Luminescent Solar Concentrators

for Fibre Optic Daylighting

Alan Arthur Earp
BSc App Phys (Hons)

Department of Applied Physics
University of Technology, Sydney
Australia

A thesis submitted for the Degree of Doctor of Philosophy
June 2005,
Resubmitted with revisions

February 2006



CERTIFICATE

I certify that this thesis has not already been submitted for any degree and is not
being submitted as part of the candidature of any other degree.

I also certify that the thesis has been written by me and that any help I have
received in preparing this thesis, and all sources used, have been acknowledged

in this thesis

Signature of Candidate

Production Note:

Signature removed
prior to publication.

Alan Arthur Earp

28-2-06

—

1l



Acknowledgements

I am deeply grateful to my supervisor, Prof. Geoff Smith, for his guidance
during the course of this work, and for his assistance in editing and ensuring the

physical correctness of all published work.

I would like to thank my co-supervisor, Jim Franklin, for his technical
insight and constant support during the multitude of challenges encountered in
this work, as well as his dedication to proofreading and editing my publications

and thesis chapters.

Many thanks are due to Paul Swift for his support and technical supervision
during the early stages of my candidature, and for passing on and explaining the

LSC stack model that laid the foundation for the theoretical work.

I would also like to thank Chris Deller for her co-operation and collaboration
at various stages of the project — particularly regarding the modelling of TRIMM

diffuser particles. Your assistance was much appreciated.

To my wife, Catherine, I wish to convey sincere thanks for putting up with
my ‘tunnel vision’ approach to getting my thesis finished. Your patience and
support were much appreciated and they have finally paid off — I finished the

thesis!

Thanks are also due to the anonymous journal referees who provided useful

comments on the white paint BRDF work in chapter 8, making it more robust.

Finally, I wish to acknowledge the funding of an Australian Postgraduate
Award and stipend from the Australian Commonwealth Government, which
provided the financial backing required to enable me to undertake this research

full-time.

il



Author’s Publications

Journal Publications
Earp, A.A., Smith, G.B., Swift, P.D., Franklin, J. (2004).
Maximising the Light Output of a Luminescent Solar Collector.

Solar Energy 76 (6), 655-667.

Earp, A.A., Smith, G.B., Swift, P.D., Franklin, J. (2004).
Optimisation of a three-colour luminescent solar concentrator daylighting
system

Solar Energy Materials and Solar Cells 84, 411-426.

Smith, G.B., Earp, A., Franklin, J., Mccredie, G. (2001).

Novel high performance scattering materials for use in energy saving light
fittings and skylights based on polymer pigmented with polymer.
Proceedings of SPIE solar and switchable materials, San Diego, CA, United
States, pp. 10-18.

Earp, A.A., Smith, G. B. and Franklin, J.

BRDF of a Non-Lambertian diffuse surface at arbitrary angles of incidence
‘Lighting Research and Technology (submitted Dec. 2004, publication
pending)

Conference Proceedings
Earp, A.A., Smith, G.B., Franklin, J. (2005). Extraction of trapped light from
luminescent solar concentrators. Proceedings of AIP Congress, ANU, Canberra,

pp. 104-107 AIP.

v



Abstract

Daylight is an abundant source of energy that, if used effectively for lighting in
buildings, can improve quality of life and decrease the demand for electric
lighting and air-conditioning, reducing energy consumption and costs. Various
daylighting systems are available for daylighting the perimeter zones of
buildings. However, it is more difficult to transport daylight to remote rooms.
The few systems available for remote room daylighting are expensive or
disruptive to the building design and rely heavily on direct sunlight.

Luminescent Solar Concentrators (LSC’s) contain fluorescent dyes that
absorb both direct and diffuse sunlight without tracking the sun, causing
fluorescent emission in a specific wavelength range. LSC’s can potentially be
used for daylighting, but the only previously demonstrated system is rather
bulky and architecturally intrusive, and its output is yellow-green and difficult
to control. A stack of three coloured LSC’s is proposed in this thesis, which
produces a good white output of over 1,000 lumens under solar illumination of
100,000 lux. This output is transported to a remote room in narrow flexible
polymer light guides.

A theoretical model of the three-colour LSC stack was developed, which uses
the absorption and emission spectra of the dyes to predict the LSC’s output
spectrum and lumens. Studies with this model revealed the importance of
highly accurate absorption tails data for good prediction of the stack
performance. The model was used to determine the optimum size and dye
concentration for each LSC. A simple experimental method was devised for
characterising the optical performance of a fixed size LSC.

Half of the emitted light is trapped at the end of the light guides, so a ‘light
extractor’ is required to enable this light to escape. Ray tracing simulations were
carried out for various light extractor designs, from which the optimal light
extractor size, shape and configuration were determined for maximum optical
gain. With a good light extractor design, a gain of 1.7-1.8 should be achievable,
but with the current prototypes, the gain is limited to 1.2-1.3, limiting the output
to around 1,100 lumens. The violet collector sheet in the LSC stack was also
found to be problematic, so an alternative blue light source is proposed. Hence

there is room for improvement in future prototypes.
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