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ABSTRACT 

An adverse in-utero environment is increasingly recognized to predispose to chronic disease in 

adulthood. Maternal smoking remains the most common modifiable adverse in-utero exposure 

leading to low birth weight, which is strongly associated with chronic kidney disease (CKD) in later 

life. In order to investigate underlying mechanisms for such susceptibility, female Balb/c mice were 

sham or cigarette smoke-exposed (SE) for 6 weeks before mating, throughout gestation and 

lactation. Offspring kidneys were examined for oxidative stress, expression of mitochondrial 

proteins, mitochondrial structure as well as renal functional parameters on postnatal day 1, day 20 

(weaning) and week 13 (adult age). From birth throughout adulthood, SE offspring had increased 

renal levels of mitochondrial-derived reactive oxygen species (ROS), which left a footprint on DNA 

with increased 8-Hydroxydeoxyguanosin (8-OHdG) in kidney tubular cells. Mitochondrial 

structural abnormalities were seen in SE kidneys at day 1 and week 13 along with a reduction in 

oxidative phosphorylation (OXPHOS) proteins and activity of mitochondrial antioxidant 

Manganese superoxide dismutase (MnSOD). Smoke exposure also resulted in increased 

mitochondrial DNA copy number (day 1-week 13) and lysosome density (day 1 and week 13). The 

appearance of mitochondrial defects preceded the onset of albuminuria at week 13. Thus, 

mitochondrial damage caused by maternal smoking may play an important role in development of 

CKD at adult life. 
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1. INTRODUCTION 

The theory of fetal programming which links chronic adulthood diseases to adverse conditions in 

early life is an intriguing concept, which is increasingly recognized. Low birth weight is a surrogate 

marker for such unfavorable conditions in-utero and is strongly associated with development of 

chronic kidney disease (CKD) in later life (White et al., 2009). The prevalence of end-stage kidney 

disease continues to increase (Coresh et al., 2007) and is not always explained by traditional risk 

factors. In fact, it often remains unclear why the rate of CKD progression shows substantial 

variation from patient to patient even among individuals with similar comorbidities. Although a 

reduced nephron endowment has been implicated (Brenner et al., 1988, Hoy et al., 2005) the 

underlying molecular mechanisms for fetal programming of adult onset kidney disease are largely 

unknown. 

Maternal smoking remains the most common modifiable adverse fetal exposure leading to low birth 

weight and other adverse fetal outcomes (Andres and Day, 2000, Jaddoe et al., 2008). Despite a 

recent decrease in smoking rates in developed countries, according to the 2010 Pregnancy Risk 

Assessment and Monitoring System (PRAMS) data from 27 states in the United States 

approximately 10.7% of women reported smoking during the last three months of pregnancy (Tong 

et al., 2013). Epidemiological studies have shown that maternal smoking alters the in-utero growth 

pattern of kidneys and leads to a reduced kidney volume in fetal and postnatal life (Lampl et al., 

2005, Taal et al., 2011). Using a mouse model of maternal smoke exposure, we have shown that 

offspring of SE mothers had delayed glomerular development at an early postnatal period, with 

adaptively enlarged glomerulus size and albuminuria in adulthood (Al-Odat, 2014). 

Cigarette smoke is a major source of reactive oxygen species (ROS). High concentrations of ROS 

cause lipid peroxidation, damage to cell membranes, proteins, and DNA. Evidence is mounting that 

maternal smoking causes an increase in oxidative stress in fetal cord blood and placenta (Aydogan 

et al., 2013, Sbrana et al., 2011). Mitochondria are the main intracellular source but also a primary 

target of ROS, which are generated as by-products of ATP synthesis through the oxidative 

phosphorylation system (OXPHOS). Mitochondria serve a crucial role in development by providing 

energy for the rapid fetal growth (May-Panloup et al., 2007). Disruption of mitochondrial 

homeostasis may lead to long-lasting detrimental effects and failure of organ function over time. 

The role of mitochondrial dysfunction and ROS production is clearly established in a number of 

chronic adult onset diseases including Parkinson’s disease (Jenner, 2001), Alzheimer’s disease 

(Aliev et al., 2003), atherosclerosis (Harrison et al., 2011), diabetes (Green et al., 2004, Nishikawa 

et al., 2000) as well as aging (Huang and Manton, 2004, Sastre et al., 2000). Evidence for 

mitochondrial dysfunction in chronic kidney disease is emerging from high throughput genome-

based microarray technology (Granata et al., 2009) and a number of experimental studies (Su et al., 
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2013, Yuan et al., 2012a, Zhang et al., 2007, Zhu et al., 2011). It remains to be shown whether the 

mitochondrial perturbations are present already at birth as a consequence of an adverse in-utero 

environment. 

