Modelling the Properties of Gold Nanoparticles

A Thesis presented for the degree of Doctor of Philosophy

by

Benjamin Jean-Sébastien Soulé de Bas B. Sc. (Eng.): Université de Technologie de Compiègne M. Sc. (Mat. Sci. & Eng.): Virginia Tech

> Institute for Nanoscale Technology Faculty of Science University of Technology, Sydney

> > September 2005

Certificate of Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in this thesis.

> Production Note: Signature removed prior to publication.

Benjamin J.-S. Soulé de Bas

Acknowledgements

First of all, I would like to thank my supervisor, Associate Professor Michael Ford, for his limitless availability, patience and guidance that made this work possible. I am also grateful to Mike for giving me the opportunity to present my thesis work at several international conferences, which in addition to being of great standard, took place at exciting locations. I would like to thank my cosupervisor, Professor Michael Cortie, for sharing his experience and expertise on gold as well as being a constant source of encouragement. I am also indebted to Dr Carl Masens who has been of great help in getting me started with SIESTA.

I would like to acknowledge the friendship and assistance of my fellow research students in the Institute for Nanoscale Technology (INT): Burak Cankurtarn, Nadine Harris, Rainer Hoft, Donald McLurcan, Enid Mahomudally, Dakrong Pissuwan, Dean Wu and Xiaoda (David) Xu. Special thanks to Rainer for the many fruitful discussions about quantum chemistry and to David for always helping me with my Microsoft-related problems.

I am grateful to the University of Technology, Sydney (UTS) for the receipt of an International Postgraduate Research Scholarship (IPRS) and stipend from the Faculty of Science.

I would like to express my gratitude to my parents, Marie-Paule and Pierre-Jacques Soulé de Bas, and to my godfather, Jean Bulf, for having been very supportive throughout my entire education.

Finally and most of all, I would like to thank Jacqueline for her outstanding support and understanding that have been essential at the most stressful times.

Contents

Ce	ertifi	cate of	f Originality	i
A	ckno	wledge	ements	ii
G	lossa	ry of A	Acronyms	xix
A۱	bstra	ict		xxi
1	Intr	oduct	ion	1
	1.1	Motiv	ation for the Current Work	1
	1.2	Backg	round	4
		1.2.1	Structure of Gold Clusters	4
		1.2.2	Thermal Behaviour of Small Gold Clusters	7
		1.2.3	Adsorption of Gold Cluster on MgO	10
	1.3	Preser	at Study	14
2	$Th\epsilon$	eory		17
	2.1	Ab In	<i>itio</i> Methods	17
		2.1.1	Schrödinger Equation	17
		2.1.2	Hartree Theory	19
		2.1.3	Hartree-Fock Theory	21
		2.1.4	Post Hartree-Fock Theories	24
	2.2	Densit	ty Functional Theory	27
		2.2.1	Thomas-Fermi Theory	27
		2.2.2	Hohenberg-Kohn Theorems	29
		2.2.3	Kohn-Sham equations	32

CONTENTS

		2.2.4	Exchange-Correlation Functionals
		2.2.5	Basis Set Expansion
		2.2.6	Pseudopotential Approximation
		2.2.7	Software and Hardware
		2.2.8	Molecular Dynamics
	2.3	Empir	ical Search of the Potential Energy Surface
		2.3.1	Simulated Anneal
		2.3.2	Interatomic Potentials
3	Vali	idation	55
	3.1	Pseud	opotentials $\ldots \ldots 55$
		3.1.1	Au Pseudopotential
		3.1.2	Mg and O Pseudopotentials
	3.2	Input	Parameters
		3.2.1	Mesh-Cutoff
		3.2.2	Orbital Confinement
		3.2.3	k-Point Sampling
		3.2.4	Unit Cell Dimensions
		3.2.5	MgO Slab Dimensions
		3.2.6	Molecular Dynamics Timestep
		3.2.7	Thermal Inertia Parameter
	3.3	Au an	d MgO Bulk
		3.3.1	Lattice Parameters
		3.3.2	Cohesive Energies
		3.3.3	Bulk Modulii
	3.4	Au_2 .	
4	Stru	icture	of Gold Clusters 84
	4.1	Metho	d
	4.2	Potent	ial Energy Surface
		4.2.1	$Au_3 \ldots 85$
		4.2.2	$Au_4 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
		4.2.3	$Au_5 \ldots 92$

