Abstract

Classification on structure data, such as graphs, has drawn wide interest in recent years. Due to the lack of explicit features to represent graphs for training classification models, extensive studies have been focused on extracting the most discriminative subgraphs features from the training graph dataset to transfer graphs into vector data. However, such filter-based methods suffer from two major disadvantages: (1) the subgraph feature selection is separated from the model learning process, so the selected most discriminative subgraphs may not best fit the subsequent learning model, resulting in deteriorated classification results; (2) all these methods rely on users to specify the number of subgraph features K, and suboptimally specified K values often result in significantly reduced classification accuracy.

In this paper, we propose a new graph classification paradigm which overcomes the above disadvantages by formulating subgraph feature selection as learning a K-dimensional feature space from an implicit and large subgraph space, with the optimal K value being automatically determined. To achieve the goal, we propose a regularized loss minimization-driven (RLMD) feature selection method for graph classification. RLMD integrates subgraph selection and model learning into a unified framework to find discriminative subgraphs with guaranteed minimum loss w.r.t. the objective func-
tion. To automatically determine the optimal number of subgraphs K from the exponentially large subgraph space, an effective elastic net and a subgradient method are proposed to derive the stopping criterion, so that K can be automatically obtained once RLMD converges. The proposed RLMD method enjoys gratifying property including proved convergence and applicability to various loss functions. Experimental results on real-life graph datasets demonstrate significant performance gain.

Keywords: Feature Selection, Classification, Graph Classification, Sparse Learning

1. Introduction

Recent years have witnessed an increasing number of applications involving objects with structural relationships, including chemical compounds in Bioinformatics [1], brain networks [2], image structures [3], and academic citation networks [4]. For these applications, graph is a natural and powerful tool for modeling and capturing dependency relationships between objects.

Unlike conventional data, where each instance is represented in a feature-value vector format, graphs exhibit node-edge structural relationships and have no natural vector representation. As a result, a common practice is to transfer graphs into vectors [5, 6, 7, 8, 9] in structure space or in Euclidean space, so that traditional machine learning algorithms such as Support Vector Machines (SVM) and Decision Tree can be applied. In the structure space (also referred to as quotient space) [7, 8], the distance relations and nature of the original data are preserved, and some geometrical and analytical concepts such as derivatives of functions on structures can be determined, so that it can be applied to solve problems in structural pattern recognition.

In the Euclidean space, the structural relations may be lost, but it provides simpler and more powerful analytical techniques for data analysis. Therefore, numerous approaches [10, 9, 11, 12, 13, 14, 15, 16, 17, 18] have been proposed to represent graphs in Euclidean space. The key idea of transferring graphs into vectors in Euclidean space is to extract a set of subgraphs as features and use the presence/absence of the features

In this paper, we only consider graphs with labels but no other feature values on nodes and edges.
to represent each graph. From a feature selection perspective [19], these subgraph-based algorithms follow a filter approach for graph classification, i.e., the subgraph feature selection and the subsequent model training are separated into two steps. In summary, existing filter-based graph classification methods roughly fall into the following two categories:

Two-step Filter Methods (TFMs): This type of method first mines a set of frequent subgraphs as features and then applies a feature selection procedure to the discovered subgraphs, and uses the selected subgraph features to learn a classifier (e.g., an SVM or Naive Bayes), as shown in Fig. 1 (A). An early study [9] has shown that using frequent subgraphs as features can achieve reasonable good classification results. However, because TFMs separate subgraph feature discovery and feature evaluation into two steps, they may suffer from severe disadvantage in that the number of discovered subgraphs will grow exponentially when the minimum support value for subgraph mining is low. As a result, it will make the feature selection step heavily time-consuming. On the other hand, for relatively high minimum support values, many good subgraphs are pruned out because they do not meet the frequency requirement, so cannot be found to represent graphs.
Direct Filter Methods (DFMs): To improve the subgraph feature selection efficiency, numerous approaches [11, 12, 15, 16, 17] have been proposed to combine subgraph mining and feature selection into one step, representing a direct discriminative feature selection [18] scheme. So the feature selection is integrated into a subgraph mining process (Fig. 1 (B)), with pruning rules derived from the anti-monotone property of the significance (p-value) of each graph being used to reduce the search space. While DFMs substantially overcome the subgraph feature selection bottleneck, they also have a number of major disadvantages: (1) The subgraph selection is separated from the model learning process, so the selected subgraphs features may not best fit the underlying learning model, and (2) All these methods require users to specify the number of subgraph features K, whereas the optimal number of subgraphs K required for training a good classifier for graph classification is unknown and difficult to determine. Although subgraphs are selected using optimized measures, due to the redundancy inside the feature set, the accuracy of the classifiers, when varying the number of selected subgraph features K, is highly variable, as shown in Fig. 2. This is a common problem for all existing filter-based graph classification methods.

The above observations motivate the proposed research which aims to integrate subgraph mining, feature selection, and model training into one single framework (Fig. 1 (C)) with the optimal number of subgraphs K being automatically determined for graph classification. To achieve this goal, we formulate subgraph feature selection as the problem of learning a K-dimensional feature space from a huge subgraph space in order to result in minimum regularized loss on the training data as follows:

$$
\min_w \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \gamma R(w)
$$

where $\{x_i, \cdots, x_n\}$ are the vector representations of the training graphs, L is a loss function measuring the difference between the prediction $f(x_i)$ and the true label y_i, and $R(w)$ is a regularization term on parameters w to avoid over-fitting.

Indeed, the optimization in Eq.(1) has been widely studied [20, 21, 22] in machine learning community, but mainly for data with vector format. Several significant challenges remain for graph data:

1. **Implicit Subgraph Features:** For graph classification, no subgraph features are
readily available (i.e., x_i is unknown) for training the model in Eq.(1). Instead, the feature space used to represent graphs is implicit and needs to be discovered by subgraph mining procedure as needed.

2. K-dimensional Features from Huge Subgraph Space: The number of subgraph candidates representing graphs is exponentially large. Finding an optimal number of K subgraphs for different graph datasets (in order to result in best classifiers), is crucial but has not been addressed by existing research.

In this paper, we propose a unified regularized loss minimization-driven (RLMD) graph classification framework. Our theme is to progressively select the most discriminative subgraph features from the training data in order to achieve minimum regularized loss for a well defined objective function. To integrate subgraph selection into the model learning process (Challenge 1), we formulate an objective function and design a subgradient method to induce a measurement to assess the utility of each subgraph, so that the best subgraph features can be identified and incrementally included to optimize the objective function for maximum performance gain. To determine the optimal K value for each dataset (Challenge 2), we use an elastic net [21] and derive a stopping condition, so that the K value can be automatically obtained when the algorithm converges. By using the automatically determined optimal K value, as shown in Fig. 2, RLMD finds 180 best subgraphs and achieves the best performance, which is 6% more accurate than the second best method.

The main contributions of this paper are summarized as follows:

- We propose an embedded and theoretically convergent graph classification algorithm, which can automatically determine the optimal number of subgraphs K for graph classification. This is a unified approach in the sense that (1) it can employ any differentiable loss function (including least squares, exponential, and logistic loss functions) for graph classification; and (2) it integrates subgraph mining, feature selection, and model learning into one single framework.

- We generalize the column generation technique of gBoost [23] for graph classification, and demonstrate that gBoost [23] is a special case of our loss minimization algorithm.
Figure 2: Classification accuracy for filter subgraph-based methods w.r.t. different numbers of subgraphs on the NCI-1 chemical compound dataset. IG is a TFM method which uses information gain to select subgraphs, whereas gHSIC [12] is a DFM method. All methods use SVM as a base classifier. The optimal number of subgraph features K is crucial, but difficult to decide for filter methods. In comparison, the proposed method (RLMD) automatically finds 180 best subgraphs and achieves the highest accuracy, which is 6% more accurate than the second best method.

