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Optimum Experimental Design applied to MEMS accelerometer
calibration for 9-parameter auto-calibration model

Lin Ye, Steven W. Su

Abstract— Optimum Experimental Design (OED) is an infor-
mation gathering technique used to estimate parameters, which
aims to minimize the variance of parameter estimation and pre-
diction. In this paper, we further investigate an OED for MEMS
accelerometer calibration of the 9-parameter auto-calibration
model. Based on a linearized 9-parameter accelerometer model,
we show the proposed OED is both G-optimal and rotatable,
which are the desired properties for the calibration of wearable
sensors for which only simple calibration devices are available.
The experimental design is carried out with a newly developed
wearable health monitoring device and desired experimental
results have been achieved.

I. INTRODUCTION

Owing to the rapid development of Micro-Electro-
Mechanical systems (MEMS), the performance of chip-based
sensors improved rapidly in terms of size, weight, cost
and power consumption. Today, MEMS accelerometers are
widely-used in several application areas. Due to their size
and weight advantages, these sensors have already been
extensively utilized in wearable health monitoring devices
[1] and consumer electronic devices, such as smartphone
and smart watch. Because of the bias instability and output
noise of MEMS sensors, calibration is necessary to obtain
an accurate measurement for most applications mentioned
above. However, most users, even some of the researchers
are lacking sophisticated laboratory equipments (e.g., rotary
table) to implement classical calibration [2] experiment.

Recently, several papers [3]-[5] developed a new cali-
bration method for triaxial accelerometer, knowing as auto-
calibration, which can be implemented without sophisticated
laboratory equipments. However, the calibration quality has
not received the attention it deserves, particularly for each
individual calibration. To authors’ best knowledge, most
studies focus on the algorithms of parameter estimation and
their feasibility investigation. Few papers roughly described
the selections of experimental observations. Paper [6] pro-
vided a systematic investigation of ODE for auto-calibration
of tri-axial accelerometers.

This paper adopts the linearization method for the 9-
parameter auto-calibration model from [6]. After that, the 12-
observation design proposed in [6] is further investigated in
order to remove inertial misalignment error (i.e., installation
error). We prove the 12-observation experimental design [6]
is both G-optimal and rotatable.
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To test the effectiveness of both the linearization method
and the optimum experimental design, the ODE based calib-
eration has been realized in an recently developed wearable
health monitoring device without using sophisticated labora-
tory equipments. Generally, most of the existing algorithms
in literatures are too complicated to be implemented in
microcontroller for online auto-calibration. In this study, the
proposed auto-calibration procedure has been successfully
implemented in the microcontroller of the wearable device
to perform accurate calibration directly after experiments.
Discussion of the experimental results has been provided.

II. OPTIMUM EXPERIMENTAL DESIGN

A. Linearization of the 9-parameter auto-calibration model

Extensive research has been done on auto-calibration
of triaxial accelerometers. Generally, a better algorithm of
parameter estimation can reduce the error. For further im-
provement, a set of well selected observation points can
also improve calibration accuracy, which can be achieved
by experimental design [7].

To apply optimum experimental design for auto-calibration
efficiently, it is necessary to simplify the model. A 9-
parameter triaxial accelerometer can be expressed as ax
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where vector A =

[
ax, ay, az

]T
is the acceleration

component, V =
[
vx, vy, vz

]T
is the raw acceleration

from sensor, and O =
[
ox oy oz

]T
is offset. The

diagonal elements of scale factor matrix (Sii) are sensitivity
factors of each direction while off-diagonal elements (Sij)
are sensitivity factors of cross-axis sensitivity [3].

The method of auto-calibration is based on the fact that the
overall acceleration of each axis is equal to the magnitude
of local gravity acceleration. To be specific, the magnitude
is “1g” in static state condition,

g =
√
a2x + a2y + a2z. (2)

By applying the auto-calibration method for 9-parameter
triaxial accelerometer model in Eq.(1), we have

g2 =
∑

i=x,y,z

 ∑
j=x,y,z

Sij · (Vj +Oj)

2

+ εr, (3)

where Sij = Sji, εr is the squared difference between raw
acceleration and local gravity [3].