	4.3	DFT Structure Relaxation	5
		4.3.1 Structure of Small Clusters: Au_6 to Au_{19} 9	5
		4.3.2 Structure of Mid-Size Clusters: Au_{20} to Au_{38} 10	1
	4.4	Trends in Binding Energy and Electronic Structure 10	6
	4.5	Conclusions	1
5	$\mathrm{Th}\epsilon$	ermal Behaviour of Gold Clusters 11	2
	5.1	Method	2
	5.2	Molecular Dynamics Simulations of Au_7	6
		5.2.1 Pentagonal Bipyramid	6
		5.2.2 Capped Triangle	9
		5.2.3 Analysis of Au_7 Thermal Behaviour	3
	5.3	Molecular Dynamics Simulations of Au_{13}	5
		5.3.1 Ground-State Structure	5
		5.3.2 Icosahedron $\ldots \ldots 12$	7
		5.3.3 Analysis of Au_{13} Thermal Behaviour $\ldots \ldots \ldots \ldots \ldots 13$	0
	5.4	Molecular Dynamics Simulations of Au_{20}	1
		5.4.1 Tetrahedron $\ldots \ldots 13$	1
		5.4.2 Disordered Structure $\ldots \ldots 13$	3
		5.4.3 Analysis of Au_{20} Thermal Behaviour $\ldots \ldots \ldots \ldots \ldots 13$	4
	5.5	Conclusions	8
6	Ads	sorption of Gold Cluster on MgO 13	9
	6.1	Method	9
	6.2	Molecular Dynamics Simulations of Au_{20} on MgO $\ldots \ldots \ldots 14$	0
	6.3	Search for the Au_{20}/MgO Adsorption Geometry	5
	6.4	Detailed Analysis of the Au ₂₀ - MgO Interaction 15	1
	6.5	F_{s} -Centre Modelling	2
	6.6	Search for the $Au_{20}/MgO(F_S)$ Adsorption Geometry 16	4
	6.7	Detailed Analysis of the Au_{20} - $MgO(F_S)$ Interaction 16	8
	6.8	Conclusions	8
7	Con	nclusions 18	0

A	Ordered Structures	183
В	Semi-Empirical Minima	185
	B.1 Lennard-Jones Clusters	185
	B.2 Gupta Clusters	187
С	DFT Energy Tables	189
	C.1 Total Energies	189
	C.2 HOMO-LUMO Energies	191
D	Bond-Length Fluctuation Curves	192
	D.1 Au ₇ Pentagonal Bipyramid	192
	D.2 Au ₇ Capped Triangle	195
	D.3 Au_{13} Ground-State Structure	198
	D.4 Au_{13} Icosahedron	201
	D.5 Au_{20} Tetrahedron	204
	D.6 Au_{20} Disordered Structure	207
\mathbf{E}	MD Simulation of Au_{20} on MgO	209
\mathbf{F}	Publication Report	212
	F.1 Journal Articles	212
	F.2 Poster Presentation	212
	F.3 Oral Presentation	212

