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Abstract
Daylight is an abundant source of energy that, if used effectively for lighting in 
buildings, can improve quality of life and decrease the demand for electric 
lighting and air-conditioning, reducing energy consumption and costs. Various 
daylighting systems are available for daylighting the perimeter zones of 
buildings. However, it is more difficult to transport daylight to remote rooms. 
The few systems available for remote room daylighting are expensive or 
disruptive to the building design and rely heavily on direct sunlight.

Luminescent Solar Concentrators (LSC’s) contain fluorescent dyes that 
absorb both direct and diffuse sunlight without tracking the sun, causing 
fluorescent emission in a specific wavelength range. LSC’s can potentially be 
used for daylighting, but the only previously demonstrated system is rather 
bulky and architecturally intrusive, and its output is yellow-green and difficult 
to control. A stack of three coloured LSC’s is proposed in this thesis, which 
produces a good white output of over 1,000 lumens under solar illumination of
100,000 lux. This output is transported to a remote room in narrow flexible 
polymer light guides.

A theoretical model of the three-colour LSC stack was developed, which uses 
the absorption and emission spectra of the dyes to predict the LSC’s output 
spectrum and lumens. Studies with this model revealed the importance of 
highly accurate absorption tails data for good prediction of the stack 
performance. The model was used to determine the optimum size and dye 
concentration for each LSC. A simple experimental method was devised for 
characterising the optical performance of a fixed size LSC.

Half of the emitted light is trapped at the end of the light guides, so a ‘light 
extractor’ is required to enable this light to escape. Ray tracing simulations were 
carried out for various light extractor designs, from which the optimal light 
extractor size, shape and configuration were determined for maximum optical 
gain. With a good light extractor design, a gain of 1.7-1.8 should be achievable, 
but with the current prototypes, the gain is limited to 1.2-1.3, limiting the output 
to around 1,100 lumens. The violet collector sheet in the LSC stack was also 
found to be problematic, so an alternative blue light source is proposed. Hence 
there is room for improvement in future prototypes.
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