
Evaluation of Web Applications

Through Simulation of Web Designs

by

Pedro Alexandre Ferreira Teixeira Peixoto,

Thesis

Thesis submitted for the degree of

Doctor of Philosophy

University of Technology, Sydney

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for

a degree nor has it been submitted as part of requirements for a degree except as

fully acknowledge within the text.

I also certify that the thesis has been written by me. Any help that I have

received in my research work and the preparation of the thesis itself has been ac­

knowledged. In addition, I certify that all information sources and literature used

are indicated in the thesis.

Signature of Candidate

ProProProddduuuctioctioctionnn NNNoootetete:::
SigSigSig nnnatatatuuurere re rereremmmooovvveeeddd pppriorriorrior tototo pppuuubbblicliclicatatationionion...

[

Acknowledgments

I would like to thank all the people that helped and supported me during the last

years, without whom this work would not have been possible.

I would firstly like to thank my supervisors, Dr. KK Fung and Prof. David

Lowe, for their advice, feedback, and continuous support throughout these last years.

The completion of this thesis would not have been possible without their help.

I would like to thank the Portuguese Government, in particular to the ‘Fun-

dacao para a Ciencia e Tecnologia (FCT)’, which generously offered me a Ph.D.

scholarship to study at UTS. My research would not have been possible without

their support.

Thank you also to Pat Skinner for proofreading the thesis.

I would like to thank all my friends and flatmates in Australia who always

supported me through all the difficult times. Their friendship made me feel that I

was not alone. I would also like to thank all my friends in Portugal, who never let

me feel I was on the other side of their world.

I would like to thank my mother, father, sister, and remaining family, for their

love and understanding during this long journey. Lastly, I would like to dedicate

this work to Beatriz, my newborn niece, for whom the world has more than one

explanation and life is an ongoing thesis.

IV

Contents

Acknowledgments iv

List of Figures x

List of Tables xiv

Glossary xviii

Abstract xxi

Chapter 1 Introduction 1

1.1 Focus and Purpose.. 6

1.2 Significance to the Area.. 7

1.3 Contributions... 8

1.4 Outline of the Thesis.. 9

Chapter 2 Literature Review 10

2.1 Software Engineering.. 10

2.1.1 Software Process Models.. 14

2.1.2 Testing for Quality... 17

2.1.3 Simulation as a Verification and Validation Process................ 19

2.2 Web Engineering... 22

v

2.2.1 Difference from Traditional Software Development................. 23

2.2.2 Methodologies ... 24

2.2.3 Models .. 28

2.2.4 The Testing Phase... 40

2.2.5 Simulating for Testing... 42

2.3 Hardware Description Languages... 44

2.4 How the Present Research Differs from Existing Work...................... 46

Chapter 3 Methodology 50

3.1 Research Strategy .. 52

3.2 Research Design ... 56

3.3 Data-gathering and Analysis ... 61

3.4 Threats to Validity.. 66

3.4.1 Enforcing the Validity of the Experiment 69

3.5 Summary of the Experiment.. 73

Chapter 4 The Web-design Simulation Model 74

4.1 The Simulation Study... 74

4.2 Objectives of the Simulation Model.. 79

4.3 The Content of the Simulation Model ... 80

4.3.1 The Four-layer Model Definition.. 82

4.3.2 Hierarchy of the WSM Entities... 89

4.3.3 The User Interaction Model.. 91

4.4 The Simulation Stimuli .. 92

4.5 Layer Interface Definition... 95

4.6 The Simulation Output .. 99

4.7 Assumptions and Simplifications... 99

4.8 Methodology of the Simulation..100

vi

4.9 Verification and Validation of the Proposed Web-design Simulation

Model... 102

4.9.1 Summary...103

Chapter 5 The Web-design Description Language 105

5.1 A Formal Description Language for Web Simulation.............................105

5.2 The Entities within... 107

5.2.1 The Page...108

5.2.2 The Link ...112

5.2.3 The Script ... 114

5.2.4 The Data...118

5.2.5 The Window.. 121

5.2.6 The User...123

5.3 Mapping of Existing Web Design Models.. 126

5.3.1 The WebML Case... 127

5.3.2 Mapping of Other Web Application Design Models................... 142

5.3.3 Summary.. 144

Chapter 6 The Web-design Simulation Tool 146

6.1 Design and Implementation.. 146

6.1.1 The Model and Runtime Arrays .. 148

6.1.2 The Simulator’s Databases ... 149

6.2 Interface.. 149

6.2.1 The Command Window..150

6.2.2 The Browser Window...151

6.2.3 The Main Window... 151

6.2.4 The Status Window.. 156

6.2.5 The Requirements Window... 156

vii

6.3 Auxiliary Modules... 157

6.3.1 The Stimuli Module...157

6.3.2 The Requirements Assessment Module... 158

6.3.3 The Model Verification Module.. 161

6.3.4 The Automatic Page Construction Module................................163

6.4 Verification and Validation of the Web-design Simulation Tool 163

6.4.1 Summary...165

Chapter 7 The Experiment 166

7.1 The Web Application Design ... 166

7.2 The Simulation Treatment... 170

7.2.1 The Test Cases.. 171

7.2.2 The Simulation Results ...176

7.3 The Implementation Treatment..186

7.3.1 The Implementation Results ...187

7.4 Verification and Validation of the Simulation Results.............................191

7.5 Discussion of the Results.. 192

7.5.1 Comparison of Treatments...194

Chapter 8 Conclusion 199

8.1 Summary and Critical Analysis..199

8.2 Conclusions about the Research Questions and Hypothesis......................207

8.3 Suggestions for Future Work ...210

8.4 Final Conclusions.. 212

Appendix A The WDL Syntax 215

Appendix B Syntax of WSM Stimuli 226

B.l The WSM Exogenous Stimuli..226

viii

B.2 The WSM Endogenous Stimuli..227

Appendix C The Simulator 228

Appendix D The Experiment Design 235

Appendix E The Experiment Simulation Results 248

Bibliography 274

IX

List of Figures

2.1 The Waterfall Model (Royce 1970).. 15

2.2 The Spiral Model (Boehm 1988) 16

2.3 Verification and Validation of Software Products (Sommerville 2004

p. 517)... 18

2.4 Evolution of Hypermedia Development Methods (Lang 2002) 39

2.5 Simulation and Synthesis of VHDL Models .. 46

2.6 The Bypassed Implementation Phase... 48

3.1 The Experiment ... 58

3.2 The Experiment - Data Analysis... 63

4.1 The Life Cycle of a Simulation Study (Balci 1987)............................ 77

4.2 The Simulation Modelling Process (Sargent 2003)............................... 78

4.3 The Web-design Simulation Model (WSM) .. 83

4.4 WSM Entities and Objects .. 84

4.5 Hierarchical Topology.. 90

4.6 The User Entity ... 92

4.7 How an actionLink Event is Processed.. 96

4.8 Dynamically Constructing a Page object... 97

4.9 The Event Procedure of Selecting a Button.. 98

x

4.10 The setData Content Layer Service.. 98

4.11 The getData Service Provided by the Content Layer......................... 99

4.12 The Services Provided by Each Layer... 100

4.13 Methodology of the Simulation Procedure... 101

5.1 Finite State Machine Representation of the Page Object.......................112

5.2 Finite State Machine Representation of the Link Object...................... 115

5.3 Finite State Machine Representation of the Script Object................... 117

5.4 Finite State Machine Representation of the Data Object.......................121

5.5 Finite State Machine Representation of the Window Object................ 124

5.6 Finite State Machine Representation of the User Object.......................126

6.1 The Simulator’s MVC Architecture.. 148

6.2 The Web-design Simulation Tool... 150

6.3 The Client-Side Script Pattern .. 154

6.4 The Server-Side Script Pattern.. 155

6.5 The Status Window of a Link Object... 156

7.1 The “client” Simulation Path... 179

7.2 The “administrator” Simulation Path .. 179

7.3 On the “Artist” Page (Slot 6)... 180

7.4 The Rendered “Artist” Page (Slot 6)... 181

7.5 The Automatically Constructed “Results” Page.................................. 182

7.6 The Rendered “AdminPage” Page.. 186

7.7 Testing Requirement R1.. 187

7.8 Testing Requirement R5.. 191

A.l The entity Declaration Definition..215

A.2 The architecture Declaration Definition..216

xi

A.3 The Page Entity Structure...216

A.4 The Page Architecture... 217

A.5 The Link Entity Structure...218

A.6 The Link Architecture... 219

A.7 The Script Entity Structure..220

A.8 The Script Architecture..221

A.9 The Data Entity Structure ..222

A.10 The Data Architecture... 223

A.ll The Window Entity Structure...224

A.12 The Window Architecture...224

A.13 The User Entity Structure...225

A.14 The User Architecture... 225

C.l The Simulator’s Database...230

C.2 An Example of the Browser Window in Model Mode........................... 231

C.3 An Example of the Browser Window in Runtime Mode........................232

C.4 An Example of an XML File of a Page Object..................................... 233

C. 5 An Example of the Rendition of an XML File, Done by the Automatic

Page Construction Module... 234

D. l The Design Model Database Structure... 235

D.2 The WebML Design - the “Client” Site View...236

D.3 The WebML Design - the “Administration” Site View......................... 237

D. 4 The WDL Mapping of the WebML Design.. 238

E. l Simulation Results - TimeSlots 0 to 6...251

E.2 Simulation Results - TimeSlots 7 to 14... 252

E.3 Simulation Results - TimeSlots 15 to 22 ... 253

E.4 Simulation Results - TimeSlots 23 to 30 ... 254

xii

E.5 Simulation Results - TimeSlots 31 to 38 ... 255

E.6 Simulation Results - TimeSlots 39 to 46 ... 256

E.7 Simulation Results - TimeSlots 47 to 54 .. 257

xiii

List of Tables

3.1 Qualitative Data Analysis... 66

3.2 Summary of the Research Design... 73

5.1 Simulation of the Page Entity..109

5.2 The Page Entity Definition... 110

5.3 Page Entity Simulation Features..Ill

5.4 Simulation of the Link Entity... 113

5.5 The Link Entity definition.. 114

5.6 Simulation of the Script Entity...115

5.7 The Script Entity Definition... 116

5.8 Simulation of the Data Entity...119

5.9 The Data Entity Definition...120

5.10 Simulation of the Window Entity...122

5.11 The Window Entity Definition... 123

5.12 Simulation of the User Entity... 125

5.13 The User Entity Definition..125

5.14 The WebML Elements and the WDL Patterns..128

5.15 Template Which Maps a WebML Page into WDL....................................130

5.16 Setting the WDL Page Attributes..130

5.17 Template for the WebML Link... 131

xiv

5.18 Example of Mapping a WebML Link Element... 131

5.19 Setting the WDL Link Attributes.. 132

5.20 Functional Patterns.. 132

5.21 The Required Pair of Data and Script Entities Needed to Access a

Central Database.. 133

5.22 Rules for the Script Entity when Mapping a Database Publishing and

Database Management Patterns..134

5.23 Template Which Maps a WebML Data Unit into WDL...........................135

5.24 Example of Mapping a WebML Data Unit...136

5.25 Template Which Maps a WebML Index Unit into WDL..........................137

5.26 Template Which Maps a WebML Create Unit into WDL........................138

5.27 Example of a WebML Entry Mapping...139

5.28 Template for WebML Global Parameter...140

5.29 Template of a WebML Get and Set Unit.. 141

5.30 Requirements a WADM Must Meet to Enable a Meaningful Simulation. 143

5.31 Features a WADM Should Possess to Enable Simulation.........................144

6.1 The Web-design Simulation Tool Requirements...147

6.2 Example of an Event File.. 158

6.3 Page, Link, Script, and Data set Requirements Commands.................... 160

6.4 Window and User Requirements Commands..160

6.5 Functions for Evaluation of Requirements.. 161

6.6 A Simple Requirement Function...161

6.7 Features of the Model Verification Module... 162

7.1 WebML Units Present in the Design... 169

7.2 The T1 Test Case... 172

7.3 The T2.1, T2.2 and T2.3 Test Cases... 173

xv

7.4 The T3.1 and T3.2 Test Cases... 175

7.5 The T4 Test Case... 176

7.6 The T5 Test Case... 177

7.7 Summary of the Test Cases.. 178

7.8 The “artist” Table Content...178

7.9 The “album” Table Content... 178

7.10 The “user” Table Content...178

7.11 The “cart” Table Content...178

7.12 Simulation Results for Test Case T1 and T2.1.. 180

7.13 Simulation Results for Test Case T2.3..182

7.14 Script “CheckLogin” variables for Test Case T3.1...............................183

7.15 Simulation Results for Test Case T3.1... 184

7.16 Simulation Results for Test Case T4...184

7.17 The “cart” Table Content... 184

7.18 Simulation Results for Test Case T3.2..185

7.19 Simulation Results for Test Case T5...185

7.20 Implementation Results for Test Case T1.. 187

7.21 Implementation Results for Test Case T2.1... 188

7.22 Implementation Results for Test Case T2.2... 188

7.23 Implementation Results for Test Case T2.3... 189

7.24 Implementation Results for Test Case T3.1... 189

7.25 Implementation Results for Test Case T3.2... 190

7.26 Implementation Results for Test Case T4.. 190

7.27 Implementation Results for Test Case T5.. 191

7.28 The Functional Requirements Assessment Results....................................195

7.29 Comparison of the Implementation and Simulation Treatments. ... 197

B.l User Interaction Stimuli... 227

xvi

C.l Simulator Control Stimuli.. 228

E.l The Experiment Stimuli... 248

E.2 The Contents of the Simulator “pages” Table.. 258

E.3 The Contents of the “links” Table ...260

E.4 The Contents of the “scripts” Table ..264

E.5 The Contents of the “scriptvars” Table ... 267

E.6 The Contents of the “datas” Table...269

xvii

Glossary

ACM - Association for Computing Machinery

Functional requirement - A description of a function a system or system com­

ponent must be able to perform (IEEE standard glossary of software engineering

terminology - 610.12-1990 1990)

Functional Content - Measure used in this research for the evaluation of each

treatment and defined as the observable factors a treatment provides and their

structure and value

Functional Information - Measure used in this research for the evaluation of each

treatment and defined as the level of contribution of the observable factors for the

evaluation of functional requirements

HDL - Hardware Description Language (Garzotto et al. 19916)

HDM - The Hypertext Design Model (Garzotto et al. 19916)

IEEE - Institute of Electrical and Electronics Engineers

OOHDM - The Object-Oriented Hypermedia Design Model (Schwabe and Rossi

1995a)

Prototyping - A development technique that uses a preliminary version of part or

all of the software product for user feedback, feasibility evaluation, or other issues

supporting the development process (IEEE standard glossary of software engineer­

ing terminology - 610.12-1990 1990)

RMM - The Relationship Management Methodology (Isakowitz et al. 1995)

xviii

Simulation - “(1) A model that behaves or operates like a given system when

provided with a set of controlled inputs. (2) The process of developing or using a

model as in (1).” (IEEE standard glossary of software engineering terminology -

610.12-1990 1990)

Software Development Cycle - The period of time ranging from the start of the

software product project to its delivery (IEEE standard glossary of software engi­

neering terminology - 610.12-1990 1990)

Software Life Cycle - The period of time ranging from the conceptualization of

the software product project to when it is no longer available (IEEE standard glos­

sary of software engineering terminology - 610.12-1990 1990)

SRS - System Requirements Specification

UIM - The proposed User Interaction Model

UML - The Unified modelling Language (OMG 2005)

Use cases - capture who (actor) does what (interaction) with the system, for

what purpose (goal), without dealing with system internals. A complete set of use

cases specifies all the different ways to use the system, and therefore defines all

behaviour required of the system, bounding the scope of the system (Malan and

Bredemeyer 2001)

Validation - Confirmation by examination and provisions of objective evidence

that the particular requirements for a specific intended use are fulfilled (IEEE stan­

dard for software verification and validation - 1012-1998 1998)

Verification - Confirmation by examination and provisions of objective evidence

that specified requirements have been fulfilled (IEEE standard for software verifica­

tion and validation - 1012-1998 1998)

VHDL - VHSIC Hardware Description Language (VHSIC being an acronym for

Very High-speed Integrated Circuit) (IEEE Standard VHDL Language Reference

Manual - 1076 2002)

xix

WAD - A Web Application Design. A high-level description of how a system is

organized and operates, usually using one or more Web Application Design Models.

It shows the objects or object classes in a system and, where appropriate, the rela­

tionships between these entities (Sommerville 2004)

WADM - A Web Application Design Model. Allows the representation of the re­

sult of the design activity by providing a framework or language which can be used

to compare and document the specifications of applications (Lowe and Hall 1999)

Web Engineering - Web engineering is the establishment and use of sound sci­

entific, engineering and management principles and disciplined and systematic ap­

proaches to the successful development, deployment and maintenance of high quality

Web-based systems and applications (Murugesan et al. 1999)

WebML - The Web Modeling Language (Ceri et al. 2000)

WDL - The developed Web-design Description Language

WSM - The proposed Web-design Simulation Model

xx

Abstract

Evaluation of Web Applications

Through Simulation of Web Designs

The development of Web applications continues to pose numerous difficulties for

Web developers due to the inherent complexity of the projects. Although method­

ologies have been proposed to tackle the development of these projects, they are

especially concerned with setting guidelines and defining tasks to better structure

the design phase. For this purpose, several design models have been developed and

used in the design of Web applications, providing a suitable level of abstraction

and independence from a specific implementation. However, the other phases of

the Software Development Cycle have not received the same level of attention from

researchers. In particular, the test phase is lacking in theory and tools to effec­

tively and efficiently verify the project requirements. Evaluation of the functional

requirements of a system under development is commonly done by its partial im­

plementation and test. This requires the development and coding of a prototype

XXI

of the system to be able to verify the design. Furthermore, this prototyping effort

could be partially or totally in vain if tests find that the design does not meet the

intended requirements.

This research argues that it is possible to simulate Web application design

models for the verification of functional requirements. Furthermore, it claims that

simulation is able to provide as much functional information as an implementation

would. The research proposes a multi-layer Web-design Simulation Model, which

was developed to enable simulation of Web application designs and takes into con­

sideration developers’ key design concerns. Furthermore, a Web-design Description

Language was especially developed to provide meaningful simulation of design mod­

els. It borrows concepts from the hardware engineering field where simulation is

extensively used for design verification. By performing simulation directly on the

designs, the need for prototyping for functional evaluation is reduced or no longer

necessary and verification of the requirements can be performed as soon as a design

is available. This has the potential to contribute to a faster Software Development

Cycle of Web applications.

To prove the feasibility of the simulation and the meaningfulness of its ap­

plication, an experiment on a selected Web application design was conducted. This

entailed a comparison between the implementation and simulation results for the

functional requirements evaluation. The comparison was performed by assessing the

functional content and information of the results that both methods provided. The

comparison showed that, although both are suitable for verification of functional

requirements, the proposed Simulation Model provides additional functional infor­

mation and a more intuitive analysis for the evaluation of Web application designs.

xxn

Chapter 1

Introduction

The innovative and ubiquitous medium that the World Wide Web constitutes, pro­

vides Web developers with prodigious support for information sharing and Web

applications development. However, along with the advent of the Internet a mul­

titude of new types of development problems arose. Furthermore, the complexity

that Web applications development has reached is far greater than was foreseen only

a decade ago (Ginige and Murugesan 2001). It is argued that having the content

so inextricably intertwined with the functionalities of the applications poses new

challenges to developers (Pressman 2000).

For a certain time, and probably due in part to the immaturity of the field,

an ad hoc development approach prevailed. A team would be assembled with all

those involved contributing to the project with their heterogeneous knowledge, back­

grounds, and skills (Lang and Fitzgerald 2005). The development frenzy and the

short time-frames in the early years of Web application development projects have

surely contributed to this approach, preventing more scientific planning. Web ap­

plications evolved from Web sites and differ from them in the ability a user has to

alter the state of the business logic on the server (Conallen 2000, p. 10). Without

suitable engineering-based methodologies, models and tools, the development of a

1

Web application strongly relied on the developers’ innate ability and previous work

experience to carry out the project. As Isakowitz et al. (1995) once noted, hyperme­

dia design was “more of an art than a science”. It worsened when new technologies

were later introduced, enabling dynamic hypermedia, server and client-side scripts,

back-office integration, e-commerce, and e-business. Clearly, the complexity of the

new field could not be addressed by just the skills of the developers, and the adop­

tion of a set of good practices was needed. As a consequence, a paradigm shift was

advocated and various models, methodologies, and tools started to emerge, of which

some examples are the Hypertext Design Model (Garzotto et al. 19916, Garzotto

et al. 1993, Esprit 1990), the Object-Oriented Hypermedia Design Model (Schwabe

and Rossi 1995a, Schwabe et al. 1996, Rossi et al. 2001), and the Relationship Man­

agement Methodology (Isakowitz et al. 1995).

Models are extremely useful when requiring an abstract view of a system.

They allow developers to focus on a specific aspect or from a particular perspective

of the system, hiding complexities and breaking down the system into manageable

parts (Johnson and Henderson 2002). Therefore, the development and adoption

of models to tackle Web application complexities constitute no surprise. Similarly,

development methodologies arose to tackle the complexity of software development

projects. However, unlike models, they seek a more global perspective and better

understanding of the entire development project, by setting tasks and guidelines

that aid engineers throughout the project, ensuring high-quality systems.

In the development of software products developers follow a number of tasks

that need to be performed if a high-quality end product is to be achieved. In the

software engineering field, the period of time from starting to develop a software

product till its delivery is called Software Development Cycle, which, if including

the operation, maintenance and, sometimes, retirement phase, is called Software

Life Cycle (IEEE standard glossary of software engineering terminology - 610.12-

2

1990 1990). By modelling the Software Development Cycle, the consistency and

structure of each activity within the project can be supported. There are several

valuable reasons for using Software Development Cycle models in a development

project. Examples of these include: achieving a high quality product; controlling

the project’s schedule; and minimising project cost slips. These reasons alone make

the adoption of a Software Development Cycle model indispensable in a large and

complex software development project. A large number of models have been pro­

posed to tackle software development. The two most well known of these are the

Waterfall model (Royce 1970) proposed by Royce, and the Spiral model by Boehm

(Boehm 1986). But whatever the adopted model, there are a number of phases that

they all share and address. These phases investigate and describe what functional­

ities the final product should implement, how they will be implemented, and how

they will be validated and verified. These phases entail and are usually referred to

as: requirements analysis, design, coding, testing, system delivery, operation, and

maintenance (Pfleeger 2001, p. 47).

To cope with the new challenges that Web application development has

brought, a new branch of engineering emerged in the late 1990’s - Web Engineering

(Murugesan et al. 1999). It borrows concepts, methods and methodologies from the

field of computer and software engineering and utilises them in the field of Web appli­

cation development. Web engineering states that in order to achieve a high-quality

Web application, the development cycle must be tailored to tackle the complexi­

ties which Web development poses, namely requirements elicitation and analysis,

development methodologies, maintainability, scalability, testing and documentation

(Ginige and Murugesan 2001, Ginige 2002a).

The development cycle of a Web application usually follows a mix of in­

cremental and iterative phases (Pressman 2000). After the definition of the sys­

tem’s services, constraints and goals, during the requirements analysis and definition

3

phase, a suitable design is elaborated which, it is thought, will address and meet

all or at least a significant number of the client requirements. This design will lead

to a partial implementation or prototype, which is thoroughly tested. The testing

phase objectives are to verify and validate the intended functional requirements.

Depending on the results of the testing phase, the development may go back to

the analysis and design phase for further refinement, and a new development cycle

begins. The decision to stop the development cycle and deliver the final product is

taken based on a number of factors, such as a cost-benefit analysis of continuing the

development, budget and time-to-delivery constraints.

Much research has been done in the analysis and design phases, which has

led to a rich body of research literature. However, testing, which is one of the

most important procedures to verify and validate the application, has not received

the same level of attention by the research community. This is bewildering, since

testing typically accounts for a substantial proportion of the total cost of developing

a software product (Harrold 2000, Moriguchi 1996). In a recent survey carried out

by the Business Internet Group of San Francisco it was found that a large number

of federal Web sites in the US showed some sort of failure within the first 15 minutes

of a typical user visit (BIGSF 2003). Furthermore, another survey conducted by

the Cutter Consortium (Epner 2000) found that nearly half of the projects did not

meet the intended functionalities.

When compared with other engineering development fields, Web applications

developers lack suitable tools and sound methods from which to choose for the

testing phase. One meaningful case of an engineering field where such tools and

methods exist and are used is the hardware development field, in particular in

the microchip design and development. One especially important method which is

used for the verification of microchip designs is the use of simulation techniques.

Simulation addresses the issue of whether the product being built is the right one

4

and if it is being correctly designed. Furthermore, simulation is performed on the

design representing the targeted hardware system without the need to build any

physical device. Hardware description languages (HDLs) have brought a formal

and systematic approach to the microchip design process, offering simulation and

synthesis capabilities, thus reducing the complexity of management and development

times.

Simulation is an intensively used technique in all fields of engineering. Its

importance and contribution for a better understanding of a system is clearly stated

by Shannon, who defines simulation as:

Definition 1 Simulation: “the process of designing a model of a real system and

conducting experiments with this model for the purpose of understanding the be­

haviour of the system and/or evaluating various strategies for the operating of the

system” (Shannon 1998).

It is these experiments, understanding and evaluation of a model that give

simulation its importance. Simulating Web application design models allows the

evaluation of their functionalities and the assessment of different system designs to

be performed. This, in turn, has the potential to improve design error detection,

contributing to a decrease in development time and assuring a high-quality end

product. Since the design phase is a necessary stage in a well-planned Web appli­

cation development project, the ability to simulate the design model results in a

double benefit: firstly, there is no need to partially implement the design (prototyp­

ing) to evaluate its functionalities; secondly, since design is one of the first phases

to be carried out in a development project, design errors can be promptly detected.

This research argues that simulation of Web applications design models is not only

feasible, but also useful for functional requirements evaluation.

5

1.1 Focus and Purpose

Many Web applications have grown to be so large and complex that empirical and

ad-hoc methods of Web development are no longer capable of delivering high-quality

nor on-time development of Web applications. New testing models and tools should

permit an easy and agile verification of the design requirements without the need for

partial implementations, as is common practice in other fields of engineering, with

the notable example of hardware development. Computer-assisted simulation and

testing have been successfully used in hardware development for years, reassuring

developers that the future system meets all the intended requirements.

There has been much research into the simulation of how Web applications

react under a certain number of constraints, such as network loads, simultaneous user

access, or page loading times. There has, however, been little consideration given

to the utilisation of simulation for the functional evaluation of the design itself. As

with the hardware development field, this would assist developers in observing how

the future application reacts to stimuli in different scenarios. Furthermore, since no

prototypes are needed for testing purposes, simulation can start as soon as a design

is available and potential design errors can be discovered early.

The present research focuses on the testing phase of the development of

Web applications, in particular, on the verification of the functional requirements

of designs. Furthermore, simulation will be used to assess these requirements in a

similar manner to how it is used in the assessment of hardware designs. For this

purpose, the research has developed a suitable model of Web applications that sup­

ports their simulation. Additionally, the development of a Web-design description

language that supports functional evaluation will complement the simulation model

and define the simulation framework. Finally, the computer implementation of the

simulation framework will provide developers with a powerful tool for the functional

evaluation of Web applications.

6

1.2 Significance to the Area

The proposed goal of formally describing a complex Web application with the objec­

tive of simulating its functionalities for evaluation purposes is enticing. Simulation

for this purpose has not yet been explored; however, we argue that the field has

now reached a level of maturity that allows this to occur. Identification of the

requirements a Web application design model must possess to enable simulation

and the definition of a suitable Web application simulation model, allow simulation

techniques to be used for functional evaluation of Web application designs.

The development of Web applications can represent a large investment of

time and resources, with the testing phase of the development cycle significantly

contributing to it. Simulation has been successfully and intensely used in the devel­

opment and testing of complex electronic digital designs in the hardware engineering

field. Similarly, by providing a powerful testing technique of Web designs, simulation

has the potential to improve the testing phase, eliminate the need for prototyping

for functional evaluation purposes and, inherently, reduce the development time.

Furthermore, simulation allows extensive functional evaluation to be carried out,

potentially leading to a high quality final product. From an economic point of view,

reliable code and faster deployment time are synonyms for higher customer satis­

faction and reduced development costs. Costs required to correct errors are directly

proportional to the phase in which they are discovered, since they become increas­

ingly entangled into the code in later phases (Moriguchi 1996, p. 197); the earlier

they are found and corrected, the less they contribute to the overall development

cost.

7

1.3 Contributions

Upon completion, the contributions of the research to the Web development field

will be substantial. One of its contribution is the definition of a simulation model

that addresses the key development concerns of Web engineers by defining a four-

layer model, with each layer responsible for a specific and well-determined aspect

of a Web application. This multi-layer simulation model allows an in-depth and

meaningful evaluation of Web application design functionalities.

The development of a suitable description language that complements the

simulation model, allows the representation of the key functionalities and structure

of a Web application design in a formal manner. This language emulates the behav­

iour and structure of a Web application in such a way that functional verification

by simulation techniques is made possible. Furthermore, scenario- and goal-based

evaluation of the Web application functionalities are made straightforward, system­

atic, and less strenuous, since there is no need for partial implementations of the

design.

There is little doubt that Web-based applications will continue to increase

in complexity. New technologies will continue to emerge, supporting new features

and services. It is then of paramount importance that Web engineers have available

powerful auxiliary testing methods that can aid in Web application development

projects. By supporting the testing phase, simulation of design models will enable

developers to explore new and more intricate designs of Web applications, and con­

tribute to achieving a higher quality of the end product. It is believed that the

impact of this research will be similar to what occurred in the hardware design field,

where descriptions languages have allowed developers to explore increasingly more

complex techniques, designs and system architectures.

As a result of the present research the author has made a number of public

presentations and some of his work has been published in peer-reviewed international

8

conference proceedings (Peixoto et al. 2004a, Peixoto et al. 20046, Peixoto 2005).

1.4 Outline of the Thesis

This thesis is structured in eight chapters and five appendices. In Chapter 2, a

review of the relevant literature is made and the hypothesis of the research is stated.

Chapter 3 describes the research methodology required to prove the hypothesis.

Chapter 4 proposes a Web-design Simulation Model for Web applications, and the

developed Web-design Description Language is presented in Chapter 5. Next, the

tool based on the developed simulation framework is described in Chapter 6, and

Chapter 7 presents the results of an experiment using the simulation tool. Chapter

8 draws the conclusions and proposes possible future work. The five Appendices

present respectively the Web-design Description Language syntax, the syntax of

the allowed set of simulation stimuli, the simulation tool database structure and

commands, the Web application design used for the experimental testing of the

hypothesis and, finally, the results of the simulation of the experiment’s design.

9

Chapter 2

Literature Review

This chapter discusses related research that supports and elucidates the topic of

the present thesis. The issues that are under examination cover all the aspects

that this research directly or indirectly addresses. The following sections take an

in-depth look into the topics of software engineering, software development models

and methodologies, software quality, Web engineering, Web development models

and methodologies, testing and simulation.

2.1 Software Engineering

It can be argued that the development of Web applications form a case of the

development of a software product (Glass 2003, Hoick 2003, Kappel et al. 2004).

Therefore, this chapter starts by investigating the software engineering literature,

with particular emphasis on the development of software products. These classic or

traditional approaches, based on several decades of sound research and experience,

will allow some conclusions to be drawn regarding properties and objectives that

both software and Web development projects share and pursue.

Software engineering is the branch of systems engineering that facilitates the

10

development of large and complex software systems (Finkelstein and Kramer 2000).

It defines and models the phases that a project should go through to successfully

achieve a high-quality product within the predetermined time-frame and budget.

These models are especially concerned with the development of software products,

and they include a set of guidelines and activities for managing and controlling

the design and building phases of a software system. This forms part of what

is often referred to as the Software Life Cycle Methodology, which Bosch et al.

define as consisting of “a collection of tools, techniques, and methods which provides

roles and guidelines for ordering and controlling the actions and decisions of project

participants during the software life cycle”, whereas the Software Life Cycle can be

defined as “the time required to define, develop, test, deliver, operate and maintain a

(software) system” (Bosch et al. 1982). These phases usually entail: (Pfleeger 2001,

p. 47)(Moriguchi 1996, p. 182):

• Requirements analysis and definition

• System/Software/Program/Module design

• Coding/Debug

• Module/Program/Software functional/System test

• System delivery

• Operation

• Maintenance

The requirements analysis phase basically consists of the study of the user

needs, culminating in the definition of the system, hardware, or software require­

ments (IEEE standard glossary of software engineering terminology - 610.12-1990

1990). It is a contract between a customer and the development team, often resulting

11

in a written document called a System Requirements Specification (SRS). The SRS

describes what the system should be able to accomplish and under what conditions

it will operate. There are several advantages of using a well-written SRS during

software development, namely: it establishes an agreement between customers and

suppliers on the functionalities of the software product; potentially leads to a reduc­

tion of the development effort; provides a good estimation of the costs and duration

of the project; provides a baseline for validation and verification; eases software

transfer to new users and machines; and provides a basis for later refinement of the

product (IEEE guide to software requirements specifications 1984). It is, therefore,

important that the SRS be written in an unambiguous manner, be complete, veri­

fiable, consistent, modifiable, traceable, and be used during all of the phases of the

project.

These requirements describe the functionalities that the software product

should implement - the functional requirements - as well the restrictions and exter­

nal constraints which the final product must obey - the non-functional requirements.

Formally, the definition of requirements may be expressed as a set of descriptions

of the system behaviour, application domain information, constraints and restric­

tions of the operation, and the properties and attributes the product shall possess

(Kotonya and Sommerville 1998). Furthermore, the functional requirements specify

the stimuli to the system, the responses from it, and the “behavioural relationships

between them” (Young 2004).

The design phase consists of the conceptualisation of the product from the

requirements. During this phase, which is sometimes named “programming-in-the-

large” (DeRemer and Kron 1975), the system is partitioned into independent opera­

tion units. The scope of these units depends on the level of abstraction of the design.

When the product design is available, the actual coding and implementation may

commence, sometimes referred to as “programming-in-the-small” (Favre 1997, Caz-

12

zola et al. 1998).

The next phase deals with the important issue of testing the product. This

phase accounts for a significant amount of the total development cost (Moriguchi

1996, p. 198). For this reason, testing may and should begin early in the Software

Life Cycle and not only after the final implementation of the software product.

The sooner requirements, design and implementation errors are discovered, the less

impact they will have on the overall project duration. The earlier in the Software

Life Cycle the errors are identified, the less expensive correcting them becomes.

The remaining phases consist of the delivery of the system, its operation,

and maintenance. System delivery can be as simple as handing over the product,

or as complex as encompassing training and providing documentation. A successful

system delivery will allow users to confidently operate the system to its full extent

and capabilities, leading to a high client and user satisfaction level. Operation is

considered as the phase in which the system is being used by the intended audience

in a real environment. And finally, maintenance is any task that involves changing

the system after it has commenced operation.

The above-mentioned stages set guidelines for the different phases a software

product is likely to go through. They describe what is expected in each phase,

namely, what requisites are needed to perform that specific phase, and what results

should be expected at its completion. They do not, however, impose a structurally

rigid format on the Software Life Cycle. How and when each phase is addressed

during the Software Life Cycle, and if it is an interactive, recursive or incremental

cycle, depends on the software process model. These models organise all phases into

a development process, and, as such, describe in an orderly manner when each phase

shall begin and what input and output are expected. Numerous software process

models have been proposed, with each having its own advantages and pitfalls.

13

2.1.1 Software Process Models

There are several reasons for modelling a software development process. It helps

the development team to understand what is required in each phase and how close

the current development is from those goals. The following paragraphs describe the

most common models found in the literature.

The Waterfall Model

One of the first proposals of software process modelling was the Waterfall model

(Royce 1970). Based on his own experience with large software development projects,

Royce put forward a model that encompasses the main phases often found in such

projects (see Figure 2.1). The Waterfall model was extensively used by the United

States Department of Defense (DoD) for several years, and still is for some projects.

It is a simple yet comprehensive description of the main tasks involved in software

development projects. Each step has its input from the previous step and produces

the input for the following step. It is a simple cascade of steps, but even Royce

believes that a real software project is not as linear as the model describes.

In reality, iteration among steps occurs frequently in software development.

Problems with the Waterfall model have been extensively discussed in the literature

(Boehm 1988, Clear 2003, Laplante and Neill 2004, Guimaraes and Vilela 2005).

Usually these refer to the inherent iterative nature of software development, which

the linearity of the model fails to adequately address. Furthermore, it is only at a

very late stage that a running application is delivered and tested, resulting in an

equally late evaluation. This usually leads to serious issues if it is found that require­

ments need to be changed or that the implementation does not fully or correctly

implement them.

14

Software
Requirem ents

Operations

Program Design

Analysis

Testing

Coding

Figure 2.1: The Waterfall Model (Royce 1970)

The Spiral Model

Boehm proposed a model which has risk as an intrinsic characteristic of software

development (Boehm 1986, Boehm 1988). Risks, in this context, can be informally

defined as “something that can go wrong” (Sommerville 2004, p.73). These risks

often have an impact on the costs and schedule of the development, therefore risk

minimisation is an important activity. In this model there are four distinct cycles:

concept, requirements definition, system design, and implementation. Each cycle of

the spiral involves four activities shown as the four sectors in Figure 2.2: determi­

nation of objectives, risk assessment and reduction, development and verification,

and planning.

Although addressing the issue of risks as part of the development process,

System
Requirem ents

✓

15

Cumulative
cost

Evaluate alternatives,
identify, resolve risksDetermine

objectives,
alternatives,
constraints >

Bisk
___ analysis

Risk
analy- J Prototype's Prototype \ Prototype \ Operational

2\ 3\ prototype
Commitment

Simulations, models, benchmarkspartition Requirements plan
life-cycle plan

/ Software /
requirements / Software

/ product
design a

Detailed
design

Requirements
ment plan | validation^

Integration
and test

plan

Design validation
and verification

j Integration
J and test

Implementation! A“®P,anc®j

Develop, verify
next-level product

Figure 2.2: The Spiral Model (Boehm 1988)

therefore contributing to minimise costs and duration of the project due to them,

the Spiral model has two main problems: first, some unnecessary overheads are

introduced in small projects, and second, the model does not directly address the

issue of maintenance (Lowe and Hall 1999, p. 243).

16

2.1.2 Testing for Quality

Testing is the stage of the Software Development Cycle in which the product is

Verified and Validated (V&V). It ensures that the software product meets the spec­

ifications and the expected functionalities. Definition of these processes can be

found in the IEEE standard for software verification and validation - 1012-1998

where they are expressed as:

Definition 2 Validation - “Confirmation by examination and provisions of objec­

tive evidence that the particular requirements for a specific intended use are fulfilled. ”

Definition 3 Verification - “Confirmation by examination and provisions of ob­

jective evidence that specified requirements have been fulfilled. ”

Informally, Validation addresses the question ‘Are we building the right prod­

uct?’, therefore evaluating if the system meets all the needs and expectations of the

user. Verification asks the question ‘Are we building the product right?’, therefore it

evaluates if the system meets its specifications. There are two approaches to Verifica­

tion and Validation: Software inspections and Software testing (Sommerville 2004, p.

517). The former checks the system representation by looking into the requirements

specification document, design models and the actual coding. These inspections are

performed without executing the system even if some of the inspections are fully

automated, such as when using tools that automatically perform an analysis of the

source code; for this reason they are called static V&V techniques. Software testing

involves the execution of the system’s partial or complete implementation and, due

to its nature, it is called a dynamic technique. It entails the execution of the system

implementation with test data and posterior analysis of its outputs and behaviour.

Since it relies on an executable source code, this technique can only be carried out

when an implementation is available.

17

Program
testing

Formal
specification

High-level
design Program

Prototype

Detailed design

Software
inspections

Figure 2.3: Verification and Validation of Software Products (Sommerville 2004 p.
517)

Figure 2.3 shows that software inspections and testing are two complemen­

tary approaches to system checking and analysis. As seen in the figure, testing can

only be performed when a prototype or an executable program is available. On the

other hand, software inspections can be performed at all stages of the software devel­

opment process. Sommerville argues that there are three advantages of inspection

over testing, namely: errors found during testing can hide other errors; inspections

can be executed on partial system versions; and other quality attributes such as

compliance with standards, portability, and maintainability, are also possible to be

considered by inspection techniques. The effectiveness of software inspections over

testing is supported by a number of studies found in the literature. Examples of

these studies can be found in Eagan (1986) and Selby et al. (1987).

There are many methods and techniques to promote and assure high-quality

software products. One of them is by evaluating1 the software product against

the requirements specification (Harrold 2000). Although it is difficult to define the

concept of a high-quality software product, it has been traditionally described as

the property a developed product exhibits when it meets its specifications (Crosby

1979). Researchers have long been arguing that testing should not be a unique stage

1In this research, the term ‘evaluation’ is used as having the meaning ‘qualitative verification’.

18

performed at the end of the implementation but a process that should be carried

out through the entire Software Development Cycle, strongly interacting with the

remaining development phases (Gelperin and Hetzel 1988). In fact, some developers

argue that “testing is never finished, only abandoned” (Reasoning 2003).

2.1.3 Simulation as a Verification and Validation Process

Simulation has long been proposed and used in the engineering field for software

inspection purposes (Adrion et al. 1982, Zhu et al. 1997). Simulation is performed

on a specification or design of the system and not on some partial or complete

implementation. This means that testing may commence during the design phase,

without having to wait for the implementation phase to produce some prototype.

By performing simulation, potentially faulty behaviour of systems can be observed

and system outputs can be compared against the expected results. A definition of

simulation is given by IEEE as:

Definition 4 Simulation - “(1) A model that behaves or operates like a given

system when provided with a set of controlled inputs. (2) The process of develop­

ing or using a model as in (1)” (IEEE standard glossary of software engineering

terminology - 610.12-1990 1990).

In his work, Shannon (1998) enumerates several advantages of the use of

simulation, namely:

• Testing of new designs without having to implement them

• Investigating new procedures and information flow without any disrupt on the

ongoing operations

• Identification of bottlenecks and testing of possible solutions

• Test hypothesis about how and why certain phenomena occur

19

• Control of the time, and as such, the possibility of simulating the system as

fast or as slow as desired

• Better understanding of how the system works and which are the most impor­

tant variables to performance

• The ability to experiment with new and unfamiliar situations and scenarios.

These benefits led simulation to become one of the most interesting tech­

niques for developing and experimenting with new models in engineering. Discrete

event simulation, a particular case of simulation, assumes that output variables may

only take discrete values. Banks and Carson (1986) define this type of simulation

as aone in which the state of the system changes only at a set of discrete points in

time called event times”. The simulation is performed by increasing the simulated

time and changing the state of the system according to its model. Contrasting with

this type of simulation is the continuous event simulation. In a continuous event

simulation, the system may change its state continuously over time.

What engineers are searching for is how the system behaves and what its

outputs are due to a given stimuli. With simulation, precisely repeatable experi­

ments and analysis of the inputs versus outputs are possible. One other advantage

is that “real-world” experiments are often impossible, undesirable, or too expensive

to carry out. Different scenarios may be simulated and faulty situations can be

replicated, contributing to a better understanding of the system's behaviour.

The use of simulation techniques for verification and validation purposes of

systems have for long been proposed and many examples can be found in the litera­

ture body. Of particular interest for this thesis is the use of simulation techniques for

the verification of real-time systems. A Real-Time System (RTS) may be defined as

one system in which its correctness depends on the logical result of computation and

on the time at which these results are produced (Nissanke 1997, p. 2). This defini­

20

tion closely resembles a Web Application operation, since its results are dependent

not only of a logical result but on the time at which these results are computed.

Simulation testing of real-time systems and software provides many benefits

such as cost savings and error detection. Examples of using simulation as a testing

technique for a RTS can be found in Pasahow (1973), where a simulation structural

framework for computer-aided testing of software programs in an interactive real­

time environment is described; in (Henry et al. 2003) where simulation testing of

real-time software is used for early error detection and hardware/software integration

testing; and in (Evanco and Yang 1992), where Petri nets - which are a graphical and

mathematical modeling tool which can be aplied to many systems (Murata 1989) -

are used for simulation purposes.

One other area where simulation has been used as a verification and valida­

tion tool is in the design of user interfaces. Laakso and Laakso (2003), for example,

describe a model in which the user interface is designed at the begining of the

project enabling early testing of the system’s suitability for its intended use. Func­

tional design and implementation is left to later stages in the project, after the user

interface specification has been tested. Testing of the user interface, as proposed by

the authors, is performed by the use of simulation techniques. The authors argue

that by simulating the user interface and system’s applicability to the intended use

at an early stage of the development project and by leaving functional design and

implementation to later stages, any eventual changes needed will still be easy to

make.

Simulation consists of the design of a dynamic model of a dynamic sys­

tem in order to better understand the system’s behaviour or to evaluate the op­

eration of the system in various scenarios (Ingalls 2002). In order to achieve an

accurate representation of the system to be simulated, a simulation study should

address several phases and processes. Balci (1987) proposes a simulation study

21

methodology consisting of ten phases and processes. These phases are: (^Commu­

nicated Problem; (2)Formulated Problem; (3)Proposed Solution Technique; (^Sys­

tem and Objectives Definition; (5)Conceptual Model; (6)Communicative Model;

(T)Programmed Model; (8)Experimental Model; (9)Simulation Results; and (10)In-

tegrated Decision Support. Ten processes link these ten phases, and address each

step of the study. Furthermore, Balci proposes Verification and Validation tech­

niques to be used throughout the study, in order to ensure credible simulation re­

sults (Balci 1994, Balci 1995, Balci 1997). This methodology will be systematically

used throughout the present research, in order to achieve a high quality, accurate

and credible simulation model.

2.2 Web Engineering

Web Engineering emerged to tackle Web applications development from scientific

and engineering perspectives. It recognises these development projects as a partic­

ular case of software development. Hence, it borrows concepts, techniques, models,

and methodologies from the software engineering field and adapts them to this new

type of project. Web engineering has been trying to address the problems that have

arisen from these projects with a systematic and disciplined approach for develop­

ing, documenting and maintaining Web applications (Costagliola et al. 2002). Web

engineering may be defined as:

Definition 5 Web Engineering (WebE): uWeb engineering is the establishment

and use of sound scientific, engineering and management principles and disciplined

and systematic approaches to the successful development, deployment and mainte­

nance of high quality Web-based systems and applications” (Murugesan et al 2001).

Web engineering tries to cover a wide range of areas, including requirements

specification and analysis, Web-based system analysis and design, Web-based sys­

22

tem development methodologies and techniques, testing, verification and validation

techniques and tools, quality assessment, control and assurance, development mod­

els, Web project management, user-centric development and user modelling.

2.2.1 Difference from Traditional Software Development

Although Web application development is usually viewed as a form of software de­

velopment, there are some remarkable differences between Web development and

other forms of software development (Ginige and Murugesan 2001). These prevent

or make it difficult to use many of the traditional approaches. Firstly, the short

development times and product life cycles are often an obstacle to the use of con­

ventional software principles, which are considered too time consuming to implement

and follow. Developers do not have the time to deal with them and a more agile

approach is usually adopted (Pressman 2000, Reifer 2000). The short time-frames

of Web projects demand a light development methodology, otherwise there is a high

probability that these methodologies will simply not be used.

Secondly, users must be acknowledged as being an important part throughout

the Software Life Cycle (Ginige 20026). How users will access the content, the paths

followed and actions performed may very well influence how the Web application

should be designed and implemented.

Thirdly, due to the variety of the backgrounds and expertise of the people

involved in the development team, there will be inevitable misunderstandings and

misinterpretations of the intended goals and processes, which may occur at any stage

of the Software Development Cycle. Although software engineering may suffer from

the same problem, in the Web domain it assumes greater relevance because of the

high heterogeneity level of the team (Pressman 1998, Hansen and Deshpande 1997).

Lastly, there usually is some fuzziness in the definition of the problem, es­

pecially concerning the analysis of the requirements (Bolchini and Randazzo 2005).

23

This implies that the development method must be able to quickly and adequately

respond to any changes in the requirements. Often requirements change during the

product’s life cycle and the development method must possess a rapid and appro­

priate reaction to minimise its implications on the project.

As Coda et al. (1998) have stated, much has been achieved in the software

development field, which provides technologies, methodologies, and tools for the

delivering of high-quality products in a timely and cost-effective manner. To achieve

similar goals and to promote the maturity of the Web application development field,

one has to follow a comparable approach. The following sections present the most

innovative and relevant models and methodologies used in the development of Web

applications found in the literature.

2.2.2 Methodologies

Until recently, Web applications were often developed without appropriate method­

ological support or tools, solely based on the common sense, skills and knowledge of

the individuals involved, much like the early years of software development (Coda

et al. 1998, Pressman 2000, Barry and Lang 2001, Kappel et al. 2004, Rosson

et al. 2005). The current trend, however, is to use the expertise gained with software

development projects and adjust them to the Web development paradigm.

Object-Oriented Hypermedia Design Method (OOHDM)

The Object-Oriented Hypermedia Design Method is a model-based methodological

approach for the design of hypermedia applications. It consists of four different

activities used in a “mix of iterative, incremental and prototype-based styles of

development” (Schwabe and Rossi 1995a, Schwabe and Rossi 19956), namely:

1. Conceptual model design

2. Navigational design

24

3. Abstract Interface design

4. Implementation

During the conceptual model design phase, an object-oriented model of the

application domain is built. This results in a conceptual schema which entails a set

of classes, relationships, and sub-systems, capturing the domain semantics in such a

manner that it remains independent from the types of users and tasks of the system.

