Analysis of the B cell repertoire in the systemic and mucosal tissues of rainbow trout (Oncorhynchus mykiss)

Rohan Singh Panwar

2008

Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, University of Technology, Sydney
Declaration

I declare that this thesis has not been already submitted for any degree and is not being submitted as part of candidature for any degree.

I also declare that the thesis has been written by me and that any help I received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Rohan Singh Panwar, Bsc (Hons).
Acknowledgments

I would like to first thank Professor Bob Raison for the support and supervision I was given in undertaking this project. Bob’s support and knowledge in the field was invaluable in keeping this project on track and maintaining its aims. Thank you Bob it has been a pleasure working with you! I would also like to thank Associate Professor Kevin Broady for the support and guidance received.

The Institute for the Biotechnology of Infectious diseases (IBID), UTS, has been a very homely and warm place to work with a number of people deserving a mention. In regards to on the bench expertise, I would like to thank Margarita Villavedra, Matt Padula, Susan Lemke, Kay Leung, Andrew Hutchinson, Darren Jones, David (“Daddy”) Witcombe, Sabina Belli, Sheila Donnelly, Chris Weir, Scott Mims, Selmir Advic, Najah Nassif, Collin Stack and Matthew Clemson. To all of you I extend a very special thank you. From this list an extra special thank you goes to Sheila Donnelly for having the patience and time to proof read my thesis.

The biggest thank you goes to my partner Catherine James who has been there with all the patience and kindness one could ask for. This extended from helping with fish immunizations, to giving technical expertise to the very difficult task of proof reading and pushing me to get my thesis completed. Thanks Cat, none of this would have been possible without you!

Finally thank you to my outside friends and family, especially my parents who always provided me with love and support. The final thank you goes to Novartis animal vaccines and to Associate Professor Kenneth Cain at the University of Idaho for the provision of tissue samples.
Chapter 2: Materials and methods

2.1 Animals..29
2.2 Anesthesia, PIT tagging and bleeding..29
2.3 Antigen preparation...29
 2.3.1 FITC-KLH..29
2.4 Immunizations...30
2.5 ELISA...30
 2.5.1 1.14b anti-trout mAB...30
 2.5.2 IgG purification by protein G..31
 2.5.3 Anti-mouse Ig tertiary antibody...31
 2.5.4 Development of ELISA standard curve...31
 2.5.5 ELISA-based serum assay..32
 2.5.6 ELISA-based cellular assay..32
2.6 Tissue preparation...33
 2.6.1 Blood..33
 2.6.2 Gills...33
 2.6.3 Hindgut..34
 2.6.4 Spleen...34
 2.6.5 Head kidney...35
2.7 Preparation of single cell suspension...35
 2.7.1 Spleen and head kidney...35
 2.7.2 Hindgut and gills..35
2.8 Cell counting ...36
2.9 RNA extractions ...36
 2.9.1 Dynabead extraction ..36
 2.9.2 Trizol extraction ...37
2.10 Analysis of RNA samples ...37
2.11 cDNA synthesis and PCR amplification of rearranged V_H genes.............37
 2.11.1 First strand synthesis ...37
 2.11.2 PCR amplification of rearranged variable heavy chain genes (V_H)38
2.12 Cloning of PCR amplicons ...38
 2.12.1 Gel extraction and ligation of PCR amplicons into cloning vector38
 2.12.2 Plasmid precipitation ..39
2.13 Transformation of plasmids into competent cells ...39
2.14 Selection and screening of positive clones ...40
2.15 DNA sequencing ..40
2.16 Assignment of cloned sequences into V_H gene families40
 2.16.1 Alignments of V_H gene sequences41
2.17 V_H gene family-specific primers41
2.18 Primers amplifying total IgM ...42
2.19 Real time PCR ...42
 2.19.1 Quantitative PCR detection system41
 2.19.2 Positive controls ..42
 2.19.3 Standard curves and primer efficiencies42
 2.19.4 Analysis of real time (qRT-PCR) data42
2.20 Statistical analysis ..43