The present study was designed to test the hypothesis that maternal smoking causes increased ROS 

production and mitochondrial perturbations in renal tissue in the offspring at birth and that this 

effect is sustained into adulthood. 

 

2. MATERIALS AND METHODS 

2.1. In vivo experiment 

2.1.1. Animal smoking model. The study was approved by the Animal Care and Ethics Committee 

of the University of Technology, Sydney (ACEC #2011-313A). Female Balb/c mice (Animal 

Resources Centre, Perth, Australia) were housed at 20±2°C, and maintained on a 12:12h light/dark 

cycle (lights on 06:00h), with free access to water and standard laboratory chow (11kJ/g, Gordon’s 

Specialty Stockfeeds, NSW, Australia). Twice daily (5 days/week) they underwent smoke exposure 

(SE) in a Perspex chamber with smoke generated from 2 cigarettes (nicotine<1.2mg, CO<15mg) for 

6 weeks before mating, throughout gestation and lactation.  The control sham-exposed mice were 

put in an identical chamber for the same period. During lactation the offspring remained in the 

home cage without SE. Pups were weighed every 5 days and weaned at postnatal day 20. A 

terminal urine collection was undertaken via direct bladder puncture at the end points: day 1, day 20 

(weaning) and week 13 (mature age). Blood was collected via cardiac puncture after mice were 

anesthetized. Plasma was separated immediately and stored at -20°C for creatinine measurements. 

Then animals were sacrificed by cervical dislocation. Kidneys were harvested, snap frozen and 

stored at -80° for further processing. Only male offspring were used for this study. 

 

2.2 Mitochondrial marker 

2.2.1. Mitochondrial protein extraction. The protein extraction method was derived from the 

Calbiochem superoxide dismutase assay kit II (Merck Millipore, Darmstadt, Germany) that was 

subsequently used to assess superoxide dismutase (SOD) activity. Mitochondrial protein fractions 

were obtained by differential centrifugation. Prior to protein extraction, tissue was rinsed with 

phosphate buffered saline (PBS), pH7.4, containing 0.16mg/ml heparin to remove any red blood 

cells and clots. Tissue was homogenized with a Quiagen TissueRuptur  (Quiagen, Limburg, 

Netherlands) in 1.5 ml of cold 20mM HEPES buffer, pH 7.2, containing 1mM EGTA, 210mM 

mannitol, 70mM sucrose and centrifuged at 1500g for 5 min at 4°C. The supernatant was 

centrifuged for 15 min at 10000g at 4°C. The pellet containing the mitochondrial fraction was 

suspended in 20mM HEPES buffer, pH 7.2 with 1mM EGTA, 210mM mannitol and 70mM 
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sucrose. The purity of the mitochondrial fraction was tested by determining the expression of the 

mitochondrial specific protein VDAC in cytosolic and mitochondrial extracts. Protein quantification 

(BioRad, CA, USA) was carried out to determine the protein concentration.  

 

2.2.2. Western blot of mitochondrial proteins. 10 μg of protein were mixed with 4X Loading buffer, 

10X reducing agent (Life Technologies, Vic, Australia) and water to make 20 μl solutions; and 

heated at 70°C for 10 min. Samples were then analysed by SDS gel electrophoresis (Life 

Technologies, Vic, Australia) and electroblotted to Hybond Nitrocellulose membranes (Amersham 

Pharmacia Biotech, Bucks, UK). Membranes were blocked in Tris-buffered saline containing 0.2% 

Tween-20 (TBST) in 5% skim milk for 30 min and then incubated overnight at 4°C with the 

following primary antibodies: MitoProfil Total OXPHOS Rodent WB antibody cocktail 1:250 

(Abcam Ltd, Cambridge, UK), TOM20 1:500 (Santa Cruz, CA, USA), MnSOD 1:1000 (Millipore, 

Billerica, MA, USA) in TBST containing 5% skim milk. Membranes were washed with TBST and 

incubated with horseradish peroxidase conjugated secondary antibody. Proteins were visualized 

using Luminata Western HRP Substrate (Millipore, MA, USA) in a LAS 4000 image reader 

(Fujifilm, Tokyo, Japan). All membranes were re-probed with β-actin 1:1000 (Santa Cruz, CA, US) 

and results were expressed as percentage of protein expression relative to β-actin. Analysis was 

performed using Image J software (Java based software program, National Institutes of Health). 