During this activity, OOHDM does not impose a method to use, instead it refers

to well-known object-oriented modelling principles such as the Object modelling

Technique (OMT) (Rumbaugh et al. 1991).

The navigational design activity takes place when the definition of the naviga­

tion structure in terms of navigational contexts has been established. Navigational

contexts consist of navigational classes such as nodes, links, indexes and guided

tours. These are dependent on the intended users and different navigational models

may be developed for the same conceptual model, which allows different views for

different users.

During the abstract interface design activity, the interface is designed. How­

ever, to achieve independence from the implementation environment, the model is

purposely abstract. One of its main tasks is to determine which interface objects

will be displayed to the user, and “the way in which different navigational objects

will appear” (Schwabe et al. 1996).

Lastly, the implementation activity maps the interface objects into imple­

mentation objects. Unlike the three activities before, this time the runtime environ­

ment is taken into account. Although traditionally manually coded, some attempts

to automate this task have been proposed, such as the OOHDM-Web environment

(Schwabe et al. 1999) which relies heavily on templates and function libraries. Ac­

cording to Schwabe et al. (1996) the main contribution of OOHDM is how it actually

structures the design process. In fact, the final implementation of the web applica­

25

tion is achieved by several incremental iterations through the first three activities.

Relationship Management Methodology (RMM)

RMM is a methodology which consists of several steps for aiding the design of large

hypermedia applications, which supports the process of development and mainte­

nance (Isakowitz et al. 1995). The seven steps are:

1. Entity-Relationship Design

2. Slice Design

3. Navigational Design

4. Conversion Protocol Design

5. User-Interface Design

6. Runtime behaviour Design

7. Construction and Testing

The Entity-Relationship (E-R) Design forms the basis upon which the hy­

permedia application is built, and E-R diagrams are drawn to expose the relevant

information of the application. At the end of the Navigation Design stage, these

diagrams are used to produce a Relationship Management Data Model diagram

(RMDM) which is the cornerstone of the whole methodology. It provides the means

to describe the information and navigation of Web applications. Furthermore, RMM

separates the data, structure and user-interface aspects of a Web application, con­

tributing to its easier design, development and maintenance. The main contribution

of RMM lies in the logical layer between the presentation layer (where the data is

displayed) and the storage layer (where the information is physically organised).

26

The original proposed RMM had severe restrictions concerning the combina­

tion of different entities in a single screen, which was unable to model the content

of complex Web pages. Another limitation concerned the re-use of low-level designs

which was prevented by a forced top-down design methodology. These concerns

were addressed at a later stage, resulting in RMM Extended (Isakowitz et al. 1998).

Summary

Although methodologies have been proposed to tackle the complexity of Web ap­

plications development, there is always a need to test the application to assess its

conformance to the proposed functional requirements (Hieatt and Mee 2002, Lucca

et al. 2002, Elbaum et al. 2003). In fact, most of the researchers advocate a cycli­

cal and incremental Software Development Cycle, with several iterations through

the analysis, design, implementation, and testing phases (Schwabe and Rossi 19956,

Isakowitz et al. 1995). Furthermore, Nanard and Nanard (1995) point out the special

need of the Web development cycle for prototyping and intensive testing. Therefore,

functional requirements are tested based on these prototypes and not on the design

models themselves which, supposedly, are the ones that should capture them. Simu­

lation, on the other hand, would verify the requirements based on the design models

and not on prototypes which can, themselves, contain errors, misconceptions and

faulty implementations. Furthermore, if the requirements analysis phase is not prop­

erly conducted, only after the implementation of a prototype can developers perceive

faulty conceptual behaviour. If this scenario occurs, only on the next iteration and

cycle can analysis, design, and implementation errors be corrected. Simulation, by

not relying on prototypes, focuses on the verification of the requirements during

the design phase where they are captured. By closely grouping design and testing

phases without an intermediate implementation phase, simulation provides develop­

ers with a powerful technique which potentially leads to a faster development cycle

27

and high-quality products.

2.2.3 Models

Whatever methodology is chosen for a given Web application development project,

developers rely on Web application models for the design phase. These allow a

division of concerns of the different elements involved in the application, providing

suitable abstract notations without committing to a specific implementation. At

the end of this phase, a design of the application is produced and implementation

may begin. There is an abundance of design models, each with their own particular

characteristics. The next sections describe some of the most well known design

models found in the literature.

Dexter Hypertext Reference Model

As Halasz and Schwartz (1994) note, this model allows a comparison of the charac­

teristics and functionalities of Hypertext applications. The Dexter hypertext refer­

ence model considers three layers of a Hypertext application: (1) the run-time layer,

(2) the storage layer and (3) the within-component layer. The model’s main focus

is on the middle layer - the storage layer. The within-component layer is concerned

with the content and structure within the components of the application. However,

this layer is not elaborated in the Dexter model. The broad range of possible con­

tent and structure that can be included in components is such that this model does

not attempt to tackle them (Halasz and Schwartz 1994). In fact, the model treats

the components structure as being outside the hypertext model, and expects other

models more suitable to describe the structure of applications, documents or data

types to be used in conjunction with it, the result being that text, graphics or ani­

mation are treated as generic data. The storage layer assembles the components to

construct a hypertext network. The storage and within-component layers consider

28

the hypertext as a passive data structure* To add dynamic behaviour, a third layer

is provided - the run-time layer. The run-time layer supports the user with “tools

to access, view and manipulate the network structure” (Halasz and Schwartz 1994).

This layer enables the user to access view and edit hypertext. Once again, the model

does not attempt to provide a detailed description of the methods involved in such

operations. As a result, the model is not able to precisely describe and handle the

user’s interaction with the hypertext. This is an important issue when considering

model simulation, since user interaction is the main provider of stimuli that drives

the simulation.

Hypermedia Design Model (HDM)

One of the most prominent design models is the Hypermedia Design Model (HDM)

developed by Garzotto, Paolini and Schwabe (19916). It is, in fact, the basis for

two important methodologies described earlier in this chapter - the Relationship

Management Methodology and the Object-Oriented Hypermedia Design Model.

This model was part of an European project - the HYTEA project (Esprit

1990) - carried by the ESPRIT consortium whose objective was an engineering ap­

proach for authoring tools for hypertext development, thus the acronym HYperText

Environment for Authoring. The model claims that “systematic and rational struc­

tural decisions about the hypertext should be made before the actual hypertext

is ever written, so that coherent and expressive hypertext webs can be designed

instead of added-on.” (Garzotto et al. 19916). It borrows the concept of the entity-

relationship model from the database development field and extends it to a hier­

archical organisation. The approach is a design model used to describe hypertext

applications, consisting of basic blocks called entities that may be structured in

components and sub-components.

HDM uses the concepts of authoring-in-the-large and authoring-in-the-small

29

which can be found in the software engineering discipline. There are two main tasks

to perform in the authoring-in-the-large phase: the global and the instantiation tasks

(Garzotto et al. 1991a). The global tasks are concerned with classes of information

elements and, at the end, will result in an application schema, which represents

a high-level specification of the application’s main features. The interconnection

tasks will examine which information is represented by the classes and how they

are connected. The main goal of authoring-in-the-large is to define the topology of

the Web application before the hypertext is written. Authoring-in-the-small, as the

authors define it, refers to local tasks which deals with the actual information and

its specific look-and-feel implementation being presented to the reader.

HDM was developed as an aid for the authoring-in-the-large development

phase. The authors argue that authoring-in-the-small is strongly dependent on the

application’s specific characteristics and implementation, whereas authoring-in-the-

large displays similarities when used with different applications in a given domain.

Hence, the authoring-in-the-large phase must be addressed with high-level notation

and primitives as opposed to the traditional node-and-link approach. One of the

HDM goals is to free the developer from the implementation details, focusing on the

high-level issues of the design abstraction. Another goal is to identify, model, and

promote reusability of the most common hypertext application patterns.

As two of the aims of HDM is system independence and high-level abstrac­

tion, the relation between the implemented Web application and the model is some­

what loose, leaving some of the implementation issues to the browsing semantics

being used on the target system. This loose coupling between HDM and the tar­

geted browser semantics, concerning visualisation and the dynamic properties of the

hypertext, leaves three important aspects open to the designer:

1. What and how are the objects perceived by the user?

2. Which and how are links visible and navigable?

30

3. What behaviour do links possess?

As an example, a single-source-multiple-destination link mechanism does not

necessarily translate to a multiple active window display. By not defining and im­

posing constraints on the presentation of Web applications (although considering

but not incorporating some conceptual layout issues), HDM does not address some

of the authoring-in-the-small aspects, such as user interaction and user profiles, to

name a few. Furthermore, the entities used in HDM do not implement a well-

defined interface schema and the interconnection between semantics and syntax is

fairly informal.

Unified modelling Language (UML)

The Object Management Group (OMG 2005) defines the Unified Modeling Lan­

guage as “a language for specifying, visualizing, constructing, and documenting the

artifacts of software systems, as well as for business modeling and other non-software

systems” (OMG 2004, p. 2). UML is a modelling language which supports object-

oriented design and analysis.

UML is intended to be scalable and suitable across different domains. As a

result, there have been attempts to utilise it in the Web application development

field. For instance, in Baresi et al. (2001) UML and HDM are combined to produce a

Web development framework - UML’s Use Cases diagrams and UML’s Dynamic di­

agrams are extended and used to describe, respectively, operational and navigational

requirements, and to model Web operations. Another example is the Web Applica­

tion Extensions to UML (WAE), where Conallen proposes an extension to the UML

core to tackle the Web applications specificities (Conallen 1999, Conallen 2000).

This extension has brought formalism into the development process. However, the

Web Application Extensions mainly focus on the architectural and implementation

issues of a Web application, leaving the remaining navigational and presentation as­

31

pects with less support (de Koch 2001, p. 134). Moreover, WAE does not consider

content, navigation, and presentation as three distinct aspects of a Web application,

and hence does not contribute to the separation of concerns which is normal practice

in a project of such a nature.

A very promissing field is that of executable UML, which may be defined as a

particular usage (or profile) of UML that allows developers to define the behaviour of

a single subject matter in such detail that it can be executed (Mellor and Balcer 2002,

p. 7). An executable UML specification entails a set of models represented and

expressed as UML diagrams, that describe and define the conceptualization and

behaviour of the system under study. An executable UML specification comprises

three fundamental models: a class model expressed using UML class diagrams, the

state machines for the classes expressed using UML statechart diagrams, and the

states’ procedures or set of actions expressed using an action language.

Executable LTML relies on the action semantics specification for UML (OMG

2002). This specification defines the semantics of the actions, but not their syntax.

The goal of action semantics for UML is to make UML modeling executable, thus

allowing designers to test and verify the models, and even to generate 100% of

the code (Sunye et al. 2001). By making UML models executable, simulation for

verification purposes of UML models can be achieved. Transposing these concepts

into the Web Application field by meging action semantics and Web Application

Extensions to UML is just one step ahead and a very promising field.

WebML — The Web Modeling Language

WebML can be informally defined as “a notation for visually specifying complex

Web sites at the conceptual level” (Bongio et al. 2001). It uses a graphical notation

and XML syntax and consists of four models: the Data model, Hypertext model, the

Content Management model, and the Advanced Hypertext model (Ceri et al. 2000).

32

WebML is especially well suited for the conceptual modelling of data-intensive Web

applications (Ceri, Fraternali, Bongio, Brambilla, Comai and Matera 2002, Ceri,

Fraternali and Matera 2002). One feature worth noting is the support for user mod­

elling, with the notion of group and user, enabling Web applications to incorporate

personalised user profiles.

WebML does not propose another Data model, but follows the well-known

Entity-Relationship (E-R) notation. It is by using the E-R notation that the struc­

ture of the data used by the Web application is defined. The Hypertext model aims

at defining the front-end interface of the Web application, and it is composed of

several design elements such as pages, links and units. These units access the un­

derlying data and map it onto the pages. Therefore, every WebML design element

that has a graphic representation and that will be displayed to the user belongs to

this model. On the other hand, the Content Management model defines the design

elements that manipulate the application data. Operations such as creating and

deleting data are modelled by units belonging to this model. Finally, the Advanced

Hypertext model describes how everything can be combined into an executable Web

application. It defines the manner in which the several design units can be mapped

to an implementation.

WebML’s main objectives are the high-level description of a Web applica­

tion structure, separation of information content from presentation and navigation

concerns, automatic code construction based on the design, and personalisation
policies (WebRatio 2001). Furthermore, a tool - WebRatio® - that supports au­

tomatic code synthesis has been developed which highlights the design formalism

(WebRatio 2005).

33

Enhanced Object-Relationship Model (EORM)

The Object-Relationship model was first proposed by Rumbaugh (1987), whereby

n-ary relations are defined over objects. This model is a mix of the object-oriented

model with the entity-relationship model found in database theory and, as the author

states, ais particularly useful for designing and partitioning systems of interrelated

objects” (Rumbaugh 1987). The Enhanced Object-Relationship Model (EORM) is a

refined object-relationship model, wherein concepts such as attributes and behaviour

were added (Lange 1994). The core aspect of this model is to explicitly attach

semantic meaning to the relations of an object-oriented model. The motivation

for the EORM work was the disregard of classical object-oriented methods for the

object-interaction aspects.

It consists of three distinct frameworks, namely, the Class framework, in

which the different problem domain classes are identified and refined - that is,

attributes and operations specified, and inheritance determined; the Composition

framework, consisting of a reusable library of link class definitions, with two associ­

ated activities - composition identification and composition refinement; and the GUI

framework which consists of a reusable library of presentation definitions, and where

activities such as presentation, window identification, and mapping of classes and

compositions to presentations are performed. Furthermore, a support tool has been

implemented and provides graphical building and automates code generation for

prototyping purposes (Lange 1993). However, presentation of the model in browser

windows is not one of the foci of this model (Lange 1994, p. 373). As such, complex

window layout is not considered and user interaction with the graphical interface is

neglected.

34

HadeZ

HadeZ is a object-oriented language, with a formal syntax and semantics, based on

the Z and Z++ specification languages (German 2000). It aims to specify hypertext

designs without concern for how it must be implemented. Furthermore, HadeZ is

process independent and may be used with EORM, HDM, OOHDM or RMM. It

divides the specification into three parts: conceptual schema, structural schema,

and perspective schema. The most interesting characteristics of this language are

the support of property verification of the specification and the possibility of reusing

the design.

Although, the use of formal languages allow automatic verification of specifi­

cations, there are no current automatic code construction tools. In fact, the author

states that it might be a task impossible to fully achieve due to a HadeZ specification

being implementation dependent (German 2000, p.163).

W2000

The W2000 framework was first proposed by Baresi, Garzotto and Paolini. The

authors argue that Web application modeling can be divided into two main as­

pects: modeling the hypermedia and modeling of the operations (Baresi, Garzotto

and Paolini 2000). Furthermore, they claim that it is the integration of both these

aspects that result in the conceptual modeling of Web applications. The W2000

framework extends the latest version of HDM - the HDM2000 (Baresi, Garzotto,

Paolini and Valenti 2000) - with UML. According to the W2000 framework, the de­

sign of a Web application is divided into four dimensions: Information and Access

Structures design, Operations and Business Process design, Navigation design, and

Presentation design (Perrone et al. 2005). One of the most distinguishing features of

W2000 is the explicit modeling of the operations present in a Web application. Web

applications are modeled from not only the navigation and information perspectives,

35

but also from an operations perspective. This Operation perspective allows design­

ers to define single operations invoked by users and the logical transactions of the

services provided by the application.

The World Wide Web Design Technique (W3DT)

Bichler and Nusser proposed the World Wide Web Design Technique (W3DT) as

a new approach for the design of Web-based hypermedia applications. It consists

of two activities: the graphical modeling of the structure of the Web site; and the

computer generation of a running prototype of the system. The authors argue that

the W3DT approach differs substantially from other design models, since W3DT

aims to be a “design environment for the design of large-scale Web applications”

(Bichler and Nusser 1996) and that its design primitives are based on the HTML

functionalities. The basic primitives used are: diagram, layout, link, and page, which

can be dynamically generated as result of script execution. These basic primitives

are grouped into Sites, which forms the Web application design. The second ac­

tivity - the automatic generation of the code - is provided by the WebDesigner

Computer-Aided Software Engineering (CASE) tool. This tool allows Web develop­

ers to generate the necessary code from a W3DT model at any time. It also provides

support for the design process through a graphical editor, which allows inspection

and setting of the different primitives attributes and layout association to pages.

Although, W3DT may be suitable for the ‘authoring-in-the-large’ of hypermedia, it

does not model the Web application functionalities. Therefore, it does not provide

enough functional information for the evaluation of the functional requirements of

Web applications.

36

The Object-Oriented Method (OO-Metliod) and the Object-Oriented-

Hypermedia (OO-H)

The Object-Oriented Method (00-Method) was proposed by Pastor et ah. The

authors argue that it combines the “conventional” Object-Oriented methodologies

with Object-Oriented formal specification languages, in order to take advantage

of the 00 methodologies coming from the industrial context, and the 00 formal

languages which help to eliminate ambiguities of the elements. The 00-Method

consists of two components: the conceptual model and the execution model. The

conceptual model, which is further divided into the object model, the functional

model, and the dynamic model, attempts to obtain a definition of the system without

considering the implementation aspects - hence 'conceptual model5. The execution

model defines the implementation-dependent features of the future system, which

when used in conjunction with the conceptual model and a CASE tool produces

the 'functional software prototype5 of the system. The formalism of the conceptual

model specifications and the existence of a tool for the automatic construction of the

code are good indicators of the suitability of this model for simulation. However,

attempts at using simulation for functional evaluation of the resulting 00-Method

designs have not yet been reported.

Gomez et al. proposed the Object-Oriented-Hypermedia as an unified ap­

proach to the representation of the structure, behaviour, and presentation of Web

systems (Gomez et al. 2001). The authors claim that its main contribution is the

definition of a framework which is standards-based and captures the relevant prop­

erties of the modelling and implementation processes of Web application interfaces.

It does not attempt to model Web applications but rather to provide developers

with the semantics and notation for developing Web-based interfaces, which will be

later integrated with pre-existent application modules. A CASE tool complements

this approach, and generates the necessary code from the defined model. Through

37

00-H, device-independent front-end specifications can be obtained. However, the

OO-H does not attempt to model the underlying application, but to allow the de­

velopment of web-based interfaces for existing OO-Method applications (Cachero

et al. 2000).

Summary

Some of the existing Web application design models found in literature were de­

scribed. There are, however, many more design models. Christodoulou et al. (1998),

for example, classify existing hypermedia application development and management

systems into one of six approaches, namely: object-oriented, entity-relationship,

component-based, hybrid, open hypermedia, and others. In their work, the com­

parison is made through the evaluation of several criteria, such as: conceptual data

model design, abstract navigation model design, user-interface and run-time be­

haviour design, implementation issues, and evaluation of existing implementation

environments and tools. Conclusions of the study indicate that no single methodol­

ogy covers all the criteria efficiently, and that selection of a particular methodology

for hypermedia application development should be made on a case by case basis.

Furthermore, one of the evaluation criteria - the Quality testing criteria, which as­

sesses how much the development tool assist Web developers in evaluating the design

- was found to be one of the criteria having the lowest scores. This is an indication

of the lack of support of the existing development environments for the testing phase

of applications. Evolution of the different design methods found in the literature

can be represented in a diagram (Lang 2002), where the different methods and their

relation are shown (see Figure 2.4)2. This diagram suggests a continuous evolution

of the theory of design models which, based on the number of recent publications

2Note: the View-based Hypermedia Design Methodology (VHDM) proposed by Lee, Kim, Kim
and Cho (1999) enhances the existing RMM; the Scenario-based Object-oriented Hypermedia De­
sign Methodology (SOHDM) Lee, Lee and Yoo (1999) adopts a Object-Oriented technologies to
deal with rich semantics.

38

in this area, is not expected to slow down soon.

E-R Modelling * OMT
Dexter

EORM> OOHDM

HDM-Lite OOHDM-WEB
UML

Hypermedia
ExtensionsVHDM * SOHDM

Figure 2.4: Evolution of Hypermedia Development Methods (Lang 2002)

Design models translate the functional requirements into an abstraction of

the intended system, without committing to a specific implementation and technol­

ogy. Therefore, the functionalities of a system will be (or should be) represented

by the design. Even though carefully planned designs may present few conceptual

errors, there are those that will only be discovered when testing a prototype. This

happens due to the fuzziness of requirements and the complexity of Web applica­

tions. Furthermore, how the system will operate in a real-world situation is not

easy to determine without observing its behaviour. It is not only due to the fact

that most of the design models do not suitably capture system behaviour in a multi­

session environment; they also do not properly represent how the system will work in

a multi-user scenario. Although some design models consider personalisation (such

is the case of WebML), how the application will work in a real-world situation is

only effectively evaluated during the testing of a prototype.

Some of the described design models have an associated CASE tool which

generate the necessary code. This generated code usually consists of skeletons which

need to have detail added before they become fully functional. However, thorough

39

testing of complex Web applications usually requires other tools to automatically

perform the necessary tests. These testing tools usually use the generated code to

evaluate the functional requirements of the application. Therefore, it is necessary to

follow several steps before the functional requirements can be verified. On the other

hand, most of the design models do not have a CASE tool for the code construction.

In this case, Web developers usually rely on prototyping in order to evaluate the

application’s functionalities, resulting in a lengthy development cycle. This is where

simulation can be of assistance.

Simulation is, by definition, a technique for evaluating how a model behaves

in a given scenario. If developers could observe how the design model will func­

tioning in a “close to the real-world” situation, it would provide confidence that

implementation of that particular design would be likely to meet the proposed func­

tional requirements. However, although some of the design models already have a

companion tool for aiding design (as RationalRose for UML (IBM 2005)) or for au­

tomatic code synthesis (such as WebRatio for WebML (WebRatio 2005)), simulation

has not yet been considered, and testing by prototyping is still the norm.

2.2.4 The Testing Phase

Even if the analysis and requirements gathering phase of a Web application devel­

opment has been carefully planned and systematically carried out, design errors are

bound to happen. This is often due to the ambiguity of the requirements. Fur­

thermore, if the design model contains errors, its implementation will inevitably

not meet the intended requirements. However, irrespective of the source of these

errors, verification of the system requirements is an necessary task to perform if a

high-quality product is desired.

Functional testing can be roughly split into two types: black box and white

box. Black box testing does not have access to the internal procedures of individual

40

modules, usually thought of as units with which the developer knows how to interact

but of which he/she cannot observe the internal mechanisms. On the other hand,

white box testing allows testers to observe the code and probe internal signals and

variable values. Testing can also be categorised in other ways. An example of

this is based on the scale of unit being tested: unit testing, integration testing,

system testing, and performance testing. Unit testing is concerned with the code

and usually begins as soon as implementation begins; integration testing tests how

the individual units work together; system testing tests the entire functionalities of

the system; and performance testing is concerned with the time or cost associated

with functions (Ash 2003).

There are several commercial and open-source tools available to test imple­

mentations of Web applications (Hower 2005). Most of them focus on verification

techniques of the implemented code, such as HTML and link checkers, and per­

formance issues, and few are used to verify its functionalities (Elbaum et al. 2005).

Examples of functional testing tools can be found in jUnit (Gamma and Beck 2005),

WebTest (Canoo 2005), Weblnject (Goldberg 2005), JStudio (Soft. 2005), AppPer-

fect (AppPerfect Co. 2005), and HttpUnit (Gold 2004). These tools test an imple­

mentation by issuing HTTP requests to the Web server emulating user interaction,

and inspecting and processing its responses (Ricca and Tonella 2005). Although con­

stituting interesting automated approaches, Kung et al. (2000a) argue that some of

these tools do not provide behavioural information about Web applications.

Using implementations to test Web application functionalities requires par­

tial coding of the design. Testing is performed by defining a sequence of pages to

be visited and input values for form pages (Ricca and Tonella 2001). The devel­

oper navigates through the Web application, and tests its functionalities by entering

data on form pages and submitting it to the server. This produces two types of ob­

servable evidence: a sequence of navigated Web pages and content changes in the

41

application database. The developer can then evaluate the tests by comparing the

obtained results with what was expected.

Testing Web applications should start as early as possible during the Soft­

ware Development Cycle (Hieatt and Mee 2002, Sommerville 2004). This not only

makes the process of finding errors and correcting them easier, but also improves the

quality of the process and reduces the overall development time. However, testing

the functional requirements is not possible until some sort of a prototype is imple­

mented. This requires that, after the design phase, the developer produces a partial

implementation of the application, which can then be tested.

2.2.5 Simulating for Testing

Simulation of Web applications is a rather new topic in the Web Engineering field.

So far research has been focusing on a specific perspective of the technique. One

area in which simulation for evaluation purposes has been intensely used is the

assessment of Web servers’ performance under selected working conditions. For

example, simulation is used to support: Web server load-balance techniques (Bryhni

et al. 2000); evaluating the extent to which dynamic Web pages degrade Web server

performance (Iyengar et al. 1997); evaluating the implications of different Web proxy

caching techniques in user-perceived latency (Feldmann et al. 1999, Rosu et al. 2000);

and evaluating resource utilisation and response times of Web servers (Wells et al.

2001).

However, there is a gap in the literature regarding the simulation of Web

applications design models for testing purposes. This type of simulation is not

concerned with performance evaluation, but with the verification of the functional

requirements of designs. A Web application resembles a state machine in which

variables may take on only discrete values, and also, at any point in time, the system

is found in one of a well-known set of states. This complies with the definition of

42

a discrete event system. A definition of a discrete event system is provided by

Cassandras and Lafortune (1999) as a system whose state space is described by a

discrete set, and the transitions - called “events” - between states occur only at

discrete points in time. The present research argues that, by considering a Web

application as a discrete event system, simulation of its functionalities is not only

feasible but achievable. Examples of how it was and how it can now be achieved in

Web development exist in a closely related field - the hardware development field.

The modeling process for simulation usually follows a set of key activities.

Withers et al. (1993) in their work propose a model of this modeling process, in

which the main activities identified are: understanding the system and customer;

produce a conceptual model; produce a model; use the model; and assess the use of

the model. Computer simulation requires that a conceptual model - the model of a

system to be simulated - be translated into a suitable and executable model. This

process is called Model Translation (Shannon 1992, Banks 1999, Banks 2000), and

results in what Balci (1994) and Nance (1983) call the Programmed Model (Nance

1983, Balci 1990). To simulate Web application design models, a similar model

translation process must be performed. Therefore, ambiguities in the interpretation

of Web application design models should be kept to a minimum, which is to say that

simulation requires a high degree of formalism from the design models. However, the

existing design models were designed to tackle the complexities of a Web application

and not to promote their simulation, and many of them do not possess a sufficient

degree of formalism in their definition to enable simulation. Additionally, Web

application design models are usually a high-level abstraction of a system, and

they do not address, by their very definition, implementation issues. Therefore,

if the purpose of simulating Web application design models is to evaluate their

functionalities in the same manner prototyping does, the design models have to

be translated into a simulation model capable of bridging the gap between design

43

and implementation, without actually committing to a platform. This translation

of design models into an intermediate simulation model has a double benefit: it

enables simulation, and allow heterogeneous Web application design models to be

simulated. Therefore, no matter which design model is used during the design

phase, simulation for functional evaluation is made possible. The validity of this

approach is supported by research indicating that no single Web application design

model effectively addresses all possible designs. Furthermore, some projects may

even use different design models to tackle different parts of the design. By using a

simulation model that is not tied to a specific design model, a wide range of design

models is covered, potentially contributing to a higher level of acceptance by the

Web developers’ community.

2.3 Hardware Description Languages

Description languages have long been used in hardware development, especially in

digital electronics. The need for a tool that could assist designers with simulations

and tests, prior to the system being built, had become evident with the increasing

complexity of digital systems. One such examples is the successful VHDL language.

This stands for VHSIC Hardware Description Language (VHSIC being an acronym

for Very High-speed Integrated Circuit) and became an IEEE standard in 1987,

after the United States Department of Defense (DoD) sponsored a program for the

development of high-speed digital circuits (Yalamanchili 2001).

There are several factors that have contributed to the enormous success of

VHDL. Firstly, the ability of the language to describe a system with different levels

of abstraction and views provides a portable and standard means to convey infor­

mation. Furthermore, VHDL is not technology-dependent, which means that once a

system is described it can be synthesised, targeting different platforms and still be­

ing functionally equivalent. Moreover, the capability of easily simulating the system

44

with nothing more than its VHDL description allows for testing of the design before

any implementation whatsoever. VHDL is structured around two main constructs:

(1) the entity and (2) the architecture. The entity construct defines the input and

output ports of a component; the architecture block determines the behaviour of the

component. Through separation of these two concepts - structure and behaviour

- using a formal language, VHDL is able to perform simulation of the hardware

design for the verification of its functional requirements.

Figure 2.5 shows the process of developing a hardware digital system using

VHDL. The first step in the process is the definition of the system’s specification by

determining the system’s functional aspects and time constraints. A VHDL model is

obtained from this specification, and simulation of the model is now made possible.

Simulation is used to verify that the system shows the expected behaviour by using

a suitable testbench. If verified, the system is then synthesized. This requires a

library of gates, which includes the definition of parameters such as inputs, outputs,

and time delays, of several Integrated Circuits. The synthesis step of the VHDL

model results in a list of gates to be used in the final product. After the synthesis,

simulation is once again used to verify the design, but now gate and propagation

delays are taken into account. If the verification succeeds, a layout of the intended

system is obtained. Implementation may start as soon as engineers are satisfied

with the model’s behaviour and performance.

The separation of concerns in VHDL - behavioural, structural and physical

implementation - has a correspondence with Web applications, where the behav­

ioural aspect relates to what functionalities an application implements, the struc­

tural aspect to how and which components should be implemented, and the physical

aspect to where it should be implemented. The advantages of a similar tool for web

development are easily understandable. Aims such as simulation and automatic

synthesis of the code are highly desirable. If such a Web description language ex-

45

VHDL
Simulation

VHDL
Simulation

Stimuli

Gate
Library

Stimuli

Figure 2.5: Simulation and Synthesis of VHDL Models

isted, Web applications could be tested during the design phase without needing the

support of partial implementations.

2.4 How the Present Research Differs from Existing

Work

Web application development usually consists of analysis, design, implementation

and testing phases, all contributing to achieving a high-quality end-product. The

objective of the models and methodologies described earlier in this chapter is to

serve as design abstractions and guidelines for the development of Web applications.

However, as German et al. (1998) noted, these are usually not formally specified.

Although the literature offers a great variety of methodologies and models for the

development of Web applications, the testing phase is still mostly based on partial

implementations of the design. This means that testing cannot start until at least

a prototype is built during the implementation phase. Furthermore, developers

rely on the produced code, which can itself contain errors, to test the functional

requirements of the project.

Other fields of engineering have been successfully using simulation as a testing

46

technique for verification of the system’s functional requirements. In particular, the

hardware development field has provided developers with the needed theory, models,

and tools for that purpose. This allows them to design and test extremely complex

systems without the need for prototyping. Consequently, the development cycle does

not include the implementation phase until much later in the cycle, when developers

are sufficiently satisfied with the designed behaviour of the system. This, inevitably,

leads to a faster and less costly development cycle.

At the present state-of-the-art, the only type of simulation for testing pur­

poses that is performed in the Web field concerns Web servers’ performance issues.

This type of simulation aims at evaluating the performance aspects of Web appli­

cations and the servers’ systems where they are being executed, namely, analysis

of the response time of the Web application subjected to a set of user-like stimuli

under specific load, traffic and hardware conditions. However, there is currently no

reported research on a framework for the functional simulation of Web application

design models.

In order to develop a simulation model, a systematic analysis of the require­

ments that make simulation possible is needed. The myriad of components, their

heterogeneous data interface and data exchange, and the complexity of the user

interaction with the application are indeed difficulties that must be tackled before

simulation can be achieved. This research argues that the Web application devel­

opment field has come to a maturity level that enables such a research project.

Similarly to what has happened in the hardware design field, where description lan­

guages have reached a high maturity level, this research aims to take the testing

phase of the Web application development to a new level, where simulation allows

effortless, implementation-free, and meaningful verification of the functional require­

ments. This will make prototyping for functional evaluation unnecessary, bypassing

the implementation phase until a high degree of confidence that the design addresses

47

Evaluation
of

Implementation

JL
\r

Figure 2.6: The Bypassed Implementation Phase

all the intended functional requirements is reached. Figure 2.6 shows a ‘traditional’

cycle of software development (represented by the outer gray arrows), and the pro­

posed bypassed prototyping phase through the use of simulation (represented by

the inner black arrows). It is not a new design methodology or design model that

is targeted; it is the identification and analysis of the requirements that Web appli­

cation design models must possess in order to enable and support the simulation of

Web application designs. Ultimately, with those requirements clearly identified, it

is our belief that design models can use them in order to promote simulation, thus

enormously contributing to aiding and simplifying the development process.

48

Summarising, the hypothesis of the present research can be stated as:

“It is possible to simulate Web applications based on their designs. Further, the

simulation provides similar information with regard to evaluation of functional

requirements as would an evaluation based on an actual implementation. ”

49

Chapter 3

Methodology

The previous chapter focused on existing Web application design models and devel­

opment methodologies. In particular, the testing phase of the software development

cycle was found to be time- and resource-intensive, and some of the most difficult

and lengthiest phases of the whole cycle. The hardware development field has been

one step ahead, with a theoretical framework and tools that support the simulation

of system designs, for validation and verification purposes. This research argues that

an identical approach can be adopted with similar benefits during the development

of Web applications. Several questions stem from the proposed hypothesis, and will

need to be answered in order to test it. These questions are:

Research Question 1 - What aspects of a Web application should be simulated?

Research Question 2 - What simulation model captures those aspects?

Research Question 3 - Is it possible to simulate the model to evaluate its func­

tional requirements?

Research Question 4 - How do simulation and implementation of a Web ap­

plication design for functional requirements evaluation compare?

50

These research questions address all the issues that are being argued in the

hypothesis. The first research question investigates what aspects of a Web appli­

cation should be modelled so that its simulation provides sufficient information to

evaluate its functional requirements. Answering this question will contribute to de­

fine the relevant information a Web application design model must provide for a

meaningful simulation for functional evaluation purposes. Furthermore, the answer

will allow us to identify the relevant aspects of Web applications to be modelled and

separate them from the non-essential, therefore preventing the simulation model to

become too complex to be simulated.

The second research question goes a step further into defining a simulation

model of a Web application. After enumerating the aspects of Web applications to

be modelled, this question addresses the issue of whether or not a suitable model

based on these aspects can be defined. This is a especially important question since

its outcome will dictate the capabilities of the simulated model to provide enough

information for the functional requirements evaluation.

The third research question, which logically follow the last two, directly ad­

dresses the issue of the feasibility of the simulation of the defined model. The

hypothesis clearly states that simulation of Web application design models for func­

tional requirements evaluation is possible and, by answering this research question,

the assessment of that statement can be done.

The answer of the fourth and last research question will provide information

on how simulation and implementation for functional requirements evaluation com­

pare. Since it is argued that both methods provide similar functional information,

answering this question will allow to prove or disprove the validity of the hypothesis.

51

3.1 Research Strategy

To answer the research questions and to assess the validity of the hypothesis, a

research strategy must first be defined. This will guide the research procedures,

data gathering and analysis, and hopefully will allow meaningful conclusions to be

drawn in a systematic way. Research methodology can be defined as:

Definition 6 Research Methodology - “A recommended collection of philosophies,

phases, procedures, rules, techniques, tools, documentation, management and train­

ing for developers of information systems” (Maddison 1983).

To describe a Web application from a functional perspective, this research

will investigate what are considered the basic building blocks of the existing design

models. Moreover, simulation will use these components to emulate the behaviour

of a possible implementation, by identifying their functional characteristics. Fur­

thermore, a mechanism that bridges the gap between design and its (simulated)

implementation will be defined.

To define a model of Web applications that allows simulation, an investiga­

tion of their structural organisation, behavioural characteristics, and internal com­

ponents has to be conducted. This needs to be done from a Web development and

simulation perspective. Definition of the simulation model from a Web development

perspective will be performed by examining what the involved key design concerns

are and how existing design models address them. The definition of the simula­

tion model will be done by following the phases and processes usually found in a

simulation study. The methodology proposed by (Balci 1987), which consists of

a ten-phase life cycle, will be particularly useful throughout the simulation study

not only to successfully achieve a suitable simulation model, but also to enforce the

validity of the simulation model results. The ten phases of Bald’s (1987) life cy­

cle are: (1)Communicated Problem; (2)Formulated Problem; (3)Proposed Solution

52

Technique; (4)System and Objectives Definition; (5)Conceptual Model; (6)Com-

municative Model; (7)Programmed Model; (8)Experimental Model; (9)Simulation

Results; (Reintegrated Decision Support. The first four phases have already been

completely or partially addressed in Chapter 2 - Literature Review, and some will

be further refined in the following Chapters. The remaining six phases will be ad­

dressed in the next three Chapters, with especially emphasis put on the definition

of the Conceptual Model, Experimental Model, and presentation of the Simulation

Results.

To answer the third research question, the issue of the feasibility of the sim­

ulation process has to be assessed. Arguing that simulation of Web application

designs for functional evaluation is feasible requires the definition of a formal model

with a well-defined purpose and contents, able to mimic their behaviour, and re­

ducing their complexity to manageable levels while retaining enough elements to

serve as a faithful and meaningful representation. Thus, an initial study of the basic

building blocks of Web application design models that possesses functional meaning

will be performed, which will contribute to the definition of a simulation model.

Furthermore, the modelling of these building blocks will determine the simulation's

capabilities and limitations. Investigating what these are will determine the scope

of the simulation and its applicability to the functional requirements evaluation of

Web application designs, since one source of information from the simulation results

will be the attribute values of the modelled building blocks. It does not suffice,

however, to exhaustively define a description language and associated simulation

model when proof of its practicability is required; it requires demonstration that

the simulation process, based on the developed theory, can be implemented and

used for the intended purposes. This can be asserted if a computer application can

be produced from the defined simulation model.

53

The underlying concept of the present work is that it is possible to describe

a Web application in a way that supports simulation for functional evaluation pur­

poses directly from the design. This would eliminate, or at least reduce, the need for

partial implementations. The functional requirements of a Web application design

capture the intended behaviour of a system. The hypothesis claims that simulation

and implementation for functional requirements evaluation can produce similar in­

formation, namely design errors identification and better operational understanding

of the final product. To support this claim, the research has to demonstrate that,

for identical design models, simulation and implementation can similarly support

simulation of its functionalities. Hence, a comparison of the results of the two tech­

niques is fundamental; and, in order to better isolate the subject from external and

unidentified factors, a controlled experiment method was selected.

Experimental research deals with the “cause and effect” phenomenon (Walliman

2005). What is being investigated in this type of research is causal relationships, and

how independent variables affect the dependent variables. In other words, manipu­

lation of the independent variables will cause an observed effect on the dependent

variables. The term treatment refers to adding or removing stimuli to or from a

group, in order to evaluate the effect. There are several ways to manipulate the

independent variables:

• Presence or absence technique - a treatment is given to one group, while

another group is left untreated

• Amount technique - distinct groups receive different levels of the same treat­

ment

• Type technique - distinct groups receive different treatments.

Furthermore, experimental research classifies experiments into three main

classes: pre-experimental true experimental and quasi-experimental Differences

54

among them are mainly in the manner the samples are obtained, which may lead

dangerously to dissimilarities, and in the degree of control of the variables. Pre-

experimental designs make assumptions about the cause-effect relationship, despite

lacking complete control over the variables. True experiments enforce that the

groups subjected to the treatment are identical which, if not observed, is called a

quasi-experimental design.

The strongest aspect of experimental research when compared with other

research methods, is the researcher’s control over the research setting, which enables

the isolation of the treatment and rules out confounding effects; this allows the

elimination of alternative explanations and leads to a strong internal validity (Wade

and Tingling 2005). Jarvenpaa (1988) argues that laboratory studies are as valid as

many other methodologies such as case studies and action research. Furthermore,

Dennis and Valacich (2001) state that, since “all research methods are imperfect”,

it is simply not valid to claim that surveys or field studies are better suited for

research in Information Systems than experimental research.

Evidence of experimental research in the software engineering field is abun­

dant. Do et al. (2004) have conducted a survey of recent articles (from 1994 to

2003) in four major venues often recognized as pre-iminent in software engineering

research: IEEE Transactions on Software Engineering, ACM Transactions on Soft­

ware Engineering and Methodology, the ACM SIGSOFT International Symposium

on Software Testing and Analysis, and the ACM/IEEE International Conference on

Software Engineering. They found that, of those that address the software testing

topic, nealry half are based on an empirical approach. Additionally, Perry et al.

(2000) argue that empirical studies are the key to evaluation of new methods and

tools from a cost-benefit perspective. Basili (1996) goes further, when stating that

“software engineering is a laboratory science”, involving an “experimental compo­

nent to test or disprove theories, (and) to explore new domains”. Brilliant and

55

Knight (1999) argue that “there is a significant need” for experimental research for

hypothesis testing and demonstration of technology in software engineering, and

Shull et al. (2001) claim that there is an increasing trend in using this methodology,

which they consider to be useful for testing methods for the software development

process.

What is being investigated is each technique’s contribution for the evaluation

of the functional requirements. By conducting a controlled experiment on both

simulation and implementation, the relevant results for functional evaluation can

be compared, since isolation of the treatments and avoidance of confounding effects

can be achieved.

3.2 Research Design

The objectives of the research design are associated with each of the Research Ques­

tions (RQs). These objectives are:

• Identify the important functional constituents of a Web application - RQ1

• Develop a description language that supports the evaluation of the Web ap­

plications’ functionalities - RQl

• Clearly define how the modelled functional constituents interact with each

other - RQ2

• Develop a suitable simulation model for Web applications - RQ2

• Implement a tool based on the simulation model and description language -

RQ3

• Investigate and identify the capabilities and limitations of the simulation -

RQ3

56

Experiment with the tool to evaluate its capabilities - RQ3

• Compare the experiment's results with the “traditional” implementation for

functional evaluation - RQ4

• Allow conclusions to be drawn regarding the similarities and differences in the

two treatments - RQ4.

What is being investigated is the comparison between two methods of eval­

uating the functional requirements of a Web application design - the “traditional

method” (implementation), and the proposed one (simulation). Therefore, the ex­

periment needs to compare both methods5 capabilities and limitations, and evaluate

the hypothesis claim of both being able to provide similar information. By “sim­

ilar” it is meant that verification of a functional requirement is possible by both

treatments, based on the analysis of the results. The independent variable here

is the testing method, whereas the dependent variable is the obtained data that

contributes to the evaluation of the functional requirements. In order to obtain

meaningful results from the experiment, the two methods must be used with iden­

tical Web application designs. In the experimental research field, this is called a

true experiment, which is defined as those in which tests are conducted on identical

groups (Walliman 2005, p. 119).

The implementation treatment will use the “traditional” method of imple­

menting the design for the purpose of evaluating the functional requirements. There­

fore, the treatment results will be a sequence of Web pages with just enough elements

to properly evaluate their functionalities. Furthermore, snapshots of the application

database content will be used to evaluate the requirements. To restrict the research

to a comparison of the information provided by each treatment, it will be assumed

that the implementation code is a direct translation of the Web application design

and thus error-free in that sense. This means that no errors will be introduced in

57

Web Application
Design

Implementation
Treatment

Simulation
Treatment

Results of the
Simulation
Treatment

Results of the
Implementation

Treatment

Funtional
Requirements

Figure 3.1: The Experiment

the implementation code by misinterpretation of the design. This assumption can

be made with a high degree of certainty if the design model in which the Web ap­

plication is expressed is formal in its definition and has a well-defined code mapping

rules. However, since it will be implemented from a specific Web application design,

it may contain conceptual design errors; this means that, although the code is correct

and corresponds to what the design model expresses, the design may not properly

model the goals of the functional requirements. These deliberately introduced de­

sign errors or fault seeding, will contribute to assess both treatments’ suitability

for functional evaluation. On the other hand, the simulation treatment will use the

developed framework for the evaluation of the same set of functional requirements

and on the same Web application design. This ensures that a valid comparison of

both treatments can be conducted, and the suitability of each treatment be asserted

(see Figure 3.1).

58

Prevented from experimenting with all possible designs, a decision was made

to adopt a strategy of selecting a Web application that contains a broad spectrum

of functional elements. This allows the research to focus on the evaluation of the

functionalities of the design, rather than on aesthetic or informational issues. The

selected experiment will be conducted on an e-commerce Web application design

which models a music store. This class of applications presents the most functional-

diverse characteristics, since it involves database accesses, personalised roles and

access, and addresses security concerns. This type of application is typical on the

Internet, and usually they display a similar functional design. Examples of these

Web-based stores are found in Amazon©(Amazon 2005), Virgin©(Virgin 2005),

and Sony©(Sony 2005). Although the purpose of the chosen sample is not impor­

tant, the different functional elements within the application are. If a comprehensive

set of these elements is achieved, generalisation to other designs can be asserted with

a higher degree of confidence, therefore contributing to a high degree of the external

validity of the experiment.

One other aspect that should be addressed is the adopted design model for

the experiment. Prevented from experimenting with all the available design models,

one had to be selected on the basis of its formalism, usage within the Web devel­

oping community, and suitability for describing Web applications. Of the existing

design languages, WebML has been increasingly gaining momentum within the aca­

demic and industrial community. It is a model that is formally defined, especially

well designed to tackle data-intensive applications, and with a sound theoretical

background and tools (WebRatio 2005) (WebML 2005). However, generalisation of

the claims of the hypothesis to other design models has to be made with caution.

Indeed, over-generalising is a potential pitfall to avoid when using experimental re­

search. This issue will be dealt with in a following section, when addressing the

threats to validity within the experimental research scope (Section 3.4).

59

The two treatments, run on the same design, will provide information on

their capabilities and limitations to evaluate functional requirements - this is what

experimental research calls type technique. For this purpose, a set of functional re­

quirements will be defined and evaluated. The selection of the set of requirements

will be made to cover a wide range of functional evaluation and, naturally, based on

the specifics of the selected Web application design. Definition of the functional re­

quirements concept can be, sometimes, unclear; however, in this research functional

requirements are considered as an artifact that captures the intended behaviour of a

system. Although they may sometimes be expressed in a narrative format, there are

more formal approaches to deal with them. For instance, UML, and in particular

its use cases diagram, provide a semi-formal structure to capture functional require­

ments (Cockburn 2001). Use cases, as used to describe the functional requirements

of a system, can be defined as:

Definition 7 Use cases: Ucapture who (actor) does what (interaction) with the

system, for what purpose (goal), without dealing with system internals. A complete

set of use cases specifies all the different ways to use the system, and therefore defines

all behaviour required of the system, bounding the scope of the system” (Malan and

Bredemeyer 2001).

Within the Web engineering realm, an actor is a class of users or roles they

can play. These actors interact with the system via a well-defined set of actions.

Examples of these are starting a new session, entering data, following a link, and

triggering a script. Finally, the goals of an actor are very much dependent on the

services the system provides, examples of which are buying a service or item, and

accessing certain information. The selected functional requirements to be evaluated

have to be a representative set of the different interactions an actor can have with

the Web application.

60

3.3 Data-gathering and Analysis

The nature of the hypothesis and associated research questions is such that a quan­

titative measurement of the involved factors can be, at least, non-conclusive and,

at the other extreme, misleading. This is because what is being investigated is

inherently non-quantifiable, and what is being sought is an explanation of the phe­

nomenon and its implications. Stating that the developed framework will allow

simulation of Web application designs, and the evaluation of a CY’ number of

functional requirements carries almost no real information, or, at least, none that

can be put to a useful purpose. The results of that research would only indicate the

success rate of the simulation treatment, but would give little information on the

characteristics of the treatment itself. On the other hand, investigating what type

of design models, which features and limitations can be simulated, what type of

functional requirements can be evaluated, and how implementation and simulation

compare, is far more interesting and useful to a Web engineer. As Higgs (1998)

stated, if seeking to understand why a certain effect has been accomplished, then a

“more descriptive and exploratory mode of research (that is, qualitative research)

is preferable”.

As Gittins (1999) notes, quoting Holloway’s (1997) book Basic Concepts for

Qualitative Research, Qualitative Research may be defined as:

Definition 8 Qualitative Research - UA form of social inquiry that focuses on the

way people interact and make sense of their experiences and the world in which they

live” (Gittins 1999).

Historically, qualitative research was first developed and used in the social

sciences, where social and cultural phenomena were studied. Notwithstanding the

differences between social sciences and engineering, several articles have been de­

voted to the benefits and uses of this research method in the software engineering

61

field, as found in the work of Fishwick and Zeigler (1992), Wixon (1995), Kelly and

Shepard (2002), Myers (2003), Marcos (2005), and Zannier and Maurer (2005).

The results of the experiment will produce two sets of data: one that comes

from the simulation of the selected scenario, and the other from its implementation.

This data, represents the Web application at specific points in time and corresponds

to a particular state of its internal functional constituents. To this purpose, an

Empirical Observation of the results of the experiment is crucial. An empirical

study can be defined as a test to compare what we believe with what we observe

(Perry et al. 2000, p. 347), and the collection of empirical data or, within the

qualitative research context, empirical material, is characterised by the collection of

a fairly large amount of data to derive a conclusion.