List of Figures

2.1	Schematic illustration of all-electron wavefunction and potential	
	(red lines) and their pseudo counterparts (blue lines)	43
2.2	DFT total energy of Au_2 as a function of interatomic distance.	
	The total energy of Au_2 was shifted by 1795.700 eV for the fitting	
	procedure	53
3.1	Au Pseudopotential for $l = 0. \ldots \ldots \ldots \ldots \ldots \ldots$	57
3.2	Au Pseudopotential for $l = 1$	58
3.3	Au Pseudopotential for $l = 2$	58
3.4	Au Pseudopotential for $l = 3. \ldots \ldots \ldots \ldots \ldots \ldots$	59
3.5	Mg Pseudopotential for $l = 0, \ldots, \ldots, \ldots, \ldots, \ldots$	60
3.6	Mg Pseudopotential for $l = 1, \ldots, \ldots, \ldots, \ldots, \ldots$	61
3.7	Mg Pseudopotential for $l = 2. \ldots \ldots \ldots \ldots \ldots \ldots$	61
3.8	Mg Pseudopotential for $l = 3. \ldots \ldots \ldots \ldots \ldots \ldots$	62
3.9	O Pseudopotential for $l = 0, \ldots, \ldots, \ldots, \ldots, \ldots$	62
3.10	O Pseudopotential for $l = 1, \ldots, \ldots, \ldots, \ldots, \ldots$	63
3.11	O Pseudopotential for $l = 2. \dots \dots \dots \dots \dots \dots \dots \dots \dots$	63
3.12	O Pseudopotential for $l = 3. \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	64
3.13	Au_7 total energy (a) and computation time (b) as a function of	
	mesh-cutoff	65
3.14	Au_{13} total energy (a) and computation time (b) as a function of	
	mesh-cutoff	66
3.15	Au_{20} total energy (a) and computation time (b) as a function of	
	mesh-cutoff	66

3.16	Au_{30} total energy (a) and computation time (b) as a function of	
	mesh-cutoff	67
3.17	Au_{38} total energy (a) and computation time (b) as a function of	
	mesh-cutoff	67
3.18	5 layer (100) MgO slab total energy as a function of mesh-cutoff	68
3.19	Au_{20} interaction energy (a), computation time (b) and memory	
	use (c) as a function PAO.EnergyShift	69
3.20	5 layer (100) MgO slab total energy (a) and computation time (b)	
	as a function of k-point sampling	71
3.21	Au ₁₁ total energy as a function of multiplication factor $f_{\rm d}$	72
3.22	Au_{20} total energy as a function of multiplication factor f_d	72
3.23	Au ₃₀ total energy as a function of multiplication factor $f_{\rm d}$	73
3.24	Au ₃₈ total energy as a function of multiplication factor $f_{\rm d}$	73
3.25	Au_{20} total energy as a function of unit cell side l_d	74
3.26	Au_{20} interaction energy (a) and computation time (b) as a function	
	of (100) MgO slab number of layers	75
3.27	Extended system total energy as a function of time	76
3.28	Temperature of the system as a function of MD step	77
3.29	Total energy as a function of lattice parameter of Au (a) and MgO	
	(b)	79
3.30	Illustration of the Au atom surrounded by 42 Au-ghost atoms	80
3.31	Illustration of the Mg/O atom surrounded by 38 O/Mg-ghost and $$	
	18 Mg/O-ghost atoms	80
3.32	Cohesive energy as a function of unit cell volume of Au (a) and	
	MgO (b)	81
4.1	Au ₃ potential energy surface. The colour scale ranges from blue,	
	which represents low-energy regions, through cyan, green, yellow,	
	orange and finally red, which represents high-energy regions. The	
	upward (\triangle) and downward (\bigtriangledown) facing triangles indicate the loca-	
	tion of a saddle point and two local minima, respectively	86

- 4.2 Au₃ partial potential energy surface. The colour scale ranges from blue, which represents low-energy regions, through cyan, green, yellow, orange and finally red, which represents high-energy regions. The upward (△) and downward (▽) facing triangles indicate the location of a saddle point and two local minima, respectively. 87
- 4.3 Au₄ partial potential energy surface between the square structure and the planar rhombus. The colour scale ranges from blue, which represents low-energy regions, through cyan, green, yellow, orange and finally red, which represents high-energy regions. The downward facing triangle (\bigtriangledown) indicates the location of the minimum. 89
- 4.4 Au₄ partial potential energy surface between the Y-shaped structure and the planar rhombus. The colour scale ranges from blue, which represents low-energy regions, through cyan, green, yellow, orange and finally red, which represents high-energy regions. The upward (△) and downward (▽) facing triangles indicate the location of a saddle point and two local minima, respectively. 90