 

2.2.3. Determination of Mitochondrial MnSOD activity. The activity of MnSOD was determined in 

the mitochondrial protein fraction by a standard kit from Calbiochem (Merck Millipore, Darmstadt, 

Germany) following the manufacturer’s instructions. The MnSOD activity was expressed as the 

amount of enzyme causing a 50% inhibition of formazan dye, employing hypoxanthine and 

xanthine oxidase to generate superoxide radicals. 

 

2.2.4. Electron microscopy of mitochondria. Kidney tissue was fixed in 2.5% glutaraldehyde in 

0.1M sodium cacodylate buffer pH7.4 and subsequently sliced into 100 nm thick ultrathin sections, 

then mounted on 300 mesh copper grids for imaging of mitochondria with an FEI Morgagni 268D 

transmission electron microscope (FEI, Eindhoven, The Netherlands).  

 

2.2.5. Mitochondrial copy number. Genomic DNA was extracted from renal tissue using the 

DNeasy blood and tissue kit (Quiagen). The content of mtDNA was calculated using real-time 

quantitative PCR by measuring the threshold cycle ratio (ΔCt) of the mitochondrial-encoded gene 

cytochrome c oxidase subunit 1 (COX1), (forward primers 5′-ACTATACTACTACTAA-

CAGACCG-3′, reverse primers 5′-GGTTCTTTTTTTCCGGAGTA-3′) versus the nuclear-encoded 
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gene cyclophilin A (forward primers 5′-ACACGCCATAATGGCACTGG-3′, reverse primers 5′-

CAGTCTTGGCAGTGCAGAT-3′). 

 

2.3 Oxidative stress markers 

2.3.1. Confocal Microscopy. Frozen kidney sections were stained and imaged using Leica SP2 

confocal laser scanning microscope (Leica, Wetzlar, Germany). Data was generated from three 

independent experiments, each in triplicates. Fifty images were taken from each slide and averaged 

before the analysis. All imaging parameters including laser intensities, Photomultiplier tubes 

voltage, pinhole were kept constant during imaging. For total ROS detection, CellROX Deep Red 

(Molecular Probes, Australia) was used at 5 µM final concentration, images were collected at 633 

nm excitation wavelength and detected in the 640-680 nm emission range. MitoTracker Green 

(Molecular Probes, Australia) was used to visualize the mitochondria at 200nM final concentration.  

Images were collected at 458 nm excitation wavelength and detected in the 480-505nm emission 

range. Lysosomes were visualized using LysoTracker Red DND-99 (Molecular Probes, Australia) 

with 100 nM final concentration. Images were collected at 514 nm excitation wavelength and 

detected in the 525-550nm emission range. To calculate the correlation between CellROX and 

Mitotracker, dual staining using CellRox and Mitotracker was performed and images were taken 

sequentially using separate confocal channels over a time not greater than 30 seconds. The image 

pixel intensity value correlation was then calculated using Pearson's correlation for all pixels 

excluding any pairs containing zero values.  

 

2.3.2. Immunohistochemistry. Formalin-fixed paraffin-embedded sections were deparaffinized and 

boiled for 20 min in 10mM citrate buffer (pH 6.0). Sections were washed in TBST and exposed to 

0.3% H2O2 for 5 min to quench endogenous peroxidases. Immunohistochemistry was performed 

using the following antibody: rabbit anti-8OHdG polyclonal antibody (1:100, BIOSS, Woburn, 

MA, USA). Concentration-matched rabbit IgG was used as an isotype-negative control. The 

sections were blocked with Dako proteinblock (Dako, Carpinteria, CA, USA) for 10 min and 

incubated with primary antibody overnight. The slides were then incubated with horseradish 

peroxidase anti-rabbit Envision–system followed by a 3.3’-diaminobenzidine (DAB) substrate-

chromogen solution (Dako) and counterstained with Harris hematoxylin. The slides were examined 

using a Leica photomicroscope linked to a DFC 480 digital camera (Leica, Wetzlar, Germany).  

The quantitation was performed by capturing 6-10 non-overlapping fields of renal cortex from 

stained sections. Areas of brown staining reflecting 8-OHdG were highlighted using a selective 

color tool and the proportional area of the field with their respective color range was quantified 

using Image J.  



 7 

 

2.4. Statistical analysis 

All results are expressed as mean ± standard error (SE) and statistical significance was defined as  P 

<0.05.  Experiments were performed at least in three independent experiments or as detailed in the 

text with n reflecting the number of separate experiments. Statistical comparisons between groups 

were made by unpaired student t-tests or non-parametric Mann-Whitney U test. Analyses were 

performed using the software package, GraphPad Prism version 6 (GraphPad Software Inc, La 

Jolla, California, USA). For the confocal study, the data distribution was assesses using a non-

parametric test of different source distributions (Kolmogorov-Smirnov) which is sensitive to 

difference in the shape and position of the empirical distribution functions of the compared samples 

and is particularly useful where there is doubt regarding the nature of the source population 

(Lehmann and Romano, 2005). Multiple images were taken for over 100 cells in each tissue in 3 

replicates of 3 independent samples/group. Pearson's correlation method was used to determine the 

correlation factor and p values for the correlation study.  