The data to be collected concerns the groups of design elements that provide

and contribute to evaluate the functional requirements of Web applications. These

are related to how the application reacts to a stimulus, what its behaviour is in

the presence of a user, and what the allowed interactions are between users and

application. Since it is a comparison between the implementation and simulation

treatments, the data collected should be that traditionally used to assess prototypes.

This data is related to the model of Web applications used for testing purposes.

For instance, Liu et al. (2000) consider three main objects of a Web application,

namely: client pages, server pages, and components. Ricca and Tonella (2001)

propose a model of a generic Web application structure in which the central entity

is the Web page. These can be static or dynamic, depending on the way content

is generated, and navigation is provided by the association link, which connects

Web pages. Lucca et al. (2002) refine and further detail this model, proposing a

taxonomy of the elements to test in pages, active elements (scripts and applets),

links between components, and diverse data elements such as cookies, variables and

databases. Other researchers have a slightly different view; for example, Deng et al.’s

62

Web Application
Design

Implementation
Treatment

Simulation
Treatment

Functional Content

Functional Information

Analysis
of the similarity

of the treatments

Results of the
Simulation
Treatment

Results of the
Implementation

Treatment

Funtional
Requirements

Figure 3.2: The Experiment - Data Analysis

(2004) model considers three logic layers of Web database applications, namely:

Database Management System, the application logic or scripts, and the Web browser

or interface. But whatever Web application model is adopted for testing purposes,

its elements fall into one of four main groups: pages, links, scripts, and data, which

constitute the necessary elements to implement functionalities in Web applications.

During the course of the experiment, both structure and content of each of these

elements will be gathered. The pages being displayed, the links being traversed, the

scripts being executed, and the content of the application’s data, all contribute to

define, from a functional perspective, a Web application state at a specific point in

time.

63

Individually considered, the two sets of data originating from the two treat­

ments do not provide all the information needed to evaluate the hypothesis; however,

in conjunction with an analytical comparison of the information they contain, the

degree of similarity of the two methods can be appraised. We propose two measure­

ments for the evaluation of the data results - Functional content and Functional

information. They will provide two distinct and complementary analyse of the

gathered data (see Figure 3.2). These two measures can be defined as:

Definition 9 Functional Content - the observable factors a treatment provides

and their structure and value.

Definition 10 Functional Information - the level of contribution of the observable

factors for the evaluation of functional requirements.

Functional Content will qualitatively evaluate each treatment result from a

page, link, script, and data perspective. This means that from each of these perspec­

tives, an analysis of what a developer can observe from the results will be conducted.

Furthermore, the structure and value of each of these observable factors will serve

to compare the content of each treatment. One important aspect is the identifica­

tion of the active (executing or displayed) elements of each factor at any given time

during the treatment. This means that, during each treatment, the identification

of the set of displayed pages, followed links, executing scripts, and accessed data

will be registered. Additionally, each factor contains specific information which is

relevant for functional evaluation. For instance, pages can contain other relevant

functional elements such as links, scripts, and data. Links, on the other hand, carry

valuable information in their parameters. Furthermore, script processing often have

an influence on other elements of the design, and the result of the script execution

greatly determines the behaviour of the Web application. Finally, the content of

the data elements will be registered during each treatment, since it is often used by

64

scripts for their workflow and databases are usually the preferred method employed

by Web developers to store user and application-related information.

Functional Information is a less concrete concept to define and evaluate than

the Functional Content. It is related to the amount of information possible to be

gathered from the treatment, which directly or indirectly contributes to the evalu­

ation of a functional requirement. This information can be as diverse as the format

in which the results of the treatments are presented, or the degree of difficulty in

administering the treatment. There will be no attempt to quantify this measure,

but rather to make a qualitative critical analysis of the factors observed from the

two treatments. The Functional Information measure is further divided in three

parameters: Difficulty in administering the treatment, Format of the treatment re­

sults, and Adequacy of the results for functional requirements evaluation. The first

parameter is related to the amount of effort needed by Web developers in executing

the treatment, namely: the necessary coding, expertise, and all the additional work

involved in the preparation and conduction of the treatment. The second parameter

of this measure, the Format of the treatment results, evaluates, from a Web developer

perspective, how the treatment results are displayed. The third and last parameter,

the Adequacy of the results for functional requirements evaluation, assesses the level

of suitability of the treatment results for the evaluation of the proposed functional

requirements. Table 3.1 summarises the aspects of the experiment’s results which

will be the object of analysis.

65

Functional Content

Pages Displayed set

Page (functional) content

Links Followed set

Parameters content

Scripts Executed set

Outcome of their execution and its influence on other func­

tional elements

Data Accessed set

Content

Functional Information

Difficulty in administering the treatment

Format of the treatment results

Adequacy of the results for functional requirements evaluation

Table 3.1: Qualitative Data Analysis

3.4 Threats to Validity

The gathered data from the experiment should reflect the influence of the controlled

variables and allow generalisation of results. There are several threats to the validity

of a research study, namely:

• Construct validity

• Internal validity

• External validity

66

Construct validity is concerned with the relationship between the measures

taken and the goals of the study. Furthermore, it involves generalising from the

study to the concept and theory underpinning it.

Definition 11 Construct validity - “the degree to which inferences can legiti­

mately be made from the operationalisations in your study to the theoretical con­

structs on which those operationalisations were based” (Trochim and Land 2004).

Threats to construct validity can be enumerated as:

• Inadequate Preoperational Explication of Constructs - poorly defined con­

structs may pose a threat

• Mono-operation Bias - single treatments may lead to bias of the results

• Mono-method Bias - single measurements type may lead to insufficient analy­

sis

• Interaction of Different Treatments - other (external) treatments may be con­

tributing to the observed results

• Interaction of Testing and Treatment - is the testing part of the treatment?

• Restricted Generalisability Across Constructs - a treatment may be causing

other undesired effects

• Confounding Constructs and Levels of Constructs - the label of the study does

not completely describe what was implemented.

Internal validity is concerned with the causal relationship of an experiment,

in particular between the dependent and independent variables. In other words,

internal validity means that evidence exists that what was carried out in the study

caused what was actually observed, and that no external variables, known or un­

known, had any influence on the results.

67

Definition 12 Internal validity - “The quality of data gained from true exper­

imental design should genuinely reflect the influence of the controlled variables”

(Walliman 2005, p. 294).

In Campbell and Stanley’s (1966) classic book on experimental research,

identification of the factors that can pose a threat to the internal validity is made:

• History - results affected by external events between the pre- and post-test

observations

• Maturation - changes due to the normal passage of time

• Testing - contamination of the subject of the experiment due to extensive

pre-testing

• Instrumentation - changes in the measurement methods during the experiment

• Statistical regression - extreme results due to subject retesting

• Selection - bias can occur if the subjects of the experiment are not functionally

equivalent

• Experimental mortality - dropout of the subjects of the experiment leads to

biased results of the remaining sample

• Selection interaction - bias of the results, due to the selection method inter­

action with other threats.

Finally, external validity can be defined as:

Definition 13 External validity - “is the quality of an experimental design such

that the results can be generalized from the original sample to another sample and

then by extension to the population from which the sample originated” (Salkind

2003),

68

Cohen and Manion (1994) enumerates the factors that may affect external

validity:

• Vague identification of independent variables - impossibility replicating the

experiment

• Faulty sampling - selection of the available population does not represent the

entire population

• Hawthorne effect - unusual subject’s reaction due to knowledge of being ob­

served

• Inadequate operationalisation of dependent variables - incorrect generalisation

of the results to a broader scope than that of the experiment

• Sensitisation to experimental conditions - manipulation of the results by the

subject

• Extraneous factors - unnoticed effects on the results

3.4,1 Enforcing the Validity of the Experiment

Trochim and Land (2004) argue that, in order to minimise the threats to validity,

one or a combination of several methods may be employed:

• By argument - arguing that the threat in question does not apply to the

specific experiment

• By measurement or observation - ruling out a threat by demonstrating mini­

mal influence in the cause-effect relationship

• By design - adding treatment or control groups

• By analysis - using, for instance, statistical analysis

69

• By preventive action - by knowing beforehand about the threat, it can poten­

tially be minimised or even ruled out.

Construct validity is especially concerned with the relationship between the­

ory and observations of the results. This means that evidence exists that the mea­

surements taken from the two treatments of the experiment are the adequate ones

to evaluate the functional requirements, thus allowing a valid comparison of infor­

mation to be made. A valid approach to this problem is to identify which factors

are present in functional requirements specifications. If one of these factors can be

observed and either qualitatively or quantitatively measured during the course of an

experiment, then chances are that it should be part of the selected set of measure­

ments; as Conallen argues, a requirement must be “objectively” verifiable for it to

belong to the requirement specification (Conallen 2000, p.115). The set of relevant

factors for the experiment has been constructed by identifying, in the literature,

which common elements are used to specify functional requirements. Sommerville

(2004, p. 155) argues that the Unified Modelling Language is a de facto standard for

object-oriented modelling, and that “UML use-cases and use-case-based elicitation

is increasingly used for requirements elicitation”. Although some researchers argue

that UML is not the ultimate answer to model requirements (Glinz 2000, Fuentes

et al. 2003, Bell 2005), it is still considered by many as one of the best modeling

notations to semi-formally specify functional requirements (Conallen 1999, Baresi

et al. 2001) and, as such, is one good source for the investigation of the relevant

factors. When translated to the Web development realm, identification of these fac­

tors assures, with a high degree of certainty, that what is being measured is in fact

contributing to the evaluation of the functional requirements. Consequently, a com­

parison of the benefits of each treatment is made feasible, validating the relationship

between the measurements and the underpinning theory.

70

Experimental research has strong internal validity since the researcher fully

controls the experiment (Wade and Tingling 2005). To contribute to this validity,

the treatments will be performed on exactly the same design, ruling out differences

between subjects as a possible explanation for the degree of information provided by

each treatment. It could be argued that implementation and coding skills would pose

a threat to the internal validity of the experiment, since it can strongly influence the

implementation treatment results; however, if the design model selected provides a

formal definition of the mapping rules for translating design elements into runnable

code, then this threat is mostly ruled out since intervention of the researcher in

the coding will be kept to an almost ‘mechanical5 task, where neither background

nor skills play an important part. The design model selected - WebML - has

these rules well-defined and code synthesis capabilities is one of its most interesting

and distinguishable features, therefore implementation skills do not significantly

pose a threat to the internal validity. One other factor to be considered as threat

is the testing skills involved in the evaluation of the functional requirements of

both treatments. This threat has been minimised by carefully and clearly describe

the functional requirements to be evaluated and the test cases used during their

evaluation. Lastly, since the subjects are not influenced by a temporal dimension,

history and maturation threats simply do not apply.

Ensuring the external validity in an experimental research is often difficult

to completely achieve. This is because generalisation of the results from an ex­

periment to a wider population of subjects is, if not impossible, extremely hard to

prove. However, by carefully planning the experiment, some generalisations from

the results are possible with a reasonable degree of confidence, although the context

in which these are made has to be defined. In the present research, the two major

threats to external validity are faulty sampling - the subject of the experiment does

not represent the entire population - and inadequate operationalisation of depen­

71

dent variables - wrongly over-generalisation of the experiment results . This is due

to the experiment being conducted on a particular case of Web application design,

and attempts to generalise from the results to the whole spectrum of applications

may be unreasonable. There is certainly no attempt in this research to extrapolate

to every conceivable design and design model, which would be unachievable due to

the nature of the problem. However, by planning the experiment in a way that a

broad range of functional elements are present, it will be possible to assess whether

that generalisation is a realistic one. Furthermore, claiming that evaluation of any

set of functional requirements using the simulation treatment produces the same

information as the implementation one, is also too far-fetched, especially because

there are as many functional requirements as designs, and evaluating them all is sim­

ply not possible. Nevertheless, by considering a good representation of the universe

of possible functional requirements, a high degree of confidence in generalising the

results may be attained. These eventual generalisations, their scope and constraints,

will be presented when discussing the research results.

72

3.5 Summary of the Experiment

Table 3.2 summarises the research design by enumeration and characterisation of the

research methodology, the experiment treatments performed, and the data collected

and subsequent analysis.

Research
Methodology Experimental Research
Type True experiment
Treatment technique Type technique

Treatments
Type of treatments Two treatments:

- Implementation treatment
- Simulation treatment

Groups Two identical Web application designs
Data

Data gathered Empirical Observation
Functional-relevant information from pages,
links, scripts, and data

Data analysis Qualitative approach
Critical analysis of the Functional Content
and Functional Information

Table 3.2: Summary of the Research Design.

73

Chapter 4

The Web-design Simulation

Model

This chapter presents the definition of a framework for the simulation of Web appli­

cation design models, constituting the foundations of the research. This will address

the research questions of what aspects should be simulated and what simulation

model captures those aspects.

4.1 The Simulation Study

Simulation is an analysis tool that supports decision-making (Robinson 2003). Shan­

non (1998) argues that it is one of the most powerful analysis tools for the study,

analysis and evaluation of complex systems in different scenarios. It has been com­

monly used in science as a means to observe and better understand systems op­

eration. Examples of its field of usage range from manufacturing (McLean and

Shao 2003) to airspace traffic simulation (Shortle et al. 2003). This helps engineers

to assess systems and experiment with new designs and scenarios, by providing the

means to ask what-if questions. It is defined as a process whereby a given model

74

behaves or operates as a real-world system when a specific set of inputs is present

(IEEE standard glossary of software engineering terminology - 610.12-1990 1990).

There are two main modes in which a simulation can operate, related to how

time advances during a simulation run: continuous-event and discrete-event simu­

lation (Banks and Carson 1986). The clearly noticeable aspect that distinguishes

them from each other is in the manner in which they affect the system state vari­

ables. A state variable defines a specific characteristic of a system, and the set of all

these variables defines the state of the system. Both continuous and discrete modes

are driven by events, but the discrete-event type changes the state variables at those

discrete points of occurrence of events, whereas in continuous-event simulation time

advances regularly and the system is constantly checked for changes in its state.

One of the most important issues in the design of a simulation model is

the definition of the phases and processes a simulation study goes through. Balci

(1987) proposes a ten-phase life cycle of a simulation study (see Figure 4.1). These

phases are represented in the figure by oval symbols connected by dashed arrow lines

representing processes: the solid arrows represent the credibility assessment stages.

Balci further argues that the life cycle is iterative in nature and that it should not

be interpreted as strictly sequential.

The first of the processes of the simulation study as proposed by Balci is

the Formulation of the Problem, which consists of the definition of the problem in

a clear and organized manner. In this research, the problem formulation has been

done in Chapter 2 - Literature Review, when describing the problem of verifying

the functional requirements of Web application designs. The Investigation of Solu­

tion Techniques is the process in which the solution that leads to highest expected

benefits/cost ratio is selected. The adoption of a simulation approach to solve the

problem was substantiated by investigating the use of simulation in other engineering

fields, namely the hardware design field. The System Investigation Process examines

75

the interdependencies and organization characteristics of the system. Investigation

of how existing Web application design models manage design complexity by their

decomposition into smaller subsystems was done in Chapter 2 and has contributed

to the system investigation process. Further investigation of these issues will be

done during the present Chapter in order to complement the study.

The Model Formulation Process consists of the definition of the objectives,

content, stimuli, outputs, assumptions and simplifications of the conceptual model.

At the end of this process, a complete definition of the conceptual model is achieved.

The result of the Model Representation Process is the “Communicative Model”,

which is the representation of the Conceptual Model in suitable form to be communi­

cated to humans; examples of some of these forms are graphs, flowcharts, structured

English, pseudo-code, and entity-cycle diagrams. All issues involved in the Model

Formulation and Model Representation Processes will be addressed thoroughly in

the present Chapter and Chapter 5 - The Web-design Description Language.

The Programming Process consists of the translation of the Communicative

Model into a Programmed Model (Computerised Model in Sargent's (2003) nomen­

clature). The programmed model is an executable representation of the commu­

nicative model in a programming language. This process is addressed in Chapter 6,

when presenting the Web-design Simulation Tool. Finally, the Design of the Exper­

iment;, Experimentation, Redefinition, and Presentation of the Simulation Results

Processes are all addressed in Chapter 7 - The Experiment, where the definition

of an experiment, the use of the programmed model, and the interpretation of the

results are done.

Sargent (2003) argues that the conceptual model is a representation of the

problem entity - the system to be modelled - in a mathematical, logical, or verbal

manner which leads to its later implementation in a computer environment - the

computerised model or simulator (see Figure 4.2). Robinson (2003) expresses the

76

Problem
Formulation

Formulated Problem
Verification

DECISIONMAKERS

^ Design of Experiments

Figure 4.1: The Life Cycle of a Simulation Study (Balci 1987)

77

definition of a conceptual model as a description of the simulation model entailing

its objectives, content, inputs, outputs, assumptions and simplifications y without

committing to a specific software language or computer platform. The objectives

state the purpose of modelling the system - what its aims are and for what reason

the model is being designed. Another important aspect of the conceptual model

is its contents. This relates to the components that are represented by the model,

their interfaces and interconnections, which mimic the behaviour of their real-world

counterparts. The inputs of the conceptual model refer to all the signals that may

be fed into the simulator - the stimuli - which will lead to a specific system state

and simulation result. On the other hand, the simulation results or outputs are the

data resulting from a simulation run. The assumptions are related to certain aspects

of the real system being modelled that may not be fully understood (representing

uncertainties), or empirical truths that may be incorporated into the conceptual

model. Finally, some simplification may be made, without which the model would

become extremely complex if not impossible to implement and manage.

Problem Entity
(System)

Analysis
and

ModelingData
Validity

Figure 4.2: The Simulation Modelling Process (Sargent 2003)

78

The following sections address the definition of the Conceptual Model of the

proposed Web-design Simulation Model. Definition of the objectives, content, stim­

uli, outputs, assumptions and simplifications of the conceptual model are presented.

These address the Model Formulation and Model Representation Processes of the

simulation study life cycle as proposed by Balci (1987).

4.2 Objectives of the Simulation Model

The main purpose of developing the Web-design Simulation Model is to enhance

the testing phase of the Web application development cycle. By tightening the

relationship between the design and testing phases, prototyping for verification pur­

poses is bypassed (see Figure 2.6). Furthermore, by being able to observe how the

proposed system responds to a determined stimulus, verification of the functional

requirements specification is made possible.

The simulation model of a system reflects and mimics the structure and

behaviour of a concept or real-world system. The main drive for this modelling

process is the questions the simulation is trying to answer. In the present research

what is being asked is how Web applications designs, described using some design

model, would operate if they were implemented, and if this implementation would

verify the intended functional requirements of the project. These questions raise

the issue of modelling the implementation of a Web application from a functional

point of view. Different researchers have distinct perspectives on this issue, mostly

because the link between design models and implementation is usually loose, due

to the advocated separation of concerns of the two respective phases. However,

we propose to answer this by the analysis of what the key design concerns of the

existing design models are, the key functional elements of an implementation, and

the key testing concerns when performing functional evaluation.

79

4.3 The Content of the Simulation Model

Existing design models tackle Web application design by addressing its different con­

cerns separately. One first division is usually made between interface and function­

ality. The Dexter Model accomplishes this by using the presentation specifications

which map the components of the Storage Layer into their graphical representation

in the Run-time Layer (Halasz and Schwartz 1994). On the other hand, WebML

makes the distinction between the modelling of the front-end interface (the Hyper­

text Model) and the more operational units (contained in the Content Management

Model) (Ceri, Fraternali, Bongio, Brambilla, Comai and Matera 2002). Further­

more, Baresi et al. (2001), in their W2000 framework, propose the Visibility Design

to be separated from the Functional Design and Navigation Design tasks. But

whatever the name it is given, researchers seem to unanimously agree that the user

interface should be a modelling task by itself. Furthermore, the distinction between

functionality and data is even clearer. Design models usually make this distinction

very clearly, and some even propose that data modelling should be considered as

one of the first tasks to undertake. WebML addresses it in its Data Model, Dex­

ter when defining the Storage Model, and in HDM by the use of entities based on

the Entity-Relationship Model (Chen 1976). Finally, the concept of Navigation is

always present in design models since it is the fulcrum of hypertext systems. This

is usually modelled by a link association between the model entities or components,

and can be as “simple” as the HTML hyperlink, or entailing more complex types

and browsing semantics. However, design models usually consider navigation as

the “glue” between the other components of the model. In conclusion, the design

models approach to tackle Web application modelling is based on a separation of

concerns between interface, navigation, functionality, and data. These key design

concerns will be used as the basis of the proposed Web-design Simulation Model

(WSM)1 by considering a multi-layered model approach of Web applications which

80

separates presentation, navigation, functionality, and content.

Functional testing approaches of implementations are often carried out by

considering Web applications as composed of key component types. Tonella and

Ricca’s (2004) two-layer testing model consists of pages, navigation links, and con­

trol flow objects which model the execution of statements and data access. Fur­

thermore, Liu et al. (2000) define their Web Application Test Model (WATM) as

composed of three type of objects: client pages, server pages, and components. A

similar approach is adopted by Rung et al. (20006) for the Navigation Behaviour

testing, State Behaviour testing, and Structural testing. Their Object Relation Dia­

gram (ORD) represents the Web application entities and their relationships, which

consist of client pages, server pages, and software components, and the relationships

types amongst them which can be navigation, request, response, and redirect These

testing approaches to functional verification are an indication of what developers

consider to be a suitable Web application testing model, namely pages, links, and

executable components. Therefore, the WSM will acknowledge this by considering

these components as a representative set of the functional relevant entities.

One final aspect to investigate is the implementation process of Web appli­

cation design models. After the design phase of development, the resulting design

model has to be “realised” into an executable Web application. For this purpose,

there are already automatic tools to map design models into code. One such no­

table example is the WebRatio tool that supports the automatic synthesis of WebML

design models (WebRatio 2005). But whatever the used method is, automatic or

interpretative, the design models still have to be mapped into HTML code, exe­

cutable code, and database infrastructure. Since the proposed simulation model

will be used to verify functional requirements, it is important to understand what

this concept is, so that the “simulated implementation” reflects only the relevant

concepts. Functional requirements can be captured using UML Use Cases, which

81

can be defined as:

Use cases - capture who (actor) does what (interaction) with the system,

for what purpose (goal), without dealing with system internals. A complete set of

use cases specifies all the different ways to use the system, and therefore defines

all behaviour required of the system, bounding the scope of the system (Malan and

Bredemeyer 2001).

As can be seen from this definition, functional requirements do not provide

information about the aesthetics of the Web application interface, nor of accessibility

or usability issues. What they convey is the intended system reaction to a set of

actions taken by a user; for this reason, the internal objects of the WSM must not

only provide user interaction, but also mimic the behaviour of an implementation.

4.3.1 The Four-layer Model Definition

The WSM was designed adopting a common multi-layered approach that addresses

each key design concern separately. Each layer is responsible for the correct man­

agement of a subset of concerns and entities. This design provides a high degree

of flexibility in tackling the design complexities by dividing them into manageable

subsets. As already noted, the research literature body seems to corroborate this

concept by adopting layered models whenever addressing Web application design

issues. All the existing major works on the topic consider the existence of several

and often orthogonal layers that serve as a separation of concerns of the problem in

hand.

The proposed WSM adopts a layered model assuming separation of concerns

as a credible, researched and proven method of complexity management of Web

application design. These layers were identified as the Presentation, Navigation,

Functional, and Content layers (see Figure 4.3). Each layer addresses a key concern

in a Web application, namely: the visible aspect by the Presentation layer, the paths

82

Presentation

User Interaction
Model

i i

Input
^ Navigation

Functional

Content

Web-design Simulation Model (WSM)

Output

Figure 4.3: The Web-design Simulation Model (WSM)

traversed by the Navigation layer, script execution by the Functional layer, and data

access by the Content layer. Each of these layers is responsible for managing a set

of entities and objects. The concept of entity has been borrowed form the Object-

Oriented technology field and is defined as templates from which objects are created

(Wegner 1990). These entities represent the structure and emulate the behaviour of

the design model components that are relevant to the testing and implementation

phases, bridging the gap between design models and implementation components.

During a simulation run several objects, which are runtime instantiations of entities,

will simultaneously exist. This allows multiple objects to be simulated based on the

same entity. One example of this mechanism is an entity representing a specific

Web page which, during simulation, will originate several objects corresponding to

several instantiations of that same Web page. In the following sections, the word

entity will be used when referring to a template, and object when talking about its

runtime instantiation (refer to Figure 4.4).

83

Web Application
representation

-instanciation- —

Simulation run Object
Object

Figure 4.4: WSM Entities and Objects

The Presentation Layer

From a developer’s perspective there are several key aspects of a prototype that

should be available for analysis purposes. One such aspect is the inevitable existence

of a graphical user interface, through which the user interacts with the system. This

interface constitutes the sole means of user interaction with the Web application,

and it is only by the use of this interface that the Web application displays to the

user the consequence of her/his actions. In the WSM this was taken into account

by considering a Presentation layer that lies between the user and the remaining

layers of the model.

The Presentation layer represents the interface that we all have become accus­

tomed to in the form of a Web browser, and implements its two main functionalities:

handling user actions and inputs, and the rendering of components. For that pur­

pose, this layer is populated with Presentation entities that are capable of handling

these two types of services, namely: the Window and Page entities, which model

the Web browser window and Web page. The Window is the basic container and

at least one Window object must be present during simulation to hold any other

objects, namely Page objects. On the other hand, the Page serves as a canvas on

which other objects will be rendered.

84

To be able to simulate the design in a scenario as close to the real-world as

possible, the Window entity will provide support to one important design feature of

the WSM: the ability to simulate a multi-session environment. By this is meant that

multiple, distinct, and simultaneous sessions may be open at any given point in time

during a simulation run. This feature allows emulation of multiple simultaneously

opened windows, similar to the scenario of a user opening several Web browser

windows. In this case, each Window object has to manage its private objects and

session separately. This allows multiple, distinct, and simultaneous accesses to the

same objects without the danger of compromising their content integrity. Moreover,

this mechanism enables several objects instantiated from the same entity to hold

different content depending on the session (Window) in which they are contained.

User interaction entails both the actions a user may take and the data a user

may enter in the available and appropriate input objects; these interactions will be

handled by the Page object. Possible actions entail the selection of a rendered nav­

igational object, corresponding to a probable system state change, or the selection

of a functional object leading to the execution of a script object. One important

design choice of the Presentation layer to note is the assumption that this layer is

not responsible for the semantic interpretation of the user interactions. This means

that, although this layer is the receiver of all user actions, it makes no attempt to

interpret them. However, it is aware of the semantic and lexicon of the actions,

making it possible to act as a gateway for the remaining layers. Although not being

knowledgeable about the implications of selecting a rendered navigational object,

the Presentation layer is capable of identifying it as a Navigation layer responsibil­

ity, resulting in the redirection of that action to the Navigation layer. Similarly, the

Presentation layer may liaise with the Functional layer to execute a specific script

object, or inform the Content layer of actions upon data objects.

85

The Navigation Layer

It is on this layer that user actions initiated on the Presentation layer involving

navigational objects acquire a specific meaning and trigger a determined set of pro­

cedures. This layer is populated by Link entities which are the communication

channel that connect and glue all the other entities together. It is the primary

means of navigation throughout the Web application structure, and can also trigger

procedural entities such as scripts. Navigation actions usually correspond to the

selection of an available hyperlink rendered by the Presentation layer, which can

either be HTML anchors on Web pages or buttons on Web forms. The first one con­

nects two Web resources and serves as a unidirectional communication channel for

parameter forwarding; the second is used to implement a data transfer mechanism.

As already noted, user actions performed on the Presentation layer are not

interpreted there but delivered to the appropriate layer which, in the case of selecting

navigation objects, is the Navigation layer. Here they are analysed and processed,

and the corresponding set of processes is initiated. As with the Presentation layer,

the Navigation layer can act as a gateway for the other layers. One important

and common example of this role happens when a navigation object that triggers a

script is selected. In this case, the Navigation layer acknowledges it as being part

navigation, in the sense that it will possibly imply a change of position1 within the

Web application structure, and part a responsibility of the Functional layer to which

the action is further forwarded.

This layer entails all the mechanisms necessary for the correct processing of

all events that have the potential to change the current user position in the Web

application structure. These changes may be initiated by the user as described

above, or may have their origin on one of the remaining layers. A script that causes

a navigational change, although being processed on the Functional layer, will rely

1 ‘Change of position’ in this context means that a new set of Web pages will be displayed to the
user; ‘position' is the current Web page a user is on.

86

upon the Navigation layer to handle that request. In this case there is no user

intervention whatsoever, but internal processing and information flow amongst the

layers of the WSM.

One other important function that this layer implements is the correct han­

dling of the information flow amongst objects connected by a Link. These object

are sometimes connected by special type of links that implement the fundamental

function of information transport. The rationale for adding this role to the Naviga­

tion layer responsibilities is that this particular case of object linkage shares several

proprieties with the “normal” hyperlink functionalities. They both connect two re­

sources, have a well-defined source and destination points, and both unidirectionally

convey information. This is not an unusual design option and examples are abun­

dant in the research literature. For example, WebML makes use of Transport and

Automatic links for this purpose, while Conallen’s (2000) WAE-UML allows the ex­

tension of the object relationship semantics by using stereotypes, tagged values and

constraints.

The Functional Layer

Whereas the Navigation layer provides mechanisms for traversing the Web appli­

cation structure, the Functional layer provides support to the dynamic aspect of

Web applications. This involves managing executable objects - Script objects -

which are instantiations of the Script entities. Due to the programmatic aspect of

these entities, obviously implying a myriad of possible implementations, they are

the most complex entities within the WSM. If implemented, these objects would

either run on the server or be executed on the client side. This distinction, although

being sometimes disregarded and undervalued by some research on the grounds of

it being mainly an implementation issue, may acquire an important significance for

simulation purposes. One major aspect is the set of accessible objects from these

87

scripts. For server-side Script objects, access to databases and Web application

server variables is straightforward; on the other hand, user data input only becomes

available when it is submitted to the server. Conversely, client-side Script objects

have privileged access to user data input before it is even sent to the server, but

constrained access to the information on the server. The Functional layer makes

this distinction but, if the design model does not, it assumes that objects on this

layer have unrestricted access to all the existing simulated objects.

As already mentioned, this layer implements the dynamic aspect of Web ap­

plications by providing mechanisms for the management of programmatic objects.

These mechanisms include the processing of scripts and the handling of their input

and output variables, which can be probed for analysis purposes. This possibility

of accessing and probing object interface signals constitutes one major advantage

of simulation. Objects on this layer provide a black box type of simulation, mak­

ing the interface variables available by explicitly defining them. This topic will be

further described in Chapter 5 where the definition of each layer entities is pre­

sented. Simulation from this layer perspective concerns the correct management of

the programmatic objects that implement the dynamic aspect of Web applications.

It is responsible for the triggering, execution and termination of these objects, thus

handling their simulation life cycle.

The Content Layer

This last layer is dedicated to the data management of Web applications. It is on

this layer that requests for accessing Data entities are handled. Data entities are the

basic information content holders; databases, files, Web page variables, cookies, and

Web form fields are all modelled by these entities. A fact worth noting is that the

Content layer does not manage the variables of Script objects, which are directly

handled by the Functional layer.

88

One fundamental aspect that this layer is responsible for is the management

of Data objects that may be owned by different users in a multi-user environment

simulation. The point being that Data objects may be shared amongst all simulated

users, as is the case of a central database, or may belong to a specific user and thus

private. This data-sharing mechanism emulates the real-world scenario. Also, this

layer makes a distinction between the application and session scope of Data objects,

being responsible, in conjunction with the Window, for their management in a multi­

session environment.

The Content layer does not address the internal structure of Web applications

databases. This aspect has been addressed and thoroughly researched and, as such,

the Content layer does not attempt to propose or serve as yet another Data Model.

In fact, similarly to other design models, the WSM assumes that if a database exists,

then its design has already been addressed and implemented. What the WSM does

provide is the means to access the database content via the Content layer and its

Data objects.

4.3.2 Hierarchy of the WSM Entities

An important aspect of all WSM entities is their hierarchical relationship (see Figure

4.5). The Window entity is the basic container of all the remaining entities, and

it can contain either Page or server-side Script entities. Similarly, the Page entity

may also consist of several others, such as Link, Data, Script, and even inner Page

entities, which is the case when Web frames are being modelled. Link and Data

entities, on the other hand, are end nodes of the hierarchy and cannot be composed

of any others. Script entities may be contained either by Page or Window entities.

The former situation arises when there are client-side scripts to be modelled which

need a Web page to exist. On the other hand, a server-side Script does not require

a Web page. However, a server-side Script must be contained by a Window entity

89

PAGE

DATA

DATAPAGE
DATA

SCRIPT

SCRIPT
(Setv er- Side)

WINDOW

Figure 4.5: Hierarchical Topology

to be executed within the right session context, since the Window entity models a

user session. In this way, a Script can access other entities and variables belonging

to the same user session, which are all grouped by one Window entity.

Derived from these basic entities by instantiation, a collection of several

objects populate the WSM during a simulation run. For example, distinct Page

objects, resulting from instantiation of Page entities, simulate different active Web

pages. Similarly, Window, Link, Script, and Data objects are also dynamically

created during the simulation process and destroyed and eliminated when no longer

needed. For example, at least one Page object will be created when a Web page

is displayed to the user, and discarded when the user navigates outside that page

scope; furthermore, a Window object must also exist to hold the Page. Link objects

are dynamically created based on the Web application design. Script objects can

be created by other Script, Link, and Page objects and will cease to exist after they

have completed their workflow. One situation when objects once created remain in

existence throughout the entire simulation is when a Data object is a shared resource.

Examples of this situation occur when the object models a “cookie” or a database;

in this case, the object will exist during the whole session or application duration

because it must hold its value and be constantly available for other simulation objects

90

to access.

4.3.3 The User Interaction Model

Users are viewed by the WSM as external entities that interact with Web applica­

tions, and the ones that constitute its main source of stimuli. The design option

of not including the User Interaction Model in the WSM was based on the premise

that, although they are two complementary aspects of the normal Web application

workflow, they should be separately modelled in order to not become entangled.

Separation of concerns played a major role in this decision, as well as the belief that

future work will consistently improve and refine the user interaction model to a de­

gree when it becomes more than just pure interaction, embracing users’ objectives,

motivations, and decision-making mechanisms. Such is the complexity of this topic

that it is out of the scope of the present thesis and it deserves a separate research

of its own.

The basic user interaction functionalities are modelled by the User Interac­

tion Model and its User entities. The WSM defines the interface through which the

User entity can interact with the Web application via the Presentation layer. The

rationale for developing the User entity is to enable and emulate a multi-user envi­

ronment simulation. By allowing multiple User objects to interact with the WSM,

the real-world scenario of concurrent access can be simulated. This has a major

impact simulation-wise, since the range of possible simulated scenarios becomes not

only wider but closer to what in fact happens in a real implemented Web applica­

tion. For example, a possible scenario can be the simulation of concurrent accesses

to Web Forums, E-Commerce, or even Web auctions; in this case the possible im­

pacts on the central database due to concurrent accesses can be a major source of

interesting results for the functional evaluation of the designs.

To emulate a real-world multi-user scenario, the User object can refer to

91

several Window objects (see Figure 4.6). Distinct User objects will have distinct

sets of Window objects independent from each other. This perfectly emulates the

real-world scenario of having several and distinct users each with their own set of

Web browser windows, simultaneously accessing the same Web application.

PAGE SCRIPT
(Server-Side)

WINDOW

USER

Figure 4.6: The User Entity

4.4 The Simulation Stimuli

From a WSM point of view, a Web application has two distinct states - either Idle

or Processing. The idle state happens when the Web application is waiting for events

to process and execute. In contrast, a Web application is in the processing state

when receiving and processing one of those events. This state changing is driven,

although not restricted to, by the user interaction with the Web application. Events

are the force behind these states alteration. They have the potential to change the

Web application state and will always imply that the Web application will remain

active during the time needed for their processing. This perspective on the Web

application mechanisms suggests a Web application as a state machine, bouncing

back and forth from state to state, which is determined by the succession of events

received.

Stimuli or events are what drive the simulation and make it progress through

92

time. An event can be defined as:

Definition 14 Event - (1) An occurrence that causes a change of state in a sim­

ulation. (2) The instant in time at which a change in some variable occurs. (IEEE

standard glossary of modeling and simulation terminology - 610.3-1989 1989)

There are two types of stimuli: the endogenous or internal, and the exogenous

or external (Banks 2000). The endogenous events have their source in the system

and are triggered by the system objects, whereas the exogenous events have their

origin in external objects. An event is an occurrence between two objects, and has

an origin, a recipient, and a message. In the WSM, the events source and destination

are either objects or one of the four layers. The information contained in the event

message consists of the event identifier and a set of parameters according to the

event syntax. The syntax of the WSM events is presented in Appendix B.

The only exogenous object of the WSM is the User. Users may trigger

several events, although as mentioned before, they all interact with the Web ap­

plication through the Presentation layer. These user events are named User Inter­

action Stimuli. User events have their origin in the actions that users perform on

the Presentation objects and are classified by the WSM as belonging to one of the

following classes: (l)browser events, (2)interface object events, and (S)data input

events. Since interaction with the Presentation layer is the only channel for users

to access the Web application, users have two classes of objects with which to in­

teract: the Window and the Page. There are two types of browser events: opening

and closing a Window. The opening of a new browser window - the openWindow

event - contains the identifier of the Window and URL to be displayed, as well as

identification of the User to whom this Window belongs. Similarly, the closeWin-

dow event also conveys the identifier of the Window that is to be terminated by the

Presentation layer.

The user actions that are performed on Page objects trigger interface object

93

events. These interface objects are mainly navigational objects such as the ones

modelling hyperlinks and buttons, and they usually lead to an alteration of the set

of the active Page objects. Hyperlinks are unidirectional connections between two

objects such as two Page objects. Actions performed on this type of objects will

trigger an actionLink event. Buttons, such as the “submit” button on a Web form,

are a means to transport information from a Page object to a Script object. Actions

on these objects will issue an actionButton event.

Users also have the option of entering data into the appropriated data fields

which are the rendered aspect of the Data objects - these will trigger data input

events. These data fields found on Web forms are a special case of Data. They are

rendered on the Presentation layer in the commonly found HTML formats of “text

fields”, “combo boxes”, “check boxes”, “radio buttons”, and “lists”. Normal oper­

ation procedures consist of selecting or entering data in these fields and submitting

the form for processing. The selecting and entering data actions are represented

by the setData event. Parameters of these events are the identifier of the Data

object and its new value (or values if it is a multiple parameter field), which will

be processed by the Content layer. The complementary event, which is not usually

issued by a user but by another layer or object, is the getData, which returns the

content of a Data object.

The possible endogenous events are those which the objects may issue either

to one of the layers or directly to another existing object. One such event is the

readObject; when issued it attempts to access an existing object. This is normally

used by a Window or Page object when loading information for rendering. Also,

a Script object may issue this event when including a Data object as one of its

components.

Other endogenous events commonly found are those that specifically deal

with Web page construction. One of these is the displayPage which will attempt

94

to render a Page object. It can be triggered by a Navigation or Functional object,

and will be processed by the Presentation layer. A special case of this event which

emulates the dynamic construction of a Web page is addressed by the buildPage

event. In this case, a Script object is responsible for the on-the-fly building of a

Page object. It is a cumulative process where several Script objects may concurrently

contribute for the construction of a Page object by adding objects to it. Finally,

another internal event is the access of a Script variable content, either to set its

value - the setScriptVar event - or to retrieve it - the getScriptVar. These events

are usually used during the verification of the functional requirements to evaluate

the behaviour of a specific Script by inspecting its internal variables.

4.5 Layer Interface Definition

Whenever an event is issued it must be processed by the simulation model. Our

model has been designed to enforce separation of concerns by defining an orthogonal

layered model and, therefore, distinct layers have their own management responsi­

bilities and capabilities. However, the WSM implements a mechanism of interlayer

procedure invocation, through which layers can request services from other layers.

This enables services to be made readily available to all layers and objects when a

necessary procedure is required but not implemented by the issuing layer.

An often-required service consists of the display of a Page object. This is

implemented by the Presentation layer, which is in charge of supporting operations

that deal with the visible aspect of Web applications. Other layers may issue a

request to the Presentation layer for the rendering of a Page object. One such

situation arises when a Link is selected by the user, and the Navigation layer, which

processes these type of events, requires a new Page to be presented (see Figure 4.7).

This requires the Presentation layer to construct a new Page object and read all

its internal components; this is performed by successive calls from the Presentation

95

layer to the Navigation, Functional, and Content layers.

action LinkQ

<Object>

readObjectQ

< Object >

FunctionalNavigation ContentPresentation

Figure 4.7: How an actionLink Event is Processed

One other scenario occurs when a server-side Script object dynamically con­

structs a Page object. In this case, a Page entity is instantiated and the object

receives from the Functional layer its constituents, which will be part of the final

Page object (see Figure 4.8).

As already noted, it is a responsibility of the Navigation layer to manage the

events that give rise to a change of the user position within the Web application.

Hyperlinks and buttons are the rendered aspect of Link objects, and actions upon

them are processed by this layer. From the Presentation layer, the Navigation layer

receives the actionLink and actionButton events; the former is processed by the

Navigation layer leading to a reply back to the Presentation layer containing the

new set of Page objects to be rendered. The latter event is further forwarded to

the Functional layer which will trigger a Script object (see Figure 4.9). There is no

96

readObjectQ

<Object>
buildPageQ

Functional ContentNavigationPresentation

Figure 4.8: Dynamically Constructing a Page object

communication between the Navigation and Content layers, which do not require

access to each other’s support services.

The Functional layer provides the service for executing a Script object. This

service receives the identification of a functional object and supports the start, ex­

ecution, and termination phases of the object. One such example is the exogenous

actionButton event. Another scenario occurs when a client-side Script is contained

by a Page object; in this case, when simulating the loading stage of the Page, an

execute command of the Script is issued by the Presentation layer directly to the

Functional layer.

All the Web application information is handled by the Content layer, which

manages files, variables, and databases. An important service that this layer pro­

vides is the accessing of that information by the other layers. For this purpose, the

Content layer implements the operations of setting and retrieving content from the

existing Data objects (see figures 4.10 and 4.11). For example, the Presentation

97

executes criptO

Functional ContentN avigationPresentation

Figure 4.9: The Event Procedure of Selecting a Button

setDataQ

Functional ContentPresentation Navigation

Figure 4.10: The setData Content Layer Service

layer may request a specific data object to be included on the rendered Web page.

Furthermore, Data objects also model and manage input fields of Web forms; there­

fore, user actions on the rendered data objects will issue a setData command to the

Content layer which alters the content of the respective Data object. Also Func­

tional objects often require access to the content of Data objects for their workflows;

this is provided by the getData service. Once again no communication is necessary

between the Navigation and Content layers.

Figure 4.12 summarises the services provided by each WSM layer.

98

getData()

getDataQ

<DA1A OBJECT>

ContentFunctionalPresentation Navigation

Figure 4.11: The getData Service Provided by the Content Layer

4.6 The Simulation Output

The results of the simulation will consist of a set of objects existing at a point in

time during a simulation run. These can be User, Window, Page, Link, Script, and

Data objects, which completely define the state of the system from a functional

perspective. These entities represent a simulated implementation of the design, and

emulate both its structure and behaviour in a multi-session/multi-user simulated

environment.

The output of the simulation will allow inspection of the set of active pages,

the links traversed, the scripts executed, and the data content. By analysing the

stimuli that led to these results and by comparing them with the expected results,

an evaluation of the functional requirements can be made.

4.7 Assumptions and Simplifications

In order to manage the simulation model effectively and to keep complexity within

reasonable levels, assumptions and simplifications were made. We assumed that a

Web application can be seen as a finite state machine which can be in one of two

states: either Idle or Processing. This, however, has empirical evidence support and

does not have an impact on the layers of the model, but only on the mechanism of

99

PRESENTATION

displayPageO
buildPageO
action Link()

action ButtonO
openWindwO
claseWindowQ
readObjedQ

action LinkO

action ButtonO
rea dO bjeetQ

exe cuteS cfiptO
stopScriptQ

actionButtonQ
readObjectQ

setDataO
getDataO
readObjectQ

Figure 4.12: The Services Provided by Each Layer

the simulation itself.

The simplifications made pertain mostly to the graphical rendering of the

Web pages. There is no intention of assessing the graphical representation, be it its

quality, accessibility, or usability, since it does not add any value to the functional

requirement evaluation of Web applications. Therefore, user interface assessment

will not be object of discussion in this thesis. However, the interface implements

several aspects such as navigation and data input capabilities, which are relevant to

functional evaluation and that must be modelled. This simplification is corroborated

by the main Web development models, whose graphic representation concerns are

kept to a minimum or even non-existent.

4.8 Methodology of the Simulation

The simulation approach that is being considered is one of a discrete-event type

performed on a Web Application Design (WAD). These designs may be defined using

one of many Web Application Design Models (WADMs). This raises the question

100

of how to develop a simulation framework that is not tied up to a specific WADM.

Moreover, the designs will have to be translated and represented by WSM entities,

which have to be formally defined in order to be simulated. This can be solved by

the use of a middleware Web-design Description Language (WDL). Existing Web

applications are first translated into WSM using the middleware WDL, resulting in

a WDL Model which will then be simulated (Figure 4.13). One advantage of this

approach is the possible simulation of Web application designs using heterogeneous

Web application design models.

WDL Mapping

Simulation Results WDL FilesWDL Simulator

Web Application
Design
(WAD)

Evaluation WDL Model
(WSM-iWDL)

Figure 4.13: Methodology of the Simulation Procedure

WDL is a formally defined description language that is able to represent the

most important functional aspects of the existing design models. It borrows concepts

from hardware description languages, in particular from VHDL (IEEE Standard

VHDL Language Reference Manual - 1076 2002), and is presented in Chapter 5.

The mapping procedure between a Web application design and the WSM

entities consists of a representation of the former using WDL. Depending on the

101

source of the WAD, either using WebML, Web Application Extension to UML, or

some other design model, the appropriated translation procedure is selected. This

consists of a set of mapping rules and patterns that automatically generates the

target WDL Model description from the source WAD. The WDL Model description

generated will contain all the WSM entities needed for an accurate representation of

the Web application design from a functional requirements evaluation perspective.

This raises the issue that some existing design models may not be able to

capture sufficient information to provide a meaningful simulation. Undoubtedly,

if a developer chooses a specific WADM for Web applications design then it is be­

cause it can offer some support for the implementation phase of their functionalities.

However, a valid question is whether a chosen WADM provides enough information

needed by WDL. This will be answered in the next chapter by identifying the min­

imum information a Web application design model must provide in order to enable

the mapping process, simulation, and evaluation of functional requirements.

4.9 Verification and Validation of the Proposed Web-

design Simulation Model

Verification and validation of the Web-design Simulation Model assures that the

results obtained by the simulation model are, in fact, credible. Simulation model

verification assesses if we are building the model right, whereas simulation model

validation assesses if it is the right model. Balci (1990) argues that, since a model is

an abstraction of reality, absolute accuracy of a model is something that is usually

difficult to attain. There are, however, some measures that allow us to assess the

credibility, quality, validity, and verity of the model when used for the defined study

objectives. Some of these measures - such as verification of the formulated prob­

lem, and the feasibility assessment of the simulation - are related to the definition

102

of the problem, and have already been addressed. Formulated problem verification

addresses the issue of if the formulated problem contains the actual problem, and if

it is sufficiently structured to allow to allow derivation of a solution. This has been

substantiated throughout Chapter 2 - Literature Review - when stating the prob­

lem, describing the background theory, and formulating the hypothesis. Feasibility

assessment of simulation addresses issues such as whether it is possible to solve the

problem with simulation, and if the benefits justify the estimated costs of devising

a simulation model. This has been addressed throughout this Chapter, by clearly

identify the basic building blocks of Web application design models that possesses

functional meaning, and by definition of a conceptual model with a well-defined

purpose and contents.

Other measures to assess the validity and verity of the simulation model

exist, such as programmed model Validation and Verification, and model validation.

These pertain to the computerised (or programmed) model, and will be addressed

when the translation of the conceptual model into a computerised model is presented

(Chapter 6).

4.9.1 Summary

The definition of the Web-design Simulation Model (WSM) has been presented.

The adopted approach led to a multi-layered model, which implements a distrib­

uted management responsibilities among the layers. The four layers adopted are

Presentation, Navigation, Functional, and Content. Each of these addresses, man­

ages, and handles a key design concern. Definition of the layers’ interface, simulation

stimuli, and results was also presented.

Furthermore, the proposed Simulation Model consists of several entities that

bridge the gap between design models and a simulated implementation. These

entities are the Window, Page, Link, Script, and Data, and they will populate the

103

layers of the WSM. Additionally, one other entity - the User - addresses a real-

world scenario by enabling a multi-user simulation environment. The next chapter

will present a more in-depth definition of these entities.

104

Chapter 5

The Web-design Description

Language

The Web-design Description Language (WDL) has been developed not as another

description language, but to bridge the gap between Web Application Design Models

(WADMs) and the Web-design Simulation Model (WSM), by formally describe the

WSM entities. It is not a description language for Web application design per se

that is aimed at, but one that makes simulation achievable. This means that it

must be formal in its syntax, comprehensive in its lexicon, and programmatic in its

semantic. This chapter presents the WDL definition and the relationship between

other design models and WDL.