- We propose the use of elastic net (which integrates two sparsity-inducing regularization norms, ℓ_1-norm and ℓ_2-norm) to produce a sparse and robust solution for discriminative subgraph selection.
- We derive a branch-and-bound rule according to the subgradient of our objective function to prune search space for optimal subgraph mining.
- Experimental results show that our algorithm RLMD outperforms two-step filter methods (TFMs), direct filter methods (DFMs), and gBoost algorithm with significant performance gain.

2. Related Work

Our work is closely related to graph-based learning and graph classification.

2.1. Graph-based learning

Learning from data with dependency structures has been commonly addressed by existing research. Instead of considering samples as I.I.D observations, graph-based learning takes the relationships/correlations between samples to ensure effective learning. For example, graph-based approaches have been popularly used to propagate labels in semi-supervised learning [24, 25, 26], where training samples are connected through one or multiple graphs. A recent method [27] considers preserving global and
local structures inside the training data for feature selection. For large scale networks, predicting linkage relationships between nodes (i.e. link prediction) can be used for friendship recommendation in social networks [28], or suggesting potential interactions between proteins in bioinformatics research. A recent work [29] proposed to use latent feature kernels to support link prediction on sparse graphs. All above methods consider a large scale network with thousands (or millions) of integer-connected nodes in the network. In contrast, we consider small graph classification problem, in which each graph has a label indicating the property of the graph, and the graph normally contains tens or several hundreds of nodes. The purpose is to predict the label of the graph by using node and structure information inside the graphs, for purposes such as chemical compound activity prediction [1] and gender classification using magnetic resonance connectome (i.e. brain-graph) [2].

2.2. Graph Classification

Existing methods for graph classification [18, 10, 9, 11, 12, 13, 14, 15, 16, 17, 23, 30, 31] can be roughly categorized into two groups: similarity-based methods and vector representation-based methods.

2.2.1. Similarity-based methods

These approaches aim to directly learn global similarities between graphs by using graph kernels [9, 32, 33, 34] or graph embedding [35]. Global similarities are then fed to similarity-based classifiers, such as KNN or SVM, for learning. One clear drawback of global similarity-based approaches is that the similarity is calculated based on global graph structures, such as random walks or embedding space. Therefore, it is not clear which substructures are more important for classifying graphs into different classes.

2.2.2. Vector representation-based methods

Another branch of methods transfer graphs into vector representations in structure space or in Euclidean space. In structure space [7, 8], geometrical and analytical concepts such as the angle between structures and the derivatives of functions on structures can be obtained, so that the structural pattern recognition problems can be formulated as optimization problems with certain cost functions. In Euclidean space, the goal is
to transfer graphs into vector representations in Euclidean space so existing analytical
techniques can be applied for data analysis. Methods in this category are mainly filter-
based approaches, including two-step filter methods (TFMs) or direct filter methods
(DFMs).

TFMs are straightforward approaches for graph classification which simply de-
compose frequent subgraph generation and selection as two separated steps. An early
work [9] has shown that learning an SVM classifier based on the discovered frequent
subgraphs can achieve reasonably good accuracy for graph classification. On the other
hand, research [16, 15] also indicates that TFM methods may result in a bottleneck
for the subsequent feature selection module. Specifically, the number of frequent sub-
graphs will grow exponentially if the minimum support threshold is low, which imposes
a great challenge for the subsequent feature selection task. This challenge has moti-
vated many direct filter methods (DFMs), which seek to integrate subgraph discovery
and feature selection into one step.

For DFMs (a review on this category can be found in [18]), a key issue is to
define a proper measurement to assess the utility of each subgraph. Yan et al [17] pro-
posed a LEAP algorithm to exploit the correlation between structural similarity and
significance similarity, so that a branch-and-bound rule can be derived to prune out
unpromising searching space efficiently. Ranu and Singh [16] proposed a scalable
GraphSig algorithm, which is able to mine significant subgraphs with low frequencies.
Thoma et al. [15] propose a CORK algorithm to find subgraph features. Recently, re-
searchers have extended DFM to other graph applications, and have proposed effective
algorithms such as gSemi [11] for the semi-supervised setting, gCGVFL [36] for multi-
view learning, gHSIC [12] for multi-label classification, and our recent multi-graph
classification for classifying graph bags, each containing multiple graphs [37, 38].

Although filter methods for graph classification have been extensively studied, they
all suffer from two major disadvantages: (1) the feature selection is not linked to the
model learning process. As a result, the selected subgraph features may not best fit
the underlying learning algorithms; and (2) the optimal number of subgraphs K for
graph classification is difficult to decide and often varies from dataset to dataset, and
inappropriately specified K value often results in significantly reduced classification
accuracy. This is the common drawback for filter-based methods [19].

Embedded Methods. Our algorithm belongs to the embedded approach which integrates the subgraph selection into the model training process. In this subcategory, Saigo et al [23] proposed a gBoost (its variants for imbalanced graph classification [39, 40] and cost-sensitive learning [41] are proposed recently) algorithm which formulates the graph classification as a linear program. As will be elaborated in Sec 4.6, our algorithm is more general in the sense that it can adopt any differentiable loss function and use more robust regularization to produce better performance. In fact, gBoost [23] can be considered as a special case of our loss minimization problem.

3. Problem Definition

Definition 1. Connected Graph: A graph is denoted by \(G = (V, E, L = [L_1, L_2], \mathcal{A} = [\mathcal{A}_1, \mathcal{A}_2]) \), where \(V \) is the vertex set, \(E \subseteq V \times V \) is the edge set, \(\mathcal{A} = [\mathcal{A}_1, \mathcal{A}_2] \) with \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) being the set of labels for vertices and edges, respectively; and \(L = \{L_1, L_2\} \). \(L_1 : V \to \mathcal{A}_1 \), \(L_2 : E \to \mathcal{A}_2 \) are labeling functions that assigns labels to a node or an edge, respectively. A connected graph is a graph such that there is a path between any pair of vertices.

In this paper, we focus on connected graphs and assume that each graph \(G \) has a class label \(y, y \in \mathcal{Y} = \{-1, +1\} \). We only focus on binary-class classification tasks, but our methods can be easily extended to multi-class tasks.

Definition 2. Subgraph: Given two graphs \(G = (V, E, L = [L_1, L_2], \mathcal{A} = [\mathcal{A}_1, \mathcal{A}_2]) \) and \(g_k = (V', E', L' = [L'_1, L'_2], \mathcal{A}' = [\mathcal{A}'_1, \mathcal{A}'_2]) \), \(g_k \) is a subgraph of \(G \) (i.e., \(g_k \subseteq G \)) if there is an injective function \(\hat{f} : V' \to V \), such that \(\forall (a, b) \in E' \), we have \(\hat{f}(a), \hat{f}(b) \in E, L'_1(a) = L_1(\hat{f}(a)), L'_1(b) = L_1(\hat{f}(b)), L'_2(a, b) = L_2(\hat{f}(a), \hat{f}(b)). \) If \(g_k \) is a subgraph of \(G (g_k \subseteq G) \), \(G \) is a supergraph of \(g_k (G \supseteq g_k) \).

Subgraph-based Graph Classification: Given a set of labeled graphs \(\mathcal{T} = \{(G_1, y_1), \cdots, (G_n, y_n)\} \), subgraph-based graph classification aims to select an optimal set of discriminative subgraphs \(\mathcal{F}_1 \) from \(\mathcal{T} \), and learn a classification model from the reduced subgraph space \(\mathcal{F}_1 \) to predict previously unseen test graphs with a maximum accuracy. Set \(\mathcal{F}_1 \) is optimal if the classifier learned from \(\mathcal{F}_1 \) has the highest classification accuracy,
compared to classifiers trained from any subset of \(T \). A major feature of our method is
that it can automatically determine the best set of subgraph features to represent each
graph datasets without requiring users to specify the number of subgraph features. This
essentially advances the existing subgraph feature-based graph classification methods
from finding the most discriminative subgraph features to finding the best subgraph set
for maximum accuracy gain.