Chapter 3: The antibody response against a hapten-carrier system in trout45
3.1 The immune response to FITC-KLH in fish immunized via systemic or mucosal
 routes ...46
3.2 Serum anti-FITC antibody response ..48
3.3 ASC response in systemic and mucosal lymphoid tissues..........................48
3.4 Individual serum antibody responses..50
3.5 The effect of primary and secondary immunization routes on the antibody response to FITC-KLH in serum and lymphoid tissues..50
 3.5.1 Immunization regimen...50
 3.5.2 Serum anti-FITC and anti-KLH antibody responses in fish primed systemically (ip) or mucosally (pa) with FITC-KLH......................54
 3.5.3 Serum and tissue specific anti-FITC and anti-KLH antibody levels in ip primed fish re-challenged via the ip or pa routes.......................56
 3.5.4 Serum and tissue specific anti-FITC and anti-KLH antibody levels in pa primed fish re-challenged via the pa or ip routes...............56
 3.5.5 Individualized responses of fish primed and re-challenged with antigen.......60
 3.5.5.1 Individual responses for ip:ip and ip:pa immunized fish in serum and tissues...60
 3.5.5.2 Individual responses for pa:pa and pa:ip immunized fish in serum and tissues...62
3.6 Discussion...63
 3.6.1 Evaluation of the primary experiment...64
 3.6.2 Effect of route of immunization in the secondary antibody response to FITC-KLH in trout..66
 3.6.3 Technical limitations of the cellular assay...68

Chapter 4: The variable heavy (V_H) chain gene families of rainbow trout...72
4.1 Synthesis of cDNA and two step PCR amplification of rearranged V_H genes........73
 4.1.1 Nucleotide sequence analysis of rearranged V_H genes.......................73
 4.1.2 Frequency of V_H gene families in systemic and mucosal lymphoid tissues of trout...75
4.2 Family-specific V_H gene primers..75
 4.2.1 Design of family-specific V_H gene primers....................................75
4.2.2 PCR amplification of the rearranged V_H gene repertoire using V_H gene family-specific primers...82
4.2.3 Mismatching...82
 4.2.3.1 Testing family-specific primers for mismatching...88

4.3 Design of a qRT-PCR assay for analyzing the rearranged V_H gene repertoire in trout..88
 4.3.1 Calculation of the primer efficiency V_H gene primer sets................................88
 4.3.2 Relative expression of the rearranged V_H gene repertoire in non immunized fish..89

4.4 Discussion..91
 4.4.1 Application of 5' SMART RACE approach to analyze V_H gene usage...........91
 4.4.2 Identification of rearranged V_H gene constructs identical over the V_HD_IH region...94
 4.4.3 Design and testing of V_H gene family-specific primers.................................95
 4.4.4 Calculation of primer efficiency using qRT-PCR...95
 4.4.5 Analysis of V_H gene family expression in systemic and mucosal tissues using qRT-PCR...96

Chapter 5: Analysis of the rearranged V_H gene repertoire of the systemic and mucosal lymphoid tissues of FITC-KLH immunized rainbow trout..99

5.1 V_H gene usage in the primary immune response in fish immunized via the systemic and mucosal routes..99
 5.1.1 Head kidney tissue...100
 5.1.2 Hindgut tissue...100
 5.1.3 Gill tissue...106
 5.1.4 Summary of rearranged V_H gene expression in the primary ASC response...106

5.2 V_H gene family usage in the secondary immune response in fish immunized via systemic, mucosal or a combination of routes...111
 5.2.1 Changes in gene expression in head kidney tissue..111
5.2.2 Changes in gene expression in hindgut tissue ..113
5.2.3 Changes in gene expression in gill tissue ..113
5.2.4 Summary of rearranged V_H gene expression in tissues of fish exhibiting a secondary ASC response to FITC-KLH ...119

5.3 Discussion ...120
 5.3.1 Reference genes ..120
 5.3.2 Selection of tissues and regimens for analysis ..121
 5.3.3 Analysis of IgM expression ...122
 5.3.3.1 Head kidney ..122
 5.3.3.2 Hindgut and gills ..122
 5.3.4 The V_H gene families with the highest expression fold changes122
 5.3.5 Repertoire gaps ..124