5.1 A Formal Description Language for Web Simulation

A formal language is characterised by the prior knowledge of its rules before its use

(IEEE standard glossary of software engineering terminology - 610.12-1990 1990,

p. 34). It consists of a set of finite-length words written using some finite alphabet,

of which the usage rules are known. A description language is a term used to

105

refer to a class of languages used for the conceptual design of systems. They are

usually platform-independent so as not to commit to a specific implementation,

abstract enough to cover all the concepts involved, and allowing the right level of

detailed description of its entities to serve for design purposes. When developing

WDL, an inter-disciplinary approach was taken by borrowing concepts from the

hardware development field, where description languages are a much researched

topic. In fact, Hardware Description Languages (HDLs) have been around for many

years, VHDL (VHSIC Hardware Description Language) and Verilog being two of

the most successful examples. VHDL was developed to document the behaviour of

Application-Specific Integrated Circuits (ASICs) that were introduced in equipment

supplied to the US Department of Defense. It has been widely used since the early

1980s and became the IEEE standard 1076 in 1987, with the last revision dating

from 2002 (IEEE Standard VHDL Language Reference Manual - 1076 2002). As

stated in the standard, VHDL is a formal notation which ‘‘supports the development,

verification, synthesis, and testing of hardware designs”. Verilog has also been

extensively used and became an IEEE standard 1364 in 1995 (IEEE 2001). The

main differences between these two standards can be found in their data types,

design reusability, libraries, large design management capabilities, and suitability

for abstract description (Smith 1996, Maginot 1992). VHDL’s capability for high-

level abstraction description, both behavioural and functional, user-defined data

types, and its support for large designs management and reusability, make it a

better candidate to be transposed to the Web application development field than

Verilog.

The concept of describing a hardware system’s behaviour is, undoubtedly,

a very attractive perspective - complex diagrams and blueprints of systems are no

longer needed to define the hardware being built and its simulation is a straightfor­

ward process. Structural and behavioural description of a Web Application Design

106

(WAD) will provide similar benefits. WDL is, at this stage of development, not as

ambitious as VHDL in the sense that support for synthesis is not yet provided. Fur­

thermore, while VHDL is a language that developers use extensively to design their

hardware, WDL is a middleware language that is mostly the output of an automatic

mapping process. Therefore, only in special cases will Web developers program in

WDL. These special cases happen when the mapping process is not fully automated,

or when Web developers want to model a specific component behaviour. However,

the structural and behavioural description of a WAD will allow its simulation and

evaluation of the functional requirements. And that is exactly what WDL aims at

- to support the development and verification of Web application designs.

5.2 The Entities within

This section presents the WDL formal definition of the six entities used during

a simulation run - User, Window, Page, Link, Script, and Data. The adopted

format of the definition of the entities is very similar to VHDL where a separate

description for their structural and behavioural aspects is made by the entity and

architecture constructs (see Figures A.l and A.2 in Appendix A). The structure of

each entity is firstly described, which allows an overview of all the attributes (ports in

VHDL) accessible for content inspection and modification. This structure is further

divided by WDL into two main groups - Model and Runtime. The former relates

to those attributes which are gathered directly from the WAD and remain constant

throughout the entire simulation. Their values define the general characteristics

of the entity and are directly obtained by the mapping procedure which translates

a WAD into WDL. The Runtime attributes values are changeable and they are

related to the Web application state at a specific time during the simulation. These

values change as stimuli are processed, and their progress during a simulation run

constitutes the main source of results.

107

The behavioural description of each entity is defined in the architecture

block, where the functions implemented by the entity are defined. This definition is

one of the main reasons that makes WDL a simulation-enable description language.

By individually defining each entity behaviour, each stimulus will be processed by

the appropriate function. Therefore, each entity behaves differently, depending on

its attributes and functions workflow. The adopted format is also similar to the

VHDL standard, however, the block of each function is written using Java™-like

statements, the rationale being that it is platform-independent and extensively used

by developers. Also, the representation of the possible states and events of each ob­

ject is done by the use of UML Finite State Machine diagrams (Object Management

Group 2005). This allows a graphical representation of the ‘life cycle’ of the objects.

The following sections will describe each of the entities’ attributes and functions;

their formal definition is presented in Appendix A.

5.2.1 The Page

As already mentioned, the Page entity resides on the Presentation Layer and emu­

lates a Web page being displayed to the user. As such, the Page entity is modelled

based on the Web page structure and functionality, and a selection of the considered

important set of aspects of the Web page is made. This selection of the attributes

is directly related to the aspects that should be simulated to allow the evaluation

of the functional requirements of the WAD. Therefore, all aspects that do not con­

tribute to this objective should be carefully evaluated, and discarded if they do not

significantly contribute or support the simulation.

A Web page serves several purposes: to display information to the user, to

collect information from the user, and to render navigational, functional, and data

elements which allows the user to interact with the Web application. Simulation

for the evaluation of the functional requirements is not concerned with the aesthetic

108

issues of the HTML rendering, since they do not interfere with the operational

aspects. This means that, for instance, issues such as colours, fonts, text, graphics,

and placement on the Web page do not originate any WDL structural attributes.

Usually, functional requirements state which set of Web pages should be dis­

played to the user to implement some required functionality. Hence, the state of each

Web page of the Web application - ‘ACTIVE’ if displayed, ‘INACTIVE’ otherwise

- is a basic attribute that must be modelled. The functional requirements also refer

to the Web page’s main objective - to display information or to collect user input

data. This means that the purpose of a Web page must also be captured. Although

not usually covered by the functional requirements specification, some attributes

have been added to provide developers with more information about possible im­

plementations. Such is the case of how a Web page is constructed, which can be

a static HTML file, a mix of HTML and embedded client-side scripts, or resulting

from the execution of a server-side script. These “supplementary” attributes are of­

ten modelled by the existent WADMs, and although not absolutely necessary for the

functional requirements assessment, they contribute by adding information about

the dynamics of the design. Table 5.1 summarises what aspects of the Page entity

are modelled by WDL, and which ones are not being considered for its definition.

Simulated Not simulated
Uniquely identification Look and feel
State - active or inactive Usability issues
Its main purpose: displaying or gathering information Accessibility issues
Building method: static or dynamic Performance issues
Inner structure definition
Identification of the set of pages to which this entity belongs

Table 5.1: Simulation of the Page Entity.

Table 5.2 shows the structural and behavioural definition of the Page. Its

attributes are categorised as Model and Runtime, depending on how their content

is gathered and if they are constant or variable throughout the simulation run. The

109

first attribute - pagelD - is the identification of the entity. This attribute, existing

in all WSM entities, merely provides the means to uniquely identify an entity. Recall

that each defined entity will serve as a template from which, during runtime, several

objects may be instantiated. Hence, identification of each template is necessary, as

is the identification of the equivalent runtime object - the pageOID. By using these

two attributes, simulation of distinct instantiations of the same template may be

performed. Next the pageStructure classifies the entity’s main purpose: to display

information, to collect information from the user, or to serve as a container of other

Page entities. The pageBuild simply determines how the Page is to be constructed -

by loading a file, by a mixture of HTML and client-side scripts, or built by a server-

side script. Since the Page entity is one of the WSM entities that may contain other

entities, the pageComponentsID holds their identification in an Array. Finally, the

entity may be further classified in terms of pageContext, which allows Web pages

to be grouped together in terms of their functionality, and it is often referred to as

areas or views by other Web application design models.

Entity
Model attributes Runtime attributes
pagelD pageOID
pageStructure state
pageBuild windowOID
pageContext userOID
pageComponentsID pageComponentsOID

Architecture
display Page ()
deactivatePage()
readObjectQ

Table 5.2: The Page Entity Definition.

The Runtime attributes of the entity are not gathered from the design model

but set and altered during the simulation process. For instance, the value of the

state attribute can determine whether a Web page is being displayed to the user or

not. The remaining attributes hold the runtime values of the Window in which this

110

Page is contained, and to which User the Page belongs. Finally, an array holds the

runtime Object IDentifiers (OIDs) of the Page components which are defined in the

corresponding Model array.

Each entity implements several functions which emulate their behaviour.

They are called during runtime by the respective layers to which they belong. The

Page object implements three functions: the displayPage(), the deactivatePage(),

and the readObjectf). The first function, which may be issued by any of the WSM

layers, simply activates the object and its internal components. This makes the Page

object visible to the User. The deactivatePage() function makes this Page invisible

by altering the object’s state attribute to ‘INACTIVE’, and the readObject() reads

every Page component found in the pageComponentsOID array. A representation of

the possible states and events of the Page object using UML Finite State Machine

(FSM) notation can be seen in Figure 5.1. The ‘Presentation.Create’ and ‘Presen­

tation.Delete’ events represent the creation and destruction of the Page object by

the Presentation layer.

Attribute Enables simulation of...
pagelD several and distinct Page entities
pageStructure the three main classes of pages: plain HTML pages

(PAGE), forms (FORM), and frames (FRAMESET)
pageBuild plain HTML pages (HTML), client-side scripts

embedded in pages (DYNAMIC), and server-side
scripts building pages (ASP)

pageComponentsID hierarchical structure of the Page entity
pageContext different areas of the Web application, by grouping

pages in sets
pageOID different instantiations of the same entity
state the status of the entity at a given time
windowOID multi-session environment
userOID multi-user environment
pageComponentsOID the runtime objects of the hierarchical structure of

the Page entity

Table 5.3: Page Entity Simulation Features.

Ill

i— Prese nrtation. De lete

Figure 5.1: Finite State Machine Representation of the Page Object

5.2.2 The Link

The Link entity is found on the Navigation layer of the WSM. This entity models

the connection between two Web resources, with a well-defined source, destination,

direction, and information conveyed in the form of parameters. The main reason

for implementing an entity with similar objectives to the HTML hyperlink is to

allow navigation and transfer of information amongst the entities. Navigation is

implemented by connecting two Page entities with a Link; similarly, transfer of

information is achieved by connecting a Page to a Script, or two Script entities

together. Table 5.4 lists the aspects that may be observed during the simulation.

Its state attribute indicates whether the Link has been selected - the ‘ACTIVE’

state - or is available - the ‘INACTIVE5 state. When a Link object is created, it

remains ‘INACTIVE5 until selected, thus indicating that it is available for interaction

but not yet to be traversed. When a Link object does not belong to any Page or

Script currently in use, it is discarded by the Navigation layer. Multiple ends,

either source or target, are not considered by WDL. The alternative for this is to

simply consider several Link entities which cover all the different possibilities. Image

maps and sections within the same Web page are also not simulated; the first one

tends to be an aesthetic option, whereas the last one is a usability issue, thus not

112

contributing to functional evaluation. Finally, the only allowed event on a Link

entity is the common "onclick” which triggers the connection; other events such as

the "onfocus,’ and "onblur” defined in the HTML standard are not simulated, the

rationale being that these actions are often used to enhance the graphical appearance

of the interface rather than adding functionality and, furthermore, design models

do not usually go into such detail.

The definition of the Link entity can be seen in Table 5.5. The UnkType

defines what class of Link this entity belongs to - connecting two Page entities

('LINK’), a Page and a Script (‘SUBMIT), or two Scripts ('TRANSPORT’). The

two ends of the connection are defined by the source and target identifications

attributes. Another important attribute is the UnkTargetWindowOptions, which

allows the target to be rendered in the same or in a new Window; also, when dealing

with frames, it can be used to refer to the parent or topmost Page. The runtime

attributes hold the OIDs of the entity, its object source and target identification, and

the Window and LJser to which this Link belongs. Finally, the linkPammeters Values

attribute holds the runtime parameters content.

Simulated Not simulated
Identification Multiple targets
State - active (selected) or inactive (available) Image maps
Source and Target identification Sections within the Web page
Link and Submit types Events other than onClick
Connecting Page entities
Transfer of information between Page and Script en­
tities
Transport of information between Script entities

Table 5.4: Simulation of the Link Entity.

The entity architecture definition shows the behavioural functions actionLink

and actionButton. The former is called when activating a Link of the 'LINK’ type,

whereas the latter is executed when a 'SUBMIT’ or 'TRANSPORT’ Link is selected.

Note that the Link state becomes temporarily active while deactivating the source

113

and activating the target entities. Additionally, the actionButton updates the Link

parameters with the latest values and executes the target Script. The deactivateLink

simply changes the state to ‘INACTIVE’, and it is used at the end of the other two

functions. Representation of the possible states and events of the Link object can

be seen in Figure 5.2.

Entity
Model attributes Runtime attributes
linkID linkOID
linkType state
linkSourcelD linkSourceOID
linkTargetID linkTargetOID
linkParametersN ames linkParameters Values
linkTargetWindowOptions windowOID

userOID
Architecture

actionLinkQ
actionButton ()
deactivateLink ()

Table 5.5: The Link Entity definition.

5.2.3 The Script

Scripts allow a Web application to process data, significantly contributing to its dy­

namic. Undoubtedly, scripts are one of the most important aspects when evaluating

functional requirements. Errors in their workflows account for the main source of

design problems and they are the most difficult errors to identify and correct. Sim­

ulation of its execution provides valuable data on the behaviour of a WAD. For a

proper assessment, several aspects of a script must be modelled: the input parame­

ters, the workflow, and the output. The most important aspects to be simulated

from a functional evaluation perspective are listed in Table 5.6. The Script entity

will be tested as a black-box type of component, where only the declared input and

output signals are accessible for probing and testing.

One limitation of the simulation of the Script entity is the multi-thread

114

r- htevigation. Delete

LINK
INACTIVE

action Link

deactivate Page displayPage
(source) (target)

actionButton

deactivate Page execute Script
(source) (target)

Figure 5.2: Finite State Machine Representation of the Link Object

Simulated Not simulated
Uniquely identification Multi-thread processing
State - active (executing) or inactive (available) External access to data sources
Workflow - templates and Java1M-based scripts Programming languages other

than Java™
Input parameters Probing of internal variables
Output parameters Performance issues

Table 5.6: Simulation of the Script Entity.

processing, which is more of an implementation than a functional issue. Another

constraint is the access to sources external to the Web application, being them other

scripts or data. Also, internal variables values cannot be observed - all the desired

variables must be declared as input, output, or both, if their content is interesting

for simulation analysis.

In the Script entity structural definition, the location where the script is ex­

ecuted is also considered to be one of its Model attributes (see Table 5.7). Although

this is an implementation issue, it serves the purpose of indicating to the designer

possible conflicting issues when a Script entity tries to access data that is not local.

115

Entity
Model attributes Runtime attributes
script ID script OID
scriptSide state
script VariablesN ames scriptVariables Values
scriptVariablesTypes scriptComponentsOID
scriptComponentsID callerOID

windowOID
userOID

Architecture
executeScriptQ
runScriptbehaviourQ
stopScriptQ
readObjectQ

Table 5.7: The Script Entity Definition.

The remainder of the model attributes are related to the definition of the variables

that will be available for probing. Their identification and type are kept into the

respective arrays. Their type - ‘IN’, ‘OUT’, and ‘INOUT’ - determines the direc­

tion of the signals from the Script perspective. However, their values are part of the

runtime attributes, since they will change during simulation.

The Runtime attributes are similar to those already described in the Page

and Link entities. The state attribute indicates if the Script is being executed (‘AC­

TIVE’) or available for execution (‘INACTIVE’). The availability status happens

when the Functional layer has already created the Script object but it is not yet

being executed. This case occurs in three scenarios: the Script is a component of

an active Page object; the target attribute of a Link object refers to the Script; or

the Script is part of the components of an active Window object. When execut­

ing, the Script state attribute changes its value to ‘ACTIVE’, after which, if not

longer referred to or being a component of any existing object, the Functional layer

simply discards it. One especial attribute is the callerOID; this uniquely identifies

the object which has triggered the execution of the Script object. Its value can

be the OID of a Window, a Page, or another Script object. The first case occurs

116

when dealing with a server-side script which is the case when the Script is a com­

ponent of a Window object. The second happens when a Page loads and, therefore,

it executes all its client-side Script components. And, finally, a Script object can

execute another Script by issuing the special function executeScript The callerOID

attribute is necessary to return any results of the execution back to the caller object.

Note, however, that in this attribute no Link object OID is allowed since they are

unidirectional entities and cannot possibly be callers and, simultaneously, receivers

of information.

The architecture of the Script defines the behaviour of the entity when a

stimulus is received by the object. The first one is the executeScript which can be

triggered by a Page, Link, Window, or another Script object. The Script input

variables are updated with the current values (which are the parameters’ content of

the incoming Link), and then the runScriptbehaviour function is called. It is in this

function that the workflow of the Script is defined. At the end of its execution, the

output variables are updated, becoming available for probing, analysis, or outgoing

Link objects. The Finite State Machine representation of the Script object can be

seen in Figure 5.3.

— F un dio nal .D e lete

■stop Script Functional. DeleteFunctionate reate

SCRIPT
ACTIVE

SCRIPT
INACTIVE

readObject

Figure 5.3: Finite State Machine Representation of the Script Object

117

5.2.4 The Data

If a script is what makes a Web application dynamic, the data is what makes it

diverse. Data is intensively used by scripts in their workflows, and can take many

forms, depending on its source. Firstly, there is the data stored in files, which is

mainly used by Web pages to render information. This data is often found in the

form of binary files, such as images, or just plain text. Then, there is the data that

is contained in databases on the server-side, which is used by scripts to store or

retrieve information. There is also that type of data that is closely related to the

client-side, such as the information entered by the user on Web forms. And finally,

data can take the form of application or session variables on the server-side, and

persistent or session “cookies” stored on the client-side.

Data is important for the functional assessment of a Web application, due to

several factors. One is that scripts often use data elements within their workflows,

and decisions are made based on their content; for this reason, simulation of scripts

without data becomes seriously limited. Also, functional evaluation requires that

some variables or database content be observed in order to verify that the Web

application is performing as expected.

Data objects populate the Content layer and are constantly accessed by the

Presentation and Functional layers objects. There are, however, no interactions

whatsoever between Data and Link objects and, consequently, between the Content

and Navigation layers, the reason being that Link objects already have their own

mechanism for transporting data in the parameters attribute. When submitting

information from a Web form to the server, the Page object uses the Data objects

corresponding to the form fields to set the Link parameters attribute, thus no direct

communication between Link and Data objects is necessary. The Data entity is not,

however, a data model of a Web application. It does not attempt to be a detailed

description of the structure of the data involved, but to be an abstract representation

118

of those elements. Web application design models usually address the data model

issue in their framework; however, it is not WDL’s intention to be another design

language, but a description language that enables simulation. For this reason, WDL

only models what is absolutely necessary to support simulation of the Data entity,

assuming that the data structure and contents have already been addressed by the

design model itself.

Table 5.8 summarises what will be observed when simulating the Data entity.

Files, database access, form fields, and variables are all simulated. The drawback of

using such a level of abstraction is that the structure of databases is not simulated.

This, however, does not interfere with the simulation, since it can act as a proxy

for the database engine. Furthermore, some of the capabilities demonstrated by

database engines, such as rollback and transactions, are not supported by the Data

entity.

Simulated Not simulated
Unique identification Structural database definition
State - active (being accessed) or inactive (available) External sources
Text or binary files File content
Database access - read, write, and update Database specific functionalities

(rollback and transactions)
Web form fields Field default values
Application variables Complex variables such as struc­

tures
Session variables Script variables

Table 5.8: Simulation of the Data Entity.

The definition of the Data entity (Table 5.9) shows some interesting at­

tributes, such as the enumeration of the allowed types using the dataType attribute

which is further refined in the dataSubType, and the multiplicity and persistence

defining the scope of the entity. The dataMultiplicity differentiates between shared

data amongst all users, and multiple copies of the same Data object. A Data entity

is 'SHARED’ when only one instantiated object is allowed; this is the case of a

119

central database or stored file which are shared by all users. On the other hand, it

is considered ‘MULTIPLE’ when several objects, instantiated from the same Data

entity, are allowed; this is the case of the Web form fields or cookies, for which, for

each user, an object will be created. The persistence of a Data object is also defined

here. If the Data object exists even after users disconnect from the Web application,

then it is named ‘APPLICATION’; this is usually used when the Web application

must keep a record throughout its entire operational life time. If, on the other hand,

the object’s life terminates when a window (session) is closed, then it is classified

as ’SESSION’. The different combinations of these two attributes allow definition

of the scope and duration of the Data object, as well as the manner simulation will

handle it.

Entity
Model attributes Runtime attributes
datalD dataOID
dataType state
dataSubType dataValue
dataSource windowOID
dataMultiplicity
dataPersistence

userOID

Architecture
setData(value [7 SQLStaternent
getData([SQLStaternent])
deactivateData,()

])

Table 5.9: The Data Entity Definition.

The functions setData and getData are implemented by this entity. If the

Data object is a database, the functions take an additional parameter - the SQL-

Statement - which allows record values to be retrieved, inserted, updated, and

deleted. These two functions are often called by the workflow of a Script object to

access a database. In this case, the Data object’s main task is to serve as a proxy to

the database engine. On the other hand, if the Data object is not of a ‘DATABASE’

type, these two functions will act on the dataValue runtime attribute, altering or

120

returning its value. The deactivateData function simply changes this object’s state

to 'INACTIVE’. The Finite State Machine diagram of the Data object can be seen

in Figure 5.4.

rContent Delete

Content. Create

Content. Delete
- deactivateData -

DATA
INACTIVE

DATA
ACTIVE

setData

getData

Figure 5.4: Finite State Machine Representation of the Data Object

5.2.5 The Window

The next two entities - Window and User - are very particular to the WSM and

do not, usually, have a counterpart in existent design languages. Why, then, model

a window or a user? The rationale for this is that functional assessment of Web

applications cannot be properly performed if the environment where the application

will be executed is not also modelled as closely as possible. Since the WSM does not

attempt to evaluate performance, which would have to take into account not only

the underlying operating system but also the hardware, there are only two relevant

aspects of a real-world scenario to model: multiple sessions and multiple users.

Emulating a multiple-session environment means that mechanisms that allow a user

to simultaneously access the same Web application from different browser windows

must be provided. Simulating a multi-user environment implies that concurrent

121

access of a same Web application from distinct users must be handled. The first

scenario is dealt with through the Window entity; the second one with the User

entity.

Opening a browser window and typing the desired URL address is the normal

mode of operation when accessing a Web application. What WDL intends to emulate

is the opening, operation, and closing of browser windows. The Window entity serves

as the main container of Page and Script entities. The rationale for allowing Script

entities to be directly contained by a Window is that server-side scripts must be

executed within a certain context. By modelling the browser window, WDL enables

multiple sessions of the same user to simultaneously access the Web application,

while keeping separate Page, Link, Script, and Data objects for each window. Note

that a Window object is owned by one and just one user. Data objects belonging to a

Window will be shared or private, and will be active while the window remains open

or persist even after closing it, depending on its dataMultiplicity and dataPersistence

attributes.

Simulated Not simulated
Unique identification Operating system’s functions
State - active (opened) or inactive (closed) Supported HTML subset
URL addressing pointing to either a Page or Script Accessibility issues
Own set of Page, Link, Data and Script objects Plug-ins and third-party mod­

ules
Private and shared Data objects History related functions

Table 5.10: Simulation of the Window Entity.

The Window entity emulates a Web browser window and keeps session con­

texts separate from each other. What is not simulated are the several functions that

uses the operating system’s services to perform specific tasks (see Table 5.10). These

can be of the file management type, such as the save, load, edit, and print functions,

or accessibility-related manipulations, such as font size or encoding, or even content

access and window pop-up management. Also, how the Web browser renders Web

122

pages, which set of HTML it supports, and back and forth history functions are all

aspects not modelled by this entity.

Entity
Model attributes Runtime attributes

windowOID
state
userOID
windowComponentsOID
URL

Architecture
open Window ()
cl ose Window ()

Table 5.11: The Window Entity Definition.

Table 5.11 presents the definition of the Window entity. Note that there are

no Model attributes, the reason being that a Window entity is not obtained by the

mapping of a design model into WDL; rather it is a runtime entity that only has

existence when performing a simulation. It has no attributes of which an instan­

tiated Window object will make a copy; it is purely a runtime object made out of

runtime attributes. Of these attributes, the windowComponentsOID holds the iden­

tifiers of the current objects contained by the Window, which is constantly changing

and being updated. One other important attribute is the URL, which informs the

Simulator of the object (and its descendants) to be loaded on the Window. The

Finite State Machine diagram of the Window object can be seen in Figure 5.5.

5.2.6 The User

A user of a Web application is modelled by the User Interaction Model (UIM) and

its User entity. To enable simulation of this external entity, WDL provides support

to the entity’s basic create, discard, and user Interaction functions, and models the

absolutely necessary runtime attributes. The user Inter action function models the

basic user interaction, and allows any of the exogenous stimuli defined in Appendix

123

— Pres errtatio n. D elete -

■ closeWindwu-

P res entaii on. C reate Presentation. Delete

openWindow-

Figure 5.5: Finite State Machine Representation of the Window Object

B to be issued from this function. Further refinements of user behaviour may be

accomplished by changes in the UIM itself. This means that complex user behaviour

such as reacting to past and present states of the Web application, and goal-driven

behaviour, can be done without changing the Web-design Simulation Model. By

making a clear distinction between UIM and WSM, simulation of Web application

users is enabled and a scalable architecture of the models is achieved. Modelling

complex user behaviour, however, is not being considered in the present research

due to the complexity of the topic which deserves a new research of its own. This

issue is further addressed in Section 8.3, when considering some avenues for future

work.

The Used entity is especially designed to promote multi-user simulation of

Web application design models. Its main purpose is to aggregate all the Window

entities belonging to the same User, and to keep an historic record of all the is­

sued events by the simulated user. These features allow simulation of distinct and

concurrent users accessing the Web application (see Table 5.12). From a functional

evaluation perspective of the Web application design, this constitutes a major en­

hancement, because requirements often directly or indirectly state how the applica­

tion shall behave in a multi-user scenario. For instance, how security is enforced and

how data will be accessed in a multi-user scenario, are concerns that developers often

124

have to deal with. Ignoring this fact will often lead to major security, functionality,

and data-management problems.

Simulated Not simulated
Unique identification User profiles
State - active or inactive User behaviour
Multi-user environment
User interaction with the Web application
Events history

Table 5.12: Simulation of the User Entity.

This entity has only runtime attributes, since there are no structural model

attributes mapped from a Web application design (see Table 5.13). Its definition

comprises the runtime identification, state, components, and history arrays. The

components can only be Window objects, of which it can contain one or more.

Lastly, the history arrays keep all the events and corresponding slots (which is a

measure of the elapsed “time” of the simulation) issued by a User object. The

representation of the Finite State Machine diagram of the User object can be seen

in Figure 5.6.

Entity
Model attributes Runtime attributes

userOID
state
userComponentsOID
historyEvents
historySlots

Architecture
createUserQ
discardUserQ
userlnteractionQ

Table 5.13: The User Entity Definition.

125

UIM.Deleie

UIM- User Interaction Model

Figure 5.6: Finite State Machine Representation of the User Object

5.3 Mapping of Existing Web Design Models

Before simulating a Web application Design, there is a need to map the design

model into WSM entities described using WDL. This mapping process is performed

by the WDL Parser, which replaces the WAD elements by the WDL counterparts,

setting the Model attributes of each one of them to reflect the characteristics and

particularities of the original design. At the end of this process, the WDL design

shall reflect the structure of the WAD in a WDL format, and will be ready for

simulation.

To speed up the mapping and subsequent simulation, this mapping process

must be as automatic as possible, keeping developers’ intervention to a minimum.

However, each WADM has to be considered as a separate case, having its own

set of mapping rules to follow. A very important prerequisite is that the design

model must be formal in its syntax, semantic, and lexicon. If there is any margin

for dubious interpretation of the design model elements, then the fully automatic

mapping process becomes seriously compromised and developers’ intervention will

definitely be necessary.

126

The process can be conceptually categorised into three main steps: (l)the

parsing and main mapping of the elements; (2)extraction of the model attributes;

and, finally, (3)the verification of the WDL model file correctness. The first step

translates the design elements and patterns into WSM entities described using WDL.

The parser identifies special patterns of the WADM elements and performs the

mapping by searching in a library of templates. The second step attempts to set as

many WDL attributes as possible. It extracts intricate attributes from the WAD

and sets the appropriate WDL attributes with the right content. Finally, the third

step looks for eventual entity duplicacies originated from the first step, and verifies

the correctness of the whole WDL file. Such duplications occur when Data entities,

which should be shared, have been mapped from distinct WAD elements several

times. The parsing process is performed by an XSL Transformation (XSLT) of the

design files if written in XML, or by a Perl© script otherwise.

5.3.1 The WebML Case

The present research work is based on using WebML as the WADM, defining the set

of rules needed for an accurate mapping process. WebML is composed of distinct

models, namely: data, hypertext, and content management As already noted, the

data model will not be covered by the WDL. The WebML hypertext model defines

the units, pages, links, global parameters, and hypertext organisation of the Web

application’s front-end interface. The content management model deals with oper­

ations on data such as creating, modifying, deleting, and manipulation of the Web

application’s database content, and also defines general-purpose operations which

may invoke external programs. The mapping process consists of the translation of

the WebML elements into WSM entities described using WDL, and the extraction

of their Model attributes. Note, however, that there is no mapping of the Runtime

attributes, since these are purely simulation-related. The third step - elimination

127

of duplicates and verification of correctness - does not involve the WAD description

files, therefore does not depend on a specific WADM but on the resultant WDL file.

From a WDL perspective, WADM elements can belong to one of six pos­

sible patterns: Presentation, Navigation, Functional, and three Content Patterns.

The Content Patterns are subdivided into three categories to reflect the manner in

which each of them interacts with the WSM Data entity. The Database Publishing

Pattern accesses the central database for retrieving information to be rendered on

a page; the Database Management Pattern modifies the database content; and the

Data Management Pattern directly handles the dataValue attribute of Data entities,

either by retrieving, or setting their content.

Depending on the WebML design element, the mapping procedure can create

a different number of WSM entities. Some have a one-to-one mapping rule; however,

there are special cases where one WebML element will map into more than one WSM

entity or, conversely, more than one WebML element will be aggregated into one

WSM entity. WebML elements are grouped into patterns. These patterns define the

way WebML elements are related to the WSM layers and entities (see Table 5.14).

WebML WDL
Element Entities Pattern
page, site view, and area Page and

Link
Presentation Patterns

link, OK-link, and KO-link Link Navigation Patterns
Generic operation, and
sendmail units

Script
(Data,Link)

Functional Patterns

Data, multidata, index,
multi-choice index, hierar­
chical index, scroller units

Data and
Script

Database Publishing Pat­
tern

Content
Patterns

create, delete, modify, con­
nect, disconnect, login, lo­
gout units

Data, Script
and Link

Database Management Pat­
tern

global parameter and entry,
set, and get units

Data Data Management Pattern

Table 5.14: The WebML Elements and the WDL Patterns.

128

The Presentation Pattern

Perhaps the most logical starting point for defining the templates and rules is the

WebML page element.1 This is the principal container of the remaining WebML

elements, and it has an almost one-to-one correspondence with the WSM Page

entity. The template used with this element is represented in Table 5.15, and the

rules are shown in Table 5.16. Note that only the structure of the Page entity is

shown here; however, if the page is a “landmark”, which means that it is reachable

from all other pages within the same site view, the parser will construct as many

Link entities as needed, and the target field will be set with this page’s identifier.

WebML “AND” sub-pages translate into a frameset, with as many frames as the

number of sub-pages. WebML “OR” sub-pages, on the other hand, are mapped into

separate Page and Link entities, with each sub-page translated into a (Page,Link)

pair. The WebML site view and area elements are used to set the pageContext

attribute of the entity; this is done during the second step of the mapping procedure,

by inspection of which area and siteView to which the page belongs. However, if the

“home” attribute is set, the pageContext will contain an additional ‘INDEX’ tag to

indicate the starting point of the application. This, however, does not mean that

the simulation will always start from this page, since it can start from any page the

developer chooses to. Note that the ‘DYNAMIC’ value of the pageBuild attribute

is not used with WebML, since all script modules are considered server-side.

The Navigation Pattern

Without any doubt, links are the most ubiquitous of all the hypertext entities. The

WebML link element models not only the hypertext link but also communication

between other elements. Its properties are mapped into the WDL Link attributes

1Note: In the following templates and rules, the WebML syntax defined in (Ceri, Fraternali,
Bongio, Brambilla, Comai and Matera 2002, p.526-532) is followed. When referring to WSM and
WDL, the words ‘entity’ and ‘attribute” are used.

129

WebML WDL
<PageDef>::=

Page <PageName> [home] [landmark]
“(7- [units <ContentUnitName>

<ContentUnitName>}“;77]
[and-pages <PageName>

<PageName>}“;77]
[or-pages <PageName>

<PageName>}“;77]
< ContentU ni t N ame >: :=< DataU nitN ame > |
< Multidat aU nit N ame > | < IndexU nitN ame >
< ScrollerU nitN ame > | < EntryU nitN ame>

entity Page is
pagelD: ‘<PageName>7;
pageStructure: (‘PAGE7 | ‘FORM7

| ‘FRAMESET7);
pageBuild: (‘HTML7 | ‘ASP7);
pageComponentsID: { < ContentU nitN ame> }
pageContext: String;

end entity Page;

Table 5.15: Template Which Maps a WebML Page into WDL.

Attribute Rules
pagelD <PageName> property of the WebML page
pageStructure ‘FORM7 if contains a WebML entry or a multi-choice Index unit

‘FRAMESET7 if there are any nested pages
‘PAGE7 otherwise

pageBuild ‘ASP7 if contains any WDL sever-side Script
‘HTML7 otherwise
(‘DYNAMIC7 is not used with WebML)

pageComponentsl D array of the WebML page components {<ContentUnitName>}
pageContext <SiteViewName>.<AreaName> to which this page belongs

<SiteViewName>.<AreaName>.‘INDEX7 if the WebML page
has the homepage property set

Table 5.16: Setting the WDL Page Attributes.

following a template (Table 5.17) and set of rules (Table 5.19).

The Link entity attribute setting is similar to the Page case, in which the

parser searches for the right values of the Link attributes in the WebML design

model file (see Table 5.19). The UnkType attribute defines which classes of entities

it is connected with. If it is of a ‘SUBMIT5 type, then parameters are being passed

from a Web form to a Script; if both ends of the Link are Script entities, then it is of

the ‘TRANSPORT5 type; the remaining cases set this Link attribute to ‘LINK5. The

source and target attributes are set simply by looking at both ends of the WebML

link element and mapping them accordingly. The link parameters are added to the

130

WebML WDL
<LinkDef>::= link <LinkName>
[automatic] [transport]
“(’’from <LinkSource> to <LinkDest>
[“;” parameters <ParamDef>
{‘V7 <ParamDef> }]
[“;” type (automatic|manual)]

newWindow “:77 (True|False)]

entity link is
linkID: ‘<LinkName>7;
linkType: (‘LINK’ | ‘SUBMIT7 | ‘TRANSPORT7);
linkSource: ‘<LinkSource>7;
linkTargetID: ‘<LinkDest>7;
linkParametersNames: {<ParamDef>};
linkTargetWindowOptions: (‘BLANK7 | ‘SELF7);

end entity Link;

Table 5.17: Template for the WebML Link.

WebML WDL
link se2re entitylink is
(from Search to Results linkID: ‘se2re7;
parameters Artist .FirstName linkType: ‘LINK7;
parameters Artist Last Name) linkSource: ‘Search7;

linkTargetID: ‘Results7;
linkParametersNames: {‘ Artist.FirstName7,

‘Artist. Last Name7 };
linkTargetWindowOptions: ‘SELF7;

end entity Link;

Table 5.18: Example of Mapping a WebML Link Element.

UnkParamNames array of identifiers. Finally, the attribute that defines where the

target entity is going to be rendered is set. There are two options for this attribute

when dealing with WebML - a new window will be opened, or the target will be

loaded into the same window in which the caller element resides.

The Functional Patterns

These patterns are only found in two of the WebML elements - the sendmail and

the generic operation units. The former is a call to a specific operating system’s

service of which, from a WDL perspective, the workflow is not required to evaluate

the functional aspects of the design. Therefore, the mapping of such elements is a

Script entity with an empty workflow. On the other hand, the generic operation unit

allows designers to define a module which is executed outside the WebML context

131

Attribute Rules
linkID WebML <LinkName>
linkType ‘SUBMIT’ if the source is a Page entity of the ‘FORM’

structure
‘TRANSPORT’ if source and target are Script entities
‘LINK’ otherwise (e.g. connecting two Page entities)

linkSourcelD WebML <LinkSource>
linkTargetID WebML <LinkDest>
linkPar amN arnes WebML <ParamDef>
linkTargetWindowOptions ‘BLANK’ if WebML <newWindow> is ‘True’

‘SELF’ otherwise

Table 5.19: Setting the WDL Link Attributes.

(Ceri, Fraternali, Bongio, Brambilla, Comai and Matera 2002, p. 163). WDL goes a

step further with this unit - it allows designers to define its workflow, the rationale

being that this is the only unit which does not have a fixed workflow template

and maybe there are some functional aspects that the developer would like to see

simulated. Table 5.20 shows the template for the generic operation unit.

WebML WDL
<OpUnitDef>::~ entity Script is
external <OpUnitName> /* Model */
[“(’’parameters scriptID: <OpUnitName>;
[<OpParamName> - <ParamName> scriptSide: ‘SERVER’;
{ <OpParamName> := script Vari ablesN ames: { < OpU nitN ame >
<Pa.ra.mName> }]“)”] [custom-defined]};

script Vari ablesType: {‘IN’ | ‘OUT’ | ‘INOU
scriptComponentsID: {[custom-defined]};
end entity Script;

architecture behaviour of Script is
begin

runScriptbehaviour: process is
begin

end process runScriptbehaviour;
end architecture behaviour;

Table 5.20: Functional Patterns.

132

The Content Patterns

Since WebML is especially suited for data-intensive Web applications design, it

constitutes no surprise that most of its elements are dedicated to some sort of data

manipulation. Of the three identified Content Patterns, two of them - the Database

Publishing and the Database Management Patterns - access the central database.

From a WDL’s perspective, access to a database requires at least two entities: a Data

entity which acts as a proxy to the database engine, and a Script which specifies the

SQL statement to be executed. Different types of database accesses will determine

different workflows of the Script entity, depending on the specific template applied.

Table 5.21 defines the Data entity required by these two specific patterns. The

multiplicity and persistence attributes indicate that this is a shared resource and

that the object will not be discarded when ending a user session.

WDL

entityData is
datalD : ‘database7;
dataType : ‘DATABASE7;
dataSubType : ‘SQL7;
dataSource : ‘webml.database7;
dataMultiplicity : ‘SHARED7;
dataPersistence : ‘APPLICATION7;

end entity;

entity Script is

scriptComponentsID : {‘database7};
end entity;

Table 5.21: The Required Pair of Data and Script Entities Needed to Access a
Central Database.

The Database Publishing Pattern consists of accessing the central database,

retrieving the required data, and dynamically constructing a page. There is no

133

Attribute Rules
scriptID WebML <UnitName>
scriptSide always ‘SERVER’
scri pt Variabl es N ames all the parameters of incoming and outgoing links
script Variables Types ‘IN’ for the incoming link parameters

‘OUT7 for the outgoing link parameters
scriptComponentsID at least the ‘database7 Data entity

Table 5.22: Rules for the Script Entity when Mapping a Database Publishing and
Database Management Patterns.

modification whatsoever of the data contained in the database; rather, the data

is gathered and rendered on a page. The manner in which the data is retrieved

depends on the element and, consequently, a slightly different SQL statement will

be included in the Script workflow. Furthermore, since the data will be rendered

on a Page entity, whose identification depends on which WebML page the element

belongs to, its content will be dynamically constructed from the Script workflow.

Of the six elements of the Database Publishing Pattern, two of them - the Data

and Multidata units - simply add information to the rendered Page, whereas the

remaining four - index, hierarchical index, multi-choice index, and scroller units

- also dynamically construct the necessary Link objects from the Script workflow.

This difference can be noticed on the workflow since the special function buildPage

takes either the Link object or a string as parameter - the former constructs a Link

whereas the latter adds information to the Page. Note, however, that these Link

objects will be instantiations of an already defined Link entity connecting the Script

with another entity. Therefore, there will be no new Link entities created, but rather

instantiations of a Link entity with the parameters’ values set to specific values.

The templates used to map the Database Publishing Patterns are very similar

to each other. Differences between the WebML data and multidata are only in the

way data is selected from the database. The data unit retrieves one record from

a table, whereas the multidata selects and orders multiple records. Therefore, the

134

multidata unit can be considered as a repetition of the data unit (Ceri, Fraternali,

Bongio, Brambilla, Comai and Matera 2002, p. 82). Table 5.23 displays the template

used with a data unit 2 where the specific Script workflow is represented. First it

reads the Data object which models the shared database object and is contained

in the Script components array. Then it constructs the SQL statement with the

appropriate WebML properties included, which is then used to get the results from

the database Data object. This workflow is the same for each WebML data unit

present in the design models, only altering some attributes such as tables and records

to be accessed. The setting of these attributes are carried out during the second

pass of the parser, by extracting the necessary values from the WebML elements.

WebML
<DataUnitDef>::=

DataUnit <DataUnitName>
“(” source <EntityName>
[“;” selector < SelectorDef>

<SelectorDef> }]
[“;” attributes <AttrName>

<AttrName> }] “)”
<DataUnitName>::— <Name>

WDL
entity Script is

scriptID : ‘<DataUnitName>’;
script Side : ‘SERVER’;
scriptVariablesNames : {<SelectorDef>};
scriptVariablesType : {CIN’};
scriptComponentsID : {‘database’};

end entity;

architecture behaviour of Script is
begin

runScriptbehaviour: process is
begin

readObject(‘database’);
String sqlStatement =
“SELECT <AttrName> <AttrName> }
FROM <EntityName>
WHERE < SelectorDef>

{ <SelectorDef> }”;
ResultSet rs = database.getData(sqlStatement)
buildPage(pagelD, rs);

end process runScriptbehaviour;
end architecture behaviour;

Table 5.23: Template Which Maps a WebML Data Unit into WDL.

2 Since all the Database Publishing and Database Management Patterns originate the same Data
entity, which models the database, the next tables will omit it.

135

DataUnit Short,Artist
(source Artist;
selector FirstName== “Jim”;
attributes FirstName,LastName)

WebML
entity Script is

scriptID : 'ShortArtist’;
script Side : ‘SERVER’;
scriptVariablesNames : {‘FirstName’};
scriptVariablesType : {‘IN’};
scriptComponentsID : {‘database’};

end entity;

WDL

architecture behaviour of Script is
begin

runScriptbehaviour: process is
begin

readObject(‘database’);
String sqlStatement —
“SELECT FirstName,LastName
FROM Artist
WHERE FirstName=‘Jim’ ”;
ResultSet rs = database.getData(sqlStatement);
buildPage(pagelD, rs);

end process runScriptbehaviour;
end architecture behaviour;

Table 5.24: Example of Mapping a WebML Data Unit.

The remaining four WebML elements belonging to the Database Publishing

Pattern - index, hierarchical index, multi-choice, and scroller - dynamically con­

struct Link objects besides the Data and Script entities. There are, however, slight

variations among them. The multi-choice forces the Page on which it is contained

to be of the ‘FORM’ type, and also dynamically creates Data objects for each of the

records retrieved. These Data objects emulate the checkboxes the user can choose

from. The scroller unit provides a manner to scroll through the records of a database

table. This unit is a special case of a multidata unit implementation, since it scrolls

through all the records of a table and displays them one at a time. WDL does

not considers look and feel aspects to be important for the functional evaluation

and, for this reason, this unit is implemented as displaying the same information a

multidata would. This does not interfere with the functional assessment since all

136

the information is simultaneously presented, instead of one record at a time. How­

ever, to implement the same functionalities the scroller unit possesses, a Link entity

is created to emulate the click on one of the scroll cursors which, in reality, takes

the user to the same Page. The index unit dynamically constructs a Link object for

each record in a table, which can be seen in Table 5.25 where the buildPage function

takes the Link entity to be dynamically included in the resulting Page.

WebML WDL
<IndexUnitDef>
IndexUnit <IndexUnitName>
“(” source <EntityName>
[“;” selector <SelectorDef>
{ “,” <SelectorDef> }]
[“;” attributes <AttrName>

<AttrName> }] “)”
[“;” orderby <OrderByDef>
{“,” <OrderByDef> }] “)”
<IndexUnitName> <Name>

entityScript is
scriptID : ‘<IndexUnitName>’;
scriptSide : ‘SERVER’;
scriptVariablesNames : {[from-incoming-links]};
scriptVariablesType : {‘IN’};
scriptComponentsID : {‘database’};

end entity;
architecture behaviour of Script is
begin

runScriptbehaviour: process is
begin

readObject(‘database’);
String sqlStatement =
“SELECT { <AttrName> }
FROM <EntityName>
WHERE
{script VariablesNames = < Selector Def>}
ORDER BY { <OrderByDef>}”;
ResultSet rs = database.getData(sqlStatement);
while(rs.NextQ) {
buil Page (pagel D,

Link(rs.getOb ject (‘ < At trN ame> ’)));
};

end process runScriptbehaviour;
end architecture behaviour;

Table 5.25: Template Which Maps a WebML Index Unit into WDL.

WebML units belonging to the Database Management Pattern access the

central database with a different purpose - to create, modify, or delete information.

This, however, does not imply a significant difference of the templates, since the

137

Data entity modelling the database still exists and the Script workflows, instead of

querying the database, execute a ‘INSERT INTO’, ‘UPDATE5, or ‘DELETE’ SQL

statements. Its parameters are, once again, collected from the WebML elements.

The only significant difference is that these units usually follow a WebML ‘OK’ link

if the operation was successful, and a ‘KO’ link otherwise. This is accomplished by

issuing the actionLink() function from within the Script workflow, which triggers

an event that the layers of the WSM receive and react to accordingly. Table 5.26

shows the WebML create unit template, where the SQL statement can be seen, and

the try/catch block which determines which Link to follow - the ‘OK’ or the ‘KO’

Link - depending on the outcome of setDataQ function.

WebML
<CreateUnitDef>::=
CreateUnit <CreateUnitNa,me>
“(” source <EntityName>

< Assignment>
Assignment> }] “)77

< Assignment >:
<AttrName> “:=77 <ParamName>

WDL
entity Script is

scriptID : ‘<CreateUnitName>7;
scriptSide : ‘SERVER7;
script VariablesNames : {input link parameters};
scriptVariablesType : {‘IN7};
scriptComponentsID : {‘database7};

end entity;

architecture behaviour of Script is
begin

runScriptbehaviour: process is
begin

readObject(‘database7);
String sqlStatement =
“INSERT INTO <EntityName>
(getParametersN ames())
VALUES (get Parameters Values ());
try{ database.setData(sqlStatement);

actionLink(‘OK-link7); }
catch { actionLink(‘KO-link7); }
buildPage(pagelD, rs);

end process runScriptbehaviour;
end architecture behaviour;

Table 5.26: Template Which Maps a WebML Create Unit into WDL.

Finally, there are the Data Management Patterns. These patterns entail

138

the WebML entry, get, set, and global parameter elements. The purpose of these

elements is not to access the central database, but to create, inspect or set data

elements. When a WebML entry unit is found, only Data entities are produced and,

since this element is purely data-based, no Script workflow is necessary to perform

data manipulation. Therefore, depending on the number of fields the entry unit has,

several Data entities, one for each field, are created. Their identifiers are constructed

based on the name of the element and the field name (Entry unit.<FieldName>), to

achieve a unique ID. These entities are always associated with a Web form, therefore

their type is set to “FORMVAR/’ and subtype as “FIELD’’ by default, and will

be part of the components array of a Page entity. Table 5.27 shows an example

of mapping an entry unit. In this example, the entry unit has two parameters

- FirstName and LastName and this originates the construction of two Data

entities. Furthermore, their multiplicity and persistence values ensure that there

will be as many instantiated objects as there are users and active sessions.

WebML WDL
EntryUnit ArtistEntry
(FirstName Text, modifiable;
LastName Text, modifiable)

entityData is
datalD : ‘ArtistEntry. Fist Name’;
dataType : ‘FORMVAR’;
dataSubType : ‘FIELD’;
dataSource : null;
dataMultiplicity : ‘MULTIPLE’;
dataPersistence : ‘SESSION’;

end entity;

entity Data is
datalD : ‘ArtistEntry.LastName’;
dataType : ‘FORMVAR’;
dataSubType : ‘FIELD’;
dataSource : null;
dataMultiplicity : ‘MULTIPLE’;
dataPersistence : ‘SESSION’;

end entity;

Table 5.27: Example of a WebML Entry Mapping.

139

The global parameter is mapped into a pure Data entity. These entities are

created with a specific identifier, type, and value, based on the WebML element

description. Table 5.28 shows the mapping template, the only significant aspect

being that, if the default value of the global parameter is expressed, the Runtime

dataValue attribute is also set.

WebML WDL
<GlobalParamDef>::= entityData is
globalParameter /*Model*/
< Global Par amN ame> datalD: <GlobalParamName>;
T ((type <Type> [“;” dataType: (‘VARIABLE’[default]
initial Value <value>]) | | ‘COOKIE’);
(type OID “;” entity <EntityName>)) dataSubType: null;
uyi dataSource: null;
<GlobalParamName>::=<Name> dataMultiplicity: (‘MULTIPLE’[default]

| ‘SHARED’);
dataPersistence: (‘SESSION’[default]

| ‘APPLICATION’);
/* Runtime */
dataValue: <value>;

end entity;

Table 5.28: Template for WebML Global Parameter.