4.9	Low energy structures of Au_6 to Au_{10} . The clusters with letter	
	indices correspond to isomers. ΔE is the difference in total energy	
	(eV/atom) between the isomer and the ground-state structure	96
4.10	Low energy structures of Au_{11} to Au_{15} . The clusters with letter	
	indices correspond to isomers. ΔE is the difference in total energy	
	(eV/atom) between the isomer and the ground-state structure	99
4.11	Low energy structures of Au_{16} to Au_{19} . The clusters with letter	
	indices correspond to isomers. ΔE is the difference in total energy	
	(eV/atom) between the isomer and the ground-state structure	100
4.12	Low energy structures of Au_{20} to Au_{25} . The clusters with letter	
	indices correspond to isomers. ΔE is the difference in total energy	
	(eV/atom) between the isomer and the ground-state structure	102
4.13	Low energy structures of Au_{26} to Au_{32} . The clusters with letter	
	indices correspond to isomers. ΔE is the difference in total energy	
	(eV/atom) between the isomer and the ground-state structure	104
4.14	Low energy structures of Au_{33} to Au_{38} . The clusters with letter	
	indices correspond to isomers. ΔE is the difference in total energy	
	(eV/atom) between the isomer and the ground-state structure	105
4.15	Bulk relative total energy $E_{\rm R}(n)$ (eV/atom) as a function of cluster	
	size	107
4.16	Second differences in energy $\Delta^2 E(\mathbf{n})$ (eV/atom) as a function of	
	cluster size.	108
4.17	HOMO-LUMO energy $E_{\text{H-L}}(n)$ (eV) as a function of cluster size.	109
5.1	An bipprovid bond length fluctuation $\delta(a)$ time averaged gra	
0.1	dight of bond length fluctuation $\langle d\delta \rangle$ (b) and total energy (c) as a	
	then of bond-length internation (ao) (b) and total energy (c) as a function of temperature	117
5.9	Structural isomers of Au lying close in operative to the bingramid	117
0.2	structural isomers of Au ₇ lying close in energy to the oppyramid	118
53	Au ₋ capped triangle bond length fluctuation $\delta(a)$ time averaged	110
0.0	aradiant of bond longth fluctuation $d\delta$ (b) and total energy (c)	
	gradient of bond-length futuration (ab) (b) and total energy (c) as a function of temperature	190
		120

5.4	Au_7 capped triangle atomic rearrangement (a) and isomerisation	
	process (b)	121
5.5	Illustration of the Au ₇ bipyramid atomic vibrations at $\omega = 50.6$	
	(a), 52.0 (b) and 52.6 (c) cm^{-1} . The amplitudes of the largest	
	displacement are 0.71 Å at 50.6 cm ⁻¹ (a), 0.52 Å at 52.0 cm ⁻¹ (b)	
	and 0.71 Å at 52.6 cm ⁻¹ (c)	124
5.6	Au ₁₃ ground-state structure bond-length fluctuation δ (a), time	
	averaged gradient of bond-length fluctuation $\langle d\delta \rangle$ (b) and total	
	energy (c) as a function of temperature	126
5.7	Structural isomers of Au_{13} lying close in energy to the ground-state	
	structure.	127
5.8	Au ₁₃ icosahedron bond-length fluctuation δ (a), time averaged gra-	
	dient of bond-length fluctuation $\langle d\delta \rangle$ (b) and total energy (c) as a	
	function of temperature. \ldots	128
5.9	Illustration of the Au_{13} ground-state structure atomic vibrations	
	at $\omega = 34.7 \text{ cm}^{-1}$. The amplitude of the largest displacement is	
	0.43 Å	131
5.10	Au ₂₀ tetrahedron bond-length fluctuation δ (a), time averaged gra-	
	dient of bond-length fluctuation $\langle d\delta\rangle$ (b) and total energy (c) as a	
	function of temperature	132
5.11	Au ₂₀ disordered structure bond-length fluctuation δ (a), time aver-	
	aged gradient of bond-length fluctuation $\langle d\delta \rangle$ (b) and total energy	
	(c) as a function of temperature. \ldots \ldots \ldots \ldots \ldots \ldots	135
5.12	Structural isomers of Au_{20}	136
5.13	Illustration of the Au ₂₀ tetrahedron atomic vibrations at $\omega = 31.6$	
	(a), 34.6 (b) and 36.9 (c) cm ^{-1} . The amplitudes of the largest	
	displacement are 0.51 Å at 31.6 cm ⁻¹ (a), 0.41 Å at 34.6 cm ⁻¹ (b)	
	and 0.43 Å at 36.9 cm ⁻¹ (c)	137
6.1	Bond-length fluctuation δ of MgO-supported and unsupported Au ₂₀	
	tetrahedron as a function of MD steps	142