4. Regularized Loss Minimization for Graph Classification

To support graph classification, state-of-the-art algorithms [23, 10] use a set of
subgraphs discovered from the training graphs as features, where each subgraph \(g_k \) can
be used to represent a graph \(G_i \) as follows:

\[
h_{g_k}(G_i) = 2I(g_k \subseteq G_i) - 1;
\]

Here \(I(a) = 1 \) if \(a \) holds, and 0 otherwise. This rule simply maps a graph \(G_i \) into +1 if
\(g_k \subseteq G_i \), or -1 otherwise.

Let \(F = \{g_1, \cdots, g_m\} \) be the full set of subgraphs for the training graphs. We can use
\(F \) as features to represent each graph \(G_i \) into a vector space as
\(x_i = \{h_{g_1}(G_i), \cdots, h_{g_m}(G_i)\} \),
with \(x_i^k = h_{g_k}(G_i) \). In the following subsection, \(G_i \) and \(x_i \) are used interchangeably as
they both refer to the same graph. Given the full subgraph features \(F \), the prediction
function for the graph \(x_i \) is a linear classifier:

\[
f(x_i) = x_i \cdot w + b = \sum_{g_k \in F} w_k h_{g_k}(G_i) + b
\]

where \(w = [w_1, \cdots, w_m]' \) is the weight vector for all features \(F \), and \(b \) is the bias of
the model. The predicted class of \(x_i \) is +1 if \(f(x_i) > 0 \) or -1 otherwise. Note that
in practice, subgraph space \(F \) is implicit and exponentially large, i.e., the number of
subgraphs grows exponentially with respect to the number of nodes.

4.1. Regularized Loss Minimization Formulation

In this paper, we propose to learn a \(K \)-dimensional feature space from the implicit
and large subgraph space \(F \) to achieve the lowest regularized empirical risks for the
Graph dataset, with \(K \) being automatically determined. Eq.(1) can be reformulated as the following objective function:

\[
\min_{\mathbf{w}, b} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i \cdot \mathbf{w} + b)) + \gamma_1 \| \mathbf{w} \|_1 + \gamma_2 \| \mathbf{w} \|_2^2
\]

The first term \(C \) measures the loss on the training graphs, where \(L(y_i, f(x_i)) \) can be any loss function measuring the misclassification penalty of a graph \(G_i \). The second part \(R \) consists of regularization terms to enforce sparse and robust solutions. Parameters \(\gamma_1 \) and \(\gamma_2 \) are used to trade-off these parts \((\gamma_1 \geq 0, \gamma_2 \geq 0) \). For the regularization, our objective is to obtain a sparse and stable solution on \(\mathbf{w} \), i.e., low dimensional subgraph features for final graph classification. Here, we combine both \(\ell_1 \) and \(\ell_2 \) norm, which is known as elastic net in machine learning [21]. The motivation of our regularization is as follows:

The \(\ell_1 \)-norm regularizer \((\sum_k |w_k|) \) can produce solutions with many coefficients being 0, which is known as lasso [20] and has been widely applied for variable selections.

Although \(\ell_1 \) regularization can produce a sparse solution, it suffers from two major disadvantages: (1) the number of selected variables is limited by the number of observations; and (2) the lasso penalized model can only select one variable from a group of correlated variables and does not care which one is selected [21]. In contrast, \(\ell_2 \) regularization, which is widely used in SVM formulation \((\| \mathbf{w} \|_2^2 = \sum_{k=1}^m |w_k|^2) \), can produce more stable and robust classification results. However, \(\ell_2 \) formulation cannot produce a sparse solution. By combining \(\ell_1 \) and \(\ell_2 \) norm, known as elastic net [21], we can overcome these issues and enjoy the sparse and stable properties.

4.2. Sparse Subgraph Learning: Challenges and Solution Overview

Challenges: For explicit vector data with moderate feature size, the problem defined in Eq.(4) can be effectively solved in traditional supervised learning. However, for graph data the challenges are evident: (1) the feature set \(\mathcal{F} \) is unavailable (implicit) unless we enumerate all subgraphs from the training graphs, which is NP-complete; and (2) the whole subgraph set is exponentially large, and only a small subset of subgraphs are useful for classifiers to achieve maximum graph classification accuracy.
Solution Overview: To solve the aforementioned challenges, we propose a regularized loss minimization-driven (RLMD) subgraph selection method for graph classification. Driven by our formulation in Eq.(4), our principle is to iteratively mine the best subgraph feature to reduce the empirical loss on the training graphs. To this end, we resort to the subgradient method in the functional space to define the utility of each subgraph, and embed the feature selection/ranking into the subgraph mining/enumeration process. To handle the exponentially large subgraph space, we derive an effective branch-and-bound pruning scheme to reduce the search space. After a new subgraph is selected, we include and re-solve the new restricted objective function of Eq.(4) by using currently selected subgraphs. To find optimal K value, we derive a stopping criterion for our feature selection procedure based on the subgradient in the functional space, so that K can be automatically obtained once the algorithm converges.

Logistic Loss Function: A Running Example. Our method is based on the gradient/subgradient on the functional space of the objective function Eq.(4). In this paper, we use the logistic loss function as an example to illustrate how subgraph selection is performed by subgradient methods, and the logistic loss function is given as follows:

$$L(y, f(x)) = \log \left(1 + \exp \{-y f(x)\} \right)$$

(5)

Note that our algorithm is a general method in the sense that any other differentiable loss function, such as least square loss $L(y, f_i) = \frac{1}{2}(y-f_i)^2$ or exponential loss $L(y, f_i) = \exp[-y f_i]$, can be directly used in our algorithm. As discussed latter in Section 4.6, our method is also applicable to convex locally Lipschitz but non-differentiable loss functions such as the hinge loss used by the (margin) perceptron and linear SVM.

The partial derivative of the loss term C in Eq.(4) on the subgraph feature g_k is defined as $\frac{\partial C}{\partial w_k}$. For logistic loss function,

$$\frac{\partial C}{\partial w_k} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \frac{\partial f(x_i)}{\partial w_k}$$

$$= \frac{-1}{n} \sum_{i=1}^{n} \frac{y_i x_i^k}{1 + e^{y_i f(x_i)}} = \sum_{i=1}^{n} y_i \alpha_i x_i^k$$

(6)

Here, $\alpha_i = -\frac{1}{n(1 + e^{y_i f(x_i)})}$ can be regarded as a weight associated with graph G_i for the subgraph mining process.
4.3. RLMD Subgraph Selection for Graph Classification

Because we aim to learn a sparse solution of subgraph features (K-dimensional feature space) from graph data, some subgraphs/features \(g_k \) with zero weights, i.e., \(w_k = 0 \) will not be used for learning the classification model. Thus it makes sense to partition the subgraph features \(F \) into two disjoint subsets \(F_1 \) and \(F_2 \). \(F_1 \) stores active features which are used to learn the classification model and this set is frequently updated as desired, and \(F_2 \) includes unselected graphs with 0 weights (i.e., for \(g_k \in F_2 \), \(w_k = 0 \)). Then we can iteratively select the best feature from \(F_2 \) to \(F_1 \), and solve the following restricted subproblem:

\[
\min_{w,b} J_t(w,b) = \min_{w,b} \frac{1}{n} \sum_{i=1}^{n} L(y_i, x_i(t) \cdot w + b) + \frac{\gamma_1 \|w\|_1 + \gamma_2 \|w\|_2^2}{R} \tag{7}
\]

where \(x_i(t) \) is the feature representations for graph \(G_i \) based on the active set \(F_1 \) in the \(t \)-th iteration, and \((w(t), b(t))\) is the solution of Eq.(7). Note that \(J_t(w,b) \) is used here to denote the restricted subproblem Eq.(7) while \(J(w,b) \) is referred to original problem in Eq.(4).

The optimal number of subgraphs \(K \) can be automatically determined by setting \(K = |F_1| \) once the algorithm converges. Note that given a solution \((w(t), b(t))\), the loss term \(C' \) in Eq.(7) equals to \(C \) in Eq.(4) because the prediction of of graph mainly depends on the active set \(F_1 \), i.e., \(C' = C \). In the following, we will derive the stopping condition of our algorithm, and prove its convergence.

