An Ontological Framework for Contextualising Information in Hypermedia Systems.

by

Andrew James Bucknell

Thesis submitted for the degree of Doctor of Philosophy

University of Technology, Sydney

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Production Note:
Signature removed prior to publication.

Dedication

This thesis, and the work that went in to it, is dedicated to Anthony \& Margaret Bucknell - Mum \& Dad. Your love, support and belief made it possible for me to persevere and succeed. For that, I am eternally grateful.

Acknowledgements

I would like to thank my supervisor, Prof. David Lowe for his advice, support, encouragement and especially his patience as I have undertaken the journey that is a PhD candidature. I would also like to thank the academic and support staff of CSE for creating an environment filled with enthusiasm for applying computer systems to real world problems.

Thank you to Lauren Scott for her assistance with proofreading this thesis. Thank you to Dr. Narelle Smith for her advice on statistical analysis and the staff at the Institute for Interactive Media and Learning for their assistance with Survey Manager.

Thank you to Andrew \& Vanessa Watts and Sara \& Colin Shorter for being the kind of friends who know me better than I know myself and love me for it.

Thank you to Ed Tobin, Steve Evans, Robyn \& Sam Watts, Rodrigo \& Marines del Busto, Wen Smallwood, and Alex Thompson for their friendship and for their generosity when I have most needed it.

Thank you to Phillip Kazanis and Sam Beskur who have given me invaluable advice and encouragement along the way, and who's friendship helped put tasks such as the one involved in writing a PhD thesis in perspective.

Finally, and most of all, I would like to thank my family for being all the things one could hope for in a family. My parents, for raising me to be who I am. My brother, Daniel and sisters, Karyn and Deborah, and their families, for being part of who I am. Your love and support has given me the strength to persevere and succeed.

Contents

1 Introduction 1
1.1 Background 2
1.2 Hypothesis 5
1.3 Research Method 5
1.3.1 Research Techniques 5
1.3.2 Research Questions 7
1.3.3 Approach and Thesis Structure 15
1.4 Contributions 18
1.5 Conclusion 19
2 Hypermedia and the World Wide Web 20
2.1 Introduction 21
2.2 Hypermedia 23
2.2.1 Hypermedia Concepts 23
2.2.2 Hypermedia Systems 25
2.2.3 Hypermedia Models 32
2.3 The World Wide Web 35
2.3.1 Web Technologies 35
2.3.2 Semantic Web 38
2.4 Information Seeking on the World Wide Web 39
2.4.1 Browsing 40
2.4.2 Searching 41
2.4.3 Information Seeking 42
2.4.4 Issues with Information-Seeking Behaviours on the World Wide Web 44
2.5 Conclusion 46
3 Information and Context 48
3.1 Introduction 49
3.2 Information Concepts 49
3.2.1 An Overview of Information Concepts 50
3.2.2 Shannon's Communication Theory 51
3.2.3 Information As A Property of Matter 51
3.2.4 Information As Structure 52
3.2.5 Information As Process 53
3.2.6 Information As Thing 54
3.2.7 Implications for this Research 55
3.3 A Concept of Context 55
3.3.1 The Varied Nature of Context 56
3.3.2 Information Concepts that Discuss Context 58
3.3.3 Context as a priori Knowledge 58
3.3.4 Context as situation 58
3.3.5 Context as information need 59
3.4 Context in Hypermedia Models 60
3.4.1 Metadata 60
3.4.2 Dublin Core 61
3.4.3 Warwick Framework 61
3.4.4 SHOE 62
3.4.5 RDF 62
3.4.6 Context in Dexter 63
3.4.7 Context in AHM 64
3.4.8 Context in Browsers 65
3.5 Conclusion 65
4 Ontology 67
4.1 Understanding Ontology 68
4.1.1 What is Ontology? 69
4.1.2 Goals of Ontology 74
4.2 Modelling a Domain with Ontology 75
4.2.1 Modelling Ontology on the World Wide Web 76
4.2.2 Creating an Ontology 78
4.3 Modelling Context with Ontology 82
4.3.1 Step 1 - Domain and Scope of the Ontology 82
4.3.2 Step 2-Consider re-using ontologies 83
4.3.3 Step 3 - Enumerate important terms in the ontology 84
4.3.4 Step 4 - Define the classes and class hierarchy 87
4.3.5 Step 5 - Define the properties of classes - slots 91
4.3.6 Step 6 - Define the facets of slots 91
4.3.7 Step 7 - Create instances 92
4.3.8 Summary 92
4.4 Conclusion 92
5 Contextualisation 94
5.1 Introduction 95
5.2 User Interfaces 95
5.2.1 Side Bars 96
5.2.2 Toolbars 97
5.2.3 Browser Extensions 98
5.2.4 Desktop Search 98
5.3 Scenario Based Design 98
5.3.1 Identify Scenarios 99
5.3.2 Activity Design 102
5.3.3 Information Design 103
5.3.4 Interaction Design 105
5.3.5 Prototyping \& Evaluation 106
5.4 Conclusion 106
6 Framework and Implementation 108
6.1 Framework 108
6.1.1 Application Frameworks 109
6.1.2 Designing the ICU Framework 112
6.1.3 Supporting the ICU Paradigm with Web Services 117
6.1.4 Creating the ICU Framework 118
6.1.5 Summary 121
6.2 Implementation 122
6.2.1 Client Implementation 123
6.2.2 Server Implementation 130
6.2.3 Summary 132
6.3 Conclusion 132
7 Evaluation 134
7.1 Evaluation 135
7.1.1 Evaluating Software 135
7.1.2 TAM 139
7.1.3 Method 141
7.2 Evaluation with TAM 143
7.2.1 Applying TAM 143
7.2.2 An Evaluation Methodology 144
7.2.3 Execution 148
7.2.4 Conclusion 151
7.3 Results 152
7.3.1 Data Collected 152
7.3.2 Analysis Tools 153
7.3.3 Analysis 154
7.3.4 Results 159
7.4 Conclusion 159
8 Conclusions and Further Work 161
8.1 Hypothesis Analysis 161
8.2 Research Outcomes 163
8.2.1 New Knowledge 163
8.2.2 Technical and Conceptual Knowledge 166
8.3 Further Research and Development 166
8.3.1 Research Questions 167
8.3.2 Applications 169
8.4 Conclusion 170
Appendix A. Ontology of Context 171
Appendix B. ISeeYou Screenshots 173
Appendix C. IContextStoreService Interface 184
Appendix D. Contextualisation Scenarios 196
D. 1 Search Context Store 197
D. 2 Search Result Set 199
D. 3 Browse Context Store 201
D. 4 Browse Result Set 203
D. 5 View Hotlist 205
D. 6 View Dynamic Favourites 206
Appendix E. Web Services Overview 207
E. 1 Understanding Web Services 207
E.1.1 Using Web Services 208
E.1.2 Web 2.0 209
Appendix F. Implementation Technical Notes 211
F. 1 Client Technologies 211
F.1.1 Browser 211
F.1.2 COM Overview 212
F.1.3 Browser Helper Objects 212
F.1.4 Explorer Bands 213
F.1.5 Extensibility Technology 214
F. 2 Server Technology 217
F.2.1 Message Service Component. 218
F.2.2 Context Store Component 221
F.2.3 Service Technology 223
F.2.4 ISeeYou Functionality 225
F. 3 Deployment 227
F.3.1 DLL's 228
F.3.2 Service 228
F.3.3 Data Location 229
F.3.4 Startup 230
F.3.5 Installer 230
Appendix G. Survey Instrument 231
Bibliography 236

