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Abstract 
An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) 
is presented in this paper. Iterated function system (IFS) is one type of fractals that maintains a 
similarity characteristic. By introducing the IFS into the crossover operation, the RCGA performs 
better searching solution with a faster convergence in a set of benchmark test functions. 
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1. Introduction 
Genetic algorithm (GA) [1] is a stochastic search algorithm for solving optimization problems. It can help find 
out the globally optimal solution over a domain. In general, three genetic operations affect the performance of 
the GA: selection, crossover and mutation. Selection operation selects the parents from the population with re-
spect to some probability distribution and the fitness values. The crossover operation combines the information 
of the selected parents and generates the offspring. The mutation operation introduces changes to the offspring 
variables. Recently, different crossover operations for real-coded GA have been proposed to improve the effi-
ciency. The unimodal normal distribution crossover (UNDX) was proposed [2] for multi-modal and highly epi-
static functions. The blend crossover (BLX-α) [3] was reported showing good search ability for separable fitness 
functions. Average-bound crossover [4] was introduced to enhance the solution quality and solution stability. In 
this paper, a new crossover operation is presented. 

Iterated function system (IFS) theory was proposed by Barnsley [5], which involved a specific fractal that 
enhances a self-similarity property. Based on the IFS, objects are dissected into pieces that are similar to the 
whole object. Taking advantage of the self-similarity property of IFS, an iterated function system crossover 
(IFSX) is proposed for real-coded GAs. It will be shown that the GA with IFSX will perform more efficiently 
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and provide a faster convergence in a suite of benchmark test functions. 

2. Iterated Functions System Crossover 
The idea of using IFSX to reproduce offspring is shown in Figure 1. The procedure is as follows: 

1) Select 2 parents 1 11 12 1 paranp p p =  p   and 2 21 22 2 paranp p p =  p   from the population, where 

paran  is the number of parameters. 
2) Combine the information (genes) of 1p  and 2p  to form a vector v of complex elements given by 

1 2 11 21 12 22 1 2para para paran n nv v v p jp p jp p jp   = = + + +   v                    (1) 

3) Based on the IFS theory [4], let 

îj i jv v vλ= +                                           (2) 

where , 1, 2, , parai j n=  , ( ]0,1λ ∈  is a scaling factor. îjv  are the possible values generated by the IFS that  
exhibits a self-similarity property. For instance, in Figure 1, there are 3 values, v1, v2 and v3. From (2), we have  
9 values îjv , i, j = 1, 2, 3. This figure shows a fractal, and the patterns of 1 2ˆ ˆ,j jv v  and 3ˆ jv , j = 1, 2, 3 are simi-
lar to the pattern of v1, v2 and v3. In some cases, the value of îjv  may be out of the boundary. Then, the system  
will generate a random value (within the boundary) to replace it.  
4) Randomly pick up npara variables from îjv . If { }ˆ

îjV v= , 

then { }1 2
ˆ

paranQ q q q V= ⊂                                   (3) 

For example, in Figure 1, a possible Q can be { }21 23 31ˆ ˆ ˆv v v . 
5) Generate the offspring 1̂P  and 2̂P  as follows: 

 

 
Figure 1. Idea of the proposed IFSX.                                                              
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( )1̂ Re Q=P                                            (4) 

( )2̂ Im Q=P                                            (5) 

where Re(Q) and Im(Q) generate vectors formed by the real part and imaginary part of the elements of Q re-
spectively. 

Crossover operation is mainly for exchanging information from the two selected parents. In traditional cros-
sover operations (e.g. UNDX and BLX-α), the information is exchanging gene by gene. In the proposed IFSX, 
each offspring gene is affected by all other genes of the parents, which is a more “complete” crossover operation 
for information exchange. The IFSX crossover makes the GA operation performs better in terms of fitness value 
and convergence rate. 