Stopping Condition for Optimal \(K \) value: Our objective function Eq.(4) is convex and non-smooth, i.e., it may be non-differentiable at a point \(w \). When it is non-differentiable at \(w \), we can compute its generalized gradient (i.e., subgradient) instead. According to the optimization conditions, when reaching the optimum, we will have

\[
0 \in \frac{\partial C}{\partial w_k} + \gamma_1 o_k + 2\gamma_2 w_k; \tag{8}
\]

where \(o_k \) is the subgradient with respect to \(w_k \)

\[
o_k \in \begin{cases} \text{sign}(w_k) : & w_k \neq 0 \\ [\pm 1, 1] : & w_k = 0 \end{cases} \tag{9}
\]
where \(\text{sign}(a) = 1 \) if \(a > 0 \) otherwise \(-1\).

According to Eq.(8) and Eq.(9), we can now state the optimal condition for our sparse subgraph learning problem.

Proposition 1. Optimal Solution: Let \(\hat{\mathbf{w}} = [\hat{w}_1, \ldots, \hat{w}_m] \). Suppose that \((\hat{\mathbf{w}}, \hat{b})\) is the optimal solution of our objective function Eq.(4), then Eq.(10) and Eq.(11) hold.

\[
\frac{\partial C}{\partial \hat{w}_k} + \gamma_1 \text{sign}(\hat{w}_k) + 2\gamma_2 \hat{w}_k = 0 \quad \text{if} \quad \hat{w}_k \neq 0 \quad (10)
\]

\[
|\frac{\partial C}{\partial \hat{w}_k}| \leq \gamma_1 \quad \text{if} \quad \hat{w}_k = 0 \quad (11)
\]

Eq.(11) holds because for \(\hat{w}_k = 0 \), the third term of Eq.(8) disappears. Combining Eq.(8) and Eq.(9) will result in Eq.(11).

To reduce the objective value \(J_t \) in Eq.(7), we propose to select a subgraph in \(\mathcal{F}_2 \) whose weight violates Eq.(11), and update the selected active set \(\mathcal{F}_1 \) with the newly selected feature and re-optimize the restricted subproblem Eq.(7) with current features. This process will repeat until no candidate violates Eq.(11). In other words, Eq.(11) is a stopping condition and determines the number of subgraphs being selected for RLMD’s subgraph selection process.

Utility of Subgraphs: Eq.(11) can be used naturally to induce a criterion for quantifying the utility value of a subgraph. The larger \(|\frac{\partial C}{\partial \hat{w}_k}| \) is, the more informative it will be for reducing the objective function. Accordingly, we formally define the informative score as follows:

Definition 3. Informative Score: For a subgraph pattern \(g_k \), its informative score for graph classification is defined as follows:

\[
\Theta(g_k) = |\frac{\partial C}{\partial \hat{w}_k}| = |\frac{\partial C'}{\partial \hat{w}_k}| = |\sum_{i=1}^{n} y_i \alpha_i x_k^i| \quad (12)
\]

where \(\alpha_i = -\frac{1}{m(1 + e^{\langle \mathbf{x}_i, \mathbf{b} \rangle})} \).

Note that the informative score directly depends on the weight of each graph \(\alpha_i \), which is calculated based on the active set \(\mathcal{F}_1 \). Intuitively, the best subgraph of \(\mathcal{F}_2 \) is the one with the maximum informative score, because it is more likely to violate the stopping condition Eq.(11).
Algorithm 1: Regularized Loss Minimization-Driven Subgraph Selection (RLMD) for Graph Classification

Require:

$\{(G_1, y_1), \cdots, (G_n, y_n)\}$: Training Graphs;
S_{max}: Maximum number of iterations;

Ensure:

w, b: Parameters for classifier model

1: $\alpha_i = 1/n$; $F_1 \leftarrow \emptyset$; $t \leftarrow 0$;
2: while $t < S_{\text{max}}$ do
3: Mine an optimal subgraph features g^\star with maximum informative score defined by Eq.(12); //Algorithm 2;
4: if $\Theta(g^\star) \leq \gamma_1 + \varepsilon$ then
5: break;
6: end if
7: $F_1 \leftarrow F_1 \cup g^\star$;
8: Solve Eq.(7) based on F_1 to get the new solution $(w(t), b(t))$;
9: Update the graph weights on each training graph
10: $\alpha_i = -\frac{1}{n(1+\varepsilon f_i(y_i))}$
11: $t \leftarrow t + 1$;
12: end while
13: $K = |F_1|$;
14: return w, b;

RLMD Algorithm: Algorithm 1 illustrates the detailed steps of RLMD for graph classification. Initially, the weights for all training graphs are equally set as $1/n$, and the active set F_1 is initialized to be empty.

In the next step, the algorithm mines an optimal subgraph g^\star from F_2 which has the highest informative scores defined by Eq.(12). This step involves a subgraph mining procedure, which will be addressed in the next subsection. On steps 4-5, if current optimal subgraph no longer violates the optimal condition Eq.(11), the algorithm terminates. Here, we have relaxed the convergence condition to ε tolerance; this is because in the last few iterations, the maximum score will only change subtly (we set $\varepsilon = 0.005$ in our experiments).

On step 7, we add the newly selected subgraph g^\star to the existing subgraph set F_1, and re-solve the following restricted subproblem Eq.(7). To solve this restricted
objective function, we use the MALSAR toolbox \(^2\) in our experiments. It is worth noting that because this step only involves a very small number of features, it is very efficient in practice.

Subsequently, the algorithm updates the weight \(\alpha_i\) for each graph \(G_i\). This will help compute the derivative of \(\frac{\partial C}{\partial w_k}\) for subgraph mining in next round. After the algorithm terminates, the optimal number of subgraphs \(K\) can be easily obtained as \(K = |F_1| = t\) on step 12.

Note that our algorithm 1 generalizes the column generation technique in gBoost \(^{23}\) by iteratively selecting the most violated subgraph in each iteration until convergence. Our algorithm 1 relies on \(\varepsilon\) and \(\gamma_1\), which serve as a stopping condition to determine \(K\). In practice, \(\varepsilon\) is a subtle value insensitive to the algorithm performance. Meanwhile, \(\gamma_1\) is much easier to set than asking users to specify \(K\) values because \(\gamma_1\) is chosen in a much smaller range, as we will demonstrate in Section 5.2.4.

4.4. Theoretical Study

Theorem 1. (Convergence Property:) Algorithm 1 guarantees that the restricted objective function Eq.(7) will monotonically decrease.

Proof. Suppose in the \(t\)-th iteration, the optimal objective value based on current \(t\) features (i.e., \(|F_1| = t\)) is obtained with \((w(t), b(t))\), i.e.,

\[
\mathcal{J}_t(w(t), b(t)) = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \psi_j \cdot w(t) + b(t) \right) + \gamma_1 \|w(t)\|_1 + \gamma_2 \|w(t)\|_2^2 = (C + R)(w(t), b(t))
\]

then in the \(t+1\)-th iterations, the optimal objective value for Eq.(7) is

\[
\min \mathcal{J}_{t+1}(w, b) = \min(C + R) \leq (C + R)(w(t), b(t)) = \mathcal{J}_t(w(t), b(t))
\]

Here \([w(t), 0]\) means that the weights for subgraphs selected in the \(t\)-th iteration remain unchanged while the weight for newly selected subgraph in the \(t+1\)-th iteration is 0.

\(^2\)http://www.MALSAR.org
Thus the objective value of the restricted problem Eq.(7) based on the currently selected features F always monotonously decreases in two successive iterations. Because the objective function value is non-negative (bounded), we can ensure that it will finally converge as iteration continues. The proof is complete.

Suppose the algorithm converges in the K-th iteration with a solution $(w(K), b(K))$, and the objective value for Eq.(7) is $J_K(w(K), b(K))$. By adding $m - K$ zeros for subgraphs in F_2 to $w(K)$, i.e., $\hat{w}(K) = [w(K), 0 \cdots]$, we obtain a solution $(\hat{w}(K), b(K))$ for Eq.(4).