Table of Tables

Table 1-1 Information Seeking Behaviours on the World Wide Web (Choo, Detlor \& Turnbull 2000) 4
Table 1-2 Thesis Structure 17
Table 2-1 Information acquisition interaction 42
Table 4-1 Important Domain Terms 86
Table 4-2 Domain Concepts 89
Table 5-1 Scenario-Based Design Phases 99
Table 5-2 Information Seeking Behaviours to support 100
Table 5-3 Information Seeking Scenarios 100
Table 5-4 Problem Scenarios for Behaviours 101
Table 5-5 Graphical Structures for Browsing 104
Table 6-1 ISeeYou Functions as Behaviours 130
Table 7-1 Evaluation Planning Phase 145
Table 7-2 Evaluation Execution Phase 145
Table 7-3 Scale items of the usefulness determinant 146
Table 7-4 Scale items of the ease of use determinant. 147
Table 7-5 Likert scale items 148
Table 7-6 Survey Responses 153
Table 7-7 Analysing evaluation results 154
Table 7-8 Remove Incomplete Responses 155
Table 7-9 Remove Invalid Responses 156
Table 7-10 Complete and Valid Responses 157
Table 7-11 Principal Component Analysis 157
Table 7-12 Cronbach's Alpha for Constructs 158
Table 7-13 PU and PEOU for ISeeYou 159
Table D-1 Contextualisation Scenarios 196

Table of Figures

Figure 4-1 Representation of Concept Associations (UML 2.0) 90
Figure 6-1 ICU Architecture (UML 2.0) 113
Figure 6-2 Identify Component (UML 2.0) 115
Figure 6-3 Collect Component (UML 2.0) 115
Figure 6-4 Use Component (UML 2.0) 116
Figure 6-5 ICU Framework (UML 2.0) 122
Figure 7-1 Technology Acceptance Model (from Davis 1989) 140
Figure B-1 Google Search (1) 173
Figure B-2 Google Search (2) 174
Figure B-3 Google Search(3) 175
Figure B-4 Google Search (4) 176
Figure B-5 Most Recent Hosts 177
Figure B-6 Most Visited Hosts 178
Figure B-7 Most Recent Pages 179
Figure B-8 Most Visited Pages 180
Figure B-9 Page Information 181
Figure B-10 Local Search (1) 182
Figure B-11 Local Search (2) 183

