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Summary

Spin-based devices have the potential to take modern electronics and optoelectron-
ics to the next level. So-called ’spintronics’ exploit both the charge and the spin of
an electron for data processing, transport and storage. A significant step towards
the realisation of such devices would be to achieve room temperature ferromagnetic
semiconductors. Theoretical works predict the possibility of room temperature ferro-
magnetism in the wide bandgap semiconductors GaN and ZnO doped with transition
metals. The present models of spin-coupling in such dilute magnetic semiconductors
require input in form of quantitative information on electronic states that arise from
the introduction of transition metal ions into the host lattice. This work focuses on
the detailed experimental investigation of such states in GaN and ZnO doped with
different transition metals.

A large array of Fe, Mn and Ni doped GaN and ZnO samples with different
doping levels and n-type and p-type co-doping were intensively studied by a wide
range of experimental techniques. The investigation of Fe doped GaP, GaAs and InP
provided valuable insights into the transient shallow acceptor state constituted by
a hole bound to Fe**. The most significant results are summarised in the following:

A comprehensive literature review is presented on the Fe centre in III-V and II-
VI semiconductors. Experimental and theoretical data that have been obtained
over a few decades were reviewed thoroughly unveiling common phenomena that
can be generalised to other TMs. The positions of established Fe3*/?* and Fe?t/1+
levels were summarised allowing for predictions on the positions of further charge
transfer levels based on the internal reference rule. The Fe?*/4* level has not been
identified unambiguously in any of the studied materials. Detailed term schemes
of the observed charge states in tetrahedral and trigonal crystal field symmetry are
presented including fine structure, isotope effects and a dynamic Jahn-Teller effect.

By means of cathodoluminescence experiments Ni and Fe doping of HVPE-grown
GaN was found to promote the formation of inhomogeneous regions with increased
donor density and enhanced luminescence efficiency. In these regions richly struc-
tured cathodoluminescence patterns are observed at the surface.

By means of optical studies on high quality Fe doped GaN samples the electronic
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Summary VII

structure of Fe** and Fe?t was established in great detail. The effects of spin-orbit
interaction, of the axial distortion of the crystal field in hexagonal GaN and of the
Jahn-Teller coupling were successfully investigated. Both the Fe3* centre and the
Fe?* centre were found to be stabilised against a dynamic Jahn Teller effect by the
trigonal symmetry of the wurtzite lattice. A bound state with a binding energy
of 50410 meV was identified as a hydrogenic state consisting of a hole localised at
an Fe?* centre. This [Fe?" h| state represents a transient shallow acceptor state.
It could be described by effective-mass-theory revealing an effective Bohr radius of
1.5 nm which may enable a long-range spin interaction via overlapping wavefunc-
tions at relatively low Fe doping. The position of the Fe3*/2* acceptor level could
be narrowed down to 2.863+0.005 eV above the valence band maximum. Acting
as a deep acceptor Fe incorporation was shown to quench the intrinsic yellow lumi-
nescence of GaN by lowering the Fermi level and passivating native donor states.
Implications concerning the internal reference rule are discussed.

A deep understanding of the effective-mass-like state [Fe?* h] could be obtained by
temperature and stress dependent measurements on Fe doped GaP, GaAs and InP.
Besides the ground state, the hole was observed in several excited hydrogenic states
each involving different Fe?* fine structure states. Particularly for the hydrogenic
ground state, a weak exchange interaction was found between the hole Fe** core
states. Due to finite p-d hybridisation of Fe orbitals with the valence band, a weaker
binding energy was observed for the ground state than predicted by effective mass
theory. Finally, with regard to the Fe?*™ ground state, °A;(S), in GaP and InP, the
hyperfine structure level I's was found to be above the I'; level.

ZnO:Fe samples were prepared by Fe coating ZnO crystals, which were grown
from the gas phase, and subsequent annealing under varying atmospheres. In these
samples the internal Fe?*(°E-"T,) transition was observed for the first time at
395.7 meV by means of Fourier transform infrared transmission spectroscopy. This
value is in good agreement with the general trend in III-V and II-VI materials
that the (°E—°T5) energy rises with an increasing degree of ionicity and decreasing
lattice constant. No axial symmetry was found for the Fe?" centre which is unusual
for wurtzite ZnO. Possible reasons are discussed taking into account a strong Jahn-
Teller effect, the non-constant ¢/a-ratio of ZnO and a high concentration of defects.
Moreover, Fe-defect complexes and local vibrational modes could be identified.

A large array of GaN samples with varying Mn concentrations and n-type and
p-type co-doping allowed for a systematic charge state tuning by shifting the Fermi
level providing access to the oxidation states Mn?*, Mn** and Mn**. The respective

electronic structures were investigated by means of optical and magnetic techniques.
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The Mn3* centre and Mn?* centre showed clear effects of degradation of crystal
quality as a result of Mn, Si and Mg doping. A strong tendency was demonstrated for
the formation of Mn-Mg complexes. A photoluminescence structure found around
1 eV in Mg co-doped GaN:Mn samples was proven to originate from Mn** involved in
such complexes. A resonant Stokes process by secondary excitation and stimulated
hole transfer was established in these Mn-Mg complexes. The Mn3*t/** donor and
Mn?*+/2+ acceptor levels were found 1.15 eV and 1.65 eV above the VB maximum,
respectively, compensating n-type and p-type doping. As a consequence, there is no
reasonable chance to achieve high carrier concentrations in GaN:Mn, a precondition
for free-carrier-mediated spin-coupling.

The results presented in this thesis contribute to the general understanding of
transition-metal-related electronic states in III-V and II-VI semiconductors, partic-
ularly in GaN and ZnO. These new insights are valuable contributions to a targeted
design of dilute magnetic semiconductors that will help to, one day, realise next-

generation spintronic devices.
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