Corollary 1. Optimal Solution Guarantees: If Algorithm 1 converges with solution $(w(K), b(K))$ for Eq.(7), then $(\hat{w}(K), b(K))$ is an optimal solution for Eq.(4).

Proof. According to our Proposition 1, $(\hat{w}(K), b(K))$ is an optimal solution of Eq.(4), because $\forall w_k = 0 (g_k \in F_2)$, we have $\Theta(g_k) < \gamma_1$ based on our stopping condition. Thus we will have

$$J_K(w(K), b(K)) = J(\hat{w}(K), b(K)) = \min J(w, b)$$

where $J_K(w(K), b(K))$ and $J(\hat{w}(K), b(K))$ refer to the objective values of the restricted subproblem Eq.(7) and Eq.(4), respectively.

We have proved that objective value for Eq.(7) is monotonously decreasing (Theorem 1) and its recovered solution $(\hat{w}(K), b(K))$ is an optimal solution to Eq.(4) (Corollary 1).

4.5. Optimal Subgraph Mining

In order to mine optimal subgraph g^* on step 3 of Algorithm 1, we need to perform the subgraph enumeration procedure. In RLMD, we employ the frequent subgraph mining-based algorithm gSpan [42]. The key idea of gSpan is that each subgraph has a unique DFS Code, which is defined by a lexicographic order of the discovery time during the search process. By employing a depth first search strategy on the DFS Code tree (where each node is a subgraph), gSpan can enumerate all frequent subgraphs efficiently.
During the subgraph mining process, the search space is exponentially large, which requires an effective pruning scheme to reduce the search space. In this subsection, we will derive the upper-bound of the informative score for each subgraph, which helps prune the search space and speed up the subgraph mining.

Theorem 2. (Upper-bound Score): Let g and g' be two subgraph patterns, and $g \subseteq g'$, for the subgraph g, we define

\[
\begin{align*}
A_1(g) &= 2 \sum_{\{i \in g \in G_i \}} \alpha_i \\
A_2(g) &= 2 \sum_{\{i \in \bar{g} \in G_i \}} \alpha_i \\
A_3 &= \sum_{i=1}^n \alpha_i y_i
\end{align*}
\]

\[
\hat{\Theta}(g) = \begin{cases}
\max\{|A_1(g) - A_3|, |A_2(g)|\} : A_3 \geq 0 \\
\max\{|A_2(g) + A_3|, |A_1(g)|\} : A_3 < 0
\end{cases}
\]

then $\Theta(g') \leq \hat{\Theta}(g)$, where $\Theta(g')$ is defined in Eq.(12).

Proof. We start with the definition of $\Theta(g')$:

\[
\begin{align*}
\Theta(g') &= |\sum_{i=1}^n y_i \alpha_i x'_i| \\
&= |\sum_{i=1}^n y_i \alpha_i \cdot [2I(g' \subseteq G_i) - 1]| \\
&= |2 \sum_{g' \subseteq G} y_i \alpha_i - \sum_{i=1}^n \alpha_i y_i| \\
&= |A_1(g') - A_2(g') - A_3| \\
&\leq \begin{cases}
\max\{|A_1(g') - A_3|, |A_2(g')|\} : A_3 \geq 0 \\
\max\{|A_2(g') + A_3|, |A_1(g')|\} : A_3 < 0
\end{cases} \\
&\leq \begin{cases}
\max\{|A_1(g) - A_3|, |A_2(g)|\} : A_3 \geq 0 \\
\max\{|A_2(g) + A_3|, |A_1(g)|\} : A_3 < 0
\end{cases} \\
&= \hat{\Theta}(g)
\end{align*}
\]

The first inequality holds because for $\alpha_i < 0$, $A_1(g') \leq 0$ and $A_2(g') \leq 0$, so the upper-bound depends on A_3. If $A_3 \geq 0$, $A_1(g')$ and A_3 will have different signs, then the upper-bound is the maximum between $|A_1(g') - A_3|, |A_2(g')|$. The case is similar for $A_3 < 0$. The second inequality holds because $|A_1(g')| \leq |A_1(g)|$ and $|A_2(g')| \leq |A_2(g)|$ for $g \subseteq g'$.
Algorithm 2 Optimal Subgraph Mining

Require:
- \{(G_1, y_1), \cdots, (G_n, y_n)\}: Training graphs;
- \alpha_i: Weight for each graph example;
- \mathcal{F}_1: Already selected subgraph set;

Ensure:
- \(g^*:\) The optimal subgraph;

1: \(\eta = 0;\)
2: while Recursively visit the DFS Code Tree in gSpan do
3: \(g_p \leftarrow \) current visited subgraph in DFS Code Tree;
4: if \(g_p\) has been examined then
5: continue;
6: end if
7: Compute scores \(\Theta(g_p)\) for subgraph \(g_p\) according Eq.(12);
8: if \(g_p \notin \mathcal{F}_1 \& \Theta(g_p) > \eta\) then
9: \(\eta = \Theta(g_p);\)
10: \(g^* \leftarrow g_p;\)
11: end if
12: if \(\hat{\Theta}(g_p) > \eta\) then
13: Depth-first search the subtree rooted from node \(g_p;\)
14: end if
15: end while
16: return \(g^*;\)

Theorem 2 states that for any super graph of a subgraph \(g\), its informative score is upper-bounded by \(\hat{\Theta}(g)\). This rule can prune unpromising candidates effectively.

Optimal Subgraph Exploration Algorithm: Our optimal subgraph mining algorithm is listed in Algorithm 2. The minimum value \(\eta\) in the optimal set is initialized on step 1. Duplicated subgraph features are pruned on steps 4-5, and the informative score \(\Theta(g_p)\) for \(g_p\) is calculated on step 7. If \(g_p\) is not selected before \((g_p \notin \mathcal{F}_1)\) and \(\Theta(g_p)\) is larger than \(\eta\), we replace the optimal subgraph \(g^*\) with the current \(g_p\) and update the optimal score \(\eta\) (steps 8-11).

A branch-and-bound pruning rule, according to Theorem 2, is subsequently used to prune the search space on step 12. Lastly, the optimal subgraph \(g^*\) is returned on step 16.
The above pruning process is a key feature of our algorithm, because we do not require a support threshold value for subgraph mining (whereas all filter subgraph mining methods will require users to predefine a threshold value in order to discover subgraphs).

4.6. Relation to gBoost

Our RLMD subgraph selection algorithm advances the existing column generation style techniques employed in gBoost [23] for graph classification. The learning objective function for gBoost is

$$
\max_{\rho, w, \xi} \rho - \frac{1}{vn} \sum_{i=1}^{n} \xi_i \\
\text{s.t. } y_i \sum_{k=1}^{m} h_{G_j}(G_i)w_k + \xi_i \geq \rho; \\
\sum_{k=1}^{m} w_k = 1; \\
w_k \geq 0, \xi_i \geq 0;
$$

(13)

From [43], we know that this formula is equivalent to the following linear programming:

$$
\min_{w, \xi} \sum_{k=1}^{m} w_k + C \sum_{i=1}^{n} \xi_i \\
\text{s.t. } y_i \sum_{k=1}^{m} h_{G_j}(G_i)w_k + \xi_i \geq 1; \\
w_k \geq 0, \xi_i \geq 0;
$$

(14)

Eq.(14) is actually a ℓ_1 svm formulation, and can also be formulated as the regularized loss minimization formulation problem:

$$
\min ||w||_1 + C \sum_{i=1}^{n} L_h(y_i, f(x_i))
$$

(15)

Here, $L_h(y_i, f(x_i)) = \max(1 - y_i f(x_i), 0)$, which is known as hinge loss in machine learning.