It is infeasible to propose an experimental design for
Eq.(3), with all unknown parameters and their intersections.
For this reason, to apply optimum experimental design, a
practical linearization method is necessary to simplify Eq.(3)
into a second-order polynomial form [8],

y = β0 +

m∑
1

βjxj +

m−1∑
j=1

m∑
k=j+1

βjkxjxk +

m∑
j=1

βjjx
2
j . (4)

To approach this simplification, firstly, terms with inappre-
ciable effect should be neglected. According to datasheets,
for most newly developed IMU products, the off-diagonal
sensitivity factors (Sij) are less than 1% of diagonal sensi-
tivity factors (Sii). The maximum zero-g initial offsets of x
and y axis are normally less than ±0.1g while the offset for z
axis is less than ±0.15g. As worst initial offset is quite large,
a pre-calibration is recommended. The pre-calibration can
reduce zero-g initial offset and determine the polarity of scale
factors. After this procedure, the off-diagonal sensitivity
factors and the residual offsets in Eq.(3) are small enough
to be neglected, particularly for their products. We remove
all terms contained SijOi, SijSjk, O2

i and OiOj [6]. The
remaining equation is

g2 =
∑

i=x,y,z

S2
iiV

2
i +

∑
i=x,y,z

2S2
iiViOi

+ ΣΣ
i 6=j

(Sii + Sjj)SijViVj + ε̃+ ε̄,
(5)

where Sij = Sji for 9-parameter model, ε̃ is zero mean
noise and ε̄ is non-zero error representing the means of the
summation of the neglected terms.

Eq.(1) shows that our original model contains 9 unknown
parameters. The desired simplification is that Eq.(5) can be
described by the form of Eq.(4) with 9 unknown parameters
too. To achieve this goal, we apply parameter re-combined
technique to define new 9 known parameters as follows [6]:

S2
xx = β11
S2
yy = β22
S2
zz = β33

2S2
xxOx = β1

2S2
yyOy = β2

2S2
zzOz = β3

2 (Sxx + Syy)Sxy = β12
2 (Sxx + Szz)Sxz = β13
2 (Syy + Szz)Syz = β23

(6)

Replacing Vi,j,k with x1,2,3, Eq.(5) without neglected terms
can be expressed as:

y =

3∑
j=1

βjxj+

2∑
j=1

3∑
k=j+1

βjkxjxk +

3∑
j=1

βjjx
2
j + ε̃, (7)

which is a 9-unknown-parameter second-order polynomial
model without interception.

B. Experimental plan and its properties

For the second-order polynomial model, Eq.(7), optimum
experimental design has been applied to obtain a specific 12-
observation G-optimal design[6], Icosahedron design. Table
I shows the Icosahedron design with a =

√
2

5+
√
5

and b =

TABLE I
TABLE I. THREE FACTORS ICOSAHEDRON DESIGN FOR

TRI-AXIAL ACCELEROMETER MODEL

Observation x1 x2 x3

1 0 a b
2 0 -a b
3 0 a -b
4 0 -a -b
5 a b 0
6 -a b 0
7 a -b 0
8 -a -b 0
9 b 0 a
10 -b 0 a
11 b 0 -a
12 -b 0 -a

1+
√
5√

10+2
√
5

. These 12 observations can form an Icosahedron

in three dimension rectangular coordinate system.
According to [6], in this study, we found that the Icosahe-

dron design is rotatable. From the definition of rotatability, a
design is rotatable if the variance of the predicted response
only depends on the distance between observation points
from center point [7].