 

3. RESULTS 

 

3.1. Physiological and renal parameters. 

The physiological characteristics of mice offspring are summarized in table 1. In keeping with the 

known effect of maternal nicotine exposure during gestation we observed a reduced birth weight 

(day 1) in offspring of smoke-exposed mothers with normalization of weight at weaning (day 20) 

and adulthood (week 13). Kidney weight was similarly reduced at day 1 in the SE offspring but had 

normalized by day 20. Serum creatinine remained normal in both groups at adulthood, however 

offspring of smoke-exposed mothers developed an increased urinary albumin/creatinine ratio at 

week 13. 

 

3.2. Increased mitochondrial oxidative stress in offspring kidneys from smoke- exposed mothers. 

Products from cigarette smoke are known inducers of oxidative stress in various tissues and are able 

to cross the placenta. In order to investigate whether maternal smoking causes oxidative stress in 

the offspring, frozen renal sections were co-stained with CellRox Red and Mitotracker Green. There 

was a significant increase of total ROS in SE offspring at day 20 and week 13 (P<0.001; Figure 1A 

and 1C). The correlation coefficient of the mean fluorescent intensities was significantly higher in 

the kidney of the SE offspring at day 1 and week 13 (P < 0.01, Figure 1B and 1D) suggesting that at 

these time points ROS was localized within or within close proximity to the mitochondria. 
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3.3. Increased DNA oxidation in offspring kidneys from smoke-exposed mothers. 

As high levels of ROS can cause damage to DNA, we next performed immunohistochemistry for 8-

hydroxydeoxyguanosin (8-OHdG), which is formed when DNA is oxidatively modified by ROS. A 

significant increase of 8-OHdG in paraffin-embedded kidney sections from smoke-exposed 

offspring was observed at all time points. Both proximal and distal tubules stained positive for 8-

OHdG with sparing of the glomeruli. The most intense staining was noted in distal tubules with 

predominantly cytoplasmic staining (Figure 2). 

 

3.4. Reduced mitochondrial MnSOD in offspring kidneys from smoke-exposed mothers at 

postnatal day 1 and week 13.  

SOD is a crucial component of the cellular antioxidant defense. While other isoforms of SOD are 

located in the cytosol, MnSOD is mostly located in the mitochondria. In order to determine MnSOD 

activity, mitochondrial protein fractions were obtained by differential centrifugation. MnSOD 

activity was significantly reduced at day 1 and week 13 (P < 0.05) but not at day 20 (Figure 3).  

 

3.5. Reduced renal OXPHOS protein subunits in offspring kidneys from smoke-exposed mothers 

To investigate mitochondrial protein expression, we looked at TOM20, a mitochondrial outer 

membrane receptor for translocation of cytosolically synthesized mitochondrial pre-proteins, and 

subunits of the OXPHOS complexes I – V, key components of the mitochondrial respiratory chain 

for ATP synthesis. TOM20 was significantly reduced in offspring from SE mothers at day 1 and 

week 13 (P<0.01 and P<0.001 respectively, Fig 4). There was no change in TOM20 protein levels 

at day 20. In addition, there was a significant reduction in subunits of complex I, II, III and V both 

at postnatal day 1 and week 13 in the SE offspring compared to control (Figure 5A and 5C). At day 

1 the most marked differences were observed in complex V (p<0.01). However, at weaning age 

(day 20) there was no significant difference in any of the mitochondrial enzyme subunits, which 

may suggest a regenerative effect during lactation and consequent to the high levels of antioxidants 

in breast milk. At mature age (week 13) there was again a significant protein reduction in all of the 

examined OXPHOS subunits. The most pronounced reduction at week 13 was observed in complex 

II, IV and V (P<0.01, Figure 5C).  

 

3.6. Increased mitochondrial DNA copy number in offspring from smoke-exposed mothers. 

It has been suggested, that abnormal amounts of mitochondrial DNA, either depletion or elevation, 

are associated with mitochondrial dysfunction. We thus investigated mitochondrial copy number in 

SE offspring. Our data showed that offspring DNA from SE mothers have increased levels of 

mitochondrial-encoded Cox1/ nuclear-encoded cyclophillin at postnatal day 1, day 20 and week 13 
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(P < 0.05 vs control, Figure 6). This suggests that maternal smoke exposure increases mitochondrial 

density/mass due to either increased mitochondrial size or number. 