Compared to our objective function in Eq.(4), we can find that gBoost (Eq.15) is a special case of Eq.(4), with the ℓ_2 regularization term being 0. Although the hinge loss function is non-differentiable, our subgradient method still applies, as long as $\frac{\partial C}{\partial w_k}$ in Eq.(6) is properly defined. This observation shows the following advantages of our algorithm: (1) gBoost employs a hinge loss function which is similar to SVM and
requires the problem to be formulated as a linear programming. Our algorithm gen-
eralizes and advances gBoost by removing the linear programming constraint and can
employ any differentiable loss function, in addition to the logistic loss function con-
sidered in our paper. This generalization has great attractiveness in many applications,
especially when the probability estimation for classification is required (the logistic
function can provide some probabilistic information compared to the hinge loss func-
tion); (2) while gBoost employs ℓ_1 norm regularization to obtain a sparse solution, our
algorithm considers an additional norm ℓ_2. This combined norm (known as elastic net)
enables a sparse and more stable solution.

5. Experiment

5.1. Experimental Settings

Benchmark Data: We validate the performance of the proposed algorithm on two
types of graph classification datasets.

Anti-cancer activity prediction (NCI): The NCI graph collection\(^3\) is a benchmark
for predicting the biological activity of small molecules for different types of cancers.
Each NCI dataset belongs to a bioassay task for anticancer activity prediction, such
as Breast cancer or Leukemia cancer. Each molecule is represented as a graph, with
atoms representing nodes and bonds denoting edges. A molecule is positive if it is
active against a certain type of cancer, or negative otherwise. Table 1 summarizes nine
NCI graph classification tasks used in our experiments, where columns 2-4 denote the
number of positive molecules, the total number of graphs, and the type of cancer of
each dataset. In our experiments, we randomly select 1000 graphs from each dataset
with balanced class distributions for graph classification.

Predictive Toxicology Challenge Dataset (PTC): The PTC challenge includes a
number of carcinogenicity classifications for the toxicology prediction of chemical
compounds\(^4\). The dataset we selected contains 417 compounds with four types of
test animals: MM (male mouse), FM (female mouse), MR (male rat), and FR (female

\(^3\)http://pubchem.ncbi.nlm.nih.gov
\(^4\)http://www.predictive-toxicology.org/ptc/
Table 1: Datasets Used in Experiments

<table>
<thead>
<tr>
<th>ID</th>
<th>#Pos</th>
<th>#Total</th>
<th>Learning tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1793</td>
<td>37349</td>
<td>Non-Small Cell Lung</td>
</tr>
<tr>
<td>33</td>
<td>1467</td>
<td>37022</td>
<td>Melanoma</td>
</tr>
<tr>
<td>41</td>
<td>1350</td>
<td>25336</td>
<td>Prostate</td>
</tr>
<tr>
<td>47</td>
<td>1735</td>
<td>37298</td>
<td>Central Nerv Sys</td>
</tr>
<tr>
<td>81</td>
<td>2081</td>
<td>37549</td>
<td>Colon</td>
</tr>
<tr>
<td>83</td>
<td>1959</td>
<td>25550</td>
<td>Breast</td>
</tr>
<tr>
<td>109</td>
<td>1773</td>
<td>37518</td>
<td>Ovarian</td>
</tr>
<tr>
<td>123</td>
<td>2715</td>
<td>36903</td>
<td>Leukemia</td>
</tr>
<tr>
<td>145</td>
<td>1641</td>
<td>37043</td>
<td>Renal</td>
</tr>
</tbody>
</table>

rat). Each compound has labels selected from \{CE, SE, P, E, EE, IS, NE, N\}. Similar to [44], we set \{CE, SE, P\} as positive labels, and \{NE,N\} as negative labels.

Baseline Methods: In our experiments, we consider three types of baseline methods, namely the two-step filter methods (TFMs), direct filter methods (DFMs), and embedded methods, as follows:

- **IG+SVM** is a TFM method that simply mines a set of frequent subgraphs, and then performs feature selection by using Information Gain. A SVM classifier is trained by using selected subgraph features for graph classification.

- **TOP+SVM** is similar to IG+SVM except that it selects the top K subgraphs based on their frequency rather than their information gain values.

- **gSemi+SVM** [11] is a DFM method, which integrates the feature selection into the subgraph mining process. The measurement for feature selection mainly considers the *must-link* and *cannot link* constraints between graph samples within the same or between different classes.

- **gHSIC+SVM** [12] is another DFM method which exploits the correlations between features and labels.

- **gBoost** [23] is a state-of-the-art embedded method which formulates the feature selection as a linear problem and selects subgraph features which best fit the
objective function.

- **RLMD** is our proposed method which employ a logistic loss function together with an *elastic net* for regularization, and automatically determines optimal number of subgraphs K.

We conduct 10-fold cross-validation on all graph datasets and report the average results and *standard errors* of 10 folds in the final result. The parameters for γ_1 are selected from $\{0.005, 0.01, 0.03, 0.05\}$, and γ_2 is selected from $\{0.01, 0.03, 0.05\}$. We will further analyze the impact of γ_1 and γ_2 in wider ranges in Section 5.2.4. For the filter methods (IG+SVM, TOP+SVM, gSemi+SVM, and gHSIC+SVM), the minimum support for frequent subgraph mining is set to 10% on NCI graph datasets and 1% on PTC classification tasks, and an SVM classifier is trained with C parameter from the range $\{0.1, 1, 10, 100, 1000, 10000\}$. For the gBoost algorithm, the parameter v is selected from $\{0.1, 0.2, 0.3, 0.4\}$. Following [23], we select the best average results of 10-fold cross-validation for each baseline algorithm by varying these parameters, which represents the best performance each baseline can achieve.

For fairness of comparison, we increase the number of features to be selected for the filter methods (IG+SVM, TOP+SVM, gSemi+SVM, and gHSIC+SVM), and increase the iterations for the embedded methods (gBoost and RLMD), then collect and compare the performance of all algorithms under the same number of features. We set $S_{max} = 200$, which defines the maximum number of features used to learn the classifier models. Note that for RLMD, the algorithm may stop before reaching the maximum iterations/subgraphs we set, *i.e.*, the optimal K is obtained. When RLMD stops, the optimal number of subgraph features has been discovered and RMLD will not add additional subgraphs to the feature set. We also compare RLMD under the optimal subgraph value to other baselines with the same number of K features (the purpose is to show that the optimal subgraph features discovered by RLMD are indeed optimal for graph classification).
5.2. Experimental Results

5.2.1. Results on NCI Graph Dataset

For the NCI graph datasets, we vary the number of selected subgraph features from 20 to 200 for filter methods, and the number of iterations for gBoost and RLMD from 1 to 200. The accuracies and AUC values are shown in Fig. 3.

Comparison with Filter methods: The results in Fig. 3 show that with the increase in the number of features/iterations, the filter methods (TOP+SVM, IG+SVM, gSemi+SVM, and gHSIC+SVM) are inferior to RLMD. This is because filter methods separate the feature selection module from the model learning process. The subgraph features selected from filter methods may not fit the underlying learning model very well (we use SVM in our experiments). This is actually an observed common drawback of filter methods [19]. The performance among these filter-based methods varies from one graph dataset to another, and none of them significantly outperforms others. For instance, gSemi+SVM outperforms TOP+SVM, IG+SVM, and gHSIC+SVM on NCI-1 (Fig. 3.A) when the number of selected graphs is considerably large (≥ 160), but is worse than gHSIC on NCI-109 (Fig. 3.G). This may be attributed to the inherent differences underneath the graph datasets.

How many subgraphs to select: Another drawback of filter methods, shown in our experiments, is that the performance of filter methods varies significantly w.r.t. different numbers of selected features (K). Indeed, all these filter methods only select subgraph features with maximum discriminative score regardless of the redundancy among the features. Adding redundant features may decrease the performance of an algorithm. Further analysis of subgraph features is presented with a case study in the next subsection.

