Alternative Exciter Supply for use on Synchronous Alternators in Micro-Hydroelectric Applications

Thesis submitted to the University of Technology, Sydney in candidature for the degree of PhD by Research (Engineering) May 2006

Rob Jarman

Faculty of Engineering University of Technology, Sydney

Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgements

On 3rd September 1996 I arrived in the Solomon Island village of Manawai Harbour on the weather-coast of Malaita. Although it wasn't my first experience of life in a remote rural community, it was certainly the first time I had been welcomed with such rejoicing, and expectation. The community had worked for many years constructing and installing their 50kW micro-hydro system, but it had ceased operating within a week of it being switched on for the first time – two months prior to my arrival. It is the events of this and subsequent trips that underpin the intellectual journey of this study.

Adjunct Professor Paul Bryce (Institute for Sustainable Futures, UTS) was at the time, and continues to be, my guide, mentor, supervisor, colleague. His decades of experience and capacity to add clarity to, and address transdisciplinary issues has afforded me a unique opportunity to learn. Paul's approach for technology transfer into developing communities is reflected in this study, and is as clear as his editorial lilt. Thank you chief!

I would also like to acknowledge the support from my co-supervisor Professor Jianguo Zhu (UTS). Joe has also been my academic supervisor for much of this journey spanning 6 years of part-time study and has helped me balance workplace and study commitments. Further, this thesis would not have been possible without the continued support of the Renewable Energy Laboratory in the Faculty of Engineering, University of Technology, Sydney.

Nixon Silas (APACE-VFEG Solomon Islands) ensures all trips to his beautiful country are welcoming and memorable. His passion for a better life and greater opportunities for his country's brothers and sisters spans over two decades now. Much of the 'villager perspective' content of this study comes from his observations and feedback. Thanks also to the Solomon Island communities and technicians from each of the micro-hydro systems who have hosted my stays in their village.

Peter Lynch (Pelena Energy Pty Ltd, Australia) remains a source of inspiration for further work in the Pacific, in particular his collaboration with Nixon. He has the vision, pragmatic approach and guts to have a go; demonstrated by his successful projects to-date in Solomon Islands. Peter has proven a close friend and valuable sounding board for a broad range of issues in this study. Donnella Bryce (APACE VFEG Australia) has been the driver for much of the progress in technology transfer and rural community development described in chapter 2. The financial model, the 8 step model, the institutional development, the training programs, and the funding are through her efforts, vision, and full time commitment.

In conjunction with this study, I have offered project topics in, and engaged a number of final year undergraduate capstone project (thesis) students. The response from each student has been gratifying from an engineering educator's viewpoint, and from a researchers viewpoint; each contributing to the improved understanding of micro-hydroelectric systems. Joe Kohari demonstrated a proof-of-concept ballast load frequency controller using an off-the-shelf PLC; Raul Paradeza addressed the constraints of the PLC power supply; Nick Farriguia migrated the existing controller algorithm onto an alternative microcontroller hardware design.

Two projects stand apart in their direct contribution to this study: Cameron Dorrington commenced with my design and simulation results for the novel machine winding drying circuit, and went on to implement a working proof-of-concept circuit. Aaron Russell commenced with my design, simulation results, and working proof-of-concept (lab bench) circuit and went on to improve its operation and implement the stand-alone prototype circuit. Aaron's contribution in completing this hardware laid the groundwork for the results which followed; verifying my predicted performance of the alternative exciter supply.

Thanks to Dr Douglas Henderson (Napier University) and Mr Ian Robb for an enjoyable visit to his micro-hydro system near Edinburgh, Scotland. Dr Henderson provided valuable insight into his PhD topic on micro-hydro systems completed in 1992. Aspects of this study follow on from Douglas' work.

Adjunct Professor Warren Yates (UTS) provided reassuring editorial comments and suggestions. Warren was one of the early motivators for my career change to academia and confidence in my ability to complete this study. Thanks also to Dr Keiko Yasukawa (UTS) for mentoring my right-half brain through new discipline areas such as actor network theory as well as invaluable editorial advice.