 

3.7. Alteration of mitochondrial ultrastructure in smoke-exposed offspring. 

Renal mitochondria structure was examined using electron microscopy. Offspring kidneys from 

control mice had normal mitochondrial morphology as demonstrated by long filamentous 

mitochondria. In contrast, offspring from SE mothers exhibit mitochondrial enlargement and 

swelling at day 1 and week 13. Additionally, an increased number of small punctate mitochondria at 

day 1 and week 13 was also evident suggesting increased mitochondrial fragmentation.  However, 

this effect was not evident in the SE offspring at day 20 (Figure 7).  

 

3.8. Increased mitochondrial density in offspring kidneys from smoke-exposed mothers. 

Using Mitotracker, a mitochondrial selective fluorescent probe, we confirmed that the cellular 

mitochondrial density is significantly increased in offspring kidney from SE mothers at day 1 and 

week 13 compared to control (P<0.05 and P<0.001vs control, Figure 8). However, there was a 

reduction (P<0.05 vs control) in the mitochondrial density at day 20.  

 

3.9. Increased lysosome density in offspring from smoke-exposed mothers 

Defective mitochondria are engulfed in autophagosomes that fuse with lysosomes. In order to 

investigate whether maternal smoke exposure induces mitophagy, lysosomal density was 

determined. Lysosome density significantly increased in offspring from SE mothers at week 13 

(P<0.001 versus control; Figure 9). As was evident in the divergent results for the offspring at 

weaning for the above parameters, the mean cellular lysosome levels were significantly decreased 

in offspring from SE mothers at day 20 (P<0.001 versus control; Figure 9).  

 

4. DISCUSSION 

The present study demonstrates increased renal oxidative stress, reduced mitochondrial antioxidant 

activity as well as mitochondrial structural changes and reduced OXPHOS proteins in offspring of 

SE mothers at birth and adulthood. This is associated with an increased urinary albumin to 

creatinine ratio in adulthood. The presence of albuminuria suggests renal pathology independent of 

glomerular filtration rate, and independently portends an accelerated decline in kidney function in 

all forms of kidney disease (Iseki, 2013).  

 

Our study suggests that fetal programming of CKD is regulated, at least in part, by maternal 

tobacco smoke-mediated production of oxidative stress and mitochondrial perturbations. The 
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presence of mitochondrial dysfunction in the placenta of smoking mothers has previously been 

demonstrated (Bouhours-Nouet et al., 2005).  To our knowledge, this is the first study showing 

enhanced oxidative stress and mitochondrial changes in offspring kidney tissue following maternal 

cigarette exposure. A previous animal study in Wistar rats similarly demonstrated increased ROS 

formation and altered mitochondrial structure in adult offspring pancreatic tissue in response to 

maternal subcutaneous injections of nicotine during gestation and lactation (Bruin et al., 2008). 

Bruin et al. found that mitochondrial structural defects were accompanied by a modest decline in 

OXPHOS complex IV activity at adult age. In accordance with our results, Bruin et al. observed 

mitochondrial structural abnormalities as early as three weeks after birth (weaning age), which 

progressively worsened even though nicotine exposure was discontinued at weaning. Importantly 

these changes preceded decreased pancreatic beta cell function and glucose intolerance in adult life 

highlighting again the role of fetal programming in the development of chronic adulthood diseases. 

In an atherosclerosis mouse model using Apolipoprotein E null mice, Fetterman et al. demonstrated 

that in-utero smoke exposure significantly accelerated adult atherosclerosis. Consistent with our 

findings, the smoke-exposed offspring showed increased oxidative stress and a reduction in 

MnSOD levels at an adult age, which was associated with increased mitochondrial DNA copy 

number and the presence of mitochondrial DNA deletions in aorta tissue (Fetterman et al., 2013).  

 

The mitochondrial genome is more susceptible to ROS induced DNA damage than the nuclear 

genome and exhibits higher rates of DNA mutation due to the lack of histone protection, reduced 

DNA repair capacity and close proximity to the ROS producing electron transport chain. However, 

it is suggested that even in the absence of detectable mitochondrial DNA mutations, alterations in 

mitochondrial DNA content, either depletion or elevation, may be an indicator of mitochondrial 

dysfunction (Bai et al., 2004). In this study we detected an increase in mitochondrial DNA content 

in SE offspring. The mechanism by which mitochondrial DNA increases in response to oxidative 

stress is not well understood. It is hypothesized that this is a compensatory mechanism for the 

decline in mitochondrial function by inducing the proliferation of mitochondria and/ or 

mitochondrial DNA amplification (Bai et al., 2004, Lee et al., 2000). An increase in mitochondrial 