In contrast, for embedded methods, the above drawbacks can be handled effectively. Our algorithm RLMD unifies the feature selection and model learning into a whole framework, so that the feature selection process is driven by the well-defined objective function, and the selected features can further enhance the learning models. At the same time, RLMD is guaranteed to be convergent given an appropriate γ_1 value, which means that we do not need to specify the total number of selected graphs K. For
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Methods</th>
<th>Accuracy</th>
<th>Number of Selected Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) NCI 1</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(B) NCI 33</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(C) NCI 41</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(D) NCI 47</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(E) NCI 81</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(F) NCI 83</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(G) NCI 109</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(H) NCI 123</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>(I) NCI 145</td>
<td>TOP+SVM</td>
<td>0.5</td>
<td>40, 80, 120, 160, 180*, 200</td>
</tr>
<tr>
<td></td>
<td>IG+SVM</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gHSIC+SVM</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gSemi+SVM</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gBoost</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RLMD</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: The classification accuracy and standard error on NCI dataset w.r.t. the number of selected graphs. The optimal number of subgraphs selected by RLMD (once it converges for all 10 folds experiments) is marked by a star * at x-axis.
instance, in Fig. (3).A, RLMD reaches convergence with 180 features.

RLMD vs. gBoost: It is evident that RLMD outperforms gBoost for most datasets. This is mainly because gBoost only uses ℓ_1-norm regularization to produce a sparse solution. As pointed out in [21], the lasso (ℓ_1-norm) has several drawbacks: (1) when the number of features (m, which is exponentially huge) is much bigger than the number of observations (n), the ℓ_1 norm selects at most n variables before it saturates; and (2) when the pairwise correlations in a group of variables are very high, lasso tends to select only one variable from the group and does not discriminate which one it selects. By contrast, RLMD uses an elastic net (combination of ℓ_1 and ℓ_2 norm), which encourages a grouping effect, where strongly correlated features will be included/excluded. As a result, RLMD results in a similar sparsity of representation to gBoost, but often outperforms gBoost.

<table>
<thead>
<tr>
<th>ID</th>
<th>RLMD</th>
<th>TOP +SVM</th>
<th>IG +SVM</th>
<th>gHSIC +SVM</th>
<th>gSemi +SVM</th>
<th>gBoost +SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.759 ± 0.014</td>
<td>0.686 ± 0.019</td>
<td>0.687 ± 0.018</td>
<td>0.677 ± 0.018</td>
<td>0.700 ± 0.015</td>
<td>0.724 ± 0.009</td>
</tr>
<tr>
<td>33</td>
<td>0.769 ± 0.008</td>
<td>0.701 ± 0.011</td>
<td>0.687 ± 0.019</td>
<td>0.703 ± 0.012</td>
<td>0.697 ± 0.015</td>
<td>0.739 ± 0.008</td>
</tr>
<tr>
<td>41</td>
<td>0.755 ± 0.009</td>
<td>0.677 ± 0.017</td>
<td>0.649 ± 0.015</td>
<td>0.672 ± 0.015</td>
<td>0.670 ± 0.009</td>
<td>0.740 ± 0.008</td>
</tr>
<tr>
<td>47</td>
<td>0.738 ± 0.009</td>
<td>0.683 ± 0.013</td>
<td>0.652 ± 0.015</td>
<td>0.665 ± 0.012</td>
<td>0.690 ± 0.012</td>
<td>0.714 ± 0.014</td>
</tr>
<tr>
<td>81</td>
<td>0.740 ± 0.010</td>
<td>0.679 ± 0.012</td>
<td>0.660 ± 0.014</td>
<td>0.659 ± 0.015</td>
<td>0.658 ± 0.009</td>
<td>0.725 ± 0.013</td>
</tr>
<tr>
<td>83</td>
<td>0.726 ± 0.012</td>
<td>0.644 ± 0.012</td>
<td>0.632 ± 0.012</td>
<td>0.658 ± 0.011</td>
<td>0.639 ± 0.020</td>
<td>0.708 ± 0.016</td>
</tr>
<tr>
<td>109</td>
<td>0.742 ± 0.010</td>
<td>0.657 ± 0.016</td>
<td>0.683 ± 0.009</td>
<td>0.677 ± 0.012</td>
<td>0.661 ± 0.017</td>
<td>0.721 ± 0.015</td>
</tr>
<tr>
<td>123</td>
<td>0.707 ± 0.010</td>
<td>0.609 ± 0.019</td>
<td>0.647 ± 0.012</td>
<td>0.648 ± 0.014</td>
<td>0.635 ± 0.012</td>
<td>0.663 ± 0.013</td>
</tr>
<tr>
<td>145</td>
<td>0.764 ± 0.015</td>
<td>0.704 ± 0.013</td>
<td>0.695 ± 0.012</td>
<td>0.676 ± 0.013</td>
<td>0.697 ± 0.020</td>
<td>0.734 ± 0.018</td>
</tr>
</tbody>
</table>

Overall Performance with Optimal K: In Table 2, we summarize the performance of our algorithm under optimal K value with other methods, where filter methods use the same number of subgraphs (K) for graph classification, and gBoost runs until convergence. The result in Table 2 clearly demonstrates that RLMD outperforms two-step filter methods (TOP+SVM and IG+SVM), direct filter methods (gHSIC+SVM and gSemi+SVM), and gBoost algorithm in NCI datasets.
5.2.2. Case Study: Subgraph Feature Comparison

In this subsection, we use NCI-1 dataset as a case study to investigate subgraphs discovered by different algorithms. In our experiments, the top-10 subgraph features are discovered and illustrated in Fig. 4.

It is evident that the features for all filter methods (TOP, gSemi, and gHSIC) share high correlations. For the gSemi algorithm, for instance, the top-10 subgraphs form 3 groups. In each group, the subgraph features are very similar to each other. This is because the subgraph mining algorithm follows the depth-first-search (DFS) scheme, and subgraphs from the same sub-tree are very close to each other in terms of their geometrical structure. Because these methods consider each subgraph independently, the selected subgraphs may have high redundancy, which imposes a great challenge in determining the optimal K subgraphs for graph classification and also causes fluctuating results when the K values are varied.

In contrast, the subgraph correlations for gBoost and RLMD are much smaller.
The subgraphs discovered by gBoost and RLMD are highly overlapping (the first 5 subgraphs are identical). As pointed out by [21], ℓ_1 regularization tends to select only one subgraph from a group of features and is not selective about which one is included, thus the redundancy among the features in gBoost is minimal. By using elastic norm, RLMD retains several group effects (some discriminative features may be included and excluded simultaneously), and usually achieves better results. This result is consistent with observations reported in [21] for vector data.

5.2.3. Results on PTC Tasks

We also conducted extensive experiments on the PTC datasets. The accuracies and AUC values (i.e., the area under ROC curves) are reported in Tables 3 and 4, where the results are obtained after RLMD converges, and $K = 200$ for all filter methods.

Table 3: Accuracies and standard errors on PTC graphs with Optimal K for 10-fold cross-validation.

<table>
<thead>
<tr>
<th>ID</th>
<th>RLMD</th>
<th>TOP +SVM</th>
<th>IG +SVM</th>
<th>gHSIC +SVM</th>
<th>gSemi +SVM</th>
<th>gBoost +SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td>0.655±0.013</td>
<td>0.606±0.024</td>
<td>0.607±0.025</td>
<td>0.596±0.019</td>
<td>0.601±0.020</td>
<td>0.608±0.027</td>
</tr>
<tr>
<td>MM</td>
<td>0.664±0.019</td>
<td>0.606±0.025</td>
<td>0.599±0.023</td>
<td>0.613±0.021</td>
<td>0.603±0.019</td>
<td>0.622±0.018</td>
</tr>
<tr>
<td>FR</td>
<td>0.704±0.018</td>
<td>0.607±0.029</td>
<td>0.584±0.029</td>
<td>0.635±0.026</td>
<td>0.619±0.023</td>
<td>0.678±0.008</td>
</tr>
<tr>
<td>FM</td>
<td>0.615±0.018</td>
<td>0.592±0.031</td>
<td>0.594±0.026</td>
<td>0.581±0.021</td>
<td>0.575±0.018</td>
<td>0.603±0.017</td>
</tr>
</tbody>
</table>

Table 4: AUC values and standard errors on PTC graphs with Optimal K for 10-fold cross-validation.