To all of my family, friends and workplace colleagues (Vicki, Tim, David, Gerard, Ben, Robin, Keith, Prasanthi, and Elizabeth) – I'm sure you're all relieved to hear that the *magnum opus* has made it to this point. Thank you for the encouragement; even when

-iii-

you'd ask 'are you still doing that', you were still willing to hear the progress to-date. You know I can't say it's over, but I may take a short break. To my parents who are undoubtedly proud of all their sons, we've achieved because of the opportunities you afforded us.

To Brodie, Nicky, and Luke; you have had to endure my journey and tolerate much more than my absence when you could have reasonably expected me to be there. It's probably a good thing to have a parent indebted to you... enjoy spending it.

To Paula; without you this could not have been possible, which must be a little frustrating given that after all of your support, much of it might as well be written in a different language. Although it may have my name on it, this work is handed on to others not by me alone – but from both of us.

Table of Contents

		page
	Certificate of Authorship/Originality	i
	Acknowledgements	ii
	Table of Contents	V
	List of Tables	ix
	List of Figures	х
	List of Abbreviations	xviii
	List of Symbols	xix
	List of Relevant Publications and Awards	XX
	Abstract	xxi
Chapter 1	Introduction	1
1.1	Introduction	2
1.2	Micro-hydroelectricity in the 'South'	2
1.3	APACE VFEG and the RE Engineer	3
1.4	The Research Questions	5
1.5	Thesis Outline	6
Chapter 2	The context of the study	11
2.1	Introduction	12
	Part A: Broader contextual issues	13
2.2	APACE VFEG – A historical perspective	17
2.3	Soft Systems Modelling (SSM)	23
2.4	STEEP Analysis	29
2.5	Actor Network Theory	42
2.5.1	ANT: The RE Engineer (in a developed country)	44
2.5.2	ANT: The Melanesian Village(r)	50
2.5.3	ANT: Automatic Voltage Regulator	54
2.5.4	Identifying the Networks – the interactions between actors	57
2.6	Technology readiness and maturity	59
2.7	A way forward – an hypothesis	63
2.7.1	Case study $1 -$ testing the hypothesis: how did we get into the problem with the excitation supply that we presently face?	65
2.7.2	Case study 2 - testing the hypothesis: what does the literature say about barriers and problems with rural electrification schemes in developing communities?	66

	Part A: Conclusion	80
	Part B: Specific technical context	80
2.8	Overriding assumptions	81
2.9	Renewable Energy Laboratory test rig	84
2.10	Description of Synchronous Alternator	87
2.11	Description of typical system operation	89
2.12	Description of the Unsatisfactory Operation of the System with an AVR	91
2.13	Conclusion	93
Chapter 3	Literature Review and Interpretations	97
3.1	Introduction	98
3.2	Who has published material on control and stability aspects of micro-hydroelectric systems?	98
3.3	What these authors say (or don't say) about excitation requirements	104
3.4	Other published material related to load controllers and excitation requirements for micro-hydroelectric applications.	113
3.5	Primary Research based on the findings of the Literature Review	117
3.6	Gaps in the body of knowledge, and how they will be considered in this thesis A summary.	125
Chapter 4	System Modelling	130
4.1	Introduction	131
4.2	Hydraulic system model	131
4.2.1	Turbine model	131
4.2.2	Laboratory test rig water head and flow characteristic	133
4.2.3	Turbine losses model	135
4.2.4	Electrical Power versus Speed (electrical frequency) tests	136
4.2.5	Speed (angular velocity) versus Load torque characteristic	141
4.2.6	System moment of inertia	146
4.2.7	Comparison of Turbine and DC motor speed versus torque curves	149
4.3	Electrical system model	152
4.3.1	Electromechanical Energy Conversion	152
4.3.2	Generated voltage	154
4.3.3	Estimation of ϕ : air gap flux	155
4.3.4	Exciter field winding	158
4.3.5	Synchronous Reactance and Armature Resistance	163

