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Innovative Mechanical Design with a case study of 

Pumping Systems for Low Yield Tube Wells. 

 
John Dartnall, 2003 

 
 
This thesis focuses on combinatorial methods of invention/innovation/design emphasizing the 

manipulation of form (as distinct from the manipulation of function alone) that help the designer to 

generate a wide range of good design alternatives. It is based on my case study of a morphological 

analysis of a ground water pumping system suitable for low volume flow pumping.   

The first premise of this approach is that the elements and functions of mature technologies such as 

mechanical machines are well documented and understood. Thus, innovations are more likely to 

involve new combinations of existing forms than the introduction of new machine elements. 

The second premise is that valuable information is available about most elements and the more 

popular sub-systems and machines. That information has evolved, sometimes over time spans 

ranging to hundreds of years, but it has not usually been systematically documented and categorised, 

thus leaving opportunities to investigate these areas and discover good design possibilities. Further, 

some valuable information is available only anecdotally or is tightly held by the managements of the 

companies that have manufactured the device(s) or own the intellectual rights.  

In recent years a proposed "design science" has been the subject of much research and many models 

have been proposed of processes for designers to follow. These typically model the design process in 

stages, including: clarifying the problem, conceptualising, embodiment selection and detailing. 

It is widely recognized that industrial invention/innovation/design processes are non-linear, and so 

complex that, despite extensive research, design science and models are still at an immature stage. 



 xiii

The literature confirms that industry is often driven by cost/time constraints and short term thinking, 

rather than using “design science” methods. 

 

 

My methodology (abbreviated as TREND-MORPH-PDS) is an original contribution to design 

science. It outlines three stages to be followed by the designer: 

1. Start with a general goal(s). Break this down into sub-areas/systems, including: socio-

economic, near physical environment, power source, prime mover, gearing/matching, 

transmission, working sub-system and control system. Research and document historical 

trends in each of these areas and their possible influences on the design. 

2. Apply morphological analysis to each sub-system, using rapid graphical techniques. Move to 

detail design for specific alternatives as satisficing sub-systems are identified. 

3. At all times during these stages, take advantage of design knowledge/tools that are currently 

available, looking for ideas and opportunities. Work constantly on constructing the Product 

Design Specification (PDS). The conceptual design is complete when the PDS is finalized. 

Detail design, which would follow from the PDS is not treated in this thesis. 

The methods and ideas put forward in this thesis and its case study are an original contribution to 

design science. They also identify issues and differences between design science models and the 

design processes seen in industry. 

Several patentable inventions have resulted from my application of the methodology, and the 

dissertation is a significant contribution to the knowledge domains of mechanical machine design 

and the technology of ground water pumping. 
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