In order to analysis the relation between G-optimal and
rotatable for this experimental design, we use standardized
variance d = (x, ξ) instead of variance var (ŷ (x)). Over the
experimental design region χ, d = (x, ξ) is defined as:

d (x, ξ) = fT (x)M−1 (ξ) f (x) =
Nvar (ŷ (x))

σ2
, (8)

where N is the number of observations [8] [9], and fT (x)
is

fT (x) =
[
x1 x2 x3 x21 x22 x23 x1x2 x1x3 x2x3

]
.

(9)
For an experimental design, rotatability is aiming to

optimize the variance of every single observation during
parameter estimation.

To discuss the rotatability of Icosahedron design in Table
I, let us recall Eq.(7) for which the prediction variance ŷ(x)
is

var (ŷ (x)) = σ2fT (x)
(
XTX

)−1
f (x) . (10)

The measurement matrix X ∈ R12×9 in (10) can be easily
derived from Table I,

X =



x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3

0 −a −b 0 a2 b2 0 · · · · · ·
0 −a b 0 a2 b2 0 · · · · · ·
...

...
...

...
...

...
...

. . .
...

...
...

...
...

...
...

. . .

.
(11)

Overall, we have

d (x, ξ) = Nvar(ŷ(x))
σ2

= 3(x21 + x22 + x23) + 6(x21 + x22 + x23)2.
(12)



From Eq.(12), the standardized variance is only related to
x21 +x22 +x23, which indicates that the variance only depends
on the distance of observation points and center point, hence
Icosahedron design is rotatable [10] [11].

Let us recall the definition of G-optimal for experimental
design, if

max
x∈R
{d (x, ξ)} = p, (13)

where p is the number of unknown parameters, the design
is G-optimal [8]. For getting the maximum value of d (x, ξ),
the overall acceleration in static state is equal to magnitude
of local gravity “1g” due to the constraint (x21+x22+x23 = 1).
In this case, from (12), we have

max
x∈R
{d (x, ξ)} = 3 + 6 = 9. (14)

It proves that Icosahedron experimental design is also G-
optimal.

The Icosahedron design is not only G-optimal but also
rotatable which indicates the estimation of unknown param-
eters has the minimum maximum variance and all observa-
tions share the same prediction variance for model (7).

The practical application of the rotatability in calibration
is reducing the misalignment error. Generally, it is infeasi-
ble to evaluate the misalignment error when implementing
an experimental design. Assuming the tilt angles between
MEMS accelerometer and device are θx, θy and θz , then
three rotation matrices can be defined as:

Rx =

 1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 ,

Ry =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 ,

Rz =

 cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 .

(15)

Now, let us define a matrix which is the experiment in
Table I, D =

[
x1, x2, x3

]
, Dnew is the matrix D after

rotation,

Dnew =
(
Rx×Ry ×Rz ×DT

)T
=
[
k1, k2, k3

]
.

(16)
Based on Dnew, new X matrix Xr ∈ R12×9 is

Xr =
[
k1 k2 k3 k21 k22 k23 k1k2 k1k3 k2k3

]
.

(17)
It can be computed that the information matrix XT

r Xr is
invariant when the tilt angles θx, θy and θz are changing.
More precisely, this experiment can remain G-optimal with
any initial observation as long as all the 12 observations can
be observed on the proposed points “relatively”,

d (x, ξr) = Nvar(ŷ(x))
σ2

= NfT (x)
(
XT
r Xr

)−1
f (x) = 9.

(18)

III. IMPLEMENTATION AND ANALYSIS

To implement the proposed linearization method and ex-
perimental plan, we developed a health monitoring device
contains SCM (TI F430), IMU (InvenSense MPU9150)
in Centre for Health Technology, University of Technol-
ogy,Sydney and featured with Bluetooth module for wireless
communication. We also designed a platform by SolidWorks
and printed it with 3D printer.