5.4 Other factors affecting expression of the rearranged V_H gene repertoire and conclusions ...126

Chapter 6: General discussion and conclusions ..130

References ..135
List of figures

Chapter 1
Figure 1.1: Lymphoid tissues of the teleost immune system..3
Figure 1.2: Genomic organization of the immunoglobulin heavy chain genes of mammals, bony fish and cartilaginous fish...14
Figure 1.3: The rearrangement of the variable heavy and light chain genes..............................15
Figure 1.4: Contributions of the V_H, D_H and J_H genes to the rearranged V_H domain...........17
Figure 1.5: Representation of the teleost multimeric IgM structure in comparison to the mammalian structure...23

Chapter 2
Figure 2.1: Two chambered heart system of rainbow trout..34

Chapter 3
Figure 3.1: Experimental regimen of the primary serum and ASC response............................47
Figure 3.2: Anti-FITC antibody responses in the serum of trout immunized either systemically (ip) or mucosally (pa) with FITC-KLH..49
Figure 3.3: FITC-specific ASC responses in systemic and selected mucosal lymphoid tissues of trout immunized either systemically (ip) or mucosally (pa) with FITC-KLH..51
Figure 3.4: Experimental regimens of the primary and secondary serum and ASC responses..53
Figure 3.5: Anti-FITC and anti-KLH antibody responses in the serum of trout primed via the systemic (ip) or mucosal (pa) routes..55
Figure 3.6: Anti-FITC and anti-KLH serum antibody and ASC responses in the tissues of fish immunized ip and re-challenged ip..57
Figure 3.7: Anti-FITC and anti-KLH serum antibody and ASC responses in the tissues of fish immunized ip and re-challenged pa...58
Figure 3.8: Anti-FITC and anti-KLH serum antibody and ASC responses in the tissues of fish immunized pa and re-challenged pa...59
Figure 3.9: Anti-FITC and anti-KLH serum antibody and ASC responses in the tissues of fish immunized pa and re-challenged ip...61
Chapter 4

Figure 4.1: A nested-PCR approach for the amplification of rearranged V_H genes in rainbow trout...74
Figure 4.2: Translated nucleotide sequence alignment of rearranged V_H gene sequences......79
Figure 4.3: Usage of V_H gene families in rearranged IgH genes from head kidney, hindgut and gill tissues ...80
Figure 4.4: Family-specific V_H gene primer annealing regions..81
Figure 4.5: Amplification of rearranged V_H genes using family-specific primers...............83
Figure 4.6: Nucleotide alignment of sequences from PCR using family-specific primers......86
Figure 4.7: Percentage homology within V_H gene family sequences using the family-specific primer sets...87
Figure 4.8: The relative expression of V_H gene families in the systemic and mucosal tissues of trout...90

Chapter 5

Figure 5.1: Effect of exhibiting a primary ASC response to FITC-KLH immunization on IgM gene expression in the head kidney of fish.................................101
Figure 5.2: V_H family usage in the head kidney of fish exhibiting a primary ASC response to FITC-KLH...102
Figure 5.3: Gaps in the V_H gene families expressed in the head kidney of fish exhibiting a primary ASC response to FITC-KLH..103
Figure 5.4: Effect of exhibiting a primary ASC response to FITC-KLH immunization on IgM gene expression in the hindgut of fish.................................104
Figure 5.5: V_H family usage in the hindgut of fish exhibiting a primary ASC response to FITC-KLH...105
Figure 5.6: Gaps in the V_H gene families expressed in the hindgut of fish exhibiting a primary ASC response to FITC-KLH ..107
Figure 5.7: Effect of exhibiting a primary ASC response to FITC-KLH immunization on IgM gene expression in the gill of fish ...108
Figure 5.8: V_H family usage in the gill of fish exhibiting a primary ASC response to FITC-KLH ...109
Figure 5.9: Gaps in the V_H gene families expressed in the gill of fish exhibiting a primary
ASC response to FITC-KLH ...110