(5.2	Initial geometry of Au_{20} on (100) MgO (simulation with initial	
		temperature $T_{\rm ini} = 900$ K). The green atoms correspond to Mg and	
		the red atoms to O. The same convention will be used throughout	
		the rest of the thesis	143
(5.3	Geometry of Au_{20} on (100) MgO after 1000 MD steps (simulation	
		with $T_{\rm ini} = 900$ K)	143
(5.4	Geometry of Au_{20} on (100) MgO after 2000 MD steps (simulation	
		with $T_{\rm ini} = 900$ K)	144
(5.5	Geometry of Au_{20} on (100) MgO after 3000 MD steps (simulation	
		with $T_{\rm ini} = 900$ K)	144
(6.6	Geometry of Au_{20} on (100) MgO after 4000 MD steps (simulation	
		with $T_{\rm ini} = 900$ K)	145
(3.7	Graphic representation of the (100) MgO surface primitive cell.	
		The green atoms correspond to Mg and the red atoms to O. $$	146
(5.8	Most favourable adsorption geometry of Au_{20} on the (100) MgO	
		surface. Only three MgO atomic layers are represented in the side	
		view for clarity. \ldots	149
(5.9	Illustration of Au_{20} absorbed on an edge perpendicularly to the	
		(100) MgO Surface. Only three MgO atomic layers are represented	
		for clarity	150
(6.10	Illustration of Au_{20} absorbed on a corner atom perpendicularly	
		to the (100) MgO Surface. Only three MgO atomic layers are	
		represented for clarity	150
6	6.11	Optimum adsorption geometry of Au_{20} on the (100) MgO surface.	
		Only three MgO atomic layers are represented in the side view for	
		clarity	153
6	5.12	Atomic distances from the centre of mass of the MgO-supported	
		and unsupported Au_{20} tetrahedron	153
6	5.13	Overlap population $P_{MgO}(e)$ between the Mg and O atoms located	
		in the top layer of the (100) MgO slab. \ldots \ldots \ldots \ldots	155
6	5.14	Overlap population $P_{Au}(e)$ between the Au atoms located in the	
		basal plane of the Au_{20} tetrahedron	155