<table>
<thead>
<tr>
<th>ID</th>
<th>RLMD</th>
<th>TOP +SVM</th>
<th>IG +SVM</th>
<th>gHSIC +SVM</th>
<th>gSemi +SVM</th>
<th>gBoost +SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR</td>
<td>0.681±0.021</td>
<td>0.597±0.025</td>
<td>0.596±0.025</td>
<td>0.560±0.021</td>
<td>0.580±0.021</td>
<td>0.649±0.033</td>
</tr>
<tr>
<td>MM</td>
<td>0.680±0.020</td>
<td>0.593±0.025</td>
<td>0.590±0.025</td>
<td>0.583±0.024</td>
<td>0.600±0.022</td>
<td>0.609±0.034</td>
</tr>
<tr>
<td>FR</td>
<td>0.673±0.022</td>
<td>0.600±0.029</td>
<td>0.575±0.029</td>
<td>0.618±0.021</td>
<td>0.623±0.021</td>
<td>0.640±0.026</td>
</tr>
<tr>
<td>FM</td>
<td>0.614±0.013</td>
<td>0.585±0.032</td>
<td>0.587±0.024</td>
<td>0.582±0.021</td>
<td>0.580±0.017</td>
<td>0.583±0.017</td>
</tr>
</tbody>
</table>

The results in Tables 3 and 4 show that RLMD achieves considerable performance gains over all filter methods (TFM and DFM) and gBoost algorithm for all PTC datasets.
Note that for PTC classifications, AUC values are more important because they are all imbalanced classification tasks.

5.2.4. Parameter Analysis

In this subsection, we study the impact of parameters γ_1 and γ_2 on algorithm performance. Both γ_1 and γ_2 values are selected from \{0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.15, 0.2\}, and the results under 10-fold cross-validation on NCI-1 and NCI-33 are shown in Fig. 5.

Impact of γ_1 values: The experimental results in Fig. 5 show that γ_1 plays a more important role for the final classification model. With the increase of γ_1 from 0 to 0.2, the classification performance drops rapidly in terms of accuracy.

<table>
<thead>
<tr>
<th>γ_1</th>
<th>0</th>
<th>0.01</th>
<th>0.03</th>
<th>0.05</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Selected Subgraphs</td>
<td>200</td>
<td>180</td>
<td>130</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.775</td>
<td>0.759</td>
<td>0.711</td>
<td>0.679</td>
<td>0.5</td>
</tr>
<tr>
<td>AUC</td>
<td>0.831</td>
<td>0.811</td>
<td>0.795</td>
<td>0.713</td>
<td>0.5</td>
</tr>
</tbody>
</table>

To better understand the impact of γ_1, we also summarize the number of subgraphs selected with different γ_1 values in Table 5. The results show that increasing γ_1 values will result in fewer subgraphs being selected for the final classifier model, because a larger ℓ_1 norm regularizes more elements as 0. For $\gamma_1 = 0$, there is no sparse solution. In other words, every subgraph should be used for graph classification. In this case, RLMD will only terminate when all subgraphs are incorporated for learning the model, or the maximum number of iterations S_{max} is reached. As the subgraph space is exponentially large, it is impractical to use all subgraph features to learn the model. The algorithm relies on S_{max} to terminate (200 is set in our experiment). The result shows that $\gamma_1=0$ even achieves better classification result, which is attributed to the fact that although ℓ_1 regularization introduces a sparse solution, it may be biased in some applications [45], so the accuracy may drop. For other cases with γ_1 being considerably large ($\gamma_1 = 0.5$), the regularization term dominates the objective function Eq.(4) with no subgraph being used for classification, which results in poor classification accuracy.
Figure 5: The accuracies with different γ_1 and γ_2 values.

The overlapping of subgraphs with different γ_1 values

Figure 6: The overlapping of subgraphs (common subgraphs vs. different subgraphs) for different γ_1 values on NCI-1 dataset with a 70%-30% splitting on the NCI-1 dataset, i.e., 70% graphs are randomly selected as training graphs, and 30% are used as test graphs. $\gamma_2 = 0.03$ and $S_{\text{max}} = 200$.

Table 6: Impact of different γ_2 values on NCI-1 dataset with $\gamma_1 = 0.01$.

<table>
<thead>
<tr>
<th>γ_2</th>
<th>0</th>
<th>0.03</th>
<th>0.07</th>
<th>0.15</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.748</td>
<td>0.759</td>
<td>0.74</td>
<td>0.741</td>
<td>0.72</td>
</tr>
<tr>
<td>AUC</td>
<td>0.810</td>
<td>0.811</td>
<td>0.806</td>
<td>0.811</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Table 7: Impacts of different ϵ values on NCI-1 dataset.

<table>
<thead>
<tr>
<th>ϵ</th>
<th>0.01</th>
<th>0.005</th>
<th>0.001</th>
<th>0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>0.748</td>
<td>0.759</td>
<td>0.761</td>
<td>0.760</td>
</tr>
<tr>
<td>AUC</td>
<td>0.803</td>
<td>0.811</td>
<td>0.814</td>
<td>0.812</td>
</tr>
</tbody>
</table>

Note that the convergence property of our algorithm is dependent on γ_1. In our experiments, we notice that γ_1 is very easy to set (in a small range [0.01,0.03]) for obtaining satisfactory results. This is much easier than requiring users to specify the number of subgraph features K needed for each graph dataset, because users may not have any prior knowledge about the selection of K values for different datasets, and different K values often result in significant changes in the algorithm performance.

Interplay between γ_1 and subgraph selection: We further compare the common subgraphs selected by different γ_1 values, and report the results in Fig. 6. The results show that the subgraphs selected by using a smaller γ_1 values contain many subgraphs which are selected by using a larger γ_1 value. This observation is further evident in Fig.6.(E) and (F). The reason is that a smaller γ_1 value will result in more subgraph features to be selected, which increases the possibility of covering a small subgraph set selected by using a larger γ_1 value. In other words, a slightly smaller γ_1 value will result in more subgraph feature candidates to be explored and be beneficial for the classification task.

Impact of γ_2 values: We also vary γ_2 from 0 to 0.2, and report the results in Table 6. The results show that a small regularization value $\gamma_2 = 0.03$ outperforms the case of $\gamma_2 = 0$, where the ℓ_2 regularization effect disappears (only ℓ_1 is used). This result is consistent with observations from a previous study [21]. This may be because ℓ_1 ignores the correlated subgraphs in a group of features. When γ_2 keeps increasing, the classification performance drops because the larger ℓ_2 regularization dominates the objective function and the loss minimization term has less effect.

Impact of ϵ values: We vary the ϵ values from 0.01 to 0.0001 to study the final classification performance of our algorithm, and report the final classification results in Table 7. The results show that as long as ϵ is subtle (from 0.001 to 0.0001), our classification can achieve similar classification results, i.e., an ϵ-tolerance accuracy result to the
optimal solution.

6. Conclusion

In this paper, we proposed a regularized loss minimization-driven (RLMD) graph classification method. We argued that existing filter-based subgraph selection methods simply focus on finding most discriminative subgraph features, and suffer severe disadvantages in determining the optimal number of subgraphs for graph classification and separating feature selection from the model learning phase. As a result, they might be able to find most discriminative subgraph features, but cannot form high accuracy classifiers because they cannot determine how many discriminative features are needed to train classifiers with the best performance gain. By integrating subgraph mining, discriminative subgraph selection, and model learning into one unified framework, RMLD is able to automatically determine the optimal number of discriminative subgraphs for best graph classification results. Our algorithm generalizes the state-of-the-art gBoost algorithm in the sense that it can employ any differentiable loss function and achieve better classification accuracy by using an elastic net regularization. Experimental results on real-world graph datasets show a clear performance gain over existing two-step filter methods (TFMs), direct filter methods (DFMs), and embedding methods.

Acknowledgment

We thank anonymous reviewers for their constructive comments. This work is partially supported by Australia ARC Discovery Project (DP140102206), and National Scholarship for Building High Level Universities, China Scholarship Council (No. 2011630030).

References

[42] X. Yan, J. Han, gSpan: Graph-based substructure pattern mining, in: IEEE International Conference on Data Mining, 2002, pp. 721–724.