The get and set units’ templates are even simpler than the preceding ones

- they merely access the dataValue attribute of a Data object, either retrieving or

setting it. As already mentioned, no entities are created from these two elements,

but the workflow of the entity that calls them will contain an additional instruction

line. The get unit retrieves a data value, therefore the line to be added will be at

the start of the caller’s workflow to provide its value to the rest of the workflow.

On the other hand, when adding the extra line, the set unit will place it at the end

of the caller’s workflow; this ensures that the data value contains the latest content

(see Table 5.29).

A final word on the two first mapping steps: a WebML artifact is used to

enforce a set of operations being either successfully executed or, in the case that

140

WebML WDL
<GetUnitDef>::= getUnit <GetUnitName>
“(” parameter < Global Par amN ame > “)”

value = <GlobalParamName>.getData();

<SetUnitDef>::= setUnit <SetUnitName>
“(” parameter < Global Par amN ame>“:”
<ParamName> “)”

<GlobalParamName>.setData(<ParamName>)

Table 5.29: Template of a WebML Get and Set Unit.

one of them fails, a roll-back of the sequence being executed. This artifact, named

transaction, implements a database concept that prevents some problems, usually

encountered in a user concurrent access environment, to occur. Since this is a

database-related issue and one that does not necessarily have to be dealt with by

the Web application itself, WDL does not support it at this time. Furthermore,

most of the existing database engines available already support the roll-back fea­

ture, and implementing it with WDL would be redundant. A possible solution to

implement the transaction feature is to set, during the simulation, the present Web

application state with the same content of a previous state. In other words, the

runtime attributes of some selected objects would be set with the same values of

a past state. This is a plausible solution since the content of each object during a

simulation run is kept in a database.

Verification of Correctness of the Resultant WDL File

This last parsing step is necessary to ensure that no duplicates exist, and that

all WSM entities generated conform with the WDL formal definition. Duplicate

entities occur, for instance, when multiple shared Data entities are mapped. This

is essentially the case of a shared database, mapped by multiple Content Patterns.

This step enforces the redundant duplicates being eliminated. Also, verification

checks that the identifier of each entity is unique. This means that each WSM

entity must have its own and unique identifier tag, and also each source and target,

specified by an entity’s attribute, exist within the WSM set of entities. Since the

141

parsing of the WebML files is automatic, assumption of its syntax and semantics

correctness is made.

5.3.2 Mapping of Other Web Application Design Models

The previous sections dealt with the mapping of WebML designs into WDL. The

set of rules was described with the WebML case in mind. These rules inspect the

WebML elements properties and patterns, and set the corresponding WDL entities’

attributes and construct their workflows. If, however, the design models are not

WebML-based, a new set of rules may have to be applied. The more WDL model

attributes can be set, the more information can be obtained by the simulation results.

There are, however, a set of requirements a design model must possess in order to

enable a meaningful simulation. If not met, either it will be impossible to simulate

a WAD or it becomes seriously compromised.

Table 5.30 summarises what the WDL parser must be able to extract from

a design in order to be able to simulate it. Note that only the Model attributes are

listed; the Runtime attributes are specific to the simulation run and are not used

when mapping a WAD. There are a number of ‘‘Required” attributes without which

simulation is simply not possible. However, others exist that are either optional or

can be deduced from their interconnections and internal components. If an optional

attribute cannot be retrieved from a WAD then the simulation is still possible,

although certain details related to the attribute will no longer be possible to be

observed. If it can be deduced from the other components, then the WDL parser is

required to apply the right rules and templates for its extraction.

The present research does not pretend to claim that is possible to simulate

every conceivable design model. It would be imprudent to generalise the WebML

case to other design models. However, there is a set of features that may indicate if

a design model may or may not be a suitable candidate. As mentioned before, the

142

Requirement Observations and Implications if not met
Page

pagelD
pageStructure
pageBuild
pageComponentsID
pageContext

Required!
Can be deducted from links and scripts attributes
Can be deducted from the internal components types
Required!
Optional

Link
linkID Required!
linkType Can be deducted from the type of the source and

target components
linkSourcelD Required!
linkTargetID Required!
linkParamatersN arnes If not met it still allows limited navigation, but no

contextual links or Web forms
linkTargetWindowOptions Optional

Script
scriptID Required!
scriptSide Optional
script Vari ablesN arnes If not met, it does not allow probing of the variables
script Vari ablesType Optional
scriptComponentsID Required!

Data
datalD Required!
dataType Required!
dataSubType Optional
dataSource Required!
dataMultiplicity If not met, multi-session simulation not possible
dataPersistence If not met, multi-session simulation not possible

Table 5.30: Requirements a WADM Must Meet to Enable a Meaningful Simulation.

first and foremost requisite is for the design model to be formal in its syntax. This is

an essential feature if an automatic mapping procedure is to be attained. Without

formalism, design models can still be simulated but at the cost of developers having

to write and verify the WDL code themselves. If the design model is semi-formal,

meaning that some design elements follow a certain formalism, then some parts

may still be automatically mapped and the remaining hand-coded; this may allow

simulation with an acceptable coding effort, however, the trade-off between coding

effort and simulation benefits has to be assessed carefully.

143

A good indication that the design model can be simulated happens when it is

template-based, meaning that there is a finite and well-determined set of graphical

design elements. If there is a finite set of graphical design elements, then the lexicon

of the design model is finite (or, at least, its graphical lexicon). This does not

automatically ensure that a mapping to WDL is possible, but is a good indication

that a connection may be established between the existing design elements and a

WDL description. One final and decisive attribute is the existence of an automatic

procedure to map the design model into executable code. If there is a tool that

automatically constructs the HTML and program code from the design model, then

it is very likely that the design model can be simulated. This is a strong indication

that the design model is both formal and template-based, and that a connection

between design elements and executable code is possible. If the design elements

can be mapped into executable code, then the probability of being able to map the

design elements into WDL and subsequent simulation is very high.

Table 5.31 summarises the set of features likely to enable simulation of other

design models. As can be seen, WebML does meet all the requirements. However,

every design model is a different case and evaluating their simulation capabilities

has to be conducted on a case-to-case basis.

Feature
Formalism
Template-based of the design elements
Existence of an Automatic Code Construct tool

Table 5.31: Features a WADM Should Possess to Enable Simulation.

5.3*3 Summary

The definition of the entities which make up the WSM have been presented. WDL

is a formally defined description language, used by the WSM for the representation

of Web application designs in a suitable format for simulation purposes. WDL does

144

not, however, pretend to be another description language for Web application design

but one that is especially tailored to enable and support meaningful simulation of

Web application design models.

The basic entities of WSM formally described using WDL were introduced by

enumeration and explanation of their intrinsic attributes and behaviour. Further­

more, it has been shown how the existent Web application design models, focusing

in particular the WebML case, can be mapped to WDL. The set of rules for map­

ping other design models can be similarly developed, thus contributing to a common

meta-language enabling simulation of different WADMs. However, each WADM is a

different case and analysis of the information each can provide has to be individually

assessed. For the elucidation of this issue, a set of minimum requirements that the

WADM must meet was presented.

145

Chapter 6

The Web-design Simulation

Tool

The proposed four-layer Web-design Simulation Model (WSM) and the Web-design

Description Language (WDL) led to the development of the Web-design Simulation

Tool. This tool takes advantage of the multi-layer structure of the WSM and the

formal characteristics of the WDL to enable simulation. It supports model browsing,

graphical representation of the simulation, structure and content object inspection,

and automatic functional requirements evaluation.

6.1 Design and Implementation

The Web-design Simulation Tool (or Simulator) is designed to implement all the

requirements and features of the WSM and to facilitate easy analysis of the simula­

tion results. Table 6.1 lists the main requirements for the the Web-design Simulation

Tool.

The non-functional requirements were designed to facilitate the use of the

Web-design Simulation Tool by the Web developers community, and the main de-

146

Non-Functional Requirements
The Simulator shall be implemented using an Object-Oriented programming
language;
The Simulator shall be, to the extent possible, platform independent;
Functional Requirements
The Simulator shall implement the Web-design Simulation Model;
The Simulator shall implement the WSM entities described in WDL format;
The Simulator shall display the results in a convenient graphical manner in
order to maximise the results analysis;

Table 6.1: The Web-design Simulation Tool Requirements.

cisions were the adoption of the Java™programming language and the use of the

MySQL database engine, which are extensively used and platform-independent. The

functional requirements enforced the use of the developed framework, and a careful

design of the Simulator’s graphical interface.

The Simulator has been developed based on a Model-View-Controller philos­

ophy - the MVC paradigm (Goldberg and Robson 1983) - which advocates a sepa­

ration of concerns, namely: events, model, and rendering. Each of the Model, View,

and Controller objects manage the three different areas involved in the Simulator,

namely the input of events for which the Controller is responsible, the processing of

these events and the reaction of the model to them managed by the Model object,

and the rendering of the state of the model achieved by the View object. There­

fore, changes in the implementation of the View object do not have an impact on

the remaining objects, making it possible to experiment with different renderings

without compromising the validity and integrity of the underlying objects. To make

the GUI more interactive and interesting, the rendered objects are all in the form

of dynamic graphical elements (commonly known as buttons), which allows devel­

opers to interact with them to inspect or trigger a specific action. This, however,

does not compromise the MVC paradigm since developer actions upon the objects

are still handled by the Controller object. Figure 6.1 shows the Simulator’s archi­

tecture based on the MVC paradigm. The different windows and modules of the

147

architecture shown in the Figure will be described throughout this Chapter.

Controller

Model

Status
Window

Command
Window

Main
Window

Stimuli
Module

Requirements
Window

Model Verification
Module

Automatic Page
Construction Module

Requirements
Assessment Module

Figure 6.1: The Simulator’s MVC Architecture

6.1.1 The Model and Runtime Arrays

A WDL model file consists of a number of WDL entities-architecture pairs, rep­

resenting the WAD to be simulated. This representation is used as inputs by the

Simulator to create arrays of Page, Link, Script, and Data entities. These arrays are

named Model Arrays and will remain constant in structure and content during the

whole simulation process. On the other hand, when the simulation process starts,

the Simulator will create instantiations (objects) of these entities and keep them in

the respective Page, Link, Script, and Data Runtime Arrays. This set of arrays,

containing the copies, entities instances, or objects, represents the Web application

state at a specific point in time. These Runtime Arrays are dynamic and their size

and content change during the simulation. Each object that is an instantiation of

a WSM entity receives a unique runtime identification tag (the OID) which serves

148

the purpose of unambiguously distinguishing it from the pool of runtime objects.

Therefore, different instantiations of the same entity can be unambiguously created,

identified and selected. When any of the WSM layers no longer needs an object dur­

ing a simulation run, the Simulator releases and discards it from the Runtime Array.

However, the Model Array still holds the original entity and further instantiations

of it are possible.

6.1.2 The Simulator’s Databases

The Web-design Simulat ion Tool keeps a record of all the entities and their attributes

instantiated during the simulation process. These records are saved on the system

database at the end of each processed stimulus (see Figure C.l in Appendix C). This

allows the developer to inspect and analyse the state of a particular object at any

point in time, and the rendition of past events.

One other database - the model database - contains all the data needed by

the WAD for its scripts workflow. The Simulator assumes that this database has

already been created, that it is structurally correct, and that contains the necessary

test data for the intended simulation scenarios.

6.2 Interface

The interface of the Simulator was designed to provide meaningful graphical rep­

resentation and easy interpretation of the results. It has a Main Window which

displays the present state of the Web application. All past states can be scrolled

back for inspection and analysis by the developer (Figure 6.2). Within the interface

there are five windows, namely: the Command Window, the Browser Window, the

Main Window, the Status Window, and the Requirements Window.

149

^ -jyyi
file Model Display Stimulus Reipwements loots Options

jC3 VMDLCaseStucA' RUN- TIME
|9 □ [USERS)

? C Client
9 glwnOJ)

9 C3IPAGESI
[?) Can (010 j/;

9 C3 [LINKS] 1

a® ca2ch(0IDi
9 C3|SCRIPT|

l.istCarl (i____ TA miTfli

< Browser
Window>

«t<10
9 SI wri:1_i

9 (O [PACES

AdmlrPsg
9 £3 lUIMKSj m <3© ap2hp (OlD|| *s> ap?3p (OJD15
9 C3 [SCRIPT!

ListAII (OID
D IDATAJ

9 d [SESSION DAT
.................... IS i ISftfOri I:
___ __. »j

HomePn^

UpDmu

h|»2s«
l_JSfi!3L=_J

Attlstad**:omj
<Main Window>

1Ssec 19sec

COMMAND W9JOOW

baiaOIE = LoginEutiyAdnnihUSBt'name CW Value = UNDEFINED New Vain 4[jL1
iDataOIC^ i n rival,,.. = i iMicrn-icn NpwValndlTS 1

<Command Window>

jHomePageUnk
IciientLogin

■-±r^ ■ .

.......|DataO|D = LogmtritryAdminHassword Upvalue = UNUtMNfcU
[Submit butlon lap?la|OiD_73] of page LoginAdminPage on window wnd

- 1 1 pNew Van! I:
NewValuIJ

Qwwnd 1 SI

-Requirements Window>

Figure G.2: The Web-design Simulation Tool

6.2.1 The Command Window

This area of t he interface provides an input field for issuing commands and events

to the Simulator. This is the primary and most basic means for interacting with

the Web-design Simulation Tool. The command set ranges from user-like stimuli,

such as opening windows, activate links, or entering data into fields (see Appendix

B), to specific Simulation commands such as loading the WDL model, or start the

simulation (see Appendix C). However, since it is command line based, it can become

somewhat time-consuming, and other interface interaction options are provided to

overcome this issue, namely through the Main Window.

6.2.2 The Browser Window

This area of the interface allows developers to inspect the WDL model in two dis­

tinct modes: Model and Runtime. The former is a graphical representation of the

Simulator’s Model Arrays, which depends on the WDL model, and represents the

entities that the WDL model is composed of (an example is shown in Figure C.2 in

Appendix C). The developer may browse or select one specific entity for inspection.

This is a useful feature which provides the means to visually inspect the model in

the search for design errors. However, the Simulation has automatic tools for this

type of analysis, and browsing the model for identification of design errors should

only be performed in situations in which there already are strong indications where

the error might be located.

The Browser Window in its runtime mode allows the visual inspection of

all instantiated objects, grouped by Window and User. During the simulation,

objects are dynamically created and destroyed according to the behaviour and state

of the Web application at any given point in time. These objects, contained in the

RunTime Arrays, are conveniently displayed in a tree structure. This constitutes

an excellent opportunity to observe how objects alter their values during simulation

of a particular scenario (see example in Figure C.3 in Appendix C). Furthermore,

in runtime mode the Browser Window allows the developer to select a specific Link

to follow. This is an alternative to the command line input, and it is usually easier

to select a specific Link belonging to a specific Window and User than through the

Command Window.

6.2.3 The Main Window

It is in this window that the graphical representation of the Web application state

during the simulation is displayed. In accordance with the WSM, the Main Window

is divided into four areas, each corresponding to one of the four layers - Presentation,

151

Navigation, Functional, and Content. This enables the simultaneous rendering of

the distinct layers and objects for a better visual inspection of the Web application

state. Both the Browser and Main Windows present the existing WSM objects at

the current point in simulation, only differing in how that information is grouped and

displayed. Therefore, these two areas constitute the primary source of information

for the developer, giving a precise indication of the existing objects. The horizontal

axis of the window is measured in “slots”, each corresponding to a specific and

discrete time of an occurrence. Simulation for functional evaluation is not concerned

with performance, therefore the most important aspect of the slot is not as much

the time of the event as the order in which they occur.

The Simulator distinguishes between two Web application states - Processing

and Idle. They are related, respectively, to the receiving and processing of an event,

and to the state a Web application would stay in if no further events occurred.

The distinction between the graphical representation of these two states is made

by the different background colours of the buttons representing the objects. In a

Processing state objects are displayed with a dark background, whilst in an Idle

state the colour is brighter. This permits a rapid visual identification of the two

states by the developer (see Figures 6.3 and 6.4).

Several decisions were made concerning the representation of the diverse

patterns of the state of the Web application that occur during the simulation. These

patterns, although certainly important for an intuitive assessment of the results, are

merely a graphical representation of a state. The patterns identified as needing

special attention were:

• The rendering of the Processing and Idle states of the Web application;

• The rendering of the Page objects;

• The rendering of the Link objects;

152

• The rendering of the Client-Side Script objects;

• The rendering of the Server-Side Script objects;

• The rendering of the Data objects.

Page objects displayed on the Presentation layer of the Main Window corre­

spond to the active Web pages a user would see on her/his Web browser if the WAD

had been implemented. In the multiple active Page scenario the rendered button

displays all the active Page identifiers (the PagelD attribute). Once a Page becomes

active as result of an event, it will remain in that state until further events. When

this happens the runtime Page object will be discarded on the next Idle state if it

no longer belongs to the set of active objects.

Link objects are a very common type of entity instantiations during a sim­

ulation run. These object will appear on the Navigation layer of the window. The

rendering of these objects is achieved by displaying the active Link object during the

Processing state, which indicates which Link has been followed, and the “available”

ones for selection during the Idle state. These available Link objects correspond

to the ones that, at that point in time, are contained on the active pages and can

be triggered. During the Idle state, each Link object is rendered on the Navigation

layer as a button with the label set to the LinkID attribute. When in the Processing

state, the Link traversed is rendered as a button with the label set to the LinkID

plus the runtime LinkOID attribute. This allows developers to quickly identify the

sequence of events and the path followed.

Scripts are rendered on the Functional layer of the Main Window. During the

Idle state, a Script object is displayed if it is “available” to be triggered; on the other

hand, the Script objects displayed during the Processing state are the ones that are

being executed. Furthermore, the Simulator makes a distinction between client and

the server-side Scripts. The former has no existence without a Page object, thus

153

PROCESSING

PRESENTATION
LAYER

NAVIGATION
LAYER

FUNCTIONAL
LAYER

CONTENT
LAYER

| UNK_ ID 1

[LINKUP I

SCRIPT JO
-

;;

E't* t

PAGE_ID

| UN KID 1

[UNK ID j

| LINKJD |

-1 | P

Figure 6.3: The Client-Side Script Pattern

when active the container object should also be presented (see example in Figure

6.3). On the other hand, a server-side Script does not require a Page object to be

present for it to be processed; hence, the rendition of such a pattern is carried out

by solely displaying the active Script object during the Processing state (refer to

Figure 6.4).

Data objects are rendered on the Content layer of the Main Window by

displaying the “available” objects during the Idle state, and the active ones during

the Processing state. The available objects are those to which a direct reference is

made by other objects, such as Page and Script objects. For instance, when a Web

form page is displayed, the data fields which are all Data objects will appear as

“available”. On the other hand, Data objects are often needed by scripts to access

154

IDLE PROCESSING PROCESSING IDLE

PRESENTATION
LAYER

NAVIGATION
LAYER

FUNCTIONAL
LAYER

CONTENT
LAYER

PAGEJD PAGEJD

1
1
1

1 LINKJD |

1 UNKJP 1
| UNk to |
[UNKJP 1

| UTIR'TD' |

SCRIPT ID SCRIPTJD

| CATA ID HdA'A 10

~f I I 1 1

Figure 6.4: The Server-Side Script Pattern

databases, form fields, or other Web application variables; here, they are rendered

as “available” during 1>he Idle state, and “active” during the Processing state to

indicate data access operations.

The Main Window allows developers to interact with the objects rendered on

any of the four layers. For example, traversing a Link can be performed by clicking

on the Link object, and inspecting a Script variables content is as simple as clicking

on the Script object and observing the results on the Status Window (Section 6.2.4).

Similarly, developers may inspecting a Data object content by simpiy clicking on the

corresponding object button. Finally, if a Page object is clicked on, this will trigger

the “Automatic Page Construction Module” described in Section 6.3.4, which will

present a rendition of the Page based on its internal objects.

155

6.2.4 The Status Window

This is an important area of the interface that allows an in-depth inspection of the

objects’ internal attributes and values (see example in Figure 6.5). In order to do

so, the developer has first to select a specific object either on the Browser or in the

Main Window. If selecting the Browser Window in Model mode (a tree structure

representation of the loaded WDL model), only the Model attributes of the object

are shown; on the other hand, if it is in Runtime mode, all the Model and Runtime

attribute values are shown, corresponding to the current state of the object. A

more flexible approach consists of selecting an object from the Main Window, which

displays the object state at a particular slot of the simulation. This is particularly

useful when inspecting the attribute values of past states.

-STATUS WINDOW-
r~ hi—„ rName Value
Class LINK
ID hp2mu
Type LINK
Source HornePage
Target Artists Index
OID 0ID_2
Parameters

i!?illlii!ISI

Figure 6.5: The Status Window of a Link Object

6.2.5 The Requirements Window

This window is used by the Requirements Assessment auxiliary module to display

information about the functional requirements to be evaluated during simulation.

The Requirements Assessment Module will be describe later in this Chapter, in

Section 6.3.2, page 158. The Requirements Window displays all the requirements

files loaded into the Simulator, their identification, their status, and the action the

156

Simulator should take once a requirement has been met - to suspend or continue

the simulation. The status indicates if a requirement has been met, never met, or

already met during the simulation run.

6.3 Auxiliary Modules

The Simulator has several built-in modules that automate important tasks such as

stimuli construction, requirements assessment, verification of model integrity, and

automatic page construction. These aid the developer in the testing of the design

and further improve the Simulator’s capabilities.

6.3.1 The Stimuli Module

Stimuli drive the simulation and the greater their diversity, the richer the results

and analysis become. The Web-design Simulation Tool provides developers with a

rich set of stimuli to interact with the simulated design. They belong to two main

groups: the (1)WSM Stimuli which have a direct impact on the state and content

of the Web application, and the (2)Simulation Control Stimuli which control the

Simulator’s mode of operation. The WSM Stimuli is further divided into WSM

Exogenous Stimuli (or User Interaction Stimuli) and WSM Endogenous Stimuli.

The User Interaction Stimuli are used by the User entity to emulate user interaction

with the Web application - definition of these event can be found in Appendix B.

The Simulation Control Stimuli only have an effect on the Simulator configuration

such as, for instance, how to display the simulation results - these events are defined

in Appendix C.

The stimuli module provides two input options - either by the Simulator’s in­

terface or by file loading. In the first mode the developer inputs the stimuli through

the Command Window, the Browser Window, or the Main Window (see Figure

6.1). This is the normal procedure when the developer is simulating a Web applica­

157

tion in a step-by-step mode and exploring specific scenarios. However, working in

this mode can be rather tiresome and time-consuming when simulating large Web

applications. The file loading option allows an automated mode of operation by

previously constructing the events regarding a specific scenario to be simulated and

analysed, and then loading them into the Simulator. This allows test cases, which

enumerate a specific sequence of user interactions to achieve a particular goal, to be

saved and reused with different designs. Table 6.2 shows an example of such a file;

the events are either “SYSTEM” - belonging to the Simulation Control Stimuli -

or “EVENT” - of the WSM Stimuli group. In the example, the first command sets

a one-second interval between the triggering of two consecutive stimuli. Then, a file

of requirements to evaluate is loaded, and the Browser Window is set in runtime

mode. After this preliminary phase, the User actions are issued - a simulated User

is created, a Window is opened and loaded with a Page, a Link is followed, a form

field is set with a value, and a submit button is pressed. This simplicity of writing

an event file contributes to making the Web-design Simulation Tool a very attractive

tool for evaluation purposes.

SYSTEM(setInterStimuliDelay 1);
SYSTEM(loadRequirements Tl);
SYSTEM (tree Runtime);

EVENT(createUser client);
EVENT(openWindow HomePage client);
EVENT(a.ctionLink hp2mu HomePage wnd_0);
EVENT(setData Artist.FirstName Frank);
EVENT(actionButton se2re Search wnd_0);

Table 6.2: Example of an Event File.

6.3.2 The Requirements Assessment Module

Although visual inspection of the simulation displayed on the Main Window provides

all the necessary data for functional evaluation, a tool has been developed to help

158

developers assess functional requirements. The Requirements Assessment Module is

composed of an editor and window where, respectively, the requirements are coded

and the results are presented. This feature allows developers to let the tool verify the

requirements by itself without solely relying on visual inspection for that purpose.

Furthermore, complex assessments can be performed, as will be presented in the

following paragraphs, consisting of past and present simulation states.

The core of the requirements assessment coding is based on the state of the

WSM objects at a given point in time during the simulation. The developer defines

a number of objects by setting their properties’ values, constructs a boolean expres­

sion with them, and let the requirements assessment module to confirm its logical

value throughout a simulation run. When, during the simulation, the expression

is calculated as true, the module suspends the simulation and signals to the devel­

oper that the requirement has been met. The requirements code is composed of the

common Java™commands, such as block constructions (for example, while blocks)

and conditional keywords (for example, if-else-clauses). The only new commands

to be learnt relate to the manner in which the object attributes are set or retrieved,

and a limited set of very specific keywords for the assessment of the requirements.

The specific command for setting or retrieving an object attribute value depends on

the entity type. Tables 6.3 and 6.4 present only the set requirements commands;

however, for each set command there is a get counterpart command. Similar to the

events files, these requirements files can be written and saved for reuse with different

designs. Moreover, the right combination of stimuli and requirements files allows a

complete description of scenarios to be simulated and evaluated.

Furthermore, a boolean expression with the defined objects can be con­

structed using several logical functions that this module implements. These func­

tions verify the existence or past occurrences of a defined object. The simplest of

these is the Exists() function; by calling it with an object as its parameter, the

159

PAGE LINK SCRIPT DATA
setld() setld() setld() setld()
setOID() setOID() setOID() setOID()
setState() setState() setSta.te() setSta.te()
setWindowOID() setWindowOID() setWindowOID() setWindowOID()
setUserOID() setUserOID() setUserOID() setUserOID()
setPageStructure() setLinkType() setScriptType() setDataType()
setPageBuild() setLinkSourceId() setScriptSide() setDataSubType()

setLinkSourceOID() setCallerId() setDataSource()
setLinkTargetId() setCallerOID() setDataStructure()
setLinkTargetOID() setVariableValue() setDataValue()
setParameters() setDataPersistence()

setDataMultiplicity()

Table 6.3: Page, Link, Script, and Data set Requirements Commands.

WINDOW USER
set Id () setld()
setOID() setOID()
setState() setState()
setUserOID()

Table 6.4: Window and User Requirements Commands.

module asserts if, at the present time, a similar runtime object is present in the

runtime array. By similar it is meant that all the object’s attributes are checked for

parity with the corresponding attribute of a simulated object. The way the module

assesses their similarity is by the boolean conjunction of all the checked attributes,

disregarding for comparison all those that were not defined. Other functions are

available for more complex logic expressions. These are presented in Table 6.5 and

their return value is a boolean “true” or “false”, depending on the past and current

states of the simulated objects and their parameters. A “true” logical value indicates

that the requirement has been met, whereas a “false” signifies that, at the present

moment in the simulation, the required conditions have not yet been reached.

For the sake of clarification, a fairly simple example is presented in Table

6.6. Here a new Link object is defined with only two of its attributes set: the State

and the Targetld. This leaves all the remaining attributes free from any constraints,

160

Function Result
Exists() True if there is at least one similar object
DoesNotExist() True if there are no similar objects
OnlvOne() True if only one similar object exist
AH() True if all objects of the same type are similar
Happened () True if a similar object exists or existed in the past
N ever Happened () True if a similar object never existed or happened in the past

Table 6.5: Functions for Evaluation of Requirements.

which the requirements assessment module interprets as true for any value. In this

example, the requirement specifies that a Link must be active and that its target

must be an object which has its identification field set to “HomePage”. The last

two lines of the code state that the requirements will be met (or “true”) if a similar

Link exists, and not met (or “false”) otherwise.

Link 1 = new Link();
l.setState(“ACTIVE”);
l.setTargetId(“HomePage”);
if(Exists(l)) return true;
else return false;

Table 6.6: A Simple Requirement Function.

6.3.3 The Model Verification Module

For checking purposes the Simulation has a built-in verification tool that allows

an automatic assessment of the structure of the model. This reassures the devel­

oper that the model does not contain any design errors such as “orphan pages” -

unreachable Page entities -, “cul-de-sac pages” - Page entities without outgoing

links -, Link entities with unknown target or source entities, and “orphan” Script

and Data entities - Script and Data entities which are not components of or linked

to any other entity. The two levels of severity - “warning” and “error” - are pre­

sented to the developer and evaluation of the degree of inconsistencies can be readily

made. This feature allows a basic assessment of both the design and WDL model,

161

pinpointing potent ial sources of design problems.

This module implements a static model checking approach (Varro 2003).

Static model checking is often a built-in feature of WADM commercial tools. For

example, the WebRatio tool implements a static model checker in its development

studio (WebRatio 2005). The WSM Simulator model verification module looks into

the properties of the WSM entities to verify certain conditions. It does not require

any simulation run to operate; instead, the module checks the model attributes of

the WSM entities for specific conditions. It differs from simulation testing in that

the module cannot verify the runtime attributes of the WSM objects since these

require a simulation run to be set.

The model verification module can be used to check if the model is syntac­

tically correct, such as, for example, if all pages are reachable. However, it cannot

check attribute values that depend on the operation of the Web Application to be

set, such as data submitted by a user or dynamically created objects. Table 6.7 lists

what can and cannot be checked by operating this module. Note, however, that

the shortcomings of the model verification module will be covered by the simulation

technique implemented by the WSM Simulator. Therefore, the module should be

considered as a complement to the WSM Simulator - the model verification module

verifies the model on a static level, while the WSM Simulator verifies the modefs

dynamic aspect.

Model Verification Module
Can Check Cannot Check
Unreachable pages Dynamically created pages
’Cul-de-sac’ pages Dynamically created links
Unknown link sources Script output variables
Unknown link targets Script input variables
’Orphan’ scripts User data input (form pages)
’Orphan’ data

Table 6.7: Features of the Model Verification Module

162

6.3.4 The Automatic Page Construction Module

Further verification of the design functionalities can be made by using this module.

It consists of the rendering of a Page based on its internal objects (contained in the

pageComponentsOID array). An XML file is constructed based on the Page and its

objects at that, time in the simulation. By applying a suitable XSLT transformation,

the XML file can be mapped into a graphical representation of the Page object.

Figures C.4 and C.5 in Appendix C display an example of such XML description

and its XSLT mapping into an HTML page. This allows the developer to quickly

have a snapshot of a conceptual rendition of a possible implementation, and to assess

whether all the necessary elements are contained on the interface. This module is not

concerned with the Page’s aesthetic aspects, but on the conceptual objects rendered.

6.4 Verification and Validation of the Web-design Sim­

ulation Tool

Balci (1990) proposes several criteria for the verification and validation of the sim­

ulation study life cycle. One of them pertains to the verification and validation of

the computarised model. This is related to software testing techniques used for the

V&V of the computarised model. Whitner and Balci (1989) describe these tech­

niques in their work, and propose a taxonomy of the techniques in six categories:

Informal, Static, Dynamic, Symbolic, Constraint, and Formal. A complete list of

these techniques are found in (Balci 1997), where the authors describe 77 techniques

for conventional simulation models, and 38 for object-oriented simulation models.

Testing the computarised model using all these techniques is out of the scope of the

present work, however, informal and dynamic verification and validation techniques

of the model have been made to ensure that it is an accurate representation of the

proposed conceptual Web-design Simulation Model.

163

Model validation investigates if the simulation model behaves with sufficient

accuracy, within the domain of applicability (Balci 1990). In other words, it assesses

if the model is an accurate representation of the base (real-world) system (Banks

2000). Banks argues that the ideal way to validate the model is to compare both

simulation output and base system output. This base system, in the present work,

is some Web application implementation. Sargent (1992) proposes a classification

of model validation techniques into subjective and objective (or subjectively and

statistical as proposed in (Balci and Sargent 1984)). These techniques include event

validation - pattern of events are used to compare model and base system; face

validation - people knowledgeable about the system compare model and system

behaviors; predictive validation -past system input data is used to predict output;

and sensitivity analysis - the systematic changing the inputs and observing the

model behaviour.

To assess the validity of the computarised model several test were carried

out. These tests consisted in checking that all the WSM entities behaved as ex­

pected; that interactions among the entities were an accurate representation of a

real application; and that the entities’ content during simulation was correct. Tests

were performed by comparing the simulation output (computarised model) with an

implementation (base system) of a same Web application design. These Web appli­

cations consisted of typical small scale designs, such as: static pages interconnected

by links; dynamic page construction; script execution; and data accesses. These

tests included the already mentioned techniques - event, face, and predictive val­

idations, and sensitivity analysis. Test results showed that the model behaves as

expected when compared to the implemented base system, therefore indicating with

a high degree of certainty the validity of the computarised model.

164

6.4.1 Summary

The Web-design Simulation Tool has been presented, highlighting its implementa­

tion decisions and features. How the Simulator implements the WSM and uses the

entities described by WDL during the simulation process has been described. The

graphical interface of the Web-design Simulation Tool was described in detail. Fur­

thermore, additional built-in modules, in particular the stimuli and requirements

assessment modules, were explained.

165

Chapter 7

The Experiment

To allow comparison of the information provided by both implementation and sim­

ulation methods, an experiment was conducted. The following sections present the

selected Web application design, the results obtained from simulation arid imple­

mentation treatments, and a discussion of the results.

7.1 The Web Application Design

The Web application design chosen for the experiment displays many features that

are interesting for the research. Firstly, it is based on a sound theoretical Web Ap­

plication Design Model approach - the WebML design model. Secondly, it contains

several different functional design elements which contribute to evaluating the claim

of WDL being able to model a wide range of distinct and common Web design op­

tions. And finally, it is based on examples from the book Designing Data-Intensive

Web Applications by Ceri, Fraternali, Bongio, Brambilla, Comai and Matera (2002)

which is considered by many as one of the best sources for the theory and practical

applications of the WebML design model.

The adapted WebML design is a typical e-commerce application representing

166

an online music store (see Figures D.2 and D.3 in Appendix D - “The Experiment

Design’') with two “site views” - “Client” and “Administration”. These correspond

to two main groups of users - the “client” and the “administrator” - who have

two distinct roles: the “client” is a user who accesses the Web application with

the objective of purchasing albums, while the “administrator” is the manager of

the Web site. The “Client” site view is further divided into two “areas” - the

“ClientArea” and the “ClientLogin”. The “ClientArea” allows users to browse a

database of artists and their albums, adding the selected ones to their individual

shopping carts. Users are identified by the tuple (username,password) validated

against the records contained in the database by the “Login” unit. A search of

records is carried out either by selecting an artist from a list displayed on the “Music”

page, or by entering the artist’s name in the “Search” Web form. This search

produces a short biographical record of the artist and her/his available albums,

and the results are rendered either on the “Artist” or the “Results” pages. When

satisfied with the search result, the client may proceed to add it to his shopping

cart, whereby the “CreateltemCart” unit creates a new entry in the “cart” table

of the database. However, to be eligible to do this, a client must first be logged

in using the “LoginPage” form. The script “CheckLogin” checks that the global

variable “CurrentUser” has already been set with a value different from the default

‘UNDEFINED’. If it has not, the user is required to login. If the login is successfully

carried out, the “client” is redirected to the default “HomePage”; if not the client

is redirected to the “LoginError”. However, if the “client” has already logged in, a

new entry in the shopping cart is written in the database. At the end, the client is

confronted with all the items contained in the shopping cart which are displayed on

the “Checkout” page.

The “Administration” site view is accessed by login as an “administrator” on

the “LoginPage”; this WebML unit is capable of distinguishing different user roles

167

and redirect them to the appropriated default page. In the case of an “administra­

tor”, after a successful login, the user is redirected to the “Administration” site view,

and placed on the “AdminPage”. The main objective of this page is to display all

clients and their respective shopping cart items contained in the database. The op­

eration of the design is supported by a database containing the artists, albums, and

users’ login information (see Figure D.l in Appendix D). As mentioned previously,

the Web-design Simulation Tool assumes that both the database structure and its

content have been created beforehand. This assumption is not far-fetched, since the

supporting database is often one of the first tasks in the design phase. Furthermore,

developers often evaluate the completeness and coherence of the database structure

by using test data. This data is usually close to a real-world scenario and, for this

reason, suitable for simulation purposes.

This design contains several interesting functional elements that, once mapped

into WDL, will allow observation of the Web-design Simulation Tool’s features and

to assess its usefulness. By selecting a wide range of WebML units, commonly found

in WebML designs, the capabilities of the WDL to conveniently and accurately rep­

resent the design can be asserted (Table 7.1). The remaining WebML units not

used in the present design are those that either do not contribute to significantly

adding knowledge, or some of their aspects have already been covered by other

units, namely, the “Multi-choice unit” and the “Hierarchical index unit”, which the

“Index unit” already covers when listing and choosing a specific link out of many;

the “Scroller unit” which is a special and merged case of a “Data unit” and “Index

unit”; the “Delete unit” and the “Modify unit”, which are only operational modi­

fications of the “Create unit”; and the “Sendmail unit”, which does not exactly fit

the definition of being a basic Web application design unit but more a special case

of a generic operation accessing an operating system service.

In order to evaluate and compare both treatments’ results, a comprehensive

168

Hypertext Model

Publishing of Information units
Acquisition of Information units
Hypertext Organisation

Pages, Links, Global parameters
Data units, Multidata units, Index units
Entry units
Home Pages, Site view, Areas

Content Management Model
Predefined Operations
Generic Operations
Access Control

Object creation, Relationship creation
Generic operation
Login, Logout

Table 7.1: WebML Units Present in the Design.

set of functional requirements is listed, describing the intended behaviour of the sys­

tem. These requirements cover a wide range of functional evaluation and complexity,

so that analysis of the results may be more easily generalised to a broader popu­

lation. The proposed requirements are a representative set of the commonly found

Web application functionalities, which include changes of the displayed elements,

user roles, workflow execution, and data manipulation:

Rl- At any time the user shall be able to return to the Home Page;

R2- Browsing database items

R2.a- Clients shall be allowed to view a list containing all “artists” found in the data­

base;

R2.b- Clients shall be allowed to view a short biographical description of the “artist”;

R2.c- Clients shall be allowed to search for a specific “artist” name;

R3- The Web application shall make a distinction between the two allowed types of users

-“clients” and “administrators”;

R3.a- Both types of users shall be properly identified by entering the “username“ and

“password” on input data fields of a login form page;

R3.b- verification of the “username” and “password” shall be performed by a Script;

R3.c- After a successful login, a global variable shall be set to identify the user for the

duration of the Web session;

169

R4- Purchasing selected items

R4.a- A “client” user shall be able to add items to the shopping cart;

R4.b- Items added to the shopping cart shall result in the creation of a new record in

the database;

R4.c- Each record in the “cart” table of the database shall correspond to one item

contained in the “client” shopping cart;

R5- Users of the “administrator” type shall be allowed to view the “clients” shopping cart

content.

These requirements cover the four aspects of Web applications we are trying

to evaluate - presentation, navigation, functional, and content. Each requirements

addresses a specific functional aspect of the Web application. Requirement R1

focuses on the navigation aspect; R2 aims at assessing dynamic page construction;

requirement R3 is especially concerned with scripts processing; and R4 and R5 with

database access. These different areas will allow a balanced functional evaluation of

all the involved aspects when simulating a Web application design.

7.2 The Simulation Treatment

Prior to the simulation, the WebML design is firstly mapped into a WDL format

applying the rules described in Chapter 5. This is accomplished by a transforma­

tion of the WebML elements into WSM entities using WDL, which contain all the

necessary information for the simulation process. Although WSM does not propose

a specific graphic representation for its entities, for the sake of clarification, a pos­

sible representation is presented in Figure D.4 in Appendix D, where the entities

and their interconnections are displayed. The definition of the Page, Link, Script,

and Data entities resulting from the mapping process can also be found in the same

Appendix.

170

7,2.1 The Test Cases

To execute the treatment, each requirement is verified by a test case. In the Web-

design Simulation Tool context, each test case is completely defined by addressing

four parameters: the (l)initial state, the (2)sequence of actions, a (3)test method

and the (A) expected results. The initial state is defined by the starting page and vari­

able values representing the starting point of a particular scenario. The sequence

of actions consists of an ordered list of user interactions with the Web application,

comprising a sequence of navigational events and content input actions. The test

method specifies in which manner the requirement will be evaluated which, in the

Simulator context, can either be visual inspection or logic expression. The former

relies on the developer observing how the Web application evolves through time,

using the Simulator interface to assist in the evaluation of the test case; the latter

uses the Simulator’s “Requirement Assessment Module” (Section 6.3.2) for the au­

tomatic evaluation of a boolean expression. The expected results lists the state and

content of the relevant elements to be observed in order to assert the test case.

Test Case T1 - Verifying Requirement R1

Testing the requirement R1 is performed by writing the logic preposition which will

evaluate the existence of an active Link object that contains identification of the

“HomePage” as its targetID value (see Table 7.2). This logic expression evaluation

will return “true” if the requirement is met - meaning that, at the present time

in the simulation, there exists a link whose target is the “HomePage” - or “false”

otherwise. The initial state is not an important aspect to evaluate this requirement,

and the user may be placed at any one Page, however, to properly evaluate its

validity, all Page objects must be visited at least once. However, if it fails once, the

requirement is not met and the test may end. Undoubtedly, this requirement can

be easily assessed by visual inspection of the simulation results, but the automatic

171

assessment of the logic expression makes it much easier to test.

Test Case T1
Requirement: R1

Initial state: User at any Page

Sequence of actions: Navigate through all Pages

Test method: Logic expression

Link 1 = new Link();
l.setState(“ACTIVE”);
l.setTargetId(“HomePage”);

if(Exists(l)) return true;
else return false;

Expected results:
A Link back to the ‘HomePage7 exists on every Page

Table 7.2: The T1 Test Case.

Test Case T2 — Verifying Requirement R2

This consists of three sub-test cases, one for each requirement of the R2 group, as

can be seen in Table 7.3. The expected results are to be observed in the Main

Window of the Simulator at the end of the test case’s sequence of actions. Test

case T2.1 verifies requirement R2.a by checking that page “Music” contains a list

of all artists and corresponding links. In order to evaluate test cases T2.2 and

T2.3, a comparison between the data contained in the database and the results of

the Simulator is needed. This means that the developer must observe that a short

biography is presented on the constructed Page object (for test case T2.2), and that

the correct artist is found (for test case T2.3).

172

Test Case T2.1
Requirement: R2.a

Initial state: User at Page “Music”

Sequence of actions: N/A

Test method: Visual inspection

Expected results:
1. Inspect Link objects on Page “Music”
1.1. One for each “artist” entry
2. Inspect each Link parameters
2.1 Parameter “artist.key” must be set with “OID” from database

Test Case T2.2 Test Case T2.3
Requirement: R2.b Requirement: R2.c
Initial state:
User at Page “Music”

Initial state:
User at Page “Search”

Sequence of actions:
1. Select a Link to traverse

Sequence of actions:
1. Input artist name in
“Artist.FirstName” form field
2. Submit form

Test method:
Visual inspection

Test method:
Visual inspection

Expected results:
1. Inspect the traversed Link para­
meters

2. The constructed “Artist” Page
shall correctly display the artist cor­
responding to the Link traversed

Expected results:
1. The constructed “Results” Page
shall correctly display the searched
artist

Table 7.3: The T2.1, T2.2 and T2.3 Test Cases.

173

Test Case T3 — Verifying Requirement R3

The next set of requirements concerns the login process of the two groups of users -

“client” and “administrator”. Since there are two user roles, the test case is divided

in two parts, with only slight differences in the sequence of actions (see Table 7.4).

The logic expressions try to evaluate whether two form fields exist, a Script being

executed, and the “CurrentUser” Data object with a content different from the

default “UNDEFINED”. This Data object is set by the mapped WebML “Login”

unit when a user is validated.

Test Case T4 — Verifying Requirement R4

Verification of the requirements R4 aspires to evaluate how the Web application

behaves when a user is satisfied with the search and wants to conclude the purchase.

A possible test case for their evaluation consists of simulating a user searching for an

item and adding it to the shopping cart (see Table 7.5). Furthermore, requirements

R4.b and R4.c address the create item procedure, modelled by the “CreateltemCart”

Script, and the insertion of new data into the database. The initial conditions for

the test case consist of having a user on the “Results” Page after a successful search

of an “artist”. The user will then perform a sequence of actions that attempts to

add the searched item to her/his shopping cart. By visually inspecting the database

content, in particular the “cart” table, the developer can evaluate whether the Web

application is behaving according to what is expected.

Test Case T5 Verifying Requirement R5

One possible test case for this requirement evaluation consists of placing a user on

the “HomePage”, navigating to the “LoginPage”, and performing the login as an

“administrator” (see Table 7.6). This will take him/her to the “Administration”

site view and to its “AdminPage” default Page; there a list of the “clients” versus

174

Test Case T3
Requirement: R3.a, 3.b, 3.c

3.1 Clients 3.2 Administrators
Initial state:
User at “LoginPage7'

Initial state:
User at “LoginPage77

Sequence of actions:
1. Set “LoginEntryUsername77 Data with
valid “client” username
2. Set “LoginEntryPassword77 Data with valid
“client77 password
3. Submit form

Sequence of actions:
1. Set “LoginEntryUsername77 Data with
valid “administrator77 username
2. Set “LoginEntryPassword77 Data with valid
“administrator77 password
3. Submit form

Test method:
Logic expression

Test method:
Logic expression

Data dl = new Data.();
dl.setState(“ACTIVE77);
dl .setld(“LoginEntryUsername77);

Data dl = new Data();
dl.setState(“ACTIVE77);
dl .setld(“LoginEntryUsername77);

Data. d2 -- new Data();
d2.setState(“ACTIVE77);
d2.setld(“LoginEntryPassword77);

Data d2 = new Data();
d2.setState(“ACTIVE77);
d2.setld(“LoginEntryPassword77);

Script s = new Script();
s.setState(“ACTIVE77);
s.setld(“Login77);

Script s = new Script();
s.setState(“ACTIVE77);
s.setld(“Login77);

Data d3 = new Data();
d3.setState(“ACTIVE”);
d3.setld(“CurrentUser77);
d3.setDataValue(“UNDEFINED77);

Data d3 = new Data();
d3.setState(“ACTIVE77);
d3.setld(“CurrentUser77);
d3.setDataValue(“UNDEFINED77);

if(Exists(dl) & Exists(d2)
& Exists(s) & !Exists(d3)) return true;
else return false;

if(Exists(dl) & Exists(d2)
& Exists(s) & !Exists(d3)) return true;
else return false;

Expected results:
1. Two form field Data objects set with (user­
name, password)
2. Script “Login71 executing
3. “CurrentUser71 set with database value

Expected results:
1. Two form field Data objects set with (user­
name, password)
2. Script “Login77 executing
3. “CurrentUser77 set with database value

Table 7.4: The T3.1 and T3.2 Test Cases

175

Test Case T4
Requirement: R4.a, 4.b? 4.c
Initial state:
User logged as “client”
User at Page “Results”

Sequence of actions:
1. Select Link “aacl”

Test method:
Visual inspection

Expected results:
1. “Client” should be allowed to add
item
2. Inspect database
2.1 Table “cart” should contain a new
record

Table 7.5: The T4 Test Case,

shopping cart items is displayed.

7.2.2 The Simulation Results

Table 7.7 summarises the Test Cases to be evaluated during the simulation treat­

ment. The results of the simulation will be evaluated from a Functional Content

and Functional Information perspective, as described in Chapter 3 - Methodology.

To perform the simulation, the assumption that the model database containing test

data is made (see Section 6.1.2). This carefully selected data should represent what

the Web application goes through on a typical execution. For our purposes, the data

used for the test cases is presented in tables 7.8, 7.9, 7.10, 7.11. The only one that

has no initial data is the “cart” table, which will be accessed and modified during

simulation when adding items to the shopping cart.

Of the nine test cases, three can be automatically verified by the “Require­

ments Assessment Module” and the remaining six require a visual inspection of the

Main Window of the Simulator. In order to be able to evaluate all the test cases

176

Test Case T5
Requirement: R5

Initial state: User at Page “HomePage”

Sequence of actions:
1. Navigate to the “LoginPage” through the
“Search” and “Results” pages;
2. Enter valid (“username”, “password”) for the “ad­
ministrator” type in the appropriated form fields
(username=‘admin7, password=‘ a7)

Test method:
Visual inspection

Expected results:
1. User is logged as an “administrator”
2. Page “AdminPage” lists all “clients” and their
shopping carts from database

Table 7.6: The T5 Test Case.

with one simulation run, a set of stimuli was carefully designed (see Table E.l in

Appendix E). These stimuli cover all the defined test cases by following a specific

path and setting the right data values, and will attempt to evaluate the test cases

in the following order: Tl, T2.1, T2.2, T2.3, T3.1, T4, T3.2, and T5, the rationale

for this order being that the first six test cases concerns a “client” user, and the

last two an “administrator” user. Therefore, by selecting a specific path and input,

the simulation can evaluate each different user role at a time. The simulation starts

with the loading of the WDL Model and the three requirements files for test cases

Tl, T3.1, and T3.2, which will be used by the “Requirements Assessment Module”.