DNA levels have been shown in vitro in response to oxidative stress (Al-Kafaji and Golbahar, 2013, 

Lee et al., 2000), in age related mitochondrial alterations (Barrientos et al., 1997, Lee et al., 1998) 

and in smokers (Ballinger et al., 1996, Lee et al., 1998, Masayesva et al., 2006). Masayesva et al. 

detected not only an age-independent elevation of mitochondrial DNA levels in current smokers but 

also in former smokers with mean cessation intervals of two decades (Masayesva et al., 2006). The 

persistence of these changes is consistent with our in-utero smoke exposure model where elevated 

mitochondrial DNA content was detectable long after birth.  
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When DNA is oxidatively modified by ROS, the amount of 8-OHdG increases. Our data confirmed 

that smoke exposure induces oxidative modification of DNA in the offspring from birth and this 

was persistent till adulthood. The fact that 8-OHdG was increased in the cytoplasm suggests 

increased oxidative damage to the mitochondrial DNA (Nomoto et al., 2008). Although 8-OHdG 

was increasingly expressed in the proximal tubule, its level of expression was more intense in distal 

tubules. A possible explanation is the fact that ROS detoxifying enzymes are more abundant in 

proximal tubular cells than distal tubules, which may indicate a diminished ability to detoxify 

reactive metabolites in this part of the nephron and a higher intrinsic susceptibility of distal tubular 

cells to oxidative injury (Lash and Tokarz, 1990). 

 

Although we detected DNA oxidation and changes in mitochondrial DNA copy number in smoke-

exposed offspring persistently from day 1 till week 13, mitochondrial structural changes and 

OXPHOS as well as TOM20 protein depletion were seen at birth and adulthood without any 

significant change at day 20. MnSOD protein content and activity mirrored the OXPHOS protein 

content changes with a significant MnSOD reduction demonstrated at day 1 and week 13 and 

equally no significant change at weaning age. We propose that the deleterious effects on 

mitochondria observed at birth and in adulthood may be mitigated at weaning due to the 

antioxidants in the breast milk (Ermis et al., 2005, Zagierski et al., 2012). Further studies to 

investigate this hypothesis are needed. 

  

MnSOD is the primary mitochondrial ROS scavenging enzyme that transforms toxic superoxide 

free radicals to hydrogen peroxide, which is subsequently converted to water by catalases and other 

peroxidases. MnSOD has also recently been demonstrated to be part of a protein complex necessary 

for mitochondrial DNA repair (Bakthavatchalu et al., 2012), thus playing a pivotal role in multiple 

aspects of mitochondrial protection. Cigarette smoke has previously been shown to reduce MnSOD 

levels in circulating blood cells (Mandraffino et al., 2010), while in-utero smoke exposure caused a 

reduction of MnSOD levels in aortic tissue in the offspring (Fetterman et al., 2013). This study is 

the first to demonstrate reduced MnSOD levels in offspring kidneys in response to maternal 

smoking. Of note is the occurrence of reduced MnSOD levels in offspring long after smoke 

exposure at adulthood both in our model and in the study of Fetterman et al.(Fetterman et al., 2013) 

highlighting the long-term toxic effects of cigarette smoke as the basis for fetal programming. 

 

Using electron microscopy we have demonstrated in proximal tubular cells, that offspring from SE 

mothers exhibit mitochondrial enlargement and had an increased number of small punctate 
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mitochondria at day 1 and week 13 suggestive of increased mitochondrial fragmentation. The 

presence of structural mitochondrial abnormalities is in accordance with other studies of direct 

smoke exposure (Hara et al., 2013) and in-utero nicotine exposure (Bruin et al., 2008). Damaged 

mitochondria are removed by mitophagy, a selective autophagy process, during which 

autophagosomes enclose whole mitochondria, or selectively target damaged areas and fuse with 

lysosomes for degradation. Cellular lysosome density was increased in SE offspring at day 1 and 

week 13. This suggests that smoke exposure induces accumulation of damaged mitochondria and 

may impair mitophagy but this requires further investigation. 