Figure 5.10: The effect of exhibiting a secondary ASC response to FITC-KLH on IgM
gene expression in the head kidney of fish..112

Figure 5.11: V_H family usage in the head kidney of fish exhibiting a secondary ASC
response to FITC-KLH ...114

Figure 5.12: The effect of exhibiting a secondary ASC response to FITC-KLH on IgM
gene expression in the hindgut of fish ..115

Figure 5.13: V_H family usage in the hindgut of fish exhibiting a secondary ASC response to
FITC-KLH ..116

Figure 5.14: The effect of exhibiting a secondary ASC response to FITC-KLH on IgM
gene expression in the gill of fish ..117

Figure 5.15: V_H family usage in the gill of fish exhibiting a secondary ASC response to
FITC-KLH ..118
List of tables

Chapter 2
Table 2.1: Primers for the amplification of the rearranged V\textsubscript{H} gene families 41

Chapter 3
Table 3.1: Individual FITC-specific serum and ASC responses in trout immunized either systemically (ip) or mucosally (pa) with FITC-KLH .. 52
Table 3.2: Serum and ASC antibody responses against FITC-KLH of individual fish within the ip:ip and ip:pa regimens .. 62
Table 3.3: Serum and ASC antibody responses against FITC-KLH of individual fish within the pa:pa and pa:ip regimens ... 63

Chapter 4
Table 4.1: Assignment of nucleotide sequences to V\textsubscript{H} gene families .. 76
Table 4.2: Primer efficiencies calculated using qRT-PCR ... 89

Chapter 5
Table 5.1: Summary of V\textsubscript{H} gene family usage in tissues exhibiting a primary ASC response to FITC-KLH ... 111
Table 5.2: Summary of V\textsubscript{H} gene family usage in tissues exhibiting a secondary ASC response to FITC-KLH ... 119
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AID</td>
<td>activation-induced cytidine deaminase</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CDR</td>
<td>complementarity determining region</td>
</tr>
<tr>
<td>CDR</td>
<td>complementarity determining regions</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>Cₜ</td>
<td>cycle threshold</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme linked immunoabsorbant assay</td>
</tr>
<tr>
<td>EtBr</td>
<td>ethidium bromide</td>
</tr>
<tr>
<td>FAE</td>
<td>follicle associated epithelium</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GALT</td>
<td>gut associated lymphoid tissue</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GC</td>
<td>gene conversion</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>IEL</td>
<td>intraepithelial lymphocytes</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IgNAR</td>
<td>immunoglobulin isotype new antigen receptor</td>
</tr>
<tr>
<td>ip</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>ip</td>
<td>peranal</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-beta-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>KLH</td>
<td>keyhole limpet hemocyanin</td>
</tr>
<tr>
<td>L</td>
<td>litre/s</td>
</tr>
<tr>
<td>LB</td>
<td>luria broth</td>
</tr>
<tr>
<td>LPL</td>
<td>lamina propria lymphocytes</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>Mamp</td>
<td>milliamps</td>
</tr>
<tr>
<td>MALT</td>
<td>mucosal associated lymphoid tissues</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MMC</td>
<td>melanomacrophage centers</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
<tr>
<td>°C</td>
<td>degrees celcius</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pH</td>
<td>potenz hydrogen</td>
</tr>
<tr>
<td>PIT</td>
<td>passive implantable transponders</td>
</tr>
<tr>
<td>PP</td>
<td>peyers patches</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>quantitative real time PCR</td>
</tr>
<tr>
<td>RACE</td>
<td>random amplification of cDNA ends</td>
</tr>
<tr>
<td>RAG</td>
<td>recombination activation genes</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell park memorial institute</td>
</tr>
<tr>
<td>SHM</td>
<td>somatic hypermutation</td>
</tr>
<tr>
<td>slg⁺</td>
<td>surface Ig positive</td>
</tr>
<tr>
<td>TcR</td>
<td>T cell receptor homolog</td>
</tr>
<tr>
<td>TD</td>
<td>T-dependant</td>
</tr>
</tbody>
</table>