4.3.6	Circuit equations for the loaded alternator	165
4.3.7	Single phase output from a three phase alternator	168
4.4	Excitation control system models	173
4.4.1	Overview of Automatic Voltage Regulators	173
4.4.2	Automatic Voltage Regulator (AVR) model	176
4.4.2.1	AVR model topology	176
4.4.2.2	Under Frequency Roll-off (UFRO) protection characteristic	179
4.4.2.3	Complete AVR model	182
4.4.3	Constant Field Current model	182
4.4.3.1	Description of existing design	182
4.4.3.2	Description of operation during normal conditions	186
4.4.3.3	Description of operation during generator self excitation	189
4.4.3.4	Complete Constant Field Current Model	190
4.5	Ballast Load Frequency Controller model	191
4.5.1	Overview of controller	191
4.5.2	Controller operation	192
4.5.3	PID compensator	192
4.5.4	UTS APACE micro hydroelectric controller	193
4.5.5	Ballast Load Frequency Controller model	197
4.6	Conclusion	198
Chapter 5	System testing and simulation	200
5.1	Introduction	201
5.2	Measurement of system parameters during start-up	202
5.2.1	Method and results	203
5.2.2	Discussion of results	205
5.3	Measurement of system parameters during start-up procedure with various AVR stability settings (no load controller)	209
5.3.1	AVR stability setting options	209
5.3.2	Method and results	210
5.3.3	Discussion of results	211
5.4	Measurement of system parameters during step response tests – varying hydro power input	212
5.4.1	Method and results	212
5.4.2	Discussion of results	215

5.5	Measurement of system parameters during step response tests – varying electrical load, linear DC excitation and AVR controller excitation, with and without ballast load frequency controller	217
5.5.1	Method, results, and discussion	217
5.5.2	Unity power factor circuit model	223
5.5.3	Hydro turbine prime mover, constant DC excitation, no ballast load frequency controller	224
5.5.4	Diesel engine prime mover with AVR controlled excitation	226
5.5.5	Hydro turbine prime mover with constant DC excitation and ballast load frequency controller	228
5.5.6	Hydro turbine prime mover with AVR controlled excitation and with no ballast load frequency controller	229
5.5.7	Hydro turbine prime mover with AVR controlled excitation and with ballast load frequency controller	230
5.5.8	Hydro turbine prime mover with alternative exciter supply	231
5.6	Relationship between DC excited, AVR excited systems, and the turbine power speed characteristic	232
5.6.1	Operating points on the turbine power speed characteristic	238
5.7	PSCAD Overview	243
5.7.1	Complete System modelling in PSCAD	244
5.7.2	Creating simulation scenarios within PSCAD	246
5.8	PSCAD simulation responses for various scenarios	247
5.9	Conclusions	264
Chapter 6	Specification, Design, Simulation, Implementation and Verification	268
6.1	Introduction	269
6.2	Specifications	270
6.2.1	Functional specifications	272
6.2.2	Performance specifications	275
6.2.3	Interface specifications	277
6.3	Operating principle of existing AVR designs	278
6.3.1	Overview of details provided by the manufacturer	278
6.3.2	Analysis of details provided by the manufacturer	282
6.4	Exciter field current versus firing angle	283
6.5	Power stage circuit	287
6.6	Measurement of exciter field current	289
6.7	Feedback control circuits	296