  

Mitochondria serve a crucial role in development by providing energy for the rapid fetal growth and 

play key roles in cell signaling (Duchen, 2004, May-Panloup et al., 2007). Environmental exposures 

that result in mitochondrial perturbations  have long-lasting effects and may lead to failure of organ 

function over time. The kidney is a highly metabolic organ and rich in mitochondria. There is 

increasing evidence implicating mitochondrial dysfunction in the pathogenesis of chronic kidney 

disease (CKD) and acute kidney injury (AKI). Genomic analysis of blood samples from CKD 

patients revealed differential expression of genes encoding OXPHOS and reduced complex IV 

activity (Granata et al., 2009). Mitochondrial dysfunction has been implicated as an early event in 

experimentally induced podocyte dysfunction (Yuan et al., 2012b) as well as epithelial to 

mesenchymal transition (EMT), which is a major mechanism leading to renal tubulointerstitial 

fibrosis (Yuan et al., 2012a, Zhang et al., 2007). In AKI it is increasingly recognized that cell death 

is disproportionately low despite often severely impaired renal function (Takasu et al., 2013, Tran et 

al., 2011). Subtle vacuolization in proximal tubular cells are often the only documented structural 

lesions and are considered to represent swollen mitochondria (Takasu et al., 2013, Tran et al., 

2011). Several studies have shown a reduction of OXPHOS protein and activity in experimental 

models of AKI (Funk and Schnellmann, 2012, Rasbach and Schnellmann, 2007). Our data suggests 

that maternal smoking induces mitochondrial perturbations and possibly dysfunction, although this 

was not directly investigated. Additional functional experiments are needed to validate this finding.  

We demonstrated the occurrence of albuminuria at adult age in offspring of smoke exposed 

mothers. Albuminuria as an early marker for kidney damage is also an independent predictor for an 

accelerated progression of chronic kidney disease to more advanced stages. The effect of smoking 

on development of albuminuria is well described (Halimi et al., 2000, Hogan et al., 2007, Pinto-

Sietsma et al., 2000) however the effect of prenatal smoke exposure on offspring kidneys is less 

studied. An experimental study on offspring rats exposed to cigarette-smoke condensate in-utero 

revealed lower glomerular volume and glomerular cells compared to control (Zarzecki et al., 2012). 

In contrast to our study this study did not show a difference between smoke exposed offspring and 
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control with respect to birth weight, kidney weight, albuminuria or creatinine clearance. The lack of 

reduced birth weight may signal lower levels of smoke exposure. The smoke exposure was different 

to our model with oral mucosa application of cigarette-smoke condensate dissolved in acetone 

containing nicotine. While there was high nicotine exposure as evidenced by the increased cotinine 

levels, the amount of other toxins in the condensate may have been less than in our model. A more 

recent study also found that smoke exposure in utero has pro-fibrotic influences on offspring 

kidneys (Chen et al., 2015). Although we did not detect any renal histological changes at any time 

point (data not shown) nor an increase in serum creatinine, we propose that our findings of 

mitochondrial alterations at birth and adulthood may put offspring at increased risk for renal 

pathology especially in the setting of additional insults, such as sepsis or toxins. A history of 

maternal smoke exposure in-utero may thus predispose to more severe forms of AKI or irreversible 

damage that leads to progression of CKD.  The results of this study highlight the importance of 

optimization of maternal and fetal health as well as smoking prevention. It remains to be shown 

whether the negative impact on mitochondrial integrity can be reversed or potentially avoided by 

smoking cessation prior to pregnancy. 
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FIGURE LEGENDS 

Figure 1. Detection of oxidative stress. (A) CellROX stain for total ROS in frozen 

renal sections of offspring mice of smoke-exposed mothers (SE) and control at 

postnatal day 1, day 20 and week 13. (B) Dual staining for CellROX and Mitotracker 

showing that most ROS in offspring kidneys from SE mothers, was localized within 

or within close proximity to the mitochondria at day 1 and week 13. (C) Quantitative 

representation of Mean Fluorescent Intensity (MFI) for ROS. (D) Pixel intensity 

scatter plots showing correlation between Mitotracker (green)  and CellRox (red) in 

offspring kidney from control and SE mothers at day 1, day 20 and week 13. Data are 

expressed as mean± SEM, n= 3, **P < 0.01, ***P < 0.001 using non parametric test 

of different source distributions (Kolmogrov-Smirnov). Correlation factor and P 

values for the correlation study (Figure 1D) was determined using Pearson 

Correlation. Colours (green, red and yellow) reflect Mitotracker, CellRox and 

colocalised pixels. Scale bars represent 50µm. 

 

Figure 2. Immunostaining of 8-OHdG in paraffin sections of renal tissue.  (A) 

Representative images of renal cortex showing 8-OHdG expression at day 1, day 20 

and week 13. Black arrows and white arrows showed increased expression of 8-

OHdG in representative distal tubules and proximal tubules respectively. Original 

magnification: x 200 (B) Quantitation of 8-OHdG. Data is expressed as mean % of 

stained area ±SEM, n=5-6 *P < 0.05 vs control mice using unpaired t tests. Scale bars 

represent 50µm 

  

Figure 3. Mitochondrial MnSOD activity in offspring kidney at postnatal day 1, day 

20 and week 13. Results are expressed as mean ± SEM, n=6-8; *P<0.05 vs. control 

using unpaired t tests. 

