major events of each category relevant to the ground-water pump (Dartnall, 2002)	114	
Figure 7.2 part (b):	Chronological classification of major events of each category relevant to the ground-water pump from nineteen hundred to the present (Dartnall, 2002)	115	
Figure 7.3: (a)	Pomona Two Piston Quick Return Smooth Flow Pump. (b) Downie Double -acting Direct Connected Steam Borehole Pump fitted with two plungers having Ashley valves	119	
Figure 7.4:	The general categories for trend examination during product design	122	
Figure 7.5:	Promotional UniPump summary sheet as appearing on J Dartnall's website	133	
Table 7.1:	Product Design Specification sheet (PDS) for the pumping system	124	
	APPENDIX A 7.1		
Figure 7.2 part (a) - repeated:	Chronological classification from ancient times to the nineteenth century of major events of each category relevant to the ground-water pump (Dartnall, 2002)	142	
Figure 7.2 part (b) - repeated:	Chronological classification of major events of each category relevant to the ground-water pump from nineteen hundred to the present (Dartnall, 2002)	143	
Figure A7.1.1:	Pounder manually powered drilling rig developed by Cranfield University	149	
Figure A7.1.2:	Human power required for conventional manual sludging estimated by researchers at Cranfield University	149	
Figure A7.1.3:	Comparison of spoil quantities for various bore diameters	150	
Figure A7.1.4:	Morphological Chart showing different power source, prime movers, down-hole transmissions and down-hole pumps	157	
	APPENDIX A 7.2		
Figure A7.2.1:	Code for rapid graphical generation of down-hole pump configurations	164	
Figure A7.2.2:	Graphical generation of down-hole pump configurations	165	
Figure A7.2.2 - continued:	Graphical generation of down-hole pump configurations. –continued over.	166-	
	Mast manual dauble active connect extendeble down hals Unitering One Planes 47.2.2 (12)	172	
Figure A7.2.3:	Most recent double acting, ganged, retractable, down-hole UniPump. See Figure A7.2.2 [13]	173	
Figure A7.2.4:	Earlier double acting, ganged, down-hole UniPump. See Figure A7.2.2 [18]	173	
Figure A7.2.5:	Total UniPump system including the long stroke, wellhead reciprocator (LSWHR); earlier double acting, ganged, down-hole UniPump (see Figure A7.2.2 [18]); UniPump double acting drive cable and off the shelf delivery pipe	174	

continued over

FIGURES AND TABLES continued

APPENDIX A 7.2 - continued

Figure A7.2.6: Earlier solid model of double acting, ganged, down-hole UniPump. See Figure A7.2.2 [13]. In this model, DI DFA and Design for maintenance are yet to be considered.		<i>I</i> , 175	
Figure A7.2.7: Some early solid models constructed for generation of down-hole pump configurations		176	
Figure A7.2.8:	Total UniPump system including the long stroke, wellhead reciprocator (LSWHR); earlier double acting, ganged, down-hole UniPump (see Figure A7.2.2 [18]); UniPump double acting drive cable and off the shelf delivery pipe. Column buckling illustrated.	179	
Figure A7.2.9:	Aermotor Windmill manufactured in Australia by W D Moore since early 1900's	188	
Figure A7.2.10: An early Australian attempt at polymer down-hole windmill column and pump		189	
Figure A7.2.11: An early Australian attempt at polymer down-hole windmill column and pump		190	
Figure A7.2.12: A Dando-Ferry pump – see The War Office, Britain, B2-1936; Military Engineering (Vol. VI): Water Sup			
Figure A7.2.13:	A Dando-Ferry pump – see The War Office, Britain, B2-1936; Military Engineering (Vol. VI): Water Supply. Principle of operation of down-hole pump as per Figure A7.2.14	192	
Figure A7.2.14:	A Dando-Ferry pump – see The War Office, Britain, B2-1936; Military Engineering (Vol. VI): Water Supply. Principle of operation similar to my Figure A7.2.2-[11]	193	
Figure A7.2.15:	A Demming pump – from a 1934 Demming catalogue. Principle of operation similar to my Figure A7.2.2-[15]	194	
Figure A7.2.16: An Ashley pump – from an early 1900's text book. Principle of operation vaguely similar to my spool pumps. Se Figure A7.2.2-[15,17,18]		195	
Figure A7.2.17:	An Ashley pump – from an early 1900's text book. Principle of operation vaguely similar to my spool pumps. See Figure A7.2.2-[15,17,18]	196	
Figure A7.2.18:	Possibly a 1500's installation at Augsberg in Germany	197	
Figure A7.2.19: Down-hole system typical of the early 1800's described in section A7.1.3		198	
Table A7.2.1 (a):	Summary of some early symbolic models (combinatorial generation) of down-hole pump configurations	175	
Table A7.2.1 (b):	Combinatorial generation of some early symbolic models of down-hole pump configurations (morphological analysis of the first category, 10.00).	176	
	APPENDIX A 7.3		
Figure A7.3.1(a):	Solar thermal pump called the NH3 pump. This pump employed the Stirling Cycle with a liquid piston	200	
Figure A7.3.1(b):	Solar thermal pump called the NH3 pump. This pump employed the Stirling Cycle with a liquid piston	201	
Figure A7.3.2:			
Figure A7.3.3:	Layout diagram for Solar thermal pump called the NH3 pump. This pump employed the Stirling Cycle with a liquid piston	203	
Figure A7.3.4(a):	Patent diagram for Solar thermal pump called the NH3 pump. This pump employed the Stirling Cycle with a liquid piston	204	
Figure A7.3.4(b):	Patent diagram for the double acting version of the Solar thermal pump called the NH3 pump. This pump employed the Stirling Cycle with a liquid piston	205	