Also, two User objects are created - one “client” and one “administrator” -, which

allow simultaneous simulation of the two user roles. The stimuli originate a sequence

of pages and data entered by each class of user, which can be observed in Figures

7.1 and 7.2. These diagrams also display on which pages the Test Cases have been

evaluated. The results of the simulation are shown in Appendix E, where the Main

Window of the Simulator is displayed; in this Appendix the content of the tables

177

Test Case Purpose Requirements
covered

Tl Test Navigation - Existence of a link to the “Home­
Page”

Rl

T2

T2.1

Test Dynamic page construction - Browsing data­
base items

R2.a
T2.2 R2.b
T2.3 R2.c

T3
T3.1

Test Script processing - User roles
“Client” user R3.a, R3.b, R3.c

T3.2 “Administrator” user R3.a, R3.b, R3.c
T4 Test Database access - Item purchase R4.a, R4.b, R4.c
T5 Test Database access - Shopping cart inspection R5

Table 7.7: Summary of the Test Cases.

Table:: artist
OID FirstName LastName Photo
1 Celine Dion ed.jpg
2 Lenny Kravitz lk.jpg
3 Frank Sinatra fs.jpg
4 Jim Morrison jm.jpg

Table 7.8: The “artist” Table Content.

Table: album
OID ArtistOID Name
5 1 DionAlbum
6 2 Kravitz Album
7 3 SinatraAlbum
8 4 Morrison Album

Table 7.9: The “album” Table Content.

Table: user
OID Username Password Type Logged EMail
1 admin a administrator NO admin@musicstore.au
2 pedro P client NO pedro@musicstore.au

Table 7.10: The “user” Table Content.

Table: cart
OID User OID ItemOID
null null null

Table 7.11: The “cart” Table Content.

178

pages”, “links”, “scripts”, and “data” of the Simulator database is also presented.

HomePag Music Artist Search Results

Res tilts Search HomePage LoginPage

Figure 7.1: The “client” Simulation Path

Search

LoginPage

Figure 7.2: The “administrator” Simulation Path

Figure 7.3 shows the first seven slots of the results of the Simulator. Test case

T1 can be promptly evaluated at slot 3 since there are no links whose target is the

“HomePage”. This can be seen in Table 7.12 which shows the existing Link objects

at the “Music” page. Also, the constructed logic expression takes the “false” value

at this point, and the “Requirements Assessment Module” signals the developer to

179

this fact.

Table 7.12 shows the simulated Link objects at slot 3, which serves to evaluate

test case T2.1. As it can be seen here, four Link objects were created with the

parameter “artist.key” set to the artist identification contained in the database. It

is by the comparison of the parameters values with the content of the “artist” table

that test case T2.1 is verified.

Slot
Object

Id OID Type State Content
3 mu2ar OID_9 Link INACTIVE a.rtist.key=l
3 mu2ar OID_10 Link INACTIVE artist ,key= 2
3 mu2ar OID_l 1 Link INACTIVE artist.key=3
3 mu2ar OID_12 Link INACTIVE artist.key=4

Table 7.12: Simulation Results for Test Case T1 and T2.1

Presentation MuatOIDfi Aifct.OIDJ3

Navigation : War

■uatCa-:. i;itiu2an„|
|ian3«r:|lan3«-:tj

:_____________ 1

Functional

1
iiisiiiisiti

:0ED?

: :
: sltsjtes

” i
' ■- 'v, - vaf1

Content

j j 1 »[jlj4 ; mJ
t-

it

10:

1
10 sec 10 sec

3
11 sec

4
11 sec 12 sec

6
12 sec

Figure 7.3: On the “Artist” Page (Slot 6)

Test case T2.2 is assessed from slot 3 to slot 6. A Link has been selected

180

(0ID_12) and becomes active at slot 4, which triggers the “ShortArtist” Script.

This, in turn, dynamically constructs the “Artist” Page, whose rendition can be

observed by invoking the “Automatic Page Construction Module” feature of the

Simulator (see Figure 7.4). As can be observed, the parameter of the selected Link

(artist.key=4) leads to a Page which displays the correct artist biography. This is

what was expected, therefore verifying the requirement.

Figure 7.4: The Rendered “Artist” Page (Slot 6)

We proceed to verify the test case T2.3 which assesses requirement R2.c and

corresponds to slots 10 to 13 in the simulation. For this purpose, a value is entered

into the form field modelled by the “Artist.FirstName” Data object, and the Page is

submitted to the server which attempts to find an artist with this characteristic in

the “artist” table of the database. This is performed by issuing the event “setData

Artist.FirstName Search wruLO Frank”, which requests that the Data object with

ID “Artist.FirstName” contained on the “Search” Page on window “wnd_0”, be set

with value “Frank", which is one of the valid values of the “artist” table. At the

end of slot 13 the “Results” Page shall display the right content. To assert it, the

form Page is submitted by the issuing the event “actionButton se2re Search vmdJ)”,

181

and the outcome of the automatic Page construction is inspected (Figure 7.5). By

observing the constructed Page it is possible to verify test case T2.3, therefore

concluding that the system meets requirement R2.c.

H C:\temp\teniporaryPage.html - Microsoft... (-J

File Edit View Favorites Tools Help

WDLSimTool Temporary Page

Prank Sinatra SmatraAlbum

Figure 7.5: The Automatically Constructed “Results” Page

Object
Slot Id OID Type State Content
10 Search OIEL20 Page ACTIVE
11 Artist.FirstName OID_21 Data ACTIVE Frank
11 se2re OID_23 Link ACTIVE
12 Find OID_24 Script ACTIVE
13 Artist Albums OID_26 Script ACTIVE
14 Results OID.29 Page ACTIVE

Table 7.13: Simulation Results for Test Case T2.3.

Test case T3.1 requires that the user be placed on the “LoginPage” and that

two form fields be set with a valid (username,password) combination. To reach

the “LoginPage”, however, the user has to go through the “CheckLogin” script for

the first time. This script checks if the user has already been identified within the

application by inspecting the “CurrentUser” Data object content (the behaviour of

this Script is presented in Appendix D). The “CheckLogin” Script has an output

variable - “Success” - that will be set with the result of the Script execution. Table

7.14 shows the Script variable values between slots 14 to 16. At the end of the Script

182

execution, the output variable “Success” is set with the value ‘false’, which means

that the user has not yet been identified and that he/she has to login on the form

page “LoginPage”. However, the second time this Script is executed, between slots

26 to 28, the user has already logged in and the “CurrentUser” Data holds a valid

value, therefore the Script execution results in setting the Script variable “Success”

with the value ‘true’.

Slot
Object

Variable Name Value
14 Success UNDEFINED
15 Success UNDEFINED
16 Success false
26 Success UNDEFINED
27 Success UNDEFINED
28 Success true

Table 7.14: Script “CheckLogin” variables for Test Case T3.1

Going back to slot 17, when the user is redirected by the “CheckLogin” Script

to the “LoginPage” form page, a valid (username,password) set of values is entered

in the data input fields. After submitting the form, the “CurrentUser” Data shall

contain the identification of the logged user. This can be observed on the simulation

results at slots 17 to 20, which Table 7.15 shows.

Test case T4 checks whether a user can add items to her/his cart or not -

slots 26 to 33. This requires an inspection of the “cart” database table, looking

for new added items. The user is on the “Results” Page (slot 26), and tries to

add a selected record. Since the user has already logged in the system, s/he is

redirected to the “Cart” Page through the “CreateltemCart”, “ConnectToCart”,

and “ConnectAlbum” Scripts which inserts a new entry to the “cart” table of the

database. At the end of slot 33 the table “cart” contains one new record (Table

7.2.2) referring to the User “pedro” (UserOID = 2) having added the album with

Id 3 (a “Frank Sinatra” album) to his cart, which verifies test case T4.

Slots 34 to 48 are related to test case T3.2. The new “administrator” user

183

Object
Slot Id OID Type State Content
17 LoginPage OID_36 Page ACTIVE
17 lp21o OID.39 Link INACTIVE
17 Login OID.40 Script INACTIVE
17 DB OID.4 Data ACTIVE
17 CurrentUser OID.33 Data ACTIVE UNDEFINED
17 LoginEntryUsername OID.37 Data ACTIVE UNDEFINED
17 LoginEntryPassword OID.38 Data ACTIVE UNDEFINED
18-19 lp21o OID.39 Link ACTIVE
18-19 Login OID.40 Script ACTIVE
18-19 LoginEntryU sername OID.37 Data ACTIVE pedro
18-19 LoginEntryPassword OID.38 Data ACTIVE P
18-19 CurrentUser OID.33 Data ACTIVE 2
20 HomePage OID.41 Page ACTIVE
20 CurrentUser OID.33 Data ACTIVE 2

Table 7.15: Simulation Results for Test Case T3.1.

Slot
Object

Id OID Type State Content
26 Results OID.53 Page ACTIVE
27 aa2cl OID_55 Link ACTIVE
28 CheckLogin OID.56 Script ACTIVE
29 CreateltemCart OID_59 Script ACTIVE
30 ConnectToCa.rt OID.60 Script ACTIVE
31 ConnectAlbum OID.61 Script ACTIVE
32 ItemAdded OID.62 Script ACTIVE
33 Cart OID.63 Page ACTIVE

Table 7.16: Simulation Results for Test Case T4.

Table: cart
OIL) User OID ItemOID
1 2 3

Table 7.17: The “cart” Table Content.

184

starts at the “HomePage” and navigates to the “LoginPage”. Since the “Search”

and “Results” pages have already been covered. Table 7.18 only displays the relevant

results for the user login and access to the “Administration” area. These parts of

the test case are represented between slots 43 to 48.

Object
Slot Id OID Type State Content
43 LoginPage OID.86 Page ACTIVE
43 lp21o OID_89 Link INACTIVE
43 Login OID_90 Script INACTIVE
43 DB OID_4 Data ACTIVE
43 CurrentUser OID-83 Data ACTIVE UNDEFINED
43 LoginEntryU sername OID _87 Data ACTIVE UNDEFINED
43 LoginEntryPassword OID.88 Data ACTIVE UNDEFINED
44-48 lp21o OID _89 Link ACTIVE
44-48 Login OID_90 Script ACTIVE
44-48 LoginEntryU sername OID .87 Data ACTIVE admin
44-48 LoginEntryPassword OID.88 Data ACTIVE a
44-48 CurrentUser OID.83 Data ACTIVE 1
44-48 AdminUsers OID.91 Script ACTIVE
44-48 AdminCart OID .96 Script ACTIVE
44-48 ListAll OID.97 Script ACTIVE

Table 7.18: Simulation Results for Test Case T3.2.

The results of test case T5 are shown in Table 7.19, where it can be seen

that after executing the Script “ListAll”, the Page “AdminPage” becomes active.

However, to fully evaluate this test case, the resultant page has to be inspected.

This is accomplished by invoking the “Automatic Page Construction Module” which

displays the correct contents of the “cart” table (see Figure 7.6); this verifies test

case T5.

Slot
Object

Id OID Type State Content
48 ListAll OID.97 Script ACTIVE
49 AdminPage OID.92 Page ACTIVE

Table 7.19: Simulation Results for Test Case T5.

185

11 i
File Edit View Favorites Tools Help

WDLSimTool Temporary Page

pedro CartOED[l] ItemOID[l] AlbumName = SinatraAlbum From Artist = Frank Sinatra

admin

Figure 7.6: The Rendered “AdminPage” Page

7.3 The Implementation Treatment

In order to validate the results provided by simulation, an implementation of the

design was produced. For this purpose, only the elements contributing to the ver­

ification of the design functionalities were coded. However, to test the functional

requirements, the interface has to provide the basic user-system interaction ele­

ments, encompassing data input and navigation elements. Furthermore, to provide

the functionalities, all the scripts contained in the design had to be implemented. Al­

though there can be several and different ways to implement the design, the WebML

approach was adopted to map the design elements into an executable Web appli­

cation (Ceri, Fraternali, Bongio, Brambilla, Comai and Matera 2002). To assess

each functional requirements, the same test cases of the simulation treatment were

used. However, the only method allowed is the visual inspection of the resulting

Web pages and database content. The results are presented as an ordered list of

initial state, actions taken, and obtained results, and, by comparing these with the

expected results, the developer can verify each test case.

186

7.3.1 The Implementation Results

Test Case T1 — Verifying Requirement R1

Testing requirement R1 is an easy task since there are no return links back to the

“HomePage" from most of the pages. Table 7.20 shows the test case T1 results. By

following the link to the “Music” Web page, it is possible to conclude by observation

that the requirement is not met (see Figure 7.7). However, if not using a tool to

automatically analyse the Web application response, it is up to the developer to look

for the required element, which can be a cumbersome technique if a large number

of links exist.

H HomePage - Microsoft internet Explorer j
File Edit View Favorites Tools Help JUr'

a

HomePage Music

To Music Celine Dion

To Search LermyKravitz

FrankSmatra

JtmMomson

<||3 'J Local iritranet ft} M local intranet

Music - Microsoft internet: Explorer
File Edit View Favorites Tools Help

Figure 7.7: Testing Requirement R1

11. Initial State Action Result
1 user at ‘HomePage’ click on link ‘hp2mu’ user at ‘Music’ page
Test case result: Failed

Table 7.20: Implementation Results for Test Case Tl.

187

Test Case T2 — Verifying Requirement R2

Functional requirements R2 are related to the browsing through the artists list

contained in the database. To test them, the developer has to navigate through

the “Music”, “Artist”, “Search” and “Results” pages (see Tables 7.21, 7.22, 7.23).

Once again, the results of the tests consisted of a set of Web pages and their content.

By comparing these pages with the database, the developer can assess whether the

underlying scripts are implementing the required functionalities. However, test case

T2.1 further requires the inspection of the resulting HTML code of the links to

assess whether the script produces the correct parameter values.

n. Initial State Action Result
1 user at ‘Music7 ‘Music7 page with correct contextual links

from database
Test case result: Verified

Table 7.21: Implementation Results for Test Case T2.1.

n. Initial State Action Result
1 user at ‘Music7 page Traverse one artist link ‘Artist7 page show correct

artist biography
Test case result: Verified

Table 7.22: Implementation Results for Test Case T2.2.

Although the requirements can be asserted, the developer has no way to

inspect the server global parameter ArtistOID defined in the design. The only

alternative would be to include extra code in the implementation files to display

these variables on a Web page. This is one of the disadvantages of implementation

for functional assessment - testing is performed by evaluating the results from a

user’s perspective, making it difficult to assess what is happening on the server side.

188

n. Initial State Action Result
1 user at ‘Search’ page Enter data:

F irst Na.me=‘ Celine ’
La.stName=‘Dion’

2 user at ‘Search’ page submit form ‘Results’ page with correct artist
Test case result: Verified

Table 7.23: Implementation Results for Test Case T2.3.

Test Case T3 — Verifying Requirement R3

To evaluate test case T3, a similar approach is adopted. What is being tested is the

application response to a user login action. The username and password are pro­

vided and, at the end of the script’s execution, a global parameter (CurrentUser)

and the database’s user table are altered. For that purpose, the developer posi­

tions herself/himself on the “LoginPage” Web form, enters possible combinations

of the (username,password) tuple, and verifies that the implementation operates as

expected.

Once again, the developer has no direct means for observing the execution

of the scripts, but only to visually assess their outcome in the form of the resulting

Web pages. In particular, and similar to what has happened with T2, the devel­

oper cannot observe the content of the global parameter CurrentUser unless changes

are made and introduced into the implementation code itself. Nevertheless, imple­

mentation can successfully verify requirements R3.a and 3.b; to completely verify

R3.c, however, some code modification would be necessary to observe how the global

parameter is affected.

n. Initial State Action Result
1 user at ‘LoginPage’ Enter form data

‘ LoginEntryU ser n ame ’=‘ pedro ’
‘LoginEntryPassword’=‘p’

2 user at ‘LoginPage’ submit form user back at ‘Home­
Page’

Test case result: Verified

Table 7.24: Implementation Results for Test Case T3.1.

189

n. Initial State Action Result
1 user at 'LoginPage7 Enter form data

4 LoginEntryU sername 7=‘ admin7
'LoginEntryPassword^V

2 user at 'LoginPage7 submit form user at 'Ad­
minPage7

Test case result: Verified

Table 7.25: Implementation Results for Test Case T3.2.

Test Case T4 — Verifying Requirement R4

Test case T4 attempts to evaluate the application’s response to a user’s purchase. It

logically follows tests T3 - the client login - and T2.2 - searching for a specific artist.

To test the requirement an inspection of the database was made, and found that it

contained the new added item. However, unless the developer resorts to the design

s/he cannot observe the executed scripts and path followed, but only the effects

her/his actions produced. Therefore, scripts 'CheckLogin’ and 'CreateltemCart’ are

only indirectly perceived. Furthermore, the developer cannot directly inspect the

server’s global parameters to assess its valid content.

n. Initial State Action Result
1 user at ‘Results7 traverse link 4aa2cl7 user at 'Cart7 page

Database with a new
record

Test case result: Verified

Table 7.26: Implementation Results for Test Case T4.

Test Case T5 — Verifying Requirement R5

The intended functionality of requirement R5 is to allow "administrators” to inspect

the "client” shopping carts. Testing this implies that a user be logged as "admin”,

and proceed to the "AdminPage” where a list of the clients and their carts will be

displayed. This logically follows test case T3.2 - the login of an "administrator”.

190

The results showed a Web page with the right content extracted from the database,

thus verifying the requirement.

n. Initial State Action Result
1 user at ‘AdminPage’ page correctly displays

user’s carts’ content from
database

Test case result: Verified

Table 7.27: Implementation Results for Test Case T5.

1 Login ge Microsoft Internet Explorer
; File Edit View Favorites Tools Help P?

LoginPage

Username [admin

Password a

| Submit Query j| Reset]

<10 Done ^ My Computer

Figure 7.8: Testing Requirement R5

7.4 Verification and Validation of the Simulation Re­

sults

The simulation results described in this Chapter strongly indicate that the con­

ceptual model and its translation into the computarised model are an accurate

representation of the base system. This is supported by the results obtained by the

implementation treatment, which when compared with the simulation treatment

results display a high degree of correlation. This strongly suggests the verity and

validity of the formulated problem, the proposed solution, the conceptual model

191

definition, and its translation into the computarised model. It is, therefore, with

a high degree of confidence that the assumption of the correctness of the results

produced by simulation treatment is made.

7.5 Discussion of the Results

The results obtained illustrated the Web-design Simulation Model, Web-design De­

scription Language, and Web-design Simulation Tool’s capabilities for the functional

requirements evaluation. The two used simulation methodologies - “visual inspec­

tion” and “logic expression” - allowed us to verify the suitability of the multi-layer

graphic representation of the Main Window, the “Requirements Assessment Mod­

ule”, and the “Automatic Page Construction Module” for the functional evaluation

of a Web application design. Furthermore, how the Simulator displays the WDL

intrinsic entities’ attributes, and how these can be used to construct logic expres­

sions to verify functional requirements, was also shown. By using these attributes a

variety of aspects of a Web application design may be simulated and tested. More­

over, by displaying the state and interactions amongst the objects contained in one

of the four layers of the Web-design Simulation Model, the Simulator is capable of

precisely indicating what pages are being presented to the user, what links have

been traversed, what scripts are being executed, and the content of data objects.

Furthermore, the history of the test can be checked at any time. Test case Tl, a

simple example of the use of the WDL object properties for logic evaluation, demon­

strates how by setting only two attributes of a Link object and by using the “Exists”

requirement assessment function, a global property of a Web application can be as­

sessed. Test cases T3.1 and T3.2 further explored the capabilities of evaluating

a set of requirements by using these logic functions; the possibility of combining

different object classes in the same logic expression, allows a powerful and flexible

testing method that uses the intrinsic WDL attributes for verification purposes.

192

The “visual inspection” method used by the remaining test cases made use of the

multi-layer display of the Simulation Model. The four orthogonal perspectives of

a simulation allow an in-depth evaluation of the state and dynamics of the design.

This not only facilitates the testing process and provides better understanding of

the Web application behaviour, but may also lead to an increase in the quality of

the end product and potentially decreasing the software development cycle.

If simulation of a Web application design provides developers with a better

understanding of its behaviour, the multi-session/multi-user Simulator feature takes

it to the next level, as close as it gets to a real-world scenario. This is often ex­

tremely difficult to perform by simple observation of the design, since design models

are not usually especially suited for and concerned with this type of scenario. Hence,

it is left to the developer to envisage how the design will respond in such situations.

Undoubtedly, as designs become more and more complex, it becomes almost impos­

sible to correctly evaluate all the different scenarios. Moreover, such evaluation is

error-prone and may lead to defective Web application designs that will probably

only be noticed during or even after implementation. By using the Window and

User entities, the Simulator is capable of managing shared and private resources,

thus simulating both session and application objects. This is best observed when

the “client” and “administrator” users are being simultaneously simulated. In this

case, both users have their own private session and application Data objects, such

as the CurrentUser and ArtistOID, and share a common database object. By al­

lowing multi-user simulation, concurrent interaction with the Web application may

be performed and eventual problems due to this type of access may be evaluated.

These problems are often linked to data integrity, and in particular to its consistency,

accuracy, and correctness. By simulating the design in a multi-session/multi-user

environment, the application’s behaviour in a real-world scenario may be better

understood.

193

The implementation treatment was also able to evaluate the proposed set

of functional requirements. The results of the test cases produced a sequence of

Web pages which allowed the assessment of the intended functionalities by visually

inspecting their content. Test case T1 required the visual inspection of the navi­

gational elements contained on the Web page to assert it. Test case T2.1 further

needed inspection of the HTML code to reach a conclusive assessment. On the

other hand, tests T2.2 and T2.3 were easily assessed with this testing method; this

is because the sequence of actions taken on the initial page and the expected results

share a strong connection. In other words, when the data entered on a form or a

link traversed on a page produces a very specific content on the resulting page, the

implementation method performs well. In this case in particular, it is very easy to

verify that the “Artist” page displays the right content due to the traversed link;

similarly, it is a straightforward task to assess the content of the “Results” page due

to the data entered on the “Search” form.

There were, however, some difficulties in assessing tests that intensively use

scripts. This happened because there is no direct evidence of the running scripts,

only their effects. Furthermore, global parameters are not observable unless changes

in the implementation code are made. This was the case in tests T3.1 and T3.2,

where the inspection of the server variable CurrentUser is not possible, and in T4

with ArtistOID. Test T5, on the other hand, showed that this is a suitable method

for assessing scripts that result in observable content extracted from a database.

7.5.1 Comparison of Treatments

The two treatments were conducted on the same design to evaluate an identical set

of functional requirements. By comparing the treatments from functional content

and information perspectives, an evaluation of the benefits and shortcomings of

each treatment can be made. Since both treatments agreed on the results of the

194

verification of the requirements (see Table 7.28), the following comparison is more

concerned with what each treatment can contribute to the functional testing, rather

than the actual values of the results.

Requirements assessment results
Result

Requirement Simulation Implementation
R1 fail fail
R2

R2.a pass pass
R2.b pass pass
R2.c pass pass

R3
R3.a pass pass
R3.b pass pass
R3.c pass pass

R4
R4.a pass pass
R4.b pass pass
R4.c pass pass

R5 pass pass

Table 7.28: The Functional Requirements Assessment Results.

From a functional content perspective, both treatments provide similar ob­

servable factors, especially on the page level by indication of which Web pages are

displayed to the user (see Table 7.29). In fact, the implementation treatment relies

on these very pages to assess the functionalities of the Web application. On the

other hand, the Web-design Simulator achieves it by presenting the active pages on

the Main Window, and by rendering the Page objects and their internal components

when using the “Automatic Page Construction Module”. Since these internal simu­

lated objects represent the structure and content of the Web application at any time

during the simulation, an accurate representation of the Web page can be observed.

On a link level the treatments take a slightly different approach. Evaluation

of the implementation results depends on the observation of the navigational ele­

ments on the pages to assert their existence and correct parameters values. There

195

is no clear and direct evidence of these values, unless inspection of the HTML code

itself is made. On the other hand, simulation results clearly identify which links

were traversed and inspection of each link parameters is made possible by observing

the runtime attributes of the Link objects on the Status Window of the Simulator.

However, if both treatments produce similar results, especially when dealing

with pages and links, scripts and data do pose a different challenge. In the imple­

mentation treatment, there is no clear evidence which scripts were executed when

interacting with the Web application. The only observable evidence is the effect of

the scripts on the resulting Web pages and database content. Furthermore, inspec­

tion of the input and output script variables is only possible if the implementation

code is changed in such a way that they are displayed along with the resulting Web

page. This makes it harder for the developer to test the scripts, which undoubtedly

are the most important functional element of a Web application. Simulation, on the

other hand, presents which scripts were executed and the order in which they were

triggered, making a clear connection between their workflows and internal interac­

tions with the other Web application objects. This provides a better understanding

of the behaviour of the Web application in faulty conditions.

Similarly to the script, the data the Web application uses for functional

processing is somewhat hidden by the implementation treatment. Both treatments

require direct inspection of the database content to assess some functionalities; how­

ever, simulation differs from implementation by allowing observation of the variables

used by the Web application on the server side - such as global parameters - and on

the client side - such as “cookies”. This is an important contribution to functional

evaluation, since scripts often use these in their workflows, and knowledge of their

content is an essential factor to understand the Web application behaviour.

The functional information comparison aims to evaluate each treatment’s dif­

ficulty of usage, suitability of the presentation of results toward testing, and level of

196

Implementation Simulation
Functional Content

Pages Both methods allow inspection of the active pages
Links Available links can be observed. Available and Active links and

their parameters can be ob­
served.

Scripts Cannot be observed executing.
Outcome indirectly perceived.

Executing scripts and their vari­
ables can be observed.

Data Global variables cannot be ob­
served.

Global variables, form fields, and
server variables can be observed.

Functional Information
Difficulty in admin­
istering the treat­
ment

(Partial) Coding necessary. Web
server application needed for
supporting Script processing.

Straightforward and automatic
procedure. Coding is only neces­
sary for very specific and custom-
made (not provided by the de­
sign elements) Script procedures.

Format of the treat­
ment results

A client’s perspective. Evalua­
tion is performed by observing
the end-user graphical interface.

Both client and server perspec­
tives. The whole test case can be
observed on a timeline. Possibil­
ity to inspect both present and
past states.

Adequacy of the re­
sults for functional
requirements evalu­
ation

Sufficient for functional evalua­
tion.

High functional content and in­
formation, leading to a better
understanding of the applica­
tion’s behaviour. Possibility to
automate tests through the use
of the Requirements Assessment
Module.

Table 7.29: Comparison of the Implementation and Simulation Treatments.

contribution for the functional testing. Testing performed with the implementation

method requires the developer to produce the necessary code. This, undoubtedly,

leads to a slower testing process with the additional danger of introducing errors in

the code which may jeopardise the validity of the tests. It can be argued that this

additional coding effort is an advantage of the implementation method, since some

of the code is produced and tested, which would contribute to shortening the im­

plementation phase. However, using testing prototypes as a means to alleviate the

workload of the implementation phase is against good software engineering practices

(Macintosh and Strigel 2000). Furthermore, Lowe et al. (1999) argue that early-

197

stage prototyping is not always appropriate, and that it may lead to specification of

requirements that although will not be met, take a considerable development effort.

Implementation for functional testing purposes should not be confused with and

included in the implementation phase. Furthermore, if the design does not meet

all the functional requirements this effort would, at least partially, be lost. In the

end, it all comes down to whether the design is or is not correct in the first place.

On the other hand, since simulation is performed on the design itself, it has two

major advantages: one is that it is an automatic and effortless process; secondly,

no additional errors are introduced into the testing phase by faulty prototyping

code. Simulation also makes it easier to observe how the Web application evolves

throughout the test cases; it provides the means to present the results in a suitable

and intuitive format, where the developer can go back and forth in time to inspect

how the different elements reacted to the stimuli and to identify possible design

problems. These interactions presented on a timeline provide the developer with

a more global approach to testing, instead of merely observing snapshots of Web

pages. In conclusion, the simulation treatment has the potential to provide better

and further functional content and information than the implementation treatment

does; furthermore, it can shed light on how the Web application will operate when

implemented in a real-world multi-user/multi-session environment.

198

Chapter 8

Conclusion

In this chapter, the contributions of the research to the topic of functional require­

ments evaluation of Web applications designs are described, and a critical analysis of

the findings is made. Furthermore, the hypothesis is evaluated based on the results

analysis, and suggestions for future work are presented.

8.1 Summary and Critical Analysis

As the Web has evolved, so has the complexity of its applications, leaving Web

developers facing an unprecedented level of integration of content and procedural

processing to be tested (Pressman 2000, Lucca et al. 2002, Deng et al. 2004). Chal­

lenged to develop highly sophisticated Web applications in short periods of time,

developers yearn for more efficient testing methods to improve the quality of their

end-product. Testing accounts for a major part of the Software Development Cycle

and Web developers are becoming overwhelmed by the test phase complexities. In

fact, this is reflected by the increasing number of publications in the past few years

dedicated to the Web testing topic (Rung et al. 20006, Lucca et al. 2002, Elbaum

et al. 2003, Nilawar 2003, Kung 2004, Xu et al. 2005, Bellettini et al. 2005, Elbaum

199

et al. 2005).

Simulation for testing purposes has been successfully used in the hardware

field for the last decade, and is still a very active field of research which is in constant

evolution (Bailey et al. 2004). Its use there has allowed hardware engineers to

implement increasingly complex functionalities and to experiment with alternative

system designs. Freed from having to implement the systems to actually test them,

engineers can simulate would-be systems in would-be scenarios with a high degree of

certainty that, when implemented, they will operate as intended. Simulation of Web

application design models aims to achieve similar results in the Web development

field - to alleviate the test phase workload, and to provide developers with the

means to experiment with would-be Web application designs and scenarios without

the need to implement them.

This research has devised a way to model Web application designs in order

to make possible their simulation for functional evaluation purposes. By developing

a Simulation Model based on a layered structure that highlights the elements with

functional significance, evaluation of functional requirements is made feasible. The

proposed Simulation Model consists of four layers, namely: Presentation, Naviga­

tion, Functional, and Content. Each of these layers models a specific perspective of

a Web application. Presentation is the one and only means a user has at her/his

disposal to interact with the application, and it is also the only manner a user has to

perceive the application’s response to her/his actions. The Navigation layer models

changes of the current user location in the Web application’s structure, either due

to user interaction with hyperlinks and buttons rendered on the Presentation layer,

or to other internal elements. These changes model the mechanism by which it is

possible to alter the set of displayed Web pages and their content, and the triggering

of programmatic elements. However, if this layer allows navigation through the Web

application, the Functional layer is what makes it dynamic. All the programmatic

200

elements are found on the Functional layer, which models and supports their ex­

ecution. Finally, the Content layer models all the data that the application uses,

encompassing databases, files, global parameters, and form fields.

In addition to the Web-design Simulation Model, a Web-design Description

Language (WDL) was proposed. This complements the Simulation Model and pro­

vides a formal definition of the structure and behaviour of the entities that populate

each WSM layer. The description language borrows concepts from the VHDL lan­

guage (IEEE Standard VHDL Language Reference Manual - 1076 2002), which is

extensively used in the hardware field for hardware systems development. WDL

acts as a middleware language into which existing Web application design mod­

els are mapped, enabling simulation of designs. Each entity described by WDL is

modelled from structural and behavioural perspective. This makes simulation of an

entity a straightforward task since each entity 'knows’ how to process and respond

to a stimulus; the individually defined behaviour formally describes how each stim­

ulus will be processed, which is based on its workflow and the entity’s structural

content.

The four WSM entities identified as having functional significance are the

Page, Link, Script, and Data, which are related to each of the four layers of the

Simulation Model. The Page entity resides on the Presentation layer. It models the

user interface in such a manner that makes interaction with the application possible.

Only the interface elements that may contribute to a functional assessment are

modelled; this encompasses the rendition of the hyperlinks, buttons, and form fields.

In accordance with other design models approaches, there was no attempt to model

the aesthetic aspects of a Web page which, although very important, for instance,

for usability and accessibility evaluation, convey no significant functional meaning.

The Link entity, which populates the Navigation layer, models the structure and

behaviour of the hyperlinks and buttons, and also supports information flow to and

201

from Script entities. In its simplest form, it models a hyperlink used by a user to

change position within the application. It can also model a submit button which is

responsible for transferring information from a Web form to the application, or can

even provide a mechanism for the transport of information among Script entities.

Script entities model the programmable units of a Web application and are found

on the Functional layer; they are responsible for the processing of data and provide

the richest functional information available in a Web application. For this reason,

they are the most complex entities from a behavioural point of view. WDL allows

behaviour to be individually defined for each Script, making it a flexible and scalable

description language. Finally, the Data entities, which can be found on the Content

layer, model the data present in a Web application and are used by Page and Script

entities for rendition and data access and management, respectively. They can

take the form of files, databases, variables, or Web form fields, covering the whole

spectrum of information-handling. The emphasis of this type of entity is on the

modelling of the elements that support functional workflow, rather than for purely

aesthetic reasons. Some media types such as images, video, and audio, are not

usually considered by design models on the grounds that they do not usually possess

functional significance. Therefore, these media type will not usually be modelled

by the Data entity. However, other types of media that may have a navigation
or functional significance such as, for example, Adobe® (formerly Macromedia)

Flash® presentations, can be modelled by a combination of Data and associated

Link and/or Script entities which can model the specific media functionalities.

In addition to the four main entities just described, two other auxiliary en­

tities were introduced: the Window and User entities. These are what WSM calls

runtime entities - they do not originate from the design model mapping, but are part

of the simulation process. The Window entity models the Web browser and allows

a multi-session simulation; the User entity models a user and provides a multi-user

202

simulation environment. Although not part of the design, these two entities types

enrich the simulation process in ways that implementation for testing purposes is

unable or makes it difficult to achieve. For example, the testing of a Web appli­

cation behaviour when one user simultaneously accesses a Web application from

two or more Web browser instances - multi-session testing - is difficult to perform

and track with the implementation treatment due to the multitude of the Web ap­

plication’s variables that are being changed at the same time. By modelling the

Window entity, WDL allows Web developers to easily inspect session variables and

quickly detect design errors due to this type of access. Similarly, multi-user testing

- the testing of a Web application behaviour when two or more users simultane­

ously access it - requires inspection of the variables content of the Web application,

which prototype testing does not easily provide. On the other hand, the simulation

t reatment uses the User entity to separate each user application variables, thus pro­

viding inspection and analysis of the impact of his/her actions. The main reasons

for the unsuitability of an implementation for multi-session and multi-user testing

is the lack of control and level of difficulty to inspect the state of the supporting

Web server application, which manages the Web application state for each session

and user. Testing a prototype requires a Web server application executing the im­

plementation and managing the implementation variables, and tests are evaluated

based on the Web server responses; however, unless additional code is inserted into

the Web application code itself for variable display and analysis, Web developers

do not usually have the means to directly have a snapshot of the state of the Web

application on the server-side. This usually leads to a partial view and analysis of

the Web application behaviour, since it is performed from a client-side point of view.

Simulation overcomes this problem by providing Web developers with both client

and server-side points of view, and with no additional coding necessary.

To further provide support to the test phase, simulating a design should be

203

as automatic and effortless as possible. This was accomplished by providing an

automatic mapping process between design models and the WSM entities described

using WDL, based on a library of templates and rules. Since WSM entities are highly

configurable from a behavioural point of view, by defining the rules and workflow

of each template a straightforward mapping process is achieved. This enables a

design, written using some design model, to be automatically mapped into WDL

and thus be ready to be simulated and tested. The advantages of this process are

that developers do not need to directly deal with WDL which reduces the complexity

and time required for the simulation procedure, and implementation for functional

evaluation is no longer necessary. Examples of these templates were developed for

WebML.

The use of controlled experimentation, although providing additional cer­

tainty of causality, has some unavoidable implications for external validity. There­

fore, generalisation of this method to other design models has to be made cautiously.

The design model must be formally defined and consisting of a finite lexicon. If these

conditions are not met, then defining the templates for the automatic mapping is

almost impossible to attain, due to the indeterministic nature of the design model.

Without an automatic mapping process, the developer would have to manually code

each entity which would, inevitably, lead to a lengthy and impractical procedure.

On the other hand, if the design model has a formal syntax and semantics and is

restricted to a finite number of design elements, then WDL is sufficiently flexible

and scalable to model it. Furthermore, if a design model supports the means to

automatically construct the code, then the probability of being able to simulate

its designs is very high. The rationale being that automatic code construction is

usually based on templates that map the design elements into executable code; this

is similar to the mechanism used by the WDL parser. Therefore, if such a tool

exists, there is a high level of confidence that simulation will in fact be possible. In

204

conclusion, generalisation of the WDL capabilities to represent other design models

would be imprudent to claim; however, due to the characteristics of WDL which

separates structure and behaviour and allows internal workflows to be expanded,

modified and tailored, it is this author’s belief that there is a high probability of it

being able to model other formally defined design models.

To test the suitability, feasibility, practicability and meaningfulness of the

proposed WSM and developed WDL, an implementation of an application was con­

ducted. This led to the development of the Web-design Simulation Tool (or Simu­

lator) which was utilised to carry out an experiment. The Simulator, which started

as a demonstration of a concept tool, ended up as a fairly sophisticated applica­

tion with some very interesting and useful features. It provides simulation of WDL

models; automatic testing of functional logic expressions; functional requirements

editing; inspection of the structure and content of entities; stimuli processor and

editor; and display of the simulation results from the four layers’ perspective on a

convenient timeline format.

An experiment was conducted to assess the developed framework for func­

tional evaluation. It consisted of evaluating the functional requirements of a Web

application design using two different treatments: an implementation method, and a

simulation method. Furthermore, the experiment supported an attempted to com­

pare both methods’ benefits and disadvantages to reach a conclusion as to their

suitability to tackle functional evaluation. The comparison was performed from two

different perspective: Functional Content and Functional Information. The former

aimed at assessing the results each treatment provides for the functional evaluation.

A comparison of pages, links, scripts, and data was performed. These were evaluated

regarding the observable active elements and their content. It was shown that imple­

mentation does present some shortcomings. In particular, scripts and data elements

are only indirectly perceived by the Web developer when using implementation, pre­

205

venting her/him from fully observing the application’s behaviour, perceiving only

its effects. On the other hand, both methods showed a similar Functional Content

measurement of the resultant pages and traversed links. The Functional Informa­

tion measurement aimed at a qualitative analysis of both treatments, regarding the

degree of contribution each of them provides to functional evaluation. This per­

spective was further divided into three items: the difficulty of implementing the

treatment, the suitability of the format of each treatment’s results, and the level

of adequacy of the results to evaluate functional requirements. Once again, simula­

tion was found to be a better method than implementation. Simulation is directly

performed on the design model itself via an automatic mapping process, without

the need for prototyping. Moreover, it provides a better understanding of the be­

haviour of the designed system by allowing inspection from a client’s and server’s

perspectives, whereas the implementation method mostly presents the system from

the client’s side. This is an extremely useful feature of the Simulator, since the

application's functionalities are mostly and usually implemented on the server and

not on the client side. Implementation can be regarded as a method through which

only the effects of the functionalities are evaluated; the causes cannot be seen and

may only be indirectly assessed. This one-sided observation for the evaluation of

functionalities which are mostly implemented on the other end, leads to partial and

incomplete evaluation. Simulation, on the other hand, supports both perspectives

and groups them in a more holistic evaluation approach. The advantages of using

the simulation treatment were found to exceed those provided by implementation

and, although the latter provides sufficient information for evaluation purposes, sim­

ulation strongly improves the understanding and knowledge of the Web application’s

behaviour contributing to a more reliable and meaningful evaluation.

206

8.2 Conclusions about the Research Questions and Hy­

pothesis

As stated in Chapter 3, this thesis set out to answer several research questions,

namely:

1. What aspects of a Web application should be simulated?

2. What simulation model captures those aspects?

3. Is it possible to simulate the model to evaluate its functional requirements?

4. How do simulation and implementation of a Web application design for func­

tional requirements evaluation compare?

The first two research questions have been answered by the definition of the

Web-design Simulation Model (Chapter 4) and the Web-design Description Lan­

guage (Chapter 5). The WSM captures what Web developers consider to be the

key design concerns, as well as the key testing and implementation elements. This

proved to be an excellent model for simulating Web applications from a functional

evaluation perspective, as demonstrated during the planned experiment that fol­

lowed. The definition of WDL answered the question of what aspects of designs

need to be captured for the purpose of simulation. The structural definition of the

WSM entities by WDL covers the necessary aspects that should be observable in

order to perform a functional evaluation. Furthermore, the behavioural definition of

each entity is what makes functional simulation possible. The combination of these

two aspects proved to be a powerful method to describe the elements within a Web

application, allowing their simulation.

The third research question has been answered by the implementation of a

simulation tool (Chapter 6). This tool was developed based on the specifications of

207

the WSM. By using the WSM entities, the Simulator is capable of providing mean­

ingful results that assist in the evaluation of the design functionalities. Furthermore,

several auxiliary modules were developed, which complemented the Simulator to en­

hance the functional evaluation process. Examples of theses are the “Requirements

Assessment Module”, the “Stimuli Module”, and the “Automatic Page Construc­

tion Module”. Based on the WSM and WDL framework they provide the means

to automatically inspect the results, to support construction of stimuli files, and to

observe rendered Web pages in the same manner an implementation would. This

tool was later used in the experiment and found to be suitable for providing mean­

ingful results, thus asserting the feasibility of the simulation based on the developed

framework.

Lastly, the question of how implementation and simulation for functional

requirements evaluation compare was answered by utilising both methods in an

experiment (Chapter 7). The experimental results allowed a comparison of the ad­

vantages and shortcomings of the two methods. This was performed by comparing

both treatments’ results from both Functional Content and functional Information

perspective. This allowed the assessment of what each treatment provides and their

suitability for functional evaluation. The results showed that simulation provides as

much content and information on functionality as implementation does. In fact, sim­

ulation goes beyond implementation by allowing observation of the state of the Web

application on both the client and server side. Furthermore, simulation provides the

means to probe internal variables, which cannot be done when using implementa­

tion unless code is embedded. Finally, the format of the test results was found to

be significantly better when using simulation; displaying the results on a timeline

axis allows straightforward observation of present and past Web application states.

Furthermore, representation of the results in a multi-layer format allows a rapid

and easy identification of the active elements and their interactions. On the other

208

hand, when using implementation, developers can only observe snapshots of the

Web application state and not the whole process. These snapshots are taken from

a client’s perspective and inspection of the server’s variables is usually not possible

without modifying the code. Furthermore, the key functional elements and their

interactions cannot be fully observed, but only their rendered effects. Therefore, al­

though the implementation treatment was able to evaluate the proposed functional

requirements, the comparison favoured simulation as a better evaluation method.

The hypothesis that this thesis proposed to prove is:

“It is possible to simulate Web applications based on their designs. Further, the

simulation provides similar information with regard to evaluation of functional

requirements as would an evaluation based on an actual implementation. ”

The developed framework, simulation tool, and experiment, have all con­

tributed to test the hypothesis. It has been supported by experimentation that the

hypothesis is true. In fact, simulation was found to provide better results than imple­

mentation does. However, caution must be exerted not to over-generalise the results

to other designs and design models, as has already been noted. External validity

has been addressed by the design of the experiment. This led to an experiment

using common functional design elements, which extends the scope of simulation

feasibility to a broader group of designs.

This work has made an important contribution to the Web development field,

in particular to the evaluation of the functional requirements of Web application

designs. The need for a testing framework and suitable methods has long been

claimed by the Web developers’ community. The maturity of the field has reached

such a level that, as happened in the software engineering field, it is time to progress

toward a more scientific approach to functional evaluation. By offering an automatic

procedure, with meaningful and intuitive results, simulation has the potential to

decrease the length of a Web project and raise the quality of the end-product.

209

This has occurred in other engineering fields, such as in the hardware and software

development, and this thesis argues that it is now time for this to happen in the

Web development field.

8.3 Suggestions for Future Work

The research conducted has proved the feasibility of simulation and its advantages

in the functional evaluation of Web applications. The author would like to expand

the research in several ways. Some suggestions would include the following:

Providing templates for the main design models would potentially lead to the

adoption of the WSM and WDL by the Web developers’ community. That would

entice developers to adopt the WSM to evaluate functional requirements, which

would have the potential to increase the quality of the end-product and result in

faster development. Enumeration of the features a design model should possess in

order to enable simulation has already been made in this thesis. Theses features

allow a selection of the possible and potential candidates for a future research on

simulation using other design models.

One feature that has not been addressed in this thesis is the automatic code

construction. Hardware Description Languages, such as VHDL and Verilog, are

used by engineers not only to support the design and testing phases, but also to

assist them during the implementation phase. In the implementation phase, the

textual description of the future system is used by synthesis tools to automatically
generate the hardware and associated code. Tools such as ispLever® from Lattice

Semiconductor Corporation (Lattice Semiconductor Corporation 2006) and Xilinx®

ISE from Xilinx Inc. (Xilinx, Inc. 2006), are just some examples of combined HDL

simulator and synthesis tools. In the Web development context, this feature would

be extremely interesting, since an automatic code construction tool would assist

Web developers during the implementation phase. Although not directly addressing

210

aesthetic issues, WDL formally describes the functionalities of Web applications and

a substantial part of the applications’ code could be generated by such a tool. When
considering WebML, however, the WebRatio® tool already possesses automatic

code construction features; in this case, an integration of the WDL’s simulation

capabilities with the WebRatio automatic code construction feature could result

in one of the most complete and comprehensive Web application developing tools

currently available.

Another interesting line of future work could be the improvement of the

WSM Simulator. This could lead to the automatic generation of oracle tests for the

verification of specific properties of the system under observation. Based on which

system properties the developer would like to be verified - for example liveness (ex­

istence). reachability, or safety - the WSM Simulator would automatically generate

the necessary tests. Furthermore, a possible quantification of the level of confidence

in the performed verification could be done, by estimating the degree of coverage of

the observed system’s properties that a given set of simulation stimuli can achieve.

This level of confidence would be a very interesting indicator to a developer, assuring

him/her that the performed simulation would adequetely address all the intended

verification concerns.

One interesting area of future work would be to expand and improve the

User Interaction Model to accommodate a more automatic evaluation procedure.

If it included a more realistic user model, such as an automatic response to the

Web application’s state, very interesting tests could be performed. This could, for

example, give support to Monte Carlo simulation and analysis. Additionally, if the

user model is goal-driven such as being on a specific page or achieving a particular

state of the Web application, that would allow tests to be automatically performed,

with fascinating results to be observed. Furthermore, definition of sets of template

goal-driven tests could be done based on the type of Web applications to be tested.

211

For example, Web-based stores follow a similar navigation and functional pattern

from the start a user accesses them till the purchase of a specific product; therefore,

a set of goal-driven tests that would include evaluation of the processes of ‘logging

in’, ‘product browsing and selection’, and ‘product purchasing’, could be used to test

many of this specific type of applications. The definition of these goal-driven tests

are not as dependent on a particular Web design as ‘traditional’ tests are, but rather

on the achievement of a specific Web application state, making it possible to use

the same test, templates for design evaluation of a specific type of Web application.

Another possible line of future work could be to further improve and upgrade

the Web-design Simulation Tool and develop it into a product (commercial or open-

source) available to the Web developers’ community. It would be very interesting to

observe whether developers would embrace it, and extremely rewarding if they did.

8.4 Final Conclusions

In summary, this research has developed and defined a framework for the simu­

lation of Web application designs, with the purpose of verifying their functional

requirements. The framework, which consists of the Web-design Simulation Model

and associated Web-design Description Language, enables Web application design

simulation by formally describing the functional elements within the designs. The

simulation study followed the life cycle proposed by Balci (1987), contributing to

a systematic approach to the formulated problem. Furthermore, validation and

verification techniques of the simulation model were used throughout the research,

contributing to the claim of the simulation model being able to accurately represent

the behaviour of Web applications.

The developed Simulation Model allows evaluation of the functionalities from

four key layers. These four layers are populated by the four main WSM entities

which completely describe a Web application design from a functional perspective.

212

Additionally, two other entities - the Window and User - complement the frame­

work and allow multi-session and multi-user simulation capabilities. The adopted

research methodology consisted of an experiment to support the hypothesis claims

of simulation being able to provide similar information as prototyping does for the

evaluation of Web application functional requirements. For this purpose, the Web-

design Simulation Tool was developed and its results and those produced by the

implementation of a Web application design were compared. The results of this

comparison were found to support the claims of the hypothesis, and even to favour

simulation as a better suited evaluation method than prototyping.

This work has made a number of significant contributions to the Web appli­

cation development field, in particular to the testing phase of the Software Devel­

opment Cycle of such projects. First, it applies concepts traditionally used in the

hardware development field, namely the simulation of hardware designs, to tackle

the evaluation of the functional requirements of Web application designs. Simu­

lation of Web application designs for functional requirements evaluation purposes

had never been attempted before. This work has demonstrated the feasibility of

simulation of Web application designs, and the suitability of its results for func­

tional evaluation. Second, a study was done on the requirements a Web application

design model must meet to enable meaningful simulation. This allows researchers

to assess design models from a simulation-enable perspective, and to include these

requirements in future design models definitions if simulation is a desired feature.

Finally, a practical contribution was the development of the Web-design Simulation

Tool. This tool, which can be readily available to the Web developers community,

will surely assist Web developers in the evaluation of the functional requirements of

WebML designs.

The benefits of using the Web-design Simulation Model, the Web-design

Description Language, and the Web-design Simulation Tool include:

213

• Evaluation of the functional requirements of Web application designs without

the need for prototyping;

• Earlier conceptual error detection, on a functional level, of Web application

designs;

• Contribution to the shortening of the Software Development Cycle of Web

applications, in particular of the testing phase;

• Enhancement of Web application testing by automatically evaluating pre­

defined test cases;

• Enhancement of Web application testing by scenario-based simulation;

• Enhancement of Web application testing by supporting multi-session and multi­

user simulation;

• Contribution to a high quality of the end product.