6.15	Overlap population between the Mg, O and Au atoms located at	
	the Au_{20}/MgO interface	156
6.16	Mulliken charge differences $(10^{-2} e)$ of the Mg and O atoms located	
	in the top layer of the MgO slab ($ dQ_{\text{Mull}} < 0.01 \ e$ not reported).	157
6.17	Mulliken charge differences $(10^{-2} e)$ of the Au atoms located in	
	the basal plane of the tetrahedron	157
6.18	Mulliken charge differences $(10^{-2} e)$ of the Au atoms located in	
	the second layer of the tetrahedron	157
6.19	Mulliken charge differences $(10^{-2} e)$ of the Au atoms located in	
	the third layer of the tetrahedron	157
6.20	Mulliken charge differences $(10^{-2} e)$ of the Au atom located at the	
	top of the tetrahedron	157
6.21	(011) schematic representation of the charge density difference	
	cross sections	159
6.22	Charge density difference cross section $1. \ldots \ldots \ldots$	159
6.23	Charge density difference cross section 2	160
6.24	Charge density difference cross section 3	160
6.25	Charge density difference cross section 4	161
6.26	Charge density difference cross section 5	161
6.27	Representation of the initial (100) $MgO(F_S)$ slab. The green and	
	red atom correspond to unconstrained Mg and O atoms, respec-	
	tively. The grey atoms correspond to fixed atoms	163
6.28	Representation of the optimised $Mg_{25}O_{13}$ embedded 'cluster \ldots	163
6.29	Cross section of the charge density difference $\rho_{\rm MgO(F_S)}$ - $\rho_{\rm MgO(O_{Vac})}$	
	at the $MgO(F_S)$ surface.	163
6.30	Graphic representation of the Au_{20} basal plane containing non-	
	equivalent face-centre (Fc), corner (C) and edge (E) atoms	165

6.31	Relative energies of the $Au_{20}/MgO(F_S)$ system for Au_{20} centred
	on a basal face-centre (Fc), corner and edge atom as a function of
	rotation angle with $z_{Au_{20}} = 2.25$ (a), 2.50 (b) and 2.75 (c) Å. The
	total energy of the system with Au_{20} centred on an edge atom and
	rotated by 45° at $z_{Au_{20}} = 2.50$ Å (i.e. the 0 eV value) is -91703.855
	eV
6.32	Most favourable adsorption geometry of Au_{20} on the (100) MgO(F _S)
	surface. Only three MgO atomic layers are represented in the side
	view for clarity
6.33	Optimum geometry of Au_{20} on the (100) MgO(F _S) surface 169
6.34	Atomic distances from the centre of mass of the $MgO(F_S)$ -supported
	and unsupported Au_{20} tetrahedron
6.35	Overlap population between the Mg and O atoms located in the
	top layer of the (100) MgO(F _S) slab
6.36	Overlap population between the Au atoms located in the basal
	plane of the Au_{20} tetrahedron supported on the (100) MgO(F _S) slab.171
6.37	Overlap population between the Mg, O and Au atoms located at
	the $Au_{20}/MgO(F_S)$ interface
6.38	Mulliken charge differences $(10^{-2} e)$ of the Mg and O atoms lo-
	cated in the top layer of the MgO(F _S) slab ($ dQ_{\text{Mull}} < 0.01 \ e \text{ not}$
	reported)
6.39	Mulliken charge differences $(10^{-2} e)$ of the Au atoms located in
	the basal plane of the tetrahedron $(dQ_{\text{Mull}} < 0.01 \ e \text{ not reported}).$ 173
6.40	Mulliken charge differences $(10^{-2} e)$ of the Au atoms located in
	the second layer of the tetrahedron
6.41	Mulliken charge differences $(10^{-2} e)$ of the Au atoms located in
	the third layer of the tetrahedron
6.42	Mulliken charge differences $(10^{-2} e)$ of the Au atom located at the
	top of the tetrahedron. $\dots \dots \dots$
6.43	(011) schematic representation of the charge density difference
	cross sections. The white atom corresponds to the $\mathrm{F}_{\mathrm{S}}\text{-centre.}$ 175
6.44	Charge density difference cross section 1