xiv
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TdT</td>
<td>terminal deoxynucleotidyl transferase</td>
</tr>
<tr>
<td>TNP-LPS</td>
<td>trinitrophenyl conjugated to lipopolysaccharide</td>
</tr>
<tr>
<td>U</td>
<td>units</td>
</tr>
<tr>
<td>UPR</td>
<td>unfolded protein response</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>x g</td>
<td>gravitational force</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside</td>
</tr>
</tbody>
</table>
Acquired immune responses against hapten-carrier systems have been used in mammals and teleosts in vivo as an effective means of identifying and characterizing T and B cell activity. Fish immunized by intraperitoneal (ip) injection of the hapten-carrier system FITC-KLH develop strong serum antibody responses to both the hapten (FITC) and carrier protein (KLH; Jones et al., 1999). In contrast, fish immunized with FITC-KLH by peranal (pa) intubation results in a failure to develop a detectable anti-KLH response in the serum, yet they still develop a significant anti-FITC response. To investigate the nature of the antibody secreting cell (ASC) response in the systemic (head kidney and spleen) and mucosal tissues (hindgut and gills) of trout, ELISA-based serum and cellular assays were utilized to detect serum and tissue-specific antibody responses to FITC and KLH. Given the distinction in serum responsiveness to FITC-KLH through the ip and pa routes, an identification of where the B cell tissue-specific responses were occurring would identify if there is a restricted B cell population in the mucosal tissues of rainbow trout. In the primary response to immunization with FITC-KLH, systemically challenged fish presented ASC activity in systemic tissues, while mucosally challenged fish presented ASC activity in a mixture of both systemic and mucosal tissues. In the secondary response to FITC-KLH, in fish immunized via a combination of systemic and mucosal routes there was a utilization of both systemic and mucosal tissues in the response. It is possible that immunization with FITC-KLH through the mucosal or systemic routes may cause presentation of FITC-KLH in the systemic tissues, resulting in trafficking of ASC or antigen presenting cells (APC) between the mucosal and systemic tissues. To examine the relationships within and between the B cell populations of the lymphoid tissues, the rearranged V_{H} gene repertoire was examined in the tissues with ASC activity. Identification of preferential or restricted use of the different V_{H} genes may provide further insight into the restricted serum response to KLH in mucosally challenged fish, and whether restricted populations of B cells exist within the mucosal tissues. A qRT-PCR assay was developed and optimized using non-immunized trout to analyze the use of V_{H} gene families V_{H}-I to V_{H}-XI in rearranged Ig genes in the lymphoid tissues of trout. All V_{H} gene families were amplified across the tissues tested. In the primary response to immunization with FITC-KLH, families with the highest fold changes in gene expression for both systemic and mucosal tissues were V_{H}-VI, V_{H}-VIII, V_{H}-IX, V_{H}-X and V_{H}-
XI. In the secondary response, families V_{H-I}, V_{H-II}, V_{H-IX}, V_{H-X} and V_{H-XI} had the highest fold changes in gene expression. Gaps in the repertoire were also apparent within the primary ASC response to FITC-KLH, and were mainly associated with families V_{H-I}, V_{H-II}, V_{H-III}, V_{H-IV}, V_{H-V} and V_{H-VII}. In the secondary ASC response study to FITC-KLH, systemic tissue contained few repertoire gaps, however in mucosal lymphoid tissues there was evidence of repertoire gaps for families V_{H-I}, V_{H-II}, V_{H-III}, V_{H-IV}, V_{H-V}, V_{H-VI}, V_{H-VII} and V_{H-VIII}. A similar pattern of expression for the V_{H} gene families could suggest B cells migrate to the different tissues from a common source, perhaps from the head kidney given its role as a primary lymphoid tissue. Alternatively, families present in high abundance may have a larger number of germline members, or are highly expressed due to an unknown antigenic challenge. This study is one of the first to identify the extent of the usage of the V_{H} gene families in these tissues.