Finally, the framework developed in this research promises a more automatic

and in-depth evaluation of complex Web application designs based on simulation

techniques. This will allow Web developers to tackle the development of Web ap­

plications with suitable evaluation methods and tools, thus potentially contributing

to enable Web developers to experiment and explore new and more complex Web

application designs.

214

Appendix A

The WDL Syntax

<entity_declaration>
entity <identifier> is

/* Model */
<entity_model_attributes>
/* Runtime */
<entity_runtime_attributes>

end;

<identifier> <Name>
<entity_modeLattributes> <entity_attribute>
<entity_runtime_attributes> ::= <entity_attribute>
<entity_attribute> <attribute_clause>
<attribute_clause> <attribute_name> : <attribute_type>;
<attribute_name> <Name>
<attribute_type> ::= 'String7 | 'ID7

| Integer7 | Float7 | 'Boolean7
j <array_type> | 'URL7

<array_type> "Array of77 <attribute_type>
<Name> <Letter> <Letter> | <Digit>
<Letter> ::= [cA7-‘Z7]|[‘a7-‘z7]
<Digit> ::= ['07-'97]

Figure A.l: The entity Declaration Definition.

215

< architecture-body> ::=
architecture <identifier> of <entity_name> is
begin

{<function_name> : process is
begin

< architecture J3tatement_part >
end process <function_name>;}

end [architecture] [identifier>];

<architecture_statement_part> ::= <programmatic_statement>

Figure A.2: The architecture Declaration Definition.

entity Page is
/* Model */

pagelD: ID;
pageStructure: ('PAGE7 | ‘FORM7 | ‘FRAMESET7);
pageBuild: (‘HTML7 | ‘DYNAMIC7 | ‘ASP7);
pageComponentsID: Array of ID;
pageContext: String;

/* Runtime */
pageOID: ID;
state: (‘ACTIVE7 | ‘INACTIVE7);
windowOII): String;
userOID: String;
pageComponentsOID: Array of ID;

end entity Page;

Figure A.3: The Page Entity Structure

216

display Page: process is
begin

state = ‘ACTIVE7;
readObject()

end process display Page;

deactivatePage: process is
begin

state - ‘INACTIVE7;

end process deactivatePage;

readObject: process is
begin

for each componentOID in pageComponentsOID
readObject (component OID);

end for each;

end process readObject;
end architecture behaviour;

architecture behaviour of Page is
begin

Figure A.4: The Page Architecture

217

entity Link is
/* Model */

linkID: ID;
linkType: (‘LINK’ | ‘SUBMIT’ | ‘TRANSPORT’);
linkSourcelD: String;
linkTargetlD: String;
linkParametersNames; String;
linkTargetWindowOptions: (‘SELF’ | ‘BLANK’ | ‘PARENT’ | ‘TOP’)

/* Runtime */
linkOID: ID;
state; (‘ACTIVE’ | ‘INACTIVE’);
linkSourceOID: String;
linkTargetOID: String;
linkParametersValues: String;
windowOID: String;
userOID: String;

end entity Link;

Figure A.5: The Link Entity Structure

218

actionLink: process is
begin

state = 'ACTIVE’;
deactivatePage(linkSourceOID);
displayPage(linkTargetOID);

deactivateLinkQ
end process actionLink;

actionButton: process is
begin

state = ‘ACTIVE’;
updatePa.rametersQ;
deactivatePage(linkSourceOID);
executeScript(linkTargetOID);

deactivateLinkQ
end process actionButton;

deactivateLink: process is
begin

state = ‘INACTIVE’;
end process deactivateLink;

end architecture behaviour;

architecture behaviour of Link is
begin

Figure A.6: The Link Architecture

219

entity Script is
/* Model */

scriptID: ID;
scriptSide: (‘CLIENT’ | ‘SERVER’);
script Variables Names: Array of ID;
scriptVariablesType: Array of (‘IN’ | ‘OUT7 | ‘INOUT7);
scriptComponentsID: Array of ID;

/* Runtime */
scriptOID: ID;
state: (‘ACTIVE7 | ‘INACTIVE7);
script Variables Values: Array of String;
scriptComponentsOID: Array of ID;
callerOID: String;
windowOID: String;
userOID: String;

end entity Script;

Figure A.7: The Script Entity Structure

220

executeScript: process is
begin

state = 'ACTIVE7;
updatelnput Variables();
runScriptbehaviour ();

updateOutputVariablesQ;
stopScriptQ;

end process executeScript;

runScriptbehaviour: process is
begin

<Template-based or Custom-made Java™script>

end process runScriptbehaviour;

stopScript: process is
begin

state 'INACTIVE7;

end process runScriptbehaviour;

readObject: process is
begin

for each componentID in scriptComponentsID
scriptComponent Object = new Object (scriptComponentsID);
readObject(scriptComponentObject);

end for each;

end process readObject;
end architecture behaviour;

architecture behaviour of Script is
begin

Figure A.8: The Script Architecture

221

entity Data is
/* Model */

datalD: ID;
dataType: (‘DATABASE’ | ‘FILE’ | ‘COOKIE’ | ‘VARIABLE’ | ‘FORMVAR’);
dataSubType: (ACCESS | SQL),

(‘TEXT’ | ‘BIN’),
(‘FIELD’ | ‘COMBOBOX’ | ‘LIST’ | ‘RADIOBUTTON’ | ‘CHECKBOX’)

dataSource: String;
dataMultiplieity: (‘SHARED’ | ‘MULTIPLE’);
dataPersistence: (‘APPLICATION’ | ‘SESSION’);

/* Runtime */
dataOID: ID;
state: (‘ACTIVE’ | ‘INACTIVE’);
dataValue: String;
windowOID: String;
userOID: String;

end entity Data;

Figure A.9: The Data Entity Structure

222

setData(value, SQLStatement): process is
begin

state = ‘ACTIVE7;
if dataType== ‘DATABASE7

openDatabaseConnection ();
executeStatement(SQLStatement);

else
dataValue = value;

end if

deactivateData.();
end process set Data;

getData(SQLStatement): process is
begin

state = ‘ACTIVE7;
if dataType == ‘DATABASE7

openDatabaseConnectionQ;
return executeQuery(SQLStatement)

else
return dataValue;

end if

deactivateData();
end process getData;

deactivateData: process is
begin

state = ‘INACTIVE7;
end process deactivateData;

end architecture behaviour;

architecture behaviour of Data is
begin

Figure A.10: The Data Architecture

223

entity Window is
/* Model V

/* Runtime */
windowOID: ID;
state: (‘ACTIVE7 | ‘INACTIVE’);
userOID: String;
windowComponentsOID: Array of ID;
URL: String;

end entity Window;

Figure ATI: The Window Entity Structure

architecture behaviour of Window is
begin

openWindow: process is
begin

state - ‘ACTIVE’;

end process openWindow;

close Window: process is
begin

state - ‘INACTIVE’;

end process close Window;
end architecture behaviour;

Figure A.12: The Window Architecture

224

entity User is
/* Model V

/* Runtime */
userOID: ID;
state: (‘ACTIVE' | ‘INACTIVE7);
userComponentsOID: Array of ID;
historyEvents: Array of String;
historySlots: Array of Integer;

end entity User;

Figure A.13: The User Entity Structure

architecture behaviour of User is
begin

createUser: process is
begin

state = ‘ACTIVE7;

end process createUser;

discardUser: process is
begin

state = ‘INACTIVE7;

end process discardUser;

userlnteraction: process is
begin

<Any User Interaction Stimuli defined in Appendix B>

end process userl nter action;
end architecture behaviour;

Figure A.14: The User Architecture

225

Appendix B

Syntax of WSM Stimuli

B.l The WSM Exogenous Stimuli

Browser Events:

openWindowEvent ::= openWindow <windowOID> <URL> <userOID>

close Window Event closeWindow <windowOID>

URL : - <pageID> | <scriptID>

Interface Object Events:

actionLinkEvent. ::= actionLink <linkOID>

actionLinkEvent. ::= actionLink <linkID> <pageID> <windowOID>

actionButtonEvent ::= actionButton <linkOID>

actionButtonEvent ::= actionButton <linkID> <pageID> <windowOID>

Data Input Events:

setDataEvent ::= setData <dataOID> <New-Value>

setDataEvent ::= setData <dataID> <pageID> <windowOID> <New-Value>

226

getDataEvent getData <dataOID>

getDataEvent getData <dataID> <pageID> < windowOID>

Table B.l: User Interaction Stimuli

User Interaction Stimuli

Stimulus Description

openWindow Opens a window for a User and loads an URL on it

closeWindow Closes a window

actionLink Emulates a user traversing a hyperlink

actionButton Emulates a user submitting a form or acting on an

action button

setData Sets a Data, object with a new value

getData Gets a Data object value

createUser Creates a new User object

discardUser Discards a User object

B.2 The WSM Endogenous Stimuli

Endogenous Events:

createUser Event ::= createUser <userOID>

discard User Event ::= discardUser <userOID>

readObjectEvent ::= readObject <ID>

displayPageEvent ::= displayPage <pagelD>

buildPageEvent ::= buildPage <pageOID> <objectID>

get.ScriptVarEvent getScriptVar <variableID> <scriptOID>

setScriptVarEvent setScriptVar <variableID> <scriptOID> <newValue>

227

Appendix C

The Simulator

Table C.l: Simulator Control Stimuli

Simulator Control Stimuli

Stimulus Description

wdl <WDLModelFile> Loads a new WDL Model file into the Simu­

lator

setlnterStimuliDelay Sets the amount of seconds between two con­

<numberSeconds > secutive stimuli triggering

tree [model | runtime] Sets the browser window in Model or Run­

Time display mode

layer [Presentation | Navigation | Func­

tional | Content]

Sets layer displayed on the Main window

loadStimuli <StimuliFile> Loads a new stimuli file for simulation

startStimuli (Re)starts the simulation of the stimuli file

suspendStimuli Temporarily suspends all stimuli processing

resumeStimuli Resumes a suspended simulation

stopStimuli Stops all stimuli processing

loadRequirements Loads a new requirement file into the Simula­

<RequirementsFile> tor

228

timeSlot <timeSlot> Sets the Main window start slot

reset SimTime Resets the simulation time

clear Display Clears the content of the Main window

toggleStepByStep In mode “StepByStep”, the Simulator stops

after receiving and processing an event. This

commands toggles this mode. (Default value:

OFF)

model Displays on the Message window all the loaded

WDL Model variables

modelStructuralAnalysis Performs an analysis of the structure of the

loaded WDL Model

modelVerification Performs a verification of the loaded WDL

Model

quit Exits the Web-design Simulation Tool

229

version
v\dlm odel
levelofdetail
slots
window
users

script
scriptkey
nam e
value
slot

slot
modelstate
oid
class

pages

slot
state
calleroid
useroid

scripts

slot
state
vwndowDid
value

slot
state
viindovvoid
pageoid

Figure C.l: The Simulator’s Database

230

WDLTHJ MODEL
PAGES]
JS] Homepage

] AIIArtists
] Artist
Pi [Links]

ar2aar
s© ar2sc

Q [Scripts]

D Pata]
1 ShoppingCart
] ErrorPage

[LINKS]
hp2aar
aar2ar

@§> ar2aar
ar2sc

®© au2sc
sc2bd

<®s> bd2p
$ L3 [SCRIPTS]

©-SetCountr/
9 % BuyerVerification

<? E!j [VARS]
Q [INOUT]

9

9

[OUT]
Q Result
[IN]
Q Username
Q Password

9 a [DATA]
8 Logo
8 |ntr°
8 Country
S dBD1

Figure C.2: An Example of the Browser Window in Model Mode

□3 WDLCaseStudy RUN-TIME
f C3 [USERS]

f £ client
wnd 0

f
9

f E3 PAGES]
^ Cart (OID_54)

f E3 [LINKS]
ca2ch (OID_55)

f E3 [SCRIPT]
% ListCart (OID_56)

D [DATA]
9 C3 [SESSION DATA]

(J ArtistOID (OID_26)
(j| UserOID (OID_32)

U administrator
wnd 1

? C3

f

PAGES]
*5) Admin...

[LINKS]
ap2hp (OID_79)
ap2ap (OID_77)

f L5 [SCRIPT]
% ListA.ll (OID_73)

D [DATA]
f L3 [SESSION DATA]

g§ UserOID (OID_67)
[SHARED DATA]
[3 DB (0ID_4)

Figure C.3: An Example of the Browser Window in Runtime Mode

232

'H C:Uernp\index2.xml - Microsoft Internet Explorer
Ble Edit View Favorites Tools Help

<?xml version="l.Q“ encoding-“lSO-88S9-l“ ?>
- <USER>

<userOID>Clier»t</userOID>
- <WINDOW>

<windowOID>wnd_0</windowOID>
- <PAGE>

<pageId>HomePage</pageId>
<pageOID>OID_l</pageOID>
<pageStructure>PAGE</pageStructure>

- <LIMK>
<linkld>hp2mu</linkld>
<link01D>OID_2</linkOID>
dinkParameters />

</LINK>
- <LINK>

<linkld>hp2se</linkld>
<link01D>OID_5</linkOID>
clinkParameters />

</LINK>
- <LINK>

<linkld>hp2lap</linkld>
<link01D>OID_6</linkOID>
clinkParameters />

</LINK>
< CLIENT SCRIPT />

- <DATA>
<dataId>DB</dataId>
<dataOID>OID_4</dataOID>
<dataType>DATABASE</dataType>
<dataSubT ype>SQL</dataSubType>

</DATA>
</PAGE>

~ <SERVERSCRIPT>
<scriptId>ArtistsIndex</scriptId>
<scriptOID>OID_3</scriptOID>

</SERVERSCRIPT >
c/WINDOW >

</USER>
v

Figure C.4: An Example of an XML File of a Page Object

233

— HomePage
Link:

hp2mu --

hp2se --

hp21ap --

ClientSideScript:

Data:

DB

SenerSidftS dipt:

Artistslndex

Figure C.5: An Example of the Rendition of an XML File, Done by the Automatic
Page Construction Module

234

Appendix D

The Experiment Design

The WebML design used in the experiment is presented in this Appendix in Figures

D.l, D.2 and D.3. The corresponding WDL mapping is displayed in Figure D.4.

q
Logs

DID
Log P ate
Ua&HO •

User
OJD
EMail
Logged
Password
Type
UserName

Group
DID
OroupNaroe

X

1. *
l
1..1

0."
D. *

Module
OID
ModutefO
ModuieName

Artist 1.."

Album Cart
OIO
FirstName

LastName

Photo

-1..1—>—0. *- OID
ArtistsQID

Name

-0..*--------0..*- OiD
ItemOID
UsefOlb

n 5* 1L.t
\ /

0.." 0.".... ..(

Item
OtD
AtbumpIP
CartPtD

Figure D.l: The Design Model Database Structure

235

ClientArea

Homepage
LoginError

Music Artist

ShortArtist

Results
Search LoginPage

SearchErlry LoginEntry

Artist
(First Name Contains ?

Get Unit
Create Item Cart

ConnectToCart

Hem_2__Atnjmj yTAfiGET:Ussr_2_C3rt?

Checkout

ListCartCartsGet Unit

Create Item Error
UserOlO

Figure D.2: The WebML Design - the “Client” Site View

236

[Cart_2_!tem]

ListAIIAdminUsers AdminCart

[User_2_Cart]

AdminPage

Administration

Figure D.3: The WebML Design - the “Administration” Site View

237

L03lnErr0'Figure D
.4: The W

D
L M

apping of the W
eb M

L D
esign

238

entity Page is
/* Model V

pagelD: 'HomePage’
pageContext: 'Client.ClientArea.INDEX
pageStmcture: 'PAGE’
pageBuild: 'HTML’
pageComponentsID: {'null'}

end entity Page;

entity Page is
/* Model V

pagelD: 'LoginPage’
pageContext: 'Client.Login’
pageStructure: 'FORM’
pageBuild: 'HTML’
pageComponentsID: {'LoginEntryUsername’,

’LoginEntryPassword ’}
end entity Page;

entity Page is
/* Model */

pagelD: 'Music’
pageContext: 'Client.Client Area’
pageStructure: 'PAGE’
pageBuild: ASP’
pageComponentsID: {'Artistslndex ’}

end entity Page;

entity Page is
/* Model y

pagelD: 'LoginError’
pageContext: 'Client.Login’
pageStructure: 'PAGE’
pageBuild: 'HTML’
pageComponentsID: {'null’}

end entity Page;
entity Page is
/* Model y

pagelD: 'Artist’
pageContext: 'Client.Client Area’
pageStructure: 'PAGE’
pageBuild: 'ASP’
pageComponentsID: {'ShortArtist’}

end entity Page;

entity Page is
/* Model y

pagelD: 'CreateltemError’
pageContext: 'Client.Client Area’
pageStructure: 'PAGE’
pageBuild: 'HTML’
pageComponentsID: {'null’}

end entity Page;
entity Page is
/* Model y

pagelD: 'Search’
pageContext: 'Client.Client Area’
pageStructure: 'FORM’
pageBuild: 'HTML’
pageComponentslD: {'Artist .FirstName’,

' Artist.LastName’}
end entity Page;

entity Page is
/* Model y

pagelD: 'Cart’
pageContext: 'Client.Client Area’
pageStructure: 'PAGE’
pageBuild: 'ASP’
pageComponentsID: {'ItemAdded’}

end entity Page;

entity Page is
/* Model y

pagelD: 'Results’
pageContext: 'Client.Client Area’
pageStructure: 'PAGE’
pageBuild: 'ASP’
pageComponentsID: {'Find’}
pageComponentsl D: {' Arti st Albums ’

end entity Page;

entity Page is
/* Model y

pagelD: 'Checkout’
pageContext: 'Client.ClientArea’
pageStructure: 'PAGE’
pageBuild: 'ASP’
pageComponentsID: {'Carts’}
pageComponentsID: {'ListCart’}

end entity Page;

239

entity Page is
/* Model */

pagelD: ‘AdminPage7
pageContext: "Administrator.

Administration7
pageStructure: 'PAGE7
pageBuild: ‘ASP7
pageComponentsID: {‘ AdminUsers7}
pageComponentsID: {‘AdminCart7}
pageComponentsID: {‘ListAll7}

end entity Page;

entity Link is
/* Model */

linkID: ‘hp2mu7
linkType: ‘LINK7
linkSourcelD: ‘HomePage7
linkTargetID: 'Artistslndex7
linkTargetWindowOptions: ‘SELF7
linkParametersNarnes: {‘null7}

end entity Link;

entity Link is
/* Model V

linkID: ‘mu2ar7
linkType: ‘LINK7
linkSourcelD: ‘Music7
linkTargetID: ‘ShortArtist7
linkTargetWindowOptions: ‘SELF7
linkParametersN arnes: {‘artist.key7}

end entity Link;

entity Link is
/* Model */

linkID: ‘ar2mu7
linkType: ‘LINK7
linkSourcelD: ‘Artist7
linkTargetID: ‘Artistlndex7
linkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘null7}

end entity Link;

entity Link is
/* Model V

linkID: ‘ar2hp7
linkType: ‘LINK7
linkSourcelD: ‘Artist.7
linkTargetID: ‘HomePage7
1 inkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘null7}

end entity Link;

entity Link is
/* Model */

linkID: ‘hp2se7
linkType: ‘LINK7
linkSourcelD: ‘HomePage7
linkTargetID: ‘Search7
linkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘null7}

end entity Link;

linkTargetID: ‘ArtistAlbums7
linkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘Artist.OID7}

end entity Link;

entity Link is
/* Model */

linkID: ‘se2re7
linkType: ‘SUBMIT7
linkSourcelD: ‘Search7
linkTargetID: ‘Find7
linkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘Artist.FirstName7,

‘Artist. LastName7}
end entity Link;

entity Link is
/* Model V

linkID: ‘f2aa7
linkType: ‘TRANSPORT7
linkSourcelD: ‘Find7

240

entity Link is
/* Model */

linkID: ‘aa2cl7
linkType: ‘LINK7
linkSourcelD: ‘Results7
linkTargetID: ‘CheckLogin7
linkTargetWindowOptions: ‘SELF7
linkParametersN ames: {‘ A1 bum .OID7}

end entity Link;

entity Link is
/* Model V

linkID: ‘re2hp7
linkType: ‘LINK7
linkSourcelD: ‘Results7
linkTargetID: ‘HomePage7
linkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘null7}

end entity Link;

entity Link is
/* Model V

linkID: ‘lp21o7
linkType: ‘SUBMIT7
linkSourcelD: ‘LoginPage7
linkTargetID: ‘Login7
linkTargetWindowOptions: ‘SELF7
linkParametersN ames:

{‘LoginEntryUsername7
‘ LoginEntryPassword7}

end entity Link;

entity Link is
/* Model y

linkID: ‘le21p7
linkType: ‘LINK7
linkSourcelD: ‘LoginError7
linkTargetID: ‘LoginPage7
linkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘null7}

end entity Link;

entity Link is
/* Model y

linkID: ‘ctc2cie7
linkType: ‘LINK7
linkSourcelD: ‘Connect ToCart.7
linkTargetID: ‘CreateltemError7
linkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘null7}

end entity Link;

entity Link is
/* Model y

linkID: ‘cona2cie7
linkType: ‘LINK7
linkSourcelD: ‘ConnectAlbum7
linkTargetID: ‘CreateltemError7
linkTargetWindowOptions: ‘SELF7
linkParametersN arnes: {‘null7}

end entity Link;

entity Link is
/* Model y

linkID: ‘cic2cie7
linkType: ‘LINK7
linkSourcelD: ‘CreateltemCart7
1 inkTar get ID: ‘ Createl temError7
linkTargetWindowOptions: ‘SELF7
linkParametersN ames: {‘ null7}

end entity Link;

entity Link is
/* Model y

linkID: ‘ch21o7
linkType: ‘LINK7
linkSourcelD: ‘Checkout7
linkTargetID: ‘Logout7
linkTargetWindowOptions: ‘SELF7
linkParametersNames: {‘null7}

end entity Link;

241

entity Link is
/* Model */

linkID: ‘ca2ch’
linkType: ‘LINK’
linkSourcelD: ‘Cart’
linkTargetID: ‘Checkout’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘null’}

end entity Link;

entity Link is
/* Model V

linkID: ‘ch2hp’
linkType: ‘LINK’
linkSourcelD: ‘Checkout’
linkTargetID: ‘HomePage’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘null’}

end entity Link;

entity Link is
/* Model */

linkID: ‘cl2cic’
linkType: ‘TRANSPORT’
linkSourcelD: ‘CheckLogin’
linkTargetID: ‘CreateltemCart’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘Album.OID’

end entity Link;

entity Link is
/* Model V

linkID: ‘cic2ctc’
linkType: ‘TRANSPORT’
linkSourcelD: ‘CreateltemCart’
linkTargetID: ‘ConnectToCart’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘null’}

end entity Link;

entity Link is
/* Model */

linkID: ‘le2hp’
linkType: ‘LINK’
linkSourcelD: ‘LoginError’
linkTargetID: ‘HomePage’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘null’}

end entity Link;

entity Link is
/* Model V

linkID: ‘lo21e’
linkType: ‘LINK’
linkSourcelD: ‘Login’
linkTargetID: ‘LoginError’
linkTargetWindowOptions: ‘SELF’
linkParametersN ames: {‘ null ’}

end entity Link;

entity Link is
/* Model */

linkID: ‘cl21p’
linkType: ‘LINK’
linkSourcelD: ‘CheckLogin’
linkTargetID: ‘LoginPage’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘null’}

end entity Link;

entity Link is
/* Model */

linkID: ‘au2ac’
linkType: ‘TRANSPORT’
linkSourcelD: ‘AdminUsers’
linkTargetID: ‘AdminCart’
linkTargetWindowOptions: ‘SELF’
linkParametersN ames: {‘ U ser .OID’}

end entity Link;

242

entity Link is
/* Model */

linkID: ‘cona2ca’
linkType: ‘TRANSPORT’
linkSourcelD: ‘ConnectAlbum’
linkTargetID: ‘Cart’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘null’}

end entity Link;

entity Link is
/* Model */

linkID: ‘ac21a’
linkType: ‘TRANSPORT’
linkSourcelD: ‘AdminCart’
linkTargetID: ‘ListAll’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘Cart.OID’}

end entity Link;

entity Link is
/* Model */

linkID: ‘ctc2cona’
linkType: ‘TRANSPORT’
linkSourcelD: ‘ConnectToCart’
linkTargetID: ‘ConnectAlbum’
linkTargetWindowOptions: ‘SELF’
linkParametersNames: {‘null’}

end entity Link;

243

entity Script is
/* Model */

scriptID: ‘Artistslndex’
scriptComponentsID: {‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘ShortArtist’
scriptVariablesNames: {‘ Art ist .key ’}
scriptVariablesType: {‘IN’}
scriptComponentsID: {‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘Find’
script VariablesNames: {‘ Artist.First Name’/Artist. LastName’}
scriptVariablesType: {‘IN ’ /1N ’}
scriptComponentsID: {‘ArtistOID’,‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘Logout’
scriptComponentsID: {‘CurrentUser’,‘ DB ’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘ListAll’
scriptComponentsID: {‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘AdminUsers’
scriptComponentsID: {‘DB’}
scriptSide: ‘SERVER’

end entity Script;

244

entity Script is
/* Model */

scriptID: ‘Login’
scriptVariables Names: {‘LoginEntryUsername’,‘LoginEntryPassword’}
scriptVariablesType: {‘IN’/IN’}
scriptComponentsID: {‘CurrentUser’/DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘CreateltemCart’
scriptComponentsID: {‘Current User’,‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘IternAdded’
scriptComponentsID: {‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘ListCart’
scriptComponentsID: {‘CurrentUser’,‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘ConnectToCa.rt’
scriptComponentsID: {‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘ConnectAlbum’
scriptComponentsID: {‘DB’}
scriptSide: ‘SERVER’

end entity Script;

245

entity Script is
/* Model */

scriptID: ‘AdminCart’
scriptComponentsID: {‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model V

scriptID: ‘Carts’
scriptComponentsID: {‘CurrentUser’,‘DB’}
scriptSide: ‘SERVER’

end entity Script;

entity Script is
/* Model */

scriptID: ‘CheckLogin’
script Variables Names: {‘Success’}
scriptVariablesType: {‘OUT’}
scri pt ComponentsI D: {‘ CurrentU ser ’, ‘ DB ’}
scriptSide: ‘SERVER’

end entity Script;

architecture CheckLogimbehaviour of Script is
begin

runScriptbehaviour: process is
begin

String user = getData(‘CurrentUser’);
if(user.equals(‘UNDEFINED’))

■ {

setScript Var (‘ Success’,‘false’);
displayPage(‘LoginPage’);

}
else

{
set Script Var (‘ Success ’, ’true ’);
executeScript(‘CreateltemCart’);

}
end process runScriptbehaviour;

end architecture CheckLogin.behaviour;

246

entity Data is
/* Model */

datalD: 'ArtistOID7
dataType: 'COOKIE'
dataSubType: 'TEXT'
dataMultiplicity: ‘MULTIPLE7
dataPersistence: ‘APPLICATION7

end entity Data;

entity Data is
/* Model V

datalD: 'CurrentUser7
dataType: ‘COOKIE7
dataSubType: ‘TEXT7
dataMultiplicity: ‘MULTIPLE7
dataPersistence: ‘APPLICATION7

end entity Data;

entity Data is
/* Model y

datalD: ‘Artist.FirstName7
dataType: ‘FORMVAR7
dataSubType: ‘FIELD7
dataMultiplicity: ‘MULTIPLE7
dataPersistence: ‘SESSION7

end entity Data;

entity Data is
/* Model y

datalD: ‘Artist.LastName7
dataType: ‘FORMVAR7
dataSubType: ‘FIELD7
dataMultiplicity: ‘MULTIPLE7
dataPersistence: ‘SESSION7

end entity Data;

entity Data is
/* Model y

datalD: ‘LoginEntryUsername7
dataType: ‘FORMVAR7
dataSubType: ‘FIELD7
dataMultiplicity: ‘MULTIPLE7
dataPersistence: ‘SESSION7

end entity Data;

entity Data is
/* Model y

datalD: ‘LoginEntryPassword7
dataType: ‘FORMVAR7
dataSubType: ‘FIELD7
dataMultiplicity: ‘MULTIPLE7
dataPersistence: ‘SESSION7

end entity Data;

entity Data is
/* Model */

datalD: ‘DB7
dataType: ‘DATABASE7
dataSubType: ‘SQL7
dataMultiplicity: ‘SHARED7
dataPersistence: ‘APPLICATION7
dataSource: ‘webmlatabase7

end entity Data;

247

Appendix E

The Experiment Simulation

Results

The results of the simulation performed on the Web Application design are shown in

the following ligures. The complete sequence of events that produced these results

are contained in table E.l.

Table E.l: The Experiment Stimuli

Slot Simulator commands Comments

- wdl WDL Experiment Load the “Experiment” WDL Model

- loadRequirements T1 Load the “Tl” requirements file

- loadRequirements T3.1 Load the “T3.1” requirements file

- loadRequirements T3.2 Load the “T3.2” requirements file

- createUser client Create the User with ID “client”

- createUser administrator Create the User with ID “administrator”

- tree RT Tree browser in Runtime mode

0 openWindow HomePage client Creates a new Window for the User “client”

and sets its URL with the “HomePage” object

1 actionLink hp2mu HomePage wnd.O Navigating to the “Music” Page

248

4 actionLink OID-12 Following one of the dynamically constructed

Link objects

7 actionLink ar2hp Artist wncLO Placing the user back at the “HomePage”

9 actionLink hp2se HomePage wnd-0 Navigating to the “Search” engine zone

10 setData Artist.FirstName Frank Setting the “Artist.First Name” form field

with value “Frank”

11 actionButton se2re Search wnd_0 Submitting the data to the Web Application

for processing

15 actionLink aa2cl Results wnd-0 First attempt to add the item to the shopping

cart

17 setData LoginEntryUsername pedro Since not yet logged in, the “client” is redi­

rected to the “LoginPage” form Page; setting

the username form field with value “pedro”...

17 setData LoginEntryP as sword p ...and the password form field with value “p”

18 actionButton lp2lo LoginPage wnd-0 Submitting the login information

21 actionLink hp2se HomePage wnd-0 Back at the “HomePage” due to the login pro­

cedure, navigating again to the “Search” Page

22 setData Artist. Fir stName Frank Setting the “Artist .FirstName” form field

with value “Frank”

23 actionButton se2re Search wnd_0 Submitting the data

27 actionLink aa2cl Results wnd-0 Second attempt to add the item to the shop­

ping cart

34 openWindow HomePage administra­

tor

Opening a window for the “administrator”

user

35 actionLink hp2se HomePage wnd-1 Navigating to the “LoginPage” through the

“Search”

37 actionButton se2re Search wnd-1 Submitting the form

41 actionLink aa2cl Results wnd-1 Administrator at the “LoginPage”

43 setData LoginEntry Usernam-e admin Setting the username form field with a valid

value

249

43 setData LoginEntry Pas sword a Setting the password form field with a valid

value

44 actionButton lp2lo LoginPage wnd-1 Submitting the login form

250

Figure E
.l: Sim

ulation R
esults - Tim

eSlots 0 to 6

o02CO

ur*c_><uCOur>€_>a>cooa1*coo03CO
nooa>CO

CO<_>03CO

CJ

Figure E.2: Sim
ulation R

esults
T

im
eSlots 7 to 14

252

Figure E.3: Sim
ulation R

esults
T

im
eSlots 15 to 22

253

Figure E.4: Sim
ulation R

esults
T

im
eSlots 23 to 30

254

C
O

ror~~coCOunCOCOC
O

COr JCOCO

■o05COCOCM<u»05CO

IDc
mu05toCM<_>asm-rt C' 4oa'toror 4oa>coCOT
n|o>35toC
l

rM<_>a:*toCMc
m

Figure E.5: Sim
ulation R

esults - Tim
eSlots 31 to 38

255

1CO
03CMCO
C

D

r 4oa?coC
DCl«LJ>r<oh-CM

Figure E.6: Sim
ulation R

esults - T
im

eSlots 39 to 46
256

IT)