6.45	Charge density difference cross section 2	176
6.46	Charge density difference cross section 3	176
6.47	Charge density difference cross section 4	177
6.48	Charge density difference cross section 5	177
A.1	Cube	183
A.2	$Cuboctahedron. \dots \dots$	183
A.3	Decahedron	183
A.4	Pentagonal Dodecahedron	183
A.5	Rhombic Dodecahedron	184
A.6	Icosahedron	184
A.7	Octahedron	184
A.8	Pentagonal Bipyramid	184
A.9	Tetrahedron	184
B.1	Au_3 to Au_{10} Lennard-Jones ground structures	185
B.2	Au_{11} to Au_{30} Lennard-Jones ground structures. $\hfill\h$	186
B.3	Au_{20} to Au_{30} <i>n</i> -body Gupta ground structures	187
B.4	Au ₃₁ to Au ₃₈ <i>n</i> -body Gupta ground structures. \ldots \ldots \ldots	188
D 1	Long simulation bond longth fluctuation δ as a function of MD	
D.1	stop at various tomporatures (K)	102
D 9	Series 1 bond length fluctuation δ as a function of MD stop at	192
D.2	Series 1 bond-length indetuation σ as a function of MD step at	102
D 3	Various temperatures (K)	190
D.0	Series 2 bond-length intertuation δ as a function of MD step at	102
D_{4}	Various temperatures (K)	190
D.4	Series 5 bond-length intertuation δ as a function of MD step at	104
DE	Various temperatures (K). \ldots	194
D.0	Long simulation bond-length nuctuation δ as a function of MD stop at maximum formations (K)	105
DC	Step at various temperatures (K)	190
D.0	Series 1 bond-length nucluation δ as a function of MD step at	100
	various temperatures (K).	190
D.7	Series 2 bond-length fluctuation δ as a function of MD step at	100
	various temperatures (K)	196

D.8 Series 3 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	197
D.9 Long simulation bond-length fluctuation δ as a function of MD	
step at various temperatures (K)	198
D.10 Series 1 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	199
D.11 Series 2 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	199
D.12 Series 3 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	200
D.13 Long simulation bond-length fluctuation δ as a function of MD	
step at various temperatures (K)	201
D.14 Series 1 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	202
D.15 Series 2 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	202
D.16 Series 3 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	203
D.17 Long simulation bond-length fluctuation δ as a function of MD	
step at various temperatures (K)	204
D.18 Series 1 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	205
D.19 Series 2 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	205
D.20 Series 3 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	206
D.21 Series 1 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	207
D.22 Series 2 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	208
D.23 Series 3 bond-length fluctuation δ as a function of MD step at	
various temperatures (K).	208

E.1	Initial geometry of Au_{20} on (100) MgO (simulation with initial	
	temperature $T_{\rm ini} = 905$ K)	209
E.2	Geometry of Au_{20} on (100) MgO after 1000 MD steps (simulation	
	with $T_{\rm ini} = 905$ K)	210
E.3	Geometry of Au_{20} on (100) MgO after 2000 MD steps (simulation	
	with $T_{\rm ini} = 905$ K)	210
E.4	Geometry of Au_{20} on (100) MgO after 3000 MD steps (simulation	
	with $T_{\rm ini} = 905$ K)	211
E.5	Geometry of Au_{20} on (100) MgO after 4000 MD steps (simulation	
	with $T_{\rm ini} = 905$ K)	211

List of Tables

3.1	Au bulk parameters: cohesive energy $E_{\rm c}$ (eV), lattice parameter	
	a_0 (Å) and bulk modulus B (GPa)	81
3.2	Au ₂ parameters: binding energy $E_{\rm b}$ (eV), bond length $r_{\rm e}$ (Å) and	
	vibration frequency ω (cm ⁻¹)	83
6.1	Equivalence between the various positions of Au_{20} on (100) MgO	
	surface. NE stands for Non-Equivalent	146
6.2	Relative energy of Au_{20} on (100) MgO in distinct adsorption con-	
	figurations with $z_{Au_{20}} = 2.25$ Å	148
6.3	Relative energy of Au_{20} on (100) MgO in distinct adsorption con-	
	figurations with $z_{Au_{20}} = 2.50$ Å. The total energy of the system	
	with Au_{20} centred on site 12 and rotated by 15° is -92142.760 eV.	148
6.4	Relative energy of Au_{20} on (100) MgO in distinct adsorption con-	
	figurations with $z_{Au_{20}} = 2.75$ Å	148
B.1	Gupta [1] energy (eV) of Au_n with $n=20$ to 38 atoms	188
C.1	DFT total energies (eV/atom) of Au_{n} with $\mathrm{n}=3$ to 19 atoms	189
C.2	DFT total energies (eV/atom) of Au_n with $n = 20$ to 38 atoms.	
	The bulk total energy E_{bulk} used in equation 4.1 is equal to -904.101	
	eV/atom	190
C.3	HOMO-LUMO energies (eV) of Au_n with $n=3$ to 38 atoms	191