Abstract

The Internet has become part of everyday modern life. A central component of the Internet is the World Wide Web. With hundreds of millions of users trying to find information they need amongst billions of pages, there is an urgent need for tools that help users find the information they need. A key element in assisting users find information is their context. Being able to model and store a user's context provides information about the user that can be used to augment their information-seeking behaviours. This work investigated the hypothesis that it is possible to create an ontology of context that can be used to create tools that users perceive to be useful and easy to use when performing information-seeking behaviours on the World Wide Web.

This hypothesis was investigated through three research stages. First, a concept of context was developed that applies to information-seeking behaviours on the World Wide Web. Next, this concept was modelled using an ontology, and a software framework was created based on this ontology. This framework was used to create tools that augment the information-seeking behaviours of users of the World Wide Web. Finally, an empirical evaluation of these tools was performed to determine if they were perceived to be useful and easy to use. The results of the evaluation indicate that the tools constructed were perceived to be useful and easy to use, providing evidence that supports the validity of the hypothesis. This outcome encourages further research and development into using an ontology of context to develop tools that help people using the World Wide Web to find the information that they need.

Extended Abstract

While context is an integral part of interacting with information, existing approaches to managing contextual information on the World Wide Web are application specific and do not support sharing contextual information. The consequence of this is that the contextual information in each application is stored in a way that is specific to that application, and the reuse of information between tools is not explicitly supported. This lack of explicit support for sharing contextual information between applications limits the effectiveness of tools that contextualise information. This thesis demonstrates that an open model of context can be used across applications to contextualise information, and that users find tools based on this approach to contextualisation to be useful.

This hypothesis for this research states that it is possible to create an ontology of context that can be used to create tools that users perceive to be useful and easy to use when performing informationseeking behaviours on the World Wide Web. This hypothesis is investigated through three research stages: development of a concept of context that is application neutral; demonstration that this concept of context can be used to contextualise information on the World Wide Web; an empirical evaluation that shows that it is possible to create useful tools using this model.

The concept of context was developed by undertaking a critical analysis of the literature and using this to explicitly identify the role of the user's context in information-seeking behaviours on the World Wide Web. This concept is developed over two phases of investigation. The first phase reviews hypermedia models and systems, including the World Wide Web, to identify the goals of hypermedia and the approaches to information management that are used to achieve these goals. This review identifies the interaction of a user with web resources in producing information as being fundamental to
hypermedia. The next phase of the critical analysis builds on this understanding of hypermedia to develop a concept of context that explicitly includes data about the user as a construct a user's interaction with web resources.

Demonstrating the use of the concept of context to contextualise information on the World Wide Web involved two phases of research. The research in the first phase shows how the concepts expressed in the concept of context can be represented using the Web Ontology Language. The second phase develops a software framework based on the ontology of context that can be used to identify, collect and use contextual information. This framework, the ICU framework, encompasses existing approaches to contextualisation while also providing an open architecture based on web services that can be used to make contextual information available to applications that contextualise information. The utility of this framework is demonstrated by constructing a tool that implements existing contextualisation interfaces in a single tool, using the one collection of contextual information. This tool is called ISeeYou.

The empirical evaluation used the Technology Acceptance Model (TAM) to investigate the usefulness and ease-of-use of ISeeYou for users engaging in their regular information-seeking behaviours on the World Wide Web. TAM has been shown to be effective in evaluating the usefulness and ease-of use of new technologies, and has been successfully applied to evaluating web-based technologies. The results of this evaluation indicate that tools based on the framework and the ontology are useful and easy-to-use when performing informationseeking behaviours on the World Wide Web. This outcome encourages the further development of tools that use the ICU framework and further development of ontologies that represent the context of users of the World Wide Web.

This research investigated an approach to managing contextual information that allows reuse of contextual information by using an open architecture and offers a richer set of contextual information by structuring the information using an ontology. By creating an open shareable model of context, the constraints on using contextual information across different contextualisation tools is removed and richer tools for contextualising information on the World Wide Web can be created. This research is predicated on the belief that contextualisation of information on the World Wide Web is an essential tool for helping users manage information, and the development of tools that perform contextualisation is an ongoing challenge for researchers and developers. The ontology and the framework developed in this work aim to help meet this challenge. The research carried out in this work demonstrates that it is possible to create an ontology of context that can be used to create tools that users perceive to be useful and easy to use when performing informationseeking behaviours on the World Wide Web. This result encourages further research in to an ontology-based model of context that explicitly is focussed on the user.

