Bayesian Reconstruction of Emission Tomography Images using Edge-Preserving Smoothing Priors

A Thesis Submitted for the Degree of Doctor of Philosophy

by

Seu Seong Som

Department of Applied Physics University of Technology, Sydney Australia 2005

For my Mum and Dad with love

獻給我的媽媽和爸爸

永遠懷念您們

Declaration of Originality

I declare that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also declare that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I declare that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgements

This research would not have been possible without the assistance of the following individuals and associations, to whom I am most grateful.

I would like to acknowledge, and thank both my academic supervisor, Dr. Michael Braun, and industrial supervisor, Professor Brian Hutton. Thank you for persisting in this research with me over the years. "The end is here."

I thank Dr. Walter Haindl, Dr. Simon Gruenewald, and Dr. Socrates Angelides, who assisted me in the data analyses.

To Mr. Philip McIntyre, I thank you for your precious mentorship, and loving guidance.

I had been fortunate to have the support and facilities made readily available through two hospital departments, without which this research would have not come into fruition. I would like to begin by thanking all the staff from the Department of Nuclear Medicine at Prince of Wales Hospital, Sydney, Australia. A special thank you to the Chief Physicist, Mrs. Brenda Walker, and Chairman of the Department, Associate Professor Monica Rossleigh. I also would like to thank all the staff from the Department of Nuclear Medicine at Westmead Hospital, Sydney, Australia, where this research began. Thank you to Dr. David Farlow, Dr. George Larcos, and Mr. Lee Collins. Some of the clinical data for this thesis came from Dr. Leighton Barnden, who is a Principal Hospital Scientist at the Department of Nuclear Medicine, at The Queen Elizabeth Hospital, Adelaide, Australia.

I gratefully acknowledge the financial contribution from the Australian Government through the Australian Postgraduate Research Award and Industry Scholarship for this research. I am appreciative of the Australian Nuclear Science and Technology Organisation for providing me with an award, whereby I was able to travel overseas in search of new ideas for my research. The Student Research Prize in Biomedical Technology Award from the University of Technology, Sydney, gave me encouragement to aim for excellence in my research. Thank you to my friends, Mr. David Skerrett, Mrs. Rochelle McCredie, Dr. Antonio Lee, and Dr. Jason Bruggemann, who have individually provided much needed encouragement.

To my dear wife Dr. Sook Ling Leong and my immediate, and extended families, I thank you for believing in me and for supporting me throughout my studies.

List of Related Publications

S Som, BF Hutton, and M Braun, "Properties of minimum cross-entropy reconstruction of emission tomography with anatomically based prior," *IEEE Trans. Nucl. Sci*, **45**:3014-3021, 1998.

Table of Contents

Declaration of Originality	i
Acknowledgements	ii
List of Related Publications	iii
Abstract	vii
Chapter 1 Introduction to Single Photon Emission Computed Tomography	1
1.1 Motivation for This Work	3
1.2 Physical Limitations of Single Photon Emission Computed Tomography	4
1.2.1 Collimator Blurring	5
1.2.2 Sensitivity and Resolution	6
1.2.3 Partial-Volume Effects	8
1.3 Photon Attenuation and Scatter	8
1.4 Noise	9
1.5 Structure of the Thesis	10
Chapter 2 Reconstruction Methods in Emission Tomography	12
2.1 Filtered Back Projection (FBP) Reconstruction	13
2.2 Algebraic Reconstruction	18
2.3 Maximum Likelihood-Expectation Maximisation (ML-EM) Estimation	24
2.3.1 Acceleration of ML-EM Estimator	28
2.3.2 Noise, Regularisation, and Bias in Iterations	29
2.4 Bayesian Estimation with Prior	30
2.4.1 One-Step-Late (OSL) Implementation of Bayesian Estimator	30
2.4.2 Gibbs Prior	33
2.4.2.1 Clique Potential Functions	35
2.4.2.2 Line Sites and Anatomical Prior	41
2.4.3 Mechanical Prior	48
2.4.4 Median Root Prior	51
2.4.5 Gaussian Prior	54