 Figure A7.3.4(c):
 Patent diagram for another version (constructed) of the Solar thermal pump called the NH3 pump. This pump 206 employed the Stirling Cycle with a liquid piston. This version the hydraulic over mechanical matching transmission intended to eliminate the need for the flywheel of Figures A7.3.4(a) and A7.3.4(b).
 206

END

Glossary of Abbreviations

AI	Artificial intelligence
ASE	Analysis, synthesis, evaluation.
BFGS method	Nonlinear optimization method of Broyden, Fletcher, Goldfarb
	and Shannon.
CAD	Computer aided design (sometimes drafting).
CAD-CAM	Computer aided design and manufacture
CAE	Computer aided engineering
CFD	Computational fluid dynamics
CBR	Case based reasoning.
CW	Closed world condition
DAC	Double acting cable.
DFA	Design for assembly.
DFM	Design for manufacture.
DFX	Design for X.
DH-UniPump	Down-hole UniPump.
DP	Design parameter.
EDP	Engineering design process.
FEA	Finite element analysis.
FR	Functional requirement.
GA	Genetic algorithm.
IPPD	Integrated product and process planning.
KBES	Knowledge based expert system.
KBS	Knowledge based system.
LSRM	Long stroke reciprocating mechanism.
LSWHR	Long stroke well head reciprocator.
LTM	Long term memory.
MS	Machine system.
OEM	Original equipment manufacturer.
OPEC	Organization of the Petroleum Countries. http://www.opec.org/
PDS	Product design specification.
PDM	Product data management
PE	Polyethylene.
PMDC motor	Permanent magnet direct current motor.
PVC	Polyvinylchloride.
QC	Qualitative change in problem characteristic
QFD	Quality functional deployment.
SIT	Structured inventive thinking.
STM	Short term memory.
TREND-MORPH-PDS	This is the engineering design methodology developed and
	investigated in this thesis.

TRIZ	Teoria Resheniya Izobretatelskikh Zadatch, which translates approximately into English as: Theory of Inventive Problem Solving.
TS	Technical system.
UDE	undesirable effect.
UNDP	United Nations Development Program.
UniPump	The proposed commercial registered name for the pumping system
	of this case study.
VLOM	Village level operation and maintenance.

Innovative Mechanical Design with a case study of Pumping Systems for Low Yield Tube Wells.

John Dartnall, 2003

This thesis focuses on combinatorial methods of invention/innovation/design emphasizing the manipulation of form (as distinct from the manipulation of function alone) that help the designer to generate a wide range of good design alternatives. It is based on my case study of a morphological analysis of a ground water pumping system suitable for low volume flow pumping.

The first premise of this approach is that the elements and functions of mature technologies such as mechanical machines are well documented and understood. Thus, innovations are more likely to involve new combinations of existing forms than the introduction of new machine elements.

The second premise is that valuable information is available about most elements and the more popular sub-systems and machines. That information has evolved, sometimes over time spans ranging to hundreds of years, but it has not usually been systematically documented and categorised, thus leaving opportunities to investigate these areas and discover good design possibilities. Further, some valuable information is available only anecdotally or is tightly held by the managements of the companies that have manufactured the device(s) or own the intellectual rights.

In recent years a proposed "design science" has been the subject of much research and many models have been proposed of processes for designers to follow. These typically model the design process in stages, including: clarifying the problem, conceptualising, embodiment selection and detailing.

It is widely recognized that industrial invention/innovation/design processes are non-linear, and so complex that, despite extensive research, design science and models are still at an immature stage.

The literature confirms that industry is often driven by cost/time constraints and short term thinking, rather than using "design science" methods.

My methodology (abbreviated as TREND-MORPH-PDS) is an original contribution to design science. It outlines three stages to be followed by the designer:

- 1. Start with a general goal(s). Break this down into sub-areas/systems, including: socioeconomic, near physical environment, power source, prime mover, gearing/matching, transmission, working sub-system and control system. Research and document historical trends in each of these areas and their possible influences on the design.
- 2. Apply morphological analysis to each sub-system, using rapid graphical techniques. Move to detail design for specific alternatives as satisficing sub-systems are identified.
- 3. At all times during these stages, take advantage of design knowledge/tools that are currently available, looking for ideas and opportunities. Work constantly on constructing the Product Design Specification (PDS). The conceptual design is complete when the PDS is finalized. Detail design, which would follow from the PDS is not treated in this thesis.

The methods and ideas put forward in this thesis and its case study are an original contribution to design science. They also identify issues and differences between design science models and the design processes seen in industry.

Several patentable inventions have resulted from my application of the methodology, and the dissertation is a significant contribution to the knowledge domains of mechanical machine design and the technology of ground water pumping.