A. Implementation of experimental design

The expected value in table I indicates acceleration com-
ponent on each axis,

g′x,y,z = cos θx,y,z (19)

where g′ (x1, x2, x3) is the acceleration component on each
axis and θ is the included angle between axis and local
gravity. Figure 2 shows the arrangements of our device for
12 observations.
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Fig. 1. The arrangements of MEMS accelerometer for Icosahedron design

In this experiment, we place our device on the surface of
platform which is tilted 31.7◦ from horizontal plane. The
device is placed following the instrument in Fig.(1) that x,
y and z indicate the positive direction of each axis. With
the program we developed for this device, there will be
30s to place the IMU in the correct direction before the
device starts to record the data after we press the record
button. When 12 observations complete, the device can
calculate the parameters directly and store them for further
data acquisition. This procedure can also be easily repeated
to remove daily drift for accelerometer.

B. Analysis of experimental data

With the raw data of acceleration from 12 observations and
auto-calibration model (3), weighted least square estimation
(WLS) is able to estimate unknown parameters effectively if
the data processing ability of SCM is considered,

Y = Xβ + ε̄+ ε̃. (20)

In section 2, we explained that ε̄ has inappreciable effect
which can be neglected. Without ε̄, we can apply WLS
for Eq.(20) to solve unknown parameter β̂ which is the re-
combination of S and O. The result of parameter β̂ is

β̂ =
(
XTWX

)−1
XTWY, (21)



where the initial X is the raw acceleration data from 12 obser-
vations, Y is local gravity 1g, and W is weight matrix. In our
model, weight matrix can be determined by the variance from
several sets of experimental observations. Furthermore, some
accelerometers have different sensitivity factors between x,
y axis and z axis. In this case, 8 observations contain the
sensitivity factors of z-axis should weight different with the
other 4 observations. To simplify the calculation, we weight
12 observations equally. In order to estimate the unknown
parameters precisely, a recursive analysis is necessary. The
main idea of this recursive analysis is reducing non zero
error ε̄ to zero. Fig.(2) shows the procedure of the recursive
analysis.
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Fig. 2. The procedure of obtaining precise acceleration

To understand the procedure in Fig.(2), recall Eq.(1), X̂(i)

is representing measured acceleration components V on each
axis (X(1) is the raw data). During the recursive analysis,
X̂(i+1) is closing to actual acceleration A when comparing
to X̂(i). This will reduce the offset Ô(i) and off-diagonal
sensitivity factors Ŝ

(i)
ij which leads to the decrease of ε̄

(each term in ε̄ contains Ô(i) and Ŝ
(i)
ij ). It means we can

obtain better results by applying WLS due to the decrease
of neglected terms ε̄ [6].

When the offset Ô(i) and off-diagonal sensitivity factors
Ŝ
(i)
ij is zero(almost zero for practical situation), the final

acceleration can then be expressed as:

Â(n) = Ŝ(n)(· · · Ŝ(2)(Ŝ(1)(X(1) + Ô(1))+ Ô(2)) · · ·+ Ô(n)).
(22)

To verify the performance of this experimental design and
parameter estimation on our device, we acquired another
25 observations randomly. Figure 4 shows the results of
observation before and after calibration.

As we can see from Fig.(3), the magnitude of overall
acceleration after calibration is stable and closed to local
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Fig. 3. Calibration results of 9-parameter accelerometer model

gravity 1g. The mean squared error (MSE) before calibration
is 1.98× 10−4g2 which reduces to 2.58× 10−5g2 after we
repeat the recursive algorithm for 3 times.

IV. CONCLUSIONS
This paper further explores the optimal experimental de-

sign of the auto-calibration approach proposed in [6] for
9 parameter model of MEMS triaxial accelerometers. The
optimal experimental design has been implemented in a
recently developed IMU based wearable health monitoring
device. Consequently, the measurement error of the device
has been greatly reduced by the developed auto-calibration
procedure. Experimental results well demonstrate the effi-
ciency of the proposed optimal experimental design. We hope
the developed optimal experimental design approach and
its associated parameter estimation algorithm can provide a
practical way to improve the accuracy of the wearable IMU
devices and at the same time to enhance the acceptance of
wearable monitoring devices from medical professionals.
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