Glossary of Acronyms

AE All-Electron

BSSE Basis Set Superposition Error

- CC Coupled Cluster
- CCSD Coupled Cluster with Singles and Doubles
 - CG Conjugate Gradient
 - CI Configuration Interaction with Singles and Doubles
- CISD Configuration Interaction
 - CM Centre of Mass
 - CP Counterpoise Correction
- DFT Density Functional Theory
- DZP Double- ζ plus Polarisation
- EAM Embedded Atom Model
 - FC Force Constant
 - F_S Surface F-centre
- GGA Generalised Gradient Approximation
- HOMO Highest Occupied Molecular Orbital
- LAPW Linear Augmented Plane Wave
- LCAO Linear Combination of Atomic Orbitals
 - LDA Local Density Approximation
 - LJ Lennard-Jones
- LMTO Linear Muffin-Tin Orbitals
- LSDA Local Spin Density Approximation

- LUMO Lowest Unoccupied Molecular Orbital
 - MD Molecular Dynamics
 - MP2 Second-Order Møller-Plesset
 - PES Potential Energy Surface
 - PS Pseudopotential
 - PW Plane Wave
 - SA Simulated Anneal
- TB-SMA Tight-Binding Second Moment Approximation
 - TPR Temperature Programmed Reaction

Abstract

The physical and chemical properties of gold nanoparticles were investigated using first-principles density-functional theory in the local density approximation. The low-energy structures of gold nanoparticles containing from 3 to 38 atoms were determined using a combination of semi-empirical potential and DFT calculations. At the DFT-LSDA level, planar structures persist up to Au_6 and lie close in energy to the 3D ground-state structures for $7 \le n \le 10$ atoms. Ordered structures are predicted as being stable for $n \leq 9$. Beyond this size, disordered structures dominate with the notable exception of the tetrahedral Au_{20} . The present DFT calculations predict numerous structural isomers being energetically equivalent or lying close in energy to the ground-state structures. The HOMO-LUMO energy gap is found to decrease as the cluster size increases, which indicates a transition towards a metallic behaviour at larger sizes. The thermal behaviour of gold clusters containing 7, 13 and 20 atoms was investigated using isothermal density-functional molecular-dynamics simulations. At each size, the global minimum energy structure and a low lying isomer are used as the starting structures. In most cases, the clusters exhibit high-temperature melting without showing any sharp transition from a solid-like to a liquid-like phase, but rather pass through a region of transformation between structural isomers. The starting structure used in the simulation is shown to have a considerable effect upon the subsequent thermal behaviour. The Au_{20} ground-state structure contrasts with the other clusters and remains tetrahedral up to its melting at about 1200 K. The adsorption of Au_{20} on a regular and defective (100) MgO surface was investigated using a combination of DFT MD simulations, single-point calculations and structure optimisations. Au_{20} is found to bind quite weakly to the regular (100) MgO surface, favouring Au-O interactions. The Mulliken population analysis used in conjunction with charge density maps reveals that the resulting bond mainly arises from an electrostatic polarisation of the cluster by the substrate. When adsorbed on a surface F-centre defect, Au_{20} binds to the oxide surface with a significantly enhanced strength. The analysis of the resulting interaction indicates that, in addition to being polarised, Au_{20} is charged by the defective surface. Based upon the results of the present investigation, different reaction mechanisms for the oxidation of CO by Au_{20} supported on MgO are proposed.