 

Figure 4. Renal TOM 20 levels and representative blot in offspring kidney at day 1, 

day 20 and week 13. Results are normalized to β-actin which was detectable in 

mitochondrial fractions and did not change with experimental conditions. Results are 

expressed as mean ± SEM, n=6-8. **P < 0.01, ***P < 0.001 vs. control using 

unpaired t tests.  
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Figure 5. Renal OXPHOS complex I – V levels in mitochondrial protein fractions of 

offspring from control and smoke-exposed mothers at postnatal day 1 (A), day 20 (B) 

and week 13 (C). (D) Representative blots for OXPHOS complex I-V at day 1, day 20 

and week 13. Results are normalized to β-actin which was detectable in mitochondrial 

fractions and did not change with experimental conditions. Results are expressed as 

mean ± SEM, n=6-8. *P < 0.05, **P < 0.01 vs. control using unpaired t tests.  

 

Figure 6. Mitochondrial DNA copy number shown by the ratio of mitochondrial-

encoded COX1 to nuclear-encoded cyclophilin A in offspring renal DNA from 

control and smoke-exposed mothers at postnatal day 1, day 20 and week 13. Results 

are expressed as fold increase ± SEM, n=4; *P<0.05 vs. control using non parametric 

Mann-Whitney U test. 

 

Figure 7. Electron microscopic detection of mitochondria in offspring renal proximal 

tubular cells from control and smoke-exposed mothers at day 1, day 20 and week 13. 

Normal looking (long filamentous) mitochondria are shown in offspring kidney from 

control mothers at day 1, day 20 and week 13 and in kidneys from SE mothers at day 

20. White arrows show enlarged (circular shaped) mitochondria and black arrows 

show increased number of small punctate mitochondria at day 1 and week 13 in 

offspring kidney from SE mothers. 

Insets in the far left corner: high magnification view of mitochondria. Scale bar 

=10,000 nm.  

 

Figure 8. Mitotracker staining showing mitochondrial mean fluorescence intensity 

(MFI) in offspring kidney at postnatal day 1, day 20 and week 13. Increased 

mitochondrial density is shown in offspring kidney from SE mothers at day 1 and 

week 13. Results are expressed as mean ± SEM, n=3; *P < 0.05, *** P < 0.001 vs. 

control using non parametric test of different source distributions (Kolmogrov-

Smirnov). Scale bars represent 50µm. 

 

 

Figure 9. Mean fluorescence intensity (MFI) for Lysotracker stain in offspring kidney 

from control and smoke-exposed mothers at postnatal day 1, day 20, and week 13. 
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Increased lysosomal density is shown in offspring kidney from SE mothers at day 1 

and week 13. Data is expressed as mean ± SEM, n=3, *P < 0.05, ***P < 0.001 vs. 

control using non parametric test of different source distributions (Kolmogrov-

Smirnov). Scale bars represent 50µm. 

 

 

Table 1. Characteristics of offspring mice. Data are expressed as mean ± SEM of 5-

10 male mice per group. *P < 0.05 vs. control using unpaired t tests. 
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TABLES 

 

 

Table 1 

 Control SE 

Day 1 

   Body weight (g) 

   Kidney weight (g) 

   Kidney/body weight (%) 

 

Day 20 

   Body weight (g) 

   Kidney weight (g) 

   Kidney/body weight (%) 

   Albumin/creatinine ratio (μg/mg) 

   Serum creatinine (μmol/l) 

 

Week 13 

   Body weight (g) 

   Kidney weight (g) 

   Kidney/body weight (%) 

   Albumin/creatinine ratio (μg/mg) 

   Serum creatinine (μmol/l) 

 

1.55 ± 0.05 

0.0081 ± 0.0004 

0.52 ± 0.02 

 

 

9.97 ± 0.16 

0.067 ± 0.001 

0.67 ± 0.01  

8.69 ± 2.00 

10.4 ± 0.7 

 

 

25.5 ± 0.3 

0.20 ± 0.01 

0.77 ± 0.01 

7.00 ± 2.3 

15.2 ± 1.3 

 

1.35 ± 0.06* 

0.0069 ± 0.0004* 

0.51 ± 0.04 

 

 

9.71 ± 0.14 

0.062 ± 0.003 

0.64 ± 0.03 

6.12 ± 1.45 

12.1 ± 1.2 

 

 

25.1 ± 0.6 

0.19 ± 0.01 

0.76 ± 0.02 

38.0 ± 6.3* 

14.2 ± 0.5 
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Figure 5. 
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