Figure E.7: Sim
ulation R

esults - T
im

eSlots 47 to 54
257

Table E.2: The Contents of the Simulator “pages” Table

slot id oid state windowoid

0 HomePage OIDJL ACTIVE wnd_0

1 HomePage OID_l INACTIVE wnd_0

2 HomePage OID.1 INACTIVE wnd_0

3 Music OID.6 ACTIVE wnd_0

4 Music OID.6 INACTIVE wnd_0

5 Music OID_6 INACTIVE wnd_0

6 Artist OID.13 ACTIVE wnd_0

7 Artist OID.13 ACTIVE wnd_0

8 HomePage OID.16 ACTIVE wnd_0

9 HomePage OID.16 ACTIVE wnd_0

10 Search OID_20 ACTIVE wnd_0

11 Search OID.20 INACTIVE wnd_0

12 Search OID_20 INACTIVE wnd_0

14 Results OID_29 ACTIVE wnd_0

15 Results OID_29 INACTIVE wnd_0

16 Results OID.29 INACTIVE wnd_0

17 LoginPage OID.36 ACTIVE wnd_0

18 LoginPage OID_36 INACTIVE wnd_0

19 LoginPage OID.36 INACTIVE wnd_0

20 HomePage OID_41 ACTIVE wnd_0

21 HomePage OID_41 ACTIVE wnd_0

22 Search OID.45 ACTIVE wnd_0

23 Search OID.45 INACTIVE wnd_0

24 Search OID.45 INACTIVE wnd_0

26 Results OID.53 ACTIVE wnd_0

27 Results OID.53 INACTIVE wnd_0

28 Results OID.53 INACTIVE wnd_0

33 Cart OID_63 ACTIVE wnd_0

258

34

34

35

35

36

36

37

37

38

38

40

40

41

41

42

42

43

43

44

44

45

45

49

49

Cart OID_63 ACTIVE wnd_0

HomePage OID_66 ACTIVE wnd_l

Cart OID_63 ACTIVE wnd_0

HomePage OID_66 ACTIVE wnd_l

Cart OID_63 ACTIVE wnd_0

Search OID_70 ACTIVE wnd_l

Cart OID_63 ACTIVE wnd_0

Search OID_70 INACTIVE wnd_l

Cart OID_63 ACTIVE wnd_0

Search OID_70 INACTIVE wnd_l

Cart OID.63 ACTIVE wnd_0

Results OID_79 ACTIVE wnd_l

Cart OID_63 ACTIVE wnd_0

Results OID_79 INACTIVE wnd_l

Cart OIDJ53 ACTIVE wnd_0

Results OID_79 INACTIVE wnd_l

Cart OIDJ53 ACTIVE wnd_0

LoginPage OID_86 ACTIVE wnd_l

Cart OID.63 ACTIVE wnd_0

LoginPage OID_86 INACTIVE wnd_l

Cart OID_63 ACTIVE wnd_0

LoginPage OID_86 INACTIVE wnd_l

Cart OID_63 ACTIVE wnd_0

AdminPage OID_92 ACTIVE wnd_l

259

Table E.3: The Contents of the “links” Table

slot id oid state parameters pageoid windowoid useroid

0 hp2mu OID22 INACTIVE OID-l wnd_0 client

0 hp2se OID.5 INACTIVE OID-l wnd_0 client

1 hp2mu OID_2 ACTIVE OID_l wnd_0 client

1 hp2se OID_5 INACTIVE OID_l wnd_0 client

2 hp2mu OID_2 ACTIVE OID-l wnd_0 client

2 hp2se OID.5 INACTIVE OID.l wnd_0 client

3 mu2ar OID.9 INACTIVE artist, key = 1; OID.6 wnd_0 client

3 mu2ar OID.IO INACTIVE artist .key = 2; OID.6 wnd_0 client

3 mu2ar OID-ll INACTIVE artist .key = 3; OID.6 wnd_0 client

3 mu2ar OID_12 INACTIVE artist.key = 4; OID.6 wnd_0 client

4 mu2ar OID-9 INACTIVE artist .key = 1; OID.6 wnd_0 client

4 mu2ar OID.IO INACTIVE artist.key = 2; OID.6 wnd_0 client

4 mu2ar OID-ll INACTIVE artist, key = 3; OID.6 wnd_0 client

4 mu2ar OID-12 ACTIVE artist.key = 4; OID.6 wnd_0 client

5 mu2ar OID_9 INACTIVE artist, key = 1; OID_6 wnd_0 client

5 mu2ar OID_10 INACTIVE artist .key = 2; OID.6 wnd_0 client

5 mu2ar OID_ll INACTIVE artist.key = 3; OID.6 wnd_0 client

5 mu2ar OID-12 ACTIVE artist.key = 4; OID.6 wnd_0 client

6 ar2mu OID-14 INACTIVE OID.13 wnd_0 client

6 ar2hp OID_15 INACTIVE OID.13 wnd_0 client

7 ar2mu OID.14 INACTIVE OID_13 wnd_0 client

7 ar2hp OID-15 ACTIVE OID.13 wnd_0 client

8 hp2mu OID_17 INACTIVE OID.16 wnd_0 client

8 hp2se OID-19 INACTIVE OID.16 wnd_0 client

9 hp2mu OID-17 INACTIVE OID-16 wnd_0 client

9 hp2se OID-19 ACTIVE OID.16 wnd_0 client

10 se2re OID_23 INACTIVE OID.20 wnd_0 client

11 se2re OID_23 ACTIVE OID_20 wnd_0 client

260

12 se2re OID.23 ACTIVE OID_20 wnd_0 client

14 f2aa OID.30 INACTIVE Artist. 01D = 3; OID-29 wnd_0 client

14 aa2cl OID_31 INACTIVE Album.OID = 3; OID_29 wnd_0 client

14 re2hp OID.34 INACTIVE OID _29 wnd_0 client

14 re2se OID.35 INACTIVE OID-29 wnd_0 client

15 f2aa OID.30 INACTIVE Artist.OID = 3; OID.29 wnd_0 client

15 aa2cl OID-31 ACTIVE Album.OID = 3; OID-29 wnd_0 client

15 re2hp OID-34 INACTIVE OID-29 wnd_0 client

15 re2se OID-35 INACTIVE OID-29 wnd_0 client

16 f2aa OID.30 INACTIVE Artist.OID = 3; OID_29 wnd_0 client

16 aa2cl OID_31 ACTIVE Album.OID = 3; OID-29 wnd_0 client

16 re2hp OID.34 INACTIVE OID-29 wnd_0 client

16 re2se OID_35 INACTIVE OID-29 wnd_0 client

17 lp21o OID_39 INACTIVE OID.36 wnd_0 client

18 lp21o OID_39 ACTIVE OID _36 wnd_0 client

19 lp21o OID_39 ACTIVE OID _36 wnd_0 client

20 hp2mu OID_42 INACTIVE OID.41 wnd_0 client

20 hp2se OID_44 INACTIVE OID-41 wnd_0 client

21 hp2mu OID-42 INACTIVE OID_41 wnd_0 client

21 hp2se OID-44 ACTIVE OID.41 wnd_0 client

22 se2re OID_48 INACTIVE OID _4 5 wnd_0 client

23 se2re OID-48 ACTIVE OID.45 wnd_0 client

24 se2re OID-48 ACTIVE OID.45 wnd_0 client

26 f2aa OID_54 INACTIVE Artist.OID = 3; OID.53 wnd_0 client

26 aa2cl OID-55 INACTIVE Album.OID = 3; OID.53 wnd_0 client

26 re2hp OID_57 INACTIVE OID.53 wnd_0 client

26 re2se OID.58 INACTIVE OID _53 wnd_0 client

27 f2aa OID.54 INACTIVE Artist.OID = 3; OID.53 wnd_0 client

27 aa2cl OID_55 ACTIVE Album.OID = 3; OID.53 wnd_0 client

27 re2hp OID_57 INACTIVE OID.53 wnd_0 client

27 re2se OID-58 INACTIVE OID.53 wnd_0 client

261

28 f2aa OID.54 INACTIVE Artist. OID = 3; OID_53 wnd_0 client

28 a.a2cl OID_55 ACTIVE Album.OID = 3; OID.53 wncLO client

28 re2hp OID.57 INACTIVE OID-53 wnd_0 client

28 re2se OID-58 INACTIVE OID-53 wnd_0 client

33 ca2ch OID-64 INACTIVE OID-63 wnd_0 client

34 ca2ch OID_64 INACTIVE OID.63 wnd_0 client

34 hp2mu OID_67 INACTIVE OID_66 wnd_l administrator

34 hp2se OID_69 INACTIVE OID_66 wnd_l administrator

35 ca2ch OID_64 INACTIVE OID_63 wnd_0 client

35 hp2mu OID_67 INACTIVE OID.66 wnd_l administrator

35 hp2se OID_69 ACTIVE OID-66 wnd_l administrator

36 ca2ch OID-64 INACTIVE OID-63 wnd_0 client

36 se2re OID-73 INACTIVE OID.70 wnd_l administrator

37 ca2ch OID_64 INACTIVE OID_63 wnd_0 client

37 se2re OID_73 ACTIVE OID_70 wnd_l administrator

38 ca.2ch OID_64 INACTIVE OID-63 wnd_0 client

38 se2re OID_73 ACTIVE OID-70 wnd_l administrator

40 ca2ch OID-64 INACTIVE OID_63 wnd_0 client

40 f2aa OID.80 INACTIVE Artist.OID = 1; OID-79 wnd_l administrator

40 aa2cl OID.81 INACTIVE Album.OID = 1; OID.79 wnd_l administrator

40 re2hp OID_84 INACTIVE OID.79 wnd_l administrator

40 re2se OID-85 INACTIVE OID-79 wnd_l administrator

41 ca2ch OID_64 INACTIVE OID_63 wnd_0 client

41 f2aa OID_80 INACTIVE Artist. OID = 1; OID.79 wnd_l administrator

41 a.a2cl OID.81 ACTIVE Album.OID = 1; OID-79 wnd_l administrator

41 re2hp OID-84 INACTIVE OID-79 wnd_l administrator

41 re2se OID.85 INACTIVE OID-79 wnd_l administrator

42 ca,2ch OID_64 INACTIVE OID_63 wnd_0 client

42 f2aa OID_80 INACTIVE Artist. OID = 1; OID_79 wnd_l administrator

42 aa,2cl OID_81 ACTIVE Album.OID = 1; OID-79 wnd_l administrator

42 re2hp OID_84 INACTIVE OID-79 wnd_l administrator

262

42 re2se OID_85 INACTIVE OID_79 wnd_l administrator

43 ca2ch OID_64 INACTIVE OID_63 wnd_0 client

43 lp21o OID-89 INACTIVE OID_86 wnd_l administrator

44 ca2ch OID_64 INACTIVE OID_63 wnd_0 client

44 lp21o OID-89 ACTIVE OID_86 wnd_l administrator

45 ca2ch OID_64 INACTIVE OID-63 wnd_0 client

45 lp21o OID_89 ACTIVE OID _86 wnd_l administrator

49 ca2ch OID_64 INACTIVE OID-63 wnd_0 client

49 au2ac OID_94 INACTIVE User.OID = 1; OID .92 wnd_l administrator

49 au2ac OID_95 INACTIVE User.OID = 2; OID _92 wnd_l administrator

263

Table E.4: The Contents of the “scripts” Table

slot id oid state calleroid windowoid useroid

0 Artistslndex OID_3 INACTIVE null wnd_0 null

1 Artistslndex OID_3 ACTIVE OID-l wnd_0 client

2 Artistslndex OID.3 ACTIVE OID.l wnd.O client

3 ShortArtist 01D_7 INACTIVE null wnd.O null

4 ShortArtist OID-7 ACTIVE OID-6 wnd.O client

5 ShortArtist OlD-7 ACTIVE OID-6 wnd.O client

6 Artistslndex OID.8 INACTIVE null wnd.O null

7 Artistslndex OID.8 INACTIVE null wnd.O null

8 Artistslndex OID_l 8 INACTIVE null wnd.O null

9 Artistslndex OID_18 INACTIVE null wnd.O null

10 Find OID-24 INACTIVE null wnd.O null

11 Find OID-24 ACTIVE OID-20 wnd.O client

12 Find OID_24 ACTIVE OID.20 wnd.O client

13 ArtistAlbums OID-26 ACTIVE wnd.O wnd.O client

14 CheckLogin OID-32 INACTIVE null wnd.O null

15 CheckLogin OID-32 ACTIVE OID-29 wnd.O client

16 CheckLogin OID_32 ACTIVE OID-29 wnd.O client

17 Login OID-40 INACTIVE null wnd.O null

18 Login OID_40 ACTIVE OID_36 wnd.O client

19 Login OID-40 ACTIVE OID-36 wnd.O client

20 Artistslndex OID-43 INACTIVE null wnd.O null

21 Artistslndex OID-43 INACTIVE null wnd.O null

22 Find OID-49 INACTIVE null wnd.O null

23 Find OID_49 ACTIVE OID-45 wnd.O client

24 Find OID-49 ACTIVE OID_45 wnd_0 client

25 ArtistAlbums OID-50 ACTIVE wnd_0 wnd.O client

26 CheckLogin OID_56 INACTIVE null wnd.O null

27 CheckLogin OID-56 ACTIVE OID.53 wnd.O client

264

28 CheckLogin OID_56 ACTIVE OID_53 wnd_0 client

29 CreatelteinCart OID_59 ACTIVE wnd_0 wnd_0 client

30 ConnectToCart OID_60 ACTIVE wnd_0 wnd_0 client

31 Connect Album OID_61 ACTIVE wnd.O wnd_0 client

32 IternAdded OID_62 ACTIVE wnd_0 wnd_0 client

33 Carts OID_65 INACTIVE null wnd.O null

34 Carts OID-65 INACTIVE null wnd.O null

34 Artistslndex OID-68 INACTIVE null wnd.l null

35 Carts OID-65 INACTIVE null wnd.O null

35 Artistslndex OID-68 INACTIVE null wnd.l null

36 Carts OID-65 INACTIVE null wnd.O null

36 Find OID_74 INACTIVE null wnd.l null

37 Carts OID-65 INACTIVE null wnd.O null

37 Find OID.74 ACTIVE OID-70 wnd.l administrator

38 Carts OID_65 INACTIVE null wnd.O null

38 Find OID.74 ACTIVE OID_70 wnd.l administrator

39 Artist Albums OID-76 ACTIVE wnd_l wnd.l administrator

40 Carts OID_65 INACTIVE null wnd.O null

40 CheckLogin OID.82 INACTIVE null wnd.l null

41 Carts OID_65 INACTIVE null wnd.O null

41 CheckLogin OID-82 ACTIVE OID-79 wnd.l administrator

42 Carts OID_65 INACTIVE null wnd.O null

42 CheckLogin OID_82 ACTIVE OID.79 wnd.l administrator

43 Carts OID-65 INACTIVE null wnd.O null

43 Login OID-90 INACTIVE null wnd_l null

44 Carts OID-65 INACTIVE null wnd.O null

44 Login OID_90 ACTIVE OID_86 wnd.l administrator

45 Carts OID_65 INACTIVE null wnd.O null

45 Login OID.90 ACTIVE OID-86 wnd.l administrator

46 Admin Users OID-9I ACTIVE wnd-1 wnd.l administrator

47 AdminCart OID-96 ACTIVE wnd-1 wnd.l administrator

265

48 List All OID_97 ACTIVE wncLl wncLl administrator

49 Carts OID_65 INACTIVE null wnd.O null
49 ListAll OID_97 INACTIVE null wnd_l null

266

Table E.5: The Contents of the “scriptvars” Table

slot name value

3 Artist.key UNDEFINED

4 Artist.key 4

5 Artist .key 4

10 Artist.First Name Frank

10 Artist .LastName UNDEFINED

10 ArtistOID UNDEFINED

11 Artist.First Name Frank

11 Artist.LastName UNDEFINED

11 ArtistOID UNDEFINED

12 Artist.FirstName Frank

12 Artist.LastName UNDEFINED

12 ArtistOID 3

14 user UNDEFINED

14 Success UNDEFINED

15 user UNDEFINED

15 Success UNDEFINED

16 user UNDEFINED

16 Success false

17 LoginEntryUsername pedro

17 LoginEntry Password P

18 LoginEntryU sername pedro

18 LoginEntryPassword P

19 LoginEntryU sername pedro

19 LoginEntryPassword P

22 Artist .FirstN ame Frank

22 Artist.Last Name UNDEFINED

22 ArtistOID 3

23 Artist .FirstName Frank

267

23 Artist.Last Name UNDEFINED

23 ArtistOID 3

24 Artist.FirstName Frank

24 Artist .LastN ame UNDEFINED

24 ArtistOID 3

26 user UNDEFINED

26 Success UNDEFINED

27 user UNDEFINED

27 Success UNDEFINED

28 user pedro

28 Success true

36 Artist .F irst Name UNDEFINED

36 Artist.LastName UNDEFINED

36 ArtistOID UNDEFINED

40 user UNDEFINED

40 Success UNDEFINED

41 user UNDEFINED

41 Success UNDEFINED

42 user UNDEFINED

42 Success false

43 LoginEntryUsername admin

43 LoginEntryPassword a

44 LoginEntryUsername admin

44 LoginEntryPassword a

45 LoginEntryU sername admin

45 LoginEntryPassword a

268

Table E.6: The Contents of the “datas” Table

slot id oid state windowoid useroid value

0 DB OID.4 ACTIVE SHARED null null

1 DB OID-4 ACTIVE SHARED null null

2 DB OID_4 ACTIVE SHARED null null

3 DB OID_4 ACTIVE SHARED null null

4 DB OID-4 ACTIVE SHARED null null

5 DB OID-4 ACTIVE SHARED null null

6 DB OID_4 ACTIVE SHARED null null

7 DB OID_4 ACTIVE SHARED null null

8 DB OID_4 ACTIVE SHARED null null

9 DB OID-4 ACTIVE SHARED null null

10 DB OID_4 ACTIVE SHARED null null

10 Artist. First Name OID-21 ACTIVE wnd.O client UNDEFINED

10 Artist .LastN ame OID_22 ACTIVE wnd-0 client UNDEFINED

10 ArtistOID OID.25 ACTIVE wnd.O client UNDEFINED

11 DB OID_4 ACTIVE SHARED null null

11 Artist .FirstName OID_21 ACTIVE wnd-0 client Frank

11 Artist .LastN ame OID-22 ACTIVE wnd-0 client UNDEFINED

11 ArtistOID OID-25 ACTIVE wnd_0 client UNDEFINED

12 DB OID_4 ACTIVE SHARED null null

12 Artist .FirstName OID_21 ACTIVE wnd_0 client Frank

12 Artist .LastName OID_22 ACTIVE wnd.O client UNDEFINED

12 ArtistOID OID_25 ACTIVE wnd-0 client 3

14 DB OID_4 ACTIVE SHARED null null

14 ArtistOID OID_25 INACTIVE wnd_0 client 3

14 CurrentUser OID_33 ACTIVE wnd-0 client UNDEFINED

15 DB OID-4 ACTIVE SHARED null null

15 ArtistOID OID-25 INACTIVE wnd-0 client 3

15 CurrentUser OID_33 ACTIVE wnd.O client UNDEFINED

269

16 DB OID_4 ACTIVE SHARED null null

16 ArtistOID OID_25 INACTIVE wnd_0 client 3

16 CurrentUser OID_33 ACTIVE wnd_0 client UNDEFINED

17 DB OID_4 ACTIVE SHARED null null

17 ArtistOID OID_25 INACTIVE wnd.O client 3

17 CurrentUser OID-33 INACTIVE wnd_0 client UNDEFINED

17 LoginEntryUsername OID_37 ACTIVE wnd_0 client UNDEFINED

17 LoginEntryPassword OID_38 ACTIVE wnd_0 client UNDEFINED

18 DB OID_4 ACTIVE SHARED null null

18 ArtistOID OID_25 INACTIVE wnd.O client 3

18 CurrentUser OID_33 ACTIVE wnd_0 client 2

18 LoginEntryUsername OID_37 ACTIVE wnd.O client pedro

18 LoginEntryPassword OID-38 ACTIVE wnd_0 client P

19 DB OID-4 ACTIVE SHARED null null

19 ArtistOID OID_25 INACTIVE wnd_0 client 3

19 CurrentUser OID_33 ACTIVE wnd_0 client 2

19 LoginEntryUsername OID_37 ACTIVE wnd.O client pedro

19 LoginEntryPassword OID-38 ACTIVE wnd_0 client P

20 DB OID_4 ACTIVE SHARED null null

20 ArtistOID OID-25 INACTIVE wnd_0 client 3

20 CurrentUser OID-33 INACTIVE wnd.O client 2

21 DB OID-4 ACTIVE SHARED null null

21 ArtistOID OID_25 INACTIVE wnd_0 client 3

21 CurrentUser OID-33 INACTIVE wnd_0 client 2

22 DB OID-4 ACTIVE SHARED null null

22 ArtistOID OID-25 INACTIVE wnd_0 client 3

22 CurrentUser OID_33 INACTIVE wnd_0 client 2

22 Artist.First Name OID_46 ACTIVE wnd_0 client UNDEFINED

22 Artist .LastName OID_47 ACTIVE wnd_0 client UNDEFINED

23 DB OID_4 ACTIVE SHARED null null

23 ArtistOID OID_25 ACTIVE wnd_0 client 3

270

23 CurrentUser OID_33 INACTIVE wnd_0 client 2

23 Artist.First Name OID.46 ACTIVE wnd_0 client Frank

23 Artist .LastName OID.47 ACTIVE wnd_0 client UNDEFINED

24 DB OID.4 ACTIVE SHARED null null

24 ArtistOID OID-25 ACTIVE wnd_0 client 3

24 CurrentUser OID-33 INACTIVE wnd_0 client 2

24 Artist .FirstName OID_46 ACTIVE wnd_0 client Frank

24 Artist .LastName OID_47 ACTIVE wnd_0 client UNDEFINED

26 DB OID_4 ACTIVE SHARED null null

26 ArtistOID OID-25 INACTIVE wnd_0 client 3

26 CurrentUser OID-33 INACTIVE wnd_0 client 2

27 DB OID.4 ACTIVE SHARED null null

27 ArtistOID OID_25 INACTIVE wnd_0 client 3

27 CurrentUser OID-33 INACTIVE wnd.O client 2

28 DB OID.4 ACTIVE SHARED null null

28 ArtistOID OID_25 INACTIVE wnd_0 client 3

28 CurrentUser OID-33 INACTIVE wnd_0 client 2

33 DB 0ID_4 ACTIVE SHARED null null

33 ArtistOID OID-25 INACTIVE wnd.O client 3

33 CurrentUser OID-33 INACTIVE wnd.O client 2

34 DB OID_4 ACTIVE SHARED null null

34 ArtistOID OID_25 INACTIVE wnd_0 client 3

34 CurrentUser OID-33 INACTIVE wnd_0 client 2

35 DB OID-4 ACTIVE SHARED null null

35 ArtistOID OID_25 INACTIVE wnd.O client 3

35 CurrentUser OID-33 INACTIVE wnd.O client 2

36 DB OID.4 ACTIVE SHARED null null

36 ArtistOID OID-25 INACTIVE wnd_0 client 3

36 CurrentUser OID_33 INACTIVE wnd.O client 2

36 Artist .FirstName OID_71 ACTIVE wnd.l administrator UNDEFINED

36 Artist .LastName OID-72 ACTIVE wnd.l administrator UNDEFINED

271

36 ArtistOID OID.75 ACTIVE wncLl administrator UNDEFINED

37 DB OID.4 ACTIVE SHARED null null

37 ArtistOID OID.25 INACTIVE wnd_0 client 3

37 CurrentUser OID.33 INACTIVE wnd.O client 2

37 Artist.First Name OID.71 ACTIVE wnd_l administrator UNDEFINED

37 Artist .LastN ame OID.72 ACTIVE wnd-1 administrator UNDEFINED

37 ArtistOID OID.75 ACTIVE wnd.l administrator UNDEFINED

38 DB OID.4 ACTIVE SHARED null null

38 ArtistOID OID.25 INACTIVE wnd_0 client 3

38 CurrentUser OID.33 INACTIVE wnd_0 client 2

38 Artist .FirstName OID.71 ACTIVE wnd.l administrator UNDEFINED

38 Artist. Last Name OID.72 ACTIVE wnd.l administrator UNDEFINED

38 ArtistOID OID.75 ACTIVE wnd-1 administrator UNDEFINED

40 DB OID.4 ACTIVE SHARED null null

40 ArtistOID OID.25 INACTIVE wnd_0 client 3

40 CurrentUser OID.33 INACTIVE wnd.O client 2

40 ArtistOID OID.75 INACTIVE wnd_l administrator UNDEFINED

40 CurrentUser OID.83 ACTIVE wnd.l administrator UNDEFINED

41 DB OID.4 ACTIVE SHARED null null

41 ArtistOID OID.25 INACTIVE wnd-0 client 3

41 CurrentUser OID.33 INACTIVE wnd.O client 2

41 ArtistOID OID.75 INACTIVE wnd.l administrator UNDEFINED

41 CurrentUser OID.83 ACTIVE wnd.l administrator UNDEFINED

42 DB OID.4 ACTIVE SHARED null null

42 ArtistOID OID.25 INACTIVE wnd_0 client 3

42 CurrentUser OID.33 INACTIVE wnd_0 client 2

42 ArtistOID OID.75 INACTIVE wnd_l administrator UNDEFINED

42 CurrentUser OID.83 ACTIVE wnd_l administrator UNDEFINED

43 DB OID.4 ACTIVE SHARED null null

43 ArtistOID OID.25 INACTIVE wnd_0 client 3

43 CurrentUser OID.33 INACTIVE wnd.O client 2

272

43

43

43

43

44

44

44

44

44

44

44

45

45

45

45

45

45

45

49

49

49

49

49

ArtistOID OID-75 INACTIVE wnd.l administrator UNDEFINED

CurrentUser OID_83 INACTIVE wnd.l administrator UNDEFINED

LoginEntryUsername OID.87 ACTIVE wnd-1 administrator UNDEFINED

LoginEntryPassword OID.88 ACTIVE wnd_l administrator UNDEFINED

DB OID-4 ACTIVE SHARED null null

ArtistOID OID_25 INACTIVE wnd-0 client 3

CurrentUser OID_33 INACTIVE wnd.O client 2

ArtistOID OID_75 INACTIVE wnd_l administrator UNDEFINED

CurrentUser OID_83 ACTIVE wnd.l administrator 1

LoginEntryUsername OID_87 ACTIVE wnd_l administrator admin

LoginEntryPassword OID_88 ACTIVE wnd_l administrator a

DB OID-4 ACTIVE SHARED null null

ArtistOID OID_25 INACTIVE wnd-0 client 3

CurrentUser OID_33 INACTIVE wnd.O client 2

ArtistOID OID_75 INACTIVE wnd.l administrator UNDEFINED

CurrentUser OID.83 ACTIVE wnd.l administrator 1

LoginEntryUsername OID-87 ACTIVE wnd_l administrator admin

LoginEntryPassword OID-88 ACTIVE wnd_l administrator a

DB OID_4 ACTIVE SHARED null null

ArtistOID OID_25 INACTIVE wnd-0 client 3

CurrentUser OID-33 INACTIVE wnd_0 client 2

ArtistOID OID-75 INACTIVE wnd.l administrator UNDEFINED

CurrentUser OID_83 INACTIVE wnd.l administrator 1

273

Bibliography

Adrion, W. R., Branstad, M. A. and Cherniavsky, J. C. (1982), ‘Validation, Verifica­

tion, and Testing of Computer Software’, ACM Comput. Surv. 14(2), 159-192.

Amazon (2005), ‘Amazon’, http://www.amazon.com/.

AppPerfect Co. (2005), ‘AppPerfect’, http://www.appperfect.com/.

Ash, L. (2003), The Web testing companion: the insider’s guide to efficient and

effective tests, Wiley Pub.

Bailey, S., Marschner, E., Bhasker, J., Lewis, J. and Ashenden, P. (2004), Improving

design and verification productivity with VHDL-200x, in ‘Design, Automation

and Test in Europe Conference and Exhibition, 2004. Proceedings’, Vol. 3,

pp. 332-333 Vol.3.

Balci, O. (1987), Guidelines for Successful Simulation Studies, Technical Report

TR-85-2, VPI&SU, Blacksburg, VA.

Balci, O. (1990), Guidelines for successful simulation studies, in ‘Simulation Con­

ference, 1990. Proceedings., Winter’, pp. 25-32.

Balci, O. (1994), Validation, verification, and testing techniques throughout the life

cycle of a simulation study, in ‘WSC ’94: Proceedings of the 26th conference on

274

Winter simulation’, Society for Computer Simulation International, San Diego,

CA, USA, pp. 215-220.

Balci, 0. (1995), Principles and techniques of simulation validation, verification, and

testing, in ‘WSC ’95: Proceedings of the 27th conference on Winter simulation’,

ACM Press, pp. 147-154.

Balci, O. (1997), Verification validation and accreditation of simulation models, in

‘WSC ’97: Proceedings of the 29th conference on Winter simulation’, ACM

Press, New York, NY, USA, pp. 135-141.

Balci, O. and Sargent, R. (1984), ‘A Bibliography on the Credibility Assessment and

Validation of Simulation and Mathematical Models’, Simuletter 15(3), 15-27.

Banks, J. (1999), Introduction to simulation, in ‘WSC ’99: Proceedings of the 31st

conference on Winter simulation’, ACM Press, New York, NY, USA, pp. 7-13.

Banks, J. (2000), Introduction to Simulation, in ‘WSC ’00: Proceedings of the 32nd

conference on Winter simulation’, Society for Computer Simulation Interna­

tional, San Diego, CA, USA, pp. 9-16.

Banks, J. and Carson, J. S. (1986), Introduction to discrete-event simulation, in

‘WSC ’86: Proceedings of the 18th conference on Winter simulation’, ACM

Press, New York, NY, USA, pp. 17-23.

Baresi, L., Garzotto, F. and Paolini, P. (2000), From Web Sites to Web Applications:

New Issues for Conceptual Modeling, in ‘ER ’00: Proceedings of the Workshops

on Conceptual Modeling Approaches for E-Business and The World Wide Web

and Conceptual Modeling’, Springer-Verlag, London, UK, pp. 89-100.

Baresi, L., Garzotto, F. and Paolini, P. (2001), Extending UML for modeling Web

applications, in ‘Proceedings of the 34th Annual Hawaii International Confer­

ence on System Sciences’, pp. 1285-1294.

275

Baresi, L., Garzotto, F., Paolini, P. and Valenti, S. (2000), HDM2000: The HDM

Hypertext Design Model Revisited, Technical report, Politecnico di Milano.

Barry, C. and Lang, M. (2001), ‘A survey of multimedia and Web development

techniques and methodology usage’, Multimedia, IEEE 8(2), 52-60.

Basili, V. R. (1996), The role of experimentation in software engineering: past,

current, and future, in ‘ICSE ’96: Proceedings of the 18th international con­

ference on Software engineering’, IEEE Computer Society, Washington, DC,

USA, pp. 442-449.

Bell, A. E. (2005), ‘UML fever: diagnosis and recovery’, Queue 3(2), 48-56.

Bellettini, C., Marchetto, A. and Trentini, A. (2005), TestUml: user-metrics driven

Web applications testing, in ‘SAC ’05: Proceedings of the 2005 ACM sympo­

sium on Applied computing’, ACM Press, New York, NY, USA, pp. 1694-1698.

Bichler, M. and Nusser, S. (1996), Modular design of complex Web-applications with

W3DT, in ‘Enabling Technologies: Infrastructure for Collaborative Enterprises,

1996. Proceedings of the 5th Workshop on’, pp. 328-333.

BIGSF (2003), ‘Government Web Application Integrity’. The Business Internet

Group of San Francisco.

Boehm, B. (1986), ‘A spiral model of software development and enhancement’, SIG-

SOFT Soft,w. Eng. Notes 11(4), 14-24.

Boehm, B. W. (1988), ‘A spiral model of software development and enhancement’,

Computer 21(5), 61-72.

Bolchini, D. and Randazzo, G. (2005), Capturing visions and goals to inform commu­

nication design, in ‘SIGDOC ’05: Proceedings of the 23rd annual international

276

conference on Design of communication’, ACM Press, New York, NY, USA,

pp. 131-137.

Bongio, A., Ceri, S., Fraternali, P. and Maurino, A. (2001), ‘Modeling data entry

and operations in WebML’, Lecture Notes in Computer Science 1997.

Bosch, F., Ellis, J. R., Freeman, P., Johnson, L., McClure, C., Robinson, D., Scac-

chi, W., Scheff, B., Staa, A. and Tripp, L. L. (1982), ‘Evaluation of software

development life cycle: methodology implementation’, SIGSOFT Softw. Eng.

Notes 7(1), 45-60.

Brilliant, S. S. and Knight, J. C. (1999), 'Empirical research in software engineering:

a workshop1, SIGSOFT Softw. Eng. Notes 24(3), 44-52.

Bryhni, H., Klovning, E. and Kure, O. (2000), ‘A comparison of load balancing

techniques for scalable Web servers’, Network, IEEE 14(4), 58-64.

Cachero, C., Gomez, J. and Pastor, O. (2000), Object-Oriented Conceptual Mod­

eling of Web Application Interfaces: the OO-HMethod Abstract Presentation

Model, in ‘EC-Web’, pp. 206-215.

Campbell, D. T. and Stanley, J. C. (1966), Experimental and quasi-experimental

designs for research, Rand McNally, Chicago.

Canoo (2005), ‘WebTest’, http://webtest.canoo.com/.

Cassandras, C. G. and Lafortune, S. (1999), Introduction to discrete event systems,

Kluwer Academic, Boston; London.

Cazzola, W., Savigni, A., Sosio, A. and Tisato, F. (1998), A fresh look at

programming-in-the-large, in ‘Computer Software and Applications Confer­

ence, 1998. COMPSAC ’98. Proceedings. The Twenty-Second Annual Inter­

nationa]’, pp. 502-506.

277

Ceri, S., Fraternali, P. and Bongio, A. (2000), ‘Web Modeling Language: a model­

ing language for designing Web sites’, http://webml. elet .polimi. it/webml/

documents/www9 .pdf. Dipartamento di Elett.ronica e Informazione, Politecnico

di Milano, WWW9 Conference, Amsterdam, May 2000.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S. and Matera, M. (2002),

Designing data-intensive Web applications, Morgan Kaufmann; Elsevier Sci­

ence, San Francisco, Calif. Oxford.

Ceri, S., Fraternali, P. and Matera, M. (2002), ‘Conceptual Modeling of Data-

Intensive Web Applications’, IEEE Internet Computing 6(4), 20-30.

Chen, P. P.-S. (1976), ‘The entity-relationship model - toward a unified view of

data’, ACM Trans. Database Syst. 1(1), 9-36.

Christodoulou, S. P., Styliaras, G. D. and Papatheodrou, T. S. (1998), Evaluation

of hypermedia application development and management systems, in ‘HYPER­

TEXT ’98: Proceedings of the ninth ACM conference on Hypertext and hy­

permedia : links, objects, time and space—structure in hypermedia systems’,

ACM Press, New York, NY, USA, pp. 1-10.

Clear, T. (2003), ‘The waterfall is dead..: long live the waterfall!!’, SIGCSE Bull.

35(4), 13-14.

Cockburn, A. (2001), Writing effective use cases, Addison-Wesley, Boston.

Coda, F., Ghezzi, C., Vigna, G. and Garzotto, F. (1998), Towards a Software En­

gineering Approach to Web Site Development, in ‘IWSSD ’98: Proceedings of

the 9th International Workshop on Software Specification and Design’, IEEE

Computer Society, p. 8.

Cohen, L. and Manion, L. (1994), Research methods in education, 4th edn, Routh-

ledge, London; New York.

278

Conallen, J. (1999), ‘Modeling Web application architectures with UML’, Commun.

A CM 42(10), 63-70.

Conallen, J. (2000), Building Web applications with UML, Addison-Wesley.

Costagliola, G., Ferrucci, F. and Francese, R. (2002), ‘Web engineering: Models and

methodologies for the design of hypermedia applications’, Handbook of Software

Engineering and Knowledge Engineering, volume 2, Emerging Technologies,

pages 181 - 199. World Scientific. 2, 181-199.

Crosby, P. B. (1979), Quality is free: the art of making quality certain, McGraw-Hill.

de Koch, N. P. (2001), Software Engineering for Adaptive Hypermedia Systems -

Reference Model, Modeling Techniques and Development Process, PhD thesis,

Fakultat fur Mathematik und Informatik der Ludwig-Maximilians - Universitat

Miinchen.

Deng, Y., Frankl, P. and Wang, J. (2004), ‘Testing Web database applications’,

S1GSOFT Softw. Eng. Notes 29(5), 1-10.

Dennis, A. and Valacich, J. (2001), ‘Conducting Research in Information Systems’,

Commun. A/5 7(5), 1-41.

DeRemer, F. and Kron, H. (1975), Programming-in-the large versus programming-

in-the-small, in ‘Proceedings of the international conference on Reliable soft­

ware’, pp.114-121.

Do, H., Rothermel, G. and Elbaum, S. (2004), Infrastructure support for controlled

experimentation with testing and regression testing techniques, Technical Re­

port 04-60-01, Oregon State University.

Eagan, M. E. (1986), ‘Advances in software inspections’, IEEE Trans. Softw. Eng.

12(7), 744-751.

279

Elbaum, S., Karre, S. and Rothermel, G. (2003), Improving Web application testing

with user session data, in ‘ICSE ’03: Proceedings of the 25th International

Conference on Software Engineering’, IEEE Computer Society, Washington,

DC, USA, pp. 49-59.

Elbaum, S., Rothermel, G., Karre, S. and II, M. F. (2005), ‘Leveraging user-session

data to support Web application testing’, Software Engineering, IEEE Trans­

actions on 31(3), 187-202.

Epner, M. (2000), ‘Poor Project Management Number-One Problem of Outsourced

E-Projects’. Cutter Consortium, Research Briefs.

Esprit (1990), ‘HYTEA “Technical Annex”, Esprit Project P5252’, “HYTEA” .

Evanco, W. M. and Yang, J. (1992), A framework for the efficient, petri net sim­

ulation of real-time systems, in ‘ANSS ’92: Proceedings of the 25t.h annual

symposium on Simulation’, IEEE Computer Society Press, Los Alamitos, CA,

USA, pp. 202-213.

Favre, J.-M. (1997), Understanding-in-the-large, in ‘Program Comprehension, 1997.

IWPC ’97. Proceedings., Fifth Iternational Workshop on’, pp. 29-38.

Feldmann, A., Caceres, R., Doughs, F., Glass, G. and Rabinovich, M. (1999), Per­

formance of Web proxy caching in heterogeneous bandwidth environments, in

‘INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE’, Vol. 1, pp. 107-116 vol.l.

Finkelstein, A. and Kramer, J. (2000), Software engineering: a roadmap, in ‘ICSE

’00: Proceedings of the Conference on The Future of Software Engineering’,

ACM Press, pp. 3-22.

Fishwick, P. A. and Zeigler, B. P. (1992), ‘A multimodel methodology for qualitative

model engineering’, ACM Trans. Model. Comput. Simul. 2(1), 52-81.

280

Fuentes, J. M., Quintana, V., Llorens, J., Genova, G. and Prieto-Dfaz, R. (2003),

‘Errors in the UML metamodel?’, SIGSOFT Softw. Eng. Notes 28(6), 3-3.

Gamma, E. and Beck, K. (2005), ‘jUnit’, http://www.junit.org/.

Garzotto, F., Paolini, P. and Schwabe, D. (1991a), Authoring-in-the-large: software

engineering techniques for hypertext application design, in ‘Software Specifica­

tion and Design, 1991., Proceedings of the Sixth International Workshop on5,

pp. 193-201.

Garzotto, F., Paolini, P. and Schwabe, D. (19916), HDM - a model for the design of

hypertext applications, in ‘HYPERTEXT ’91: Proceedings of the third annual

ACM conference on Hypertext’, ACM Press, pp. 313-328.

Garzotto, F., Paolini, P. and Schwabe, D. (1993), ‘HDM - a model-based approach

to hypertext application design’, ACM Trans. Inf Syst. 11(1), 1-26.

Gelperin, D. and Hetzel, B. (1988), ‘The growth of software testing’, Commun. ACM

31(6), 687-695.

German, D., Cowan, D. D. and Alencar, D. P. (1998), ‘A formal specification lan­

guage for hypermedia applications’, 1st International Workshop on Hypermedia

Development.

German, D. M. (2000), ‘HadeZ, a Framework for Specification and Verifica­

tion of Hypermedia Applications’, http://www.turingmachine.org/~dmg/

research/papers/dmgJtiadez2000 .pdf. PhD Thesis, Computer Science De­

partment, University of Waterloo, Ontario, Canada, 2000.

Ginige, A. (2002a), Web engineering: managing the complexity of Web systems

development, in ‘SEKE ’02: Proceedings of the 14th international conference

on Software engineering and knowledge engineering’, ACM Press, New York,

NY, USA, pp. 721-729.

281

Ginige, A. (20026), Web engineering: managing the complexity of Web systems

development, in ‘Proceedings of the 14th international conference on Software

engineering and knowledge engineering’, ACM Press, pp. 721-729.

Ginige, A. and Murugesan, S. (2001), ‘Web engineering: an introduction’, Multime­

dia, IEEE 8(1), 14-18.

Gittins, R. G. (1999), ‘Qualitative Research: An Investigation into methods and

concepts in qualitative research’, http://www.sesi. inf ormatics.bangor.ac.

uk/english/home/research/technical-reports/sesi-020/sesi-020.htm.

Technical paper, School of Informatics University of Wales, Bangor.

Glass, R. L. (2003), ‘A mugwump’s-eye view of Web work’, Commun. ACM

46(8), 21-23.

Glinz, M. (2000), Problems and Deficiencies of UML as a Requirements Specification

Language, in ‘IWSSD ’00: Proceedings of the 10th International Workshop on

Software Specification and Design’, IEEE Computer Society, Washington, DC,

USA, p. 11.

Gold, R. (2004), ‘HttpUnit’, http://httpunit.sourceforge.net/.

Goldberg, A. and Robson, D. (1983), Smalltalk-80: the language and its implemen­

tation, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Goldberg, C. (2005), ‘Weblnject’, http://www.webinject.org/.

Gomez, J., Cachero, C. and Pastor, O. (2001), ‘Conceptual modeling of device­

independent Web applications’, Multimedia, IEEE 8(2), 26-39.

Guimaraes, L. R. and Vilela, P. R. S. (2005), Comparing software development

models using CDM, in ‘SIGITE ’05: Proceedings of the 6th conference on

282

Information technology education’, ACM Press, New York, NY, USA, pp. 339­

347.

Halasz, F. and Schwartz, M. (1994), ‘The Dexter hypertext reference model’, Com­

munications of the ACM 37(2), 30-39.

Hansen, S. and Deshpande, Y. (1997), A Skills Hierarchy for Web Information

System Development, in ‘Proc. Australasian Web Conf.(AusWeb 97)’, Southern

Cross Univ. Press, Lismore, pp. 114-121.

Harrold, M. J. (2000), Testing: a roadmap, in ‘ICSE ’00: Proceedings of the Con­

ference on The Future of Software Engineering’, ACM Press, pp. 61-72.

Henry, D. J., Stiff, J. C. and Shirar, A. J. (2003), Assessing and improving testing

of real-time software using simulation, in ‘ANSS ’03: Proceedings of the 36th

annual symposium on Simulation’, IEEE Computer Society, Washington, DC,

USA, p. 266.

Hieatt, E. and Mee, R. (2002), ‘Going faster: testing the Web application’, Software,

IEEE 19(2), 60-65.

Higgs, J. (1998), Writing qualitative research, Hampden Press in conjunction with

the Centre for Professional Education Advancement, Sydney.

Hoick, J. (2003), 4 Perspectives on Web Information Systems, in ‘HICSS ’03: Pro­

ceedings of the 36th Annual Hawaii International Conference on System Sci­

ences (HICSS’03) - Track 8’, IEEE Computer Society, Washington, DC, USA,

p. 265.2.

Holloway, I. (1997), Basic Concepts for Qualitative Research, Blackwell Science.

Hower, R. (2005), ‘Software QA/Test Resource Center’, http://www.
softwareqatest.com/qatwebl.html.

283

IBM (2005), ‘Rational Rose’, http://www.ibm.com.

IEEE (2001), ‘IEEE standard Verilog hardware description language’, IEEE Std

1364-2001 pp. 0-856.

IEEE guide to software requirements specifications (1984).

IEEE standard for software verification and validation - 1012-1998 (1998).

IEEE standard glossary of modeling and simulation terminology - 610.3-1989

(1989).

IEEE standard glossary of software engineering terminology - 610.12-1990 (1990).

IEEE Standard VHDL Language Reference Manual - 1076 (2002).

Ingalls, R. G. (2002), Introduction to simulation, in ‘WSC ’02: Proceedings of the

34th conference on Winter simulation’, Winter Simulation Conference, pp. 7­

16.

Isakowitz, T., Kamis, A. and Koufaris, M. (1998), ‘The Extended RMM Methodol­

ogy for Web Publishing’, Working Paper, Center for Research on Information

Systems 18.

Isakowitz, T., Stohr, E. A. and Balasubramanian, P. (1995), ‘RMM: a methodology

for structured hypermedia design’, Commun. ACM 38(8), 34-44.

Iyengar, A., MacNair, E. and Nguyen, T. (1997), An analysis of Web server perfor­

mance, in ‘Global Telecommunications Conference, 1997. GLOBECOM ’97.,

IEEE’, Vol. 3, pp. 1943-1947 vol.3.

Jarvenpaa, S. L. (1988), ‘The importance of laboratory experimentation in IS re­

search (technical correspondence)’, Commun. ACM 31(12), 1502-1504.

284

Johnson, J. and Henderson, A. (2002), ‘Conceptual models: begin by designing what

to design’, interactions 9(1), 25-32.

Kappel, G., Michlmayr, E., Proll, B., Reich, S. and Retschitzegger, W. (2004), Web

Engineering - Old Wine in New Bottles?, in ‘ICWE’, pp. 6-12.

Kelly, D. and Shepard, T. (2002), Qualitative observations from software code in­

spection experiments, in ‘GASCON ’02: Proceedings of the 2002 conference of

the Centre for Advanced Studies on Collaborative research’, IBM Press, p. 5.

Kotonya, G. and Sommerville, I. (1998), Requirements engineering: processes and

techniques, John Wiley & Sons Ltd.

Kung, D. (2004), An agent-based framework for testing Web applications, in ‘Com­

puter Software and Applications Conference, 2004. COMPSAC 2004. Proceed­

ings of the 28th Annual International’, Vol. 2, pp. 174-177 vol/2.

Kung, D. C., Liu, C.-II. and Hsia, P. (2000a), An object-oriented web test model

for testing web applications, in ‘COMPSAC ’00: 24th International Computer

Software and Applications Conference’, IEEE Computer Society, Washington,

DC, USA, pp. 537-542.

Kung, D., Liu, C.-H. and Hsia, P. (20006), An Object-Oriented Web test model

for testing Web applications, in ‘Quality Software, 2000. Proceedings. First

Asia-Pacific Conference on’, pp. 111-120.

Laakso, S. and Laakso, K.-P. (2003), ‘Ensuring quality of the user interface with

the guide project model’, http://citeseer.ifi.unizh.ch/685872.html.

Lang, M. (2002), Hypermedia systems development: Do we really need new meth­

ods?, in ‘Informing Science |- IT Education Conference’, InformingScience.org,

pp. 883-891.

285

Lang, M. and Fitzgerald, B. (2005), ‘Hypermedia systems development practices: a

survey’, Software, IEEE 22(2), 68-75.

Lange, D. (1993), Enhanced Relationships in Object-Oriented Database Modeling,

in ‘Proceedings of InfoScience’93’.

Lange, D. (1994), An Object-Oriented design method for hypermedia information

systems, in ‘Proceedings of the Twenty-Seventh Hawaii International Confer­

ence on System Sciences, 1994. Vol.III: Information Systems: Decision Support

and Knowledge-Based Systems’, pp. 366-375.

Laplante, P. A. and Neill, C. J. (2004), ‘Opinion: The Demise of the Waterfall

Model Is Imminent’, Queue 1(10), 10-15.

Lattice Semiconductor Corporation (2006), ‘ispLever’, http://www.latticesemi.

com//.

Lee, H., Kim, J., Kim, Y. G. and Cho, S. H. (1999), ‘A view-based hypermedia

design methodology’, J. Database Manage. 10(2), 3-13.

Lee, H., Lee, C. and Yoo, C. (1999), ‘A scenario-based object-oriented hypermedia

design methodology’, Inf. Manage. 36(3), 121-138.

Liu, C.-H., Kung, D., Hsia, P. and Hsu, C.-T. (2000), Structural testing of Web

applications, in ‘Software Reliability Engineering, 2000. ISSRE 2000. Proceed­

ings. 11th International Symposium on’, pp. 84-96.

Lowe, D. B., Bucknell, A. J. and Webby, R. G. (1999), Improving hypermedia

development: a reference model-based process assessment method, in ‘HY­

PERTEXT ’99: Proceedings of the tenth ACM Conference on Hypertext and

hypermedia: returning to our diverse roots’, ACM Press, pp. 139-146.

286

Lowe, D. and Hall, W. (1999), Hypermedia & the Web: an engineering approach,

John Wiley & Sons Ltd.

Lucca, G. D., Fasolino, A., Faralli, F. and Carlini, U. D. (2002), Testing Web appli­

cations, in‘Software Maintenance, 2002. Proceedings. International Conference

on’, pp. 310-319.

Macintosh, A. and Strigel, W. (2000), The Living Creature - Testing Web Appli­

cations, in ‘Proceedings of the 13th International Internet & Software Quality

Week Conferences’, pp. 1-16.

Maddison, R. (1983), Information Systems Methodologies, Wiley Heyden, Chich­

ester.

Maginot, S. (1992), Evaluation criteria of HDLs: VHDL compared to Verilog, UDL/I

fe M, in ‘EURO-DAC ’92: Proceedings of the conference on European design

automation’, IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 746­

751.

Malan, R. and Bredemeyer, D. (2001), ‘Functional Requirements and Use Cases’,

http://citeseer.ist.psu.edu/493110.html.

Marcos, E. (2005), ‘Software engineering research versus software development’,

SIGSOFT Softw. Eng. Notes 30(4), 1-7.

McLean, C. and Shao, G. (2003), Manufacturing case studies: generic case stud­

ies for manufacturing simulation applications, in ‘WSC ’03: Proceedings of

the 35th conference on Winter simulation’, Winter Simulation Conference,

pp. 1217-1224.

Mellor, S. J. and Balcer, M. J. (2002), Executable UML : a foundation for model-

driven architecture, Addison-Wesley, Boston ; San Francisco ; New York.

287

Moriguchi, S. (1996), Software Excellence - A Total Quality Management Guide,

Productivity Press.

Murata, T. (1989), Petri nets: Properties, analysis and applications, in‘Proceedings

of the IEEE’, IEEE, pp. 541-580.

Murugesan, S., Deshpande, Y., Hansen, S. and Ginige, A. (1999), Web Engineering:

A New Discipline for Development of Web-based Systems, in ‘Proceedings of

the First ICSE Workshop on Web Engineering, International Conference on

Software Engineering’.

Murugesan, S., Deshpande, Y., Hansen, S. and Ginige, A. (2001), Web Engineering:

A New Discipline for Development of Web-Based Systems, in ‘Web Engineer­

ing’, pp. 3-13.

Myers, M. D. (2003), ‘Qualitative Research in Information Systems’, www.qual.

auckland. ac .nz. MIS Quarterly (21:2), June 1997, pp. 241-242. MISQ Dis­

covery. archival version, June 1997.

Nanard, J. and Nanard, M. (1995), ‘Hypertext design environments and the hyper­

text design process’, Commun. ACM 38(8), 49-56.

Nance, R. E. (1983), A tutorial view of simulation model development, in ‘WSC

’83: Proceedings of the 15th conference on Winter simulation’, IEEE Press,

Piscataway, NJ, USA, pp. 325-332.

Nilawar, M. (2003), A UML-Based Approach for Testing Web Applications - MSc

Thesis, University of Nevada, Reno.

Nissanke, N. (1997), Realtime systems, Prentice Hall.

Object Management Group (2005), ‘OMG Unified Modeling Language Specifica­

tion’, http://www.uml.org/.

288

OMG (2002), ‘Omg unified modeling language specification (action semantics)’,

http://www.omg.org/docs/ptc/02-01-09.pdf.

OMG (2004), ‘Unified Modeling Language Specification - Version 1.4.2’, http://

www.omg.org/docs/formal/04-07-02.pdf.

OMG (2005), ‘OMG - Object Management Group’, http://www.omg.org/.

Pasahow, E. J. (1973), Testing real-time systems with simulation, in ‘ANSS ’73:

Proceedings of the 1st symposium on Simulation of computer systems’, IEEE

Press, Piscataway, NJ, USA, pp. 40-45.

Pastor, O., Insfran, E., Pelechano, V., Romero, J. and Merseguer, J. (1997), OO-

METHOD: An OO Software Production Environment Combining Conventional

and Formal Methods, in ‘CAiSE ’97: Proceedings of the 9th International

Conference on Advanced Information Systems Engineering’, Springer-Verlag,

London, UK, pp. 145-158.

Peixoto, P. (2005), Simulating Web Applications Design Models, in ‘ICWE’,

pp. 627-629.

Peixoto, P., Fung, K. and Lowe, I). (2004a), A Framework for the Simulation of Web

Applications, Technical Report UTS-Eng-TR-04-001, University of Technology,

Sydney.

Peixoto, P., Fung, K. and Lowre, D. (20046), A Framework for the Simulation of

Web Applications, in ‘ICWE’, pp. 261-265.

Perrone, V., Bolchini, D. and Paolini, P. (2005), A stakeholders centered approach

for conceptual modeling of communication-intensive applications, in ‘SIGDOC

’05: Proceedings of the 23rd annual international conference on Design of com­

munication’, ACM Press, New York, NY, USA, pp. 25-33.

289

Perry, D. E., Porter, A. A. and Votta, L. G. (2000), Empirical studies of software

engineering: a roadmap, in ‘ICSE ’00: Proceedings of the Conference on The

Future of Software Engineering’, ACM Press, New York, NY, USA, pp. 345­

355.

Pfleeger, S. L. (2001), Software Engineering - Theory and Practice - 2nd Ed.,

Prentice-Hall.

Pressman, R. (1998), ‘Can Internet-Based Applications Be Engineered?’, Software,

IEEE 15(5), 104-110.

Pressman, R. S. (2000), ‘What a Tangled Web We Weave’, IEEE SOFTWARE

17(1), 18-21.

Reasoning (2003), ‘Automated Software Inspection - A New Approach to Increased

Software Quality and Productivity’, http://www.reasoning.com/pdf/ASI.

pdf.

Reifer, D. (2000), ‘Web development: estimating quick-to-market software’, Soft­

ware, IEEE 17(6), 57-64.

Ricca, F. and Tonella, P. (2001), Analysis and testing of Web applications, in ‘ICSE

’01: Proceedings of the 23rd International Conference on Software Engineering’,

IEEE Computer Society, Washington, DC, USA, pp. 25-34.

Ricca, F. and Tonella, P. (2005), Web Testing: a Roadmap for the Empirical Re­

search, in ‘Web Site Evolution, 2005. (WSE 2005). Seventh IEEE International

Symposium on’, pp. 63-70.

Robinson, S. (2003), Simulation: the practice of model development and use, Wiley,

Hoboken, NJ.

290

Rossi, G., Schwabe, D. and Guimaraes, R. (2001), Designing personalized Web

applications, in ‘WWW ’01: Proceedings of the tenth international conference

on World Wide Web’, ACM Press, pp. 275-284.

Rosson, M., Ballin, J. and Rode, J. (2005), Who, What, and How: A Survey of

Informal and Professional Web Developers, in ‘Visual Languages and Human­

Centric Computing, 2005 IEEE Symposium on’, pp. 199-206.

Rosu, D., Iyengar, A. and Dias, D. (2000), Hint-based acceleration of Web proxy

caches, in ‘Performance, Computing, and Communications Conference, 2000.

IPCCC ’00. Conference Proceeding of the IEEE International’, pp. 30-37.

Royce, W. W. (1970), Managing the development of large software systems: concepts

and techniques, in ‘Proc. IEEE WESTCON’, IEEE Computer Society Press,

pp. 1-9.

Rumbaugh, J. (1987), Relations as semantic constructs in an Object-Oriented lan­

guage, in ‘Conference proceedings on Object-oriented programming systems,

languages and applications’, ACM Press, pp. 466-481.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991),

Object-Oriented Modeling and Design, Prentice-Hall, New York.

Salkind, N. J. (2003), Exploring research - 5th Ed., Prentice Hall.

Sargent, R. (2003), Verification and validation of simulation models, in ‘Simulation

Conference, 2003. Proceedings of the 2003 Winter’, Vol. 1, pp. 27-48 Vol.l.

Sargent, R. G. (1992), Validation and verification of simulation models, in ‘WSC

’92: Proceedings of the 24th conference on Winter simulation’, ACM Press,

New York, NY, USA, pp. 104-114.

291

Schwabe, D., de Almeida Pontes, R. and Moura, I. (1999), ‘OOHDM-Web: an

environment for implementation of hypermedia applications in the WWW’,

SIGWEB Newsl. 8(2), 18-34.

Schwabe, D. and Rossi, G. (1995a), Building hypermedia applications as naviga­

tional views of information models, in ‘System Sciences, 1995. Vol. III. Pro­

ceedings of the Twenty-Eighth Hawaii International Conference on’, Vol. 3,

pp. 231-240 vol.3.

Schwabe, D. and Rossi, G. (19956), ‘The Object-Oriented hypermedia design model’,

Communications of the ACM 38(8), 45-46.

Schwabe, D., Rossi, G. and Barbosa, S. D. J. (1996), Systematic hypermedia ap­

plication design with OOHDM, in ‘HYPERTEXT ’96: Proceedings of the the

seventh ACM conference on Hypertext’, ACM Press, pp. 116-128.

Selby, R. W., Basili, V. R. and Baker, F. T. (1987), ‘Cleanroom software develop­

ment: an empirical evaluation’, IEEE Trans. Softw. Eng. 13(9), 1027-1037.

Shannon, R. (1998), Introduction to the art and science of simulation, in ‘Simulation

Conference Proceedings, 1998. Winter’, Vol. 1, pp. 7-14 vol.l.

Shannon, R. E. (1992), Introduction to simulation, in ‘WSC ’92: Proceedings of

the 24th conference on Winter simulation’, ACM Press, New York, NY, USA,

pp. 65-73.

Shortle, J. F., Gross, D. and Mark, B. L. (2003), Simulation of large networks:

efficient simulation of the national airspace system, in ‘WSC ’03: Proceedings

of the 35th conference on Winter simulation’, Winter Simulation Conference,

pp. 441-448.

Shull, F., Carver, J. and Travassos, G. H. (2001), An empirical methodology for

introducing software processes, in ‘ESEC/FSE-9: Proceedings of the 8th Eu­

292

ropean software engineering conference held jointly with 9th ACM SIGSOFT

international symposium on Foundations of software engineering’, ACM Press,

New York, NY, USA, pp. 288-296.

Smith, D. J. (1996), VHDL k, Verilog compared & contrasted-plus modeled example

written in VHDL, Verilog and C, in ‘DAC ’96: Proceedings of the 33rd annual

conference on Design automation’, ACM Press, New York, NY, USA, pp. 771­

776.

Soft., J. (2005). ‘JStudio’, http://www.jstudio.de/.

Sommerville, I. (2004), Software Engineering - 7th Ed,., Addison-Wesley.

Sony (2005), ‘Sony’, http://www.sonymusicstore.com/.

Sunye, G., Pennaneac’h, F., Ho, W.-M., Guennec, A. L. and Jquel, J.-M. (2001), Us­

ing UML action semantics for executable modeling and beyond, in ‘Conference

on Advanced Information Systems Engineering’, pp. 433-447.

Tonella, P. and Ricca, F. (2004), A 2-layer model for the white-box testing of Web

applications, in ‘Web Site Evolution, 2004. WSE 2004. Proceedings. Sixth IEEE

International Workshop on’, pp. 11-19.

Trochim, W. and Land, D. (2004), ‘Designing Designs for Research’, http://

trochim.human.cornell.edu/kb/index.htm. The Research Methods Knowl­

edge Base, 2nd Edition.

Varro, D. (2003), ‘Towards automated formal verification of visual model­

ing languages by model checking’, http://citeseer.ist.psu.edu/article/

varro03towards.html.

Virgin (2005), ‘Virgin’, https://www.virginmegastores.co.uk/.

293

Wade, R. M. and Tingling, P. (2005), ‘A new twist on an old method: a guide to

the applicability and use of Web experiments in information systems research’,

SIGMIS Database 36(3), 69-88.

Walliman, N. (2005), Your research project: a step-by-step guide for the first-time

researcher, 2nd edn, SAGE Publications, London.

WebML (2005), ‘WebML’, http://www.webml.org. WebML.

WebRatio (2001), ‘WebML User Guide - version 3.0’, http://www.webml.org.

WebRatio (2005), ‘WebRatio’, http://www.webratio.com. WebRatio.

Wegner, P. (1990), ‘Concepts and paradigms of Object-Oriented programming’,

SIGPLAN OOPS Mess. 1(1), 7-87.

Wells, L., Christensen, S., Kristensen, L. and Mortensen, K. (2001), Simulation

based performance analysis of Web servers, in ‘Petri Nets and Performance

Models, 2001. Proceedings. 9th International Workshop on’, pp. 59-68.

Whitner, R. B. and Balci, O. (1989), Guidelines for selecting and using simulation

model verification techniques, in ‘WSC ’89: Proceedings of the 21st conference

on Winter simulation’, ACM Press, New York, NY, USA, pp. 559-568.

Withers, B. D., Pritsker, A. A. B. and Withers, D. H. (1993), A structured definition

of the modeling process, in ‘WSC ’93: Proceedings of the 25th conference on

Winter simulation’, ACM Press, New York, NY, USA, pp. 1109-1117.

Wixon, D. (1995), ‘Qualitative research methods in design and development’, inter­

actions 2(4), 19-26.

Xilinx, Inc. (2006), ‘Xilinx’, http://www.xilinx.eom//.

294

Xu, L., Xu, B. and Jiang, J. (2005), ‘Testing Web applications focusing on their

specialties’, SIGSOFT Softw. Eng. Notes 30(1), 10.

Yalamanchili, S. (2001), Introductory VHDL - From Simulation to Synthesis,

Prentice-Hall, Inc. - Xilinx Design Series.

Young, R. R. (2004), The requirements engineering handbook, Artech House, Boston,

MA.

Zannier, C. and Maurer, F. (2005), A qualitative empirical evaluation of design

decisions, in ‘HSSE ’05: Proceedings of the 2005 workshop on Human and social

factors of software engineering’, ACM Press, New York, NY, USA, pp. 1-7.

Zhu, H., Hall, P. A. V. and May, J. H. R. (1997), ‘Software unit test coverage and

adequacy’, ACM Comput. Surv. 29(4), 366-427.

295

	Title Page
	Certificate of Authorship/Originality
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Glossary
	Abstract
	Chapter 1 Introduction
	1.1 Focus and Purpose
	1.2 Significance to the Area
	1.3 Contributions
	1.4 Outline of the Thesis

	Chapter 2 Literature Review
	2.1 Software Engineering
	2.1.1 Software Process Models
	2.1.2 Testing for Quality
	2.1.3 Simulation as a Verification and Validation Process

	2.2 Web Engineering
	2.2.1 Difference from Traditional Software Development
	2.2.2 Methodologies
	2.2.3 Models
	2.2.4 The Testing Phase
	2.2.5 Simulating for Testing

	2.3 Hardware Description Languages
	2.4 How the Present Research Differs from Existing Work

	Chapter 3 Methodology
	3.1 Research Strategy
	3.2 Research Design
	3.3 Data-gathering and Analysis
	3.4 Threats to Validity
	3.4,1 Enforcing the Validity of the Experiment

	3.5 Summary of the Experiment

	Chapter 4 The Web-design Simulation Model
	4.1 The Simulation Study
	4.2 Objectives of the Simulation Model
	4.3 The Content of the Simulation Model
	4.3.1 The Four-layer Model Definition
	4.3.2 Hierarchy of the WSM Entities
	4.3.3 The User Interaction Model

	4.4 The Simulation Stimuli
	4.5 Layer Interface Definition
	4.6 The Simulation Output
	4.7 Assumptions and Simplifications
	4.8 Methodology of the Simulation
	4.9 Verification and Validation of the Proposed Web-design Simulation Model
	4.9.1 Summary

	Chapter 5 The Web-design Description Language
	5.1 A Formal Description Language for Web Simulation
	5.2 The Entities within
	5.2.1 The Page
	5.2.2 The Link
	5.2.3 The Script
	5.2.4 The Data
	5.2.5 The Window
	5.2.6 The User

	5.3 Mapping of Existing Web Design Models
	5.3.1 The WebML Case
	5.3.2 Mapping of Other Web Application Design Models
	5.3*3 Summary

	Chapter 6 The Web-design Simulation Tool
	6.1 Design and Implementation
	6.1.1 The Model and Runtime Arrays
	6.1.2 The Simulator’s Databases

	6.2 Interface
	6.2.1 The Command Window
	6.2.2 The Browser Window
	6.2.3 The Main Window
	6.2.4 The Status Window
	6.2.5 The Requirements Window

	6.3 Auxiliary Modules
	6.3.1 The Stimuli Module
	6.3.2 The Requirements Assessment Module
	6.3.3 The Model Verification Module
	6.3.4 The Automatic Page Construction Module

	6.4 Verification and Validation of the Web-design Simulation Tool
	6.4.1 Summary

	Chapter 7 The Experiment
	7.1 The Web Application Design
	7.2 The Simulation Treatment
	7.2.1 The Test Cases
	7.2.2 The Simulation Results

	7.3 The Implementation Treatment
	7.3.1 The Implementation Results

	7.4 Verification and Validation of the Simulation Results
	7.5 Discussion of the Results
	7.5.1 Comparison of Treatments

	Chapter 8 Conclusion
	8.1 Summary and Critical Analysis
	8.2 Conclusions about the Research Questions and Hypothesis
	8.3 Suggestions for Future Work
	8.4 Final Conclusions

	Appendices
	Appendix A The WDL Syntax
	Appendix B Syntax of WSM Stimuli
	B.1 The WSM Exogenous Stimuli
	B.2 The WSM Endogenous Stimuli

	Appendix C The Simulator
	Appendix D The Experiment Design
	Appendix E The Experiment Simulation Results

	Bibliography