2.4.6 Gamma Prior	55
2.5 Concluding Remarks	57
Chapter 3 Minimum Cross-Entropy (MXE) Reconstruction of SPECT Images	60
3.1 Minimising Cross-Entropy	60
3.2 Smoothness Constraints for Cross-Entropy Prior	66
3.2.1 Smoothing Filters	66
3.2.2 Edge-Preserving Smoothing Filters and Anatomical A Priori Information	68
3.3 Investigation of the Performance of a MXE Algorithm	70
3.3.1 Evaluation Methodology	71
3.3.1.1 Computer Generated Test Data	71
3.3.1.2 Measures of Reconstruction Quality	74
3.3.1.3 Projection Data and Image Reconstruction Set-Up	77
3.3.2 Results	77
3.3.2.1 Influence of Regularisation Parameter β	89
3.3.2.2 Influence of Edge Preservation Parameter α	92
3.3.2.3 Influence of Gaussian Width	95
3.3.2.4 Influence of Depth Dependent Resolution Compensation	98
3.3.2.5 Influence of Ordered Subset Implementation	100
3.3.2.6 A Problem Associated with Mismatching A Priori Information	103
3.4 Concluding Remarks	107
Chapter 4 Preservation of Edges in MXE Reconstruction with an Improved Prior	110
4.1 A New Smoothness Prior	110
4.1.1 Sigmoid Weighting of the Smoothing Kernel	112
4.1.2 Adaptation to Functional Edges	114
4.2 Properties of MXE Algorithm with the New Smoothness Prior	116
4.2.1 Influence of Prior Parameters α and ε	121
4.2.2 Influence of Sigmoid Parameters	132
4.3 Concluding Remarks	140
Chapter 5 MXE Reconstruction of Clinical Brain SPECT Images	142
5.1 Material and Methods	143

5.2 ROC Analysis	148
5.3 ROI Analysis	153
5.4 Concluding Remarks	164
Chapter 6 Summary and Future Directions	169
6.1 Summary	169
6.2 Future Directions	178
References	182

Abstract

It is common in modern medical imaging practice to correlate scans of a patient from different imaging modalities to improve accuracy of the clinical diagnosis. In nuclear medicine, it is becoming possible to enhance image quality and improve quantitative accuracy of single photon emission computed tomography (SPECT) by making use of image data provided by anatomical modalities, such as magnetic resonance imaging (MRI), in the reconstruction of SPECT images. This thesis explores and improves one such reconstruction method, the minimum cross-entropy (MXE) algorithm.

MXE is an iterative reconstruction algorithm which permits the incorporation of *a priori* information, such as anatomical edges obtained from MRI scans of the same subject. Like most Bayesian reconstruction algorithms, MXE suppresses noise and preserves edges in the reconstructed images, thereby improving edge resolution, signal to noise ratio, and accuracy of reconstruction. The use of an anatomical prior, however, only preserves anatomical edges in the reconstructed images. Furthermore, when anatomical edges in MRI scans of the same subject do not match the functional/physiological edges in the current estimate of the radionuclide distribution, it may result in blurring of the functional edges. This problem is overcome by incorporating functional edge information from the current estimate of the radionuclide distribution as a component of the MXE prior. The main challenge of this thesis is to determine the balance between anatomical and functional priors that optimises the quality of reconstruction.

A number of phantom studies were performed to investigate the performance of the MXE algorithm incorporating both anatomical information and a proposed additional prior that preserves high contrast edges in the emission data that may not coincide with anatomical edges. MXE reconstructions compared favourably with conventional maximum likelihood-expectation maximisation (ML-EM) reconstructions. MXE reconstructions not only produced images with lower noise levels and sharper edges but also generated higher recovery coefficient values when compared to the "noise-equivalent" ML-EM reconstructions. MXE reconstruction requires more iterations for a "noise-equivalent" ML-EM reconstruction, however ordered subset implementation provided acceleration that was found to cause no measurable degradation to the

reconstructed images. The phantom studies provided insight to the parameter values that should be used for optimal reconstruction.

The MXE algorithm was further assessed in a retrospective clinical study of patients with focal epilepsy where subtle changes in cerebral perfusion between seizures provided a useful model for evaluation that could be verified in ictal studies. Again, MXE compared favourably to ML-EM and also to filtered back projection (FBP). Detection of inter-ictal perfusion abnormalities was evaluated using receiver operating characteristic (ROC) analysis where MXE appeared superior to ML-EM and FBP, although the difference in areas under the ROC curves was not statistically significant. Wilcoxon's matched-pairs signed-ranked tests from region of interest analysis, however, did indicate significant differences in favour of MXE. This study is the first demonstration that MXE reconstruction with priors can influence clinical interpretation.

Evidence is provided to support the use of the MXE algorithm as a useful reconstruction technique that easily incorporates prior information from multiple sources.