3. Simulation Results 
The GA with the proposed IFSX goes through six test functions. The results are compared to those from GAs 
with UNDX and BLX-α. For each test function, the population size is 50 and all the simulation results are aver-
aged ones out of 50 runs. The selection algorithm and the mutation operation are the roulette wheel selection [1] 
and the non-uniform mutation [1] respectively. The six test functions are listed in Table 1. f1 is a sphere model 
which is smooth and symmetric. f2 is a step function, which is a representative of flat surfaces. f3 is a quartic 
function which is a simple unimodal function padded with noise. f4 is a Shekel’s foxholes function and f5 is a 
Kowalik’s function, which are multimodel functions with only a few local minima. f6 is an Ackley’s function 
which is a multimodel function with many local minima. The parameter λ of the IFSX are set at 0.005, 0.001, 
0.001, 0.01, 0.005, 0.005 for f1 to f6 respectively, and the parameter of the BLX-α is set at 0.336 [3]. The simula-
tion results obtained by the GA with the proposed IFSX, UNDX and BLX-α are shown in Figure 2 and Table 2. 
It can be seen that the searching performance of the proposed IFSX is improved with faster convergence rate. 

 
Table 1. Six benchmark test functions.                                                                       
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( )
30

2
1

1
i

i

f x
=

= ∑x , 5.12 5.12ix− ≤ ≤  ( )1 0f =0  

( ) ( )( )
30

2

2
1

0.5i
i

f x
=

 = + ∑x , 0 5ix− ≤ ≤  ( )2 0f =0  

( ) [ )
30

4
3

1

0,1i
i

f ix random
=

= +∑x , 1.28 1.28ix− ≤ ≤  ( )3 0f =0  

( )
( )

1

25

4 62
1

1

1 1
500 j

i iji

f
j x a

−

=
=

 
 = +
 + − 

∑
∑

x , 65.536 65.536ix− ≤ ≤ , 

32 16 0 16 32 32 0 16 32
32 32 32 32 32 16 32 32 32ija

− − − 
=  − − − − − − 





 

[ ]( )4 32 32 1f − − ≈  

( ) ( ) 2211
1 2

5 2
1 3 4

i i
i

i i i

x b b x
f a

b b x x=

 +
= − 

+ +  
∑x , 5 5ix− ≤ ≤ , 

a = [0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235 0.0246], 
b = [4 2 1 0.5 0.25 0.167 0.125 0.1 0.0833 0.0714 0.0625] 

[ ]( )5 0.1928 0.1908 0.1231 0.1358

0.0003075

f

≈
 

( )
30 30

2
6

1 1

1 120exp 0.2 exp cos 2π 20
30 30i i

i i

f x x e
= =

   = − − − + +       
∑ ∑x , 32 32ix− ≤ ≤ , ( )6 0f =0  



S. H. Ling 
 

 
40 

    
f1                                            f2 

    
f3                                            f4 

    
f5                                           f6 

Figure 2. Simulation results for f1 to f6 based on the proposed IFSX (solid line), UNDX (dashed line) 
and BLX-α (dotted line).                                                                 

 
Table 2. Statistical results for f1 to f6.                                                                        

  IFSX UNDX BLX-α 

f1 
Ave. 2.6783e−19 4.9364e−1 6.0905e−6 
S.D. 9.8771e−19 7.6386e−1 5.2821e−6 

f2 
Ave. 0 8.5 164.82 
S.D. 0 5.6973 16.241 

f3 
Ave. 9.9721e−3 1.8537e−1 8.9198e−2 
S.D. 2.1561e−2 1.7033e−1 4.1623e−2 

f4 
Ave. 0.99942 1.0023 7.2684 
S.D. 0.00688 0.02393 43.494 

f5 
Ave. 5.6569e−4 6.1026e−3 4.6089e−3 
S.D. 7.9694e−4 1.0703e−2 6.8570e−3 

f6 
Ave. 7.444e−12 2.8856 6.0939e−1 
S.D. 2.0494e−11 2.4163 6.6202e−1 
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4. Conclusion 
In this paper, a new crossover of IFSX for real-coded GA has been proposed. Take the advantage of the iterated 
function system theory and integrate into crossover operation of real-code genetic algorithm, the solution quality 
of the searching is enhanced. A suite of benchmark test functions has been used to illustrate the merits of the 
IFSX.  
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