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ABSTRACT

Reinforcement of nano-materials is important in many industrial processes, including 

the strengthening of biomedical implants for medical applications (for example artificial 

hip replacements). Human bone is mainly composed of collagen and hydroxyapatite 

(HAp) nanocrystals. HAp has been produced synthetically, with a structure and 

chemical composition almost identical to the HAp in human bone. When implanted, this 

synthetic material is accepted by the body. However, it has poor mechanical properties, 

making it unreliable for implant applications. The aim of this research is to combine 

biocompatible HAp with another biocompatible compound (carbon) to form a 

composite material with improved physical properties, including density, and strength.

The pure HAp was chemically synthesised using a precipitation reaction between 

calcium nitrate and diammonium hydrogenphosphate. The precipitate was centrifuged, 

washed and dried. After drying, the powder was heat-treated at 650 °C for 4 hours, and 

then hot isostatically pressed (HIP), at 100 MPa, 900 °C, in argon gas. Carbon 

nanotubes (CNTs) were chosen to reinforce the HAp based on their extreme flexibility 

and strength. Two production methods of incorporating CNT material (between 2 wt% 

and 10 wt% CNTs) into the HAp have been investigated: chemical precipitation 

reinforcement and physical reinforcement.

Full electron microscopy and diffraction characterisations of the pure and composite 

materials have been completed. The HIP process forms a dense pellet, with no voids 

between the CNT material and the HAp matrix. All CNTs imaged in the TEM had 

minimal degradation to the CNTs, with no visible change in the appearance. 

Unfortunately, the as supplied CNT material contained pockets of graphite which were 

non-uniformly distributed through the HAp matrix. Hence, the mixture was not 

homogeneous, and the CNTs were not bonding directly with the HAp. Neutron 

diffraction characterisation confirms that the crystal structure of the HAp was not 

affected by the CNT inclusion. Neutron diffraction patterns collected before and after 

sintering show that the CNTs must be heated in an inert atmosphere or a vacuum to 

prevent the CNT material from oxidising. TEM confirms no obvious visual damage to
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the CNTs in the material. Neutron diffraction data have enabled the positions of the 

hydroxide bonds to be determined. Small-angle-neutron scattering showed that the 

surface morphology was rough. The CNT material dominated the neutron scattering 

results in the composite samples, which minimised the information obtained from the 

HAp matrix.

A range of physical properties of the pure HAp and the composite samples were 

measured. These included the density, porosity, surface area, hardness, fracture 

toughness, and Young’s modulus. Two complementary techniques have been employed 

to measure the hardness; the Vickers microhardness and the Berkovich nanoindentation 

techniques. The density of the HIP samples of all of the materials was greater than 

~94% of the theoretical density, with pure HAp materials as high as ~99%. The 

hardness values for the material measured by micro-indentation were quite high - either 

equal to or greater than the literature values. Unfortunately, this resulted in a lower 

fracture toughness, which was not improved by the addition of the CNTs. It is possible 

that, if the graphite phase were removed from the material, the fracture toughness could 

improve. Current CNT production methods do not allow full removal of the graphite.

Optical micrographs from the Vickers indentation tests of the composites show varying 

stages of lateral crack patterns formed, suggesting plastic deformation below the 

surface. This was consistent throughout all samples. The results from nanoindentation 

of the bulk material showed that, overall, the samples with the CNT material had a 

lower Young’s modulus than the pure HAp samples (for both the laboratory synthesised 

and the commercial material). The microhardness and nanoindentation work showed 

that all of the samples were influenced by an indentation size effect, where the hardness 

decreased with increasing load.

Further work for increased fracture toughness in these composites requires the 

production of a pure CNT material (with no graphite impurity) for incorporation with 

the HAp. It is possible that, without the graphite impurity to bind the CNTs, they will 

spread more homogeneously throughout the HAp matrix, and bond along the CNT 

length. No pure CNT material was commercially available at the time of submission of 

this thesis.
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