6.7.1	Open loop control of exciter field current	296
6.7.2	Closed loop control of exciter field current	298
6.7.3	Closed loop control of alternator terminal voltage	302
6.8	A novel method for drying alternator windings	313
6.8.1	Effect of moisture on alternator windings	313
6.8.2	Alternator manufacturer literature	315
6.8.3	Existing techniques implemented in the field	317
6.8.4	Design of a novel technique for drying alternators	319
6.9	Review of specifications and guidelines	323
6.10	Conclusions	328
Chapter 7	Conclusions and Recommendations	330
Chapter 7	Conclusions and Recommendations	330
Chapter 7	Conclusions and Recommendations References	330 348
Chapter 7	Conclusions and Recommendations References	330 348
Chapter 7	Conclusions and Recommendations References Appendices	330348359
Chapter 7 A	Conclusions and Recommendations References Appendices Elder, Boys and Woodward: bandpass filter and increased inertia solution to phase shift in alternator terminal voltage measurement	330348359360
Chapter 7 A B	Conclusions and Recommendations References Lefter, Boys and Woodward: bandpass filter and increased inertia solution to phase shift in alternator terminal voltage measurement Analysis of Chris Greacen's presentation on Community Micro-hydroelectric Systems in Thailand – technical problems.	 330 348 359 360 363

List of tables

		page
Table 1.1	Logic Framework for this micro-hydroelectric study	10
Table 2.1	APACE VFEG Project construction periods and milestones since 1978	17
Table 2.2	Overview of Iriri Community micro-hydroelectric scheme	19
Table 2.3	Summary of progress through the 8 step model for Solomon Island villages grouped by Province (as of November 2005)	20
Table 2.4	Formulation of Root Definitions based on Checkland	24
Table 2.5	Excerpts of stakeholder statements from Bygrave's PhD thesis	27
Table 2.6	STEEP analysis: pertinent questions and responses related to sustainable technology transfer for solar, and for micro-hydro schemes	41
Table 2.7	Description of some interactions between identified actors	58

Table 2.8	Definitions for Technology Readiness Levels and typical product life cycle stages	62
Table 2.9	Issues to be considered when developing technology for developing communities	64
Table 2.10	Expanded framework of issues to be considered when developing technology for developing communities	79
Table 4.1	Equations for loaded alternator, for lagging power factor and unity power factor loads	167
Table 4.2	Comparison of Electrical Specifications for two typical AVR's.	176
Table 4.3	IEEE Type AC5A – Parameter description, suggested values, and notes.	177
Table 4.4	Typical name plate details based on measurements for the exciter field supply	186
Table 6.1	Summary of results from prototype testing of CT based exciter field supply for drying alternator windings using short circuit technique	322

List of figures

		page
Figure 2.1	Figure 2.1: Diagram showing conceptual links between chapter sections 2.3 to 2.7	16
Figure 2.2	APACE VFEG 8 step Model to Village Electricity – a participatory approach to community planning and project design	20
Figure 2.3	Village First Financial Model for Step 5 – Project Design and Construction	21
Figure 2.4	Sketch showing the interconnection of the main system components of the micro-hydroelectric test rig in the Renewable Energy Laboratory	85
Figure 2.5	Nameplate details of the Newage International BCI184G24 alternator	85
Figure 2.6	Simplified schematic representation of a brushless self excited synchronous alternator	88
Figure 2.7	Equivalent electrical circuit representation of a single phase brushless self excited synchronous machine neglecting transient conditions.	89
Figure 4.1	The Swing equation as a control systems block diagram	133

Figure 4.2	Relationship between water flow and head for the laboratory test rig.	134
Figure 4.3	Graph of P_{hydro} [W] versus speed (ω_m) [rad sec ⁻¹]	135
Figure 4.4	Graph of T_{losses} [Nm] versus speed (ω_m) [rad sec ⁻¹]	136
Figure 4.5	PSCAD equivalent model for T_{loss} , T_{elect} and T_{load}	136
Figure 4.6	Steady state electrical power versus speed for various water head input.	138
Figure 4.7	Conceptual understanding of turbine power versus speed curves	139
Figure 4.8	Turbine power speed curve including resistive load characteristic	140
Figure 4.9	Speed (angular velocity) versus load torque for various water head input	142
Figure 4.10	Graphs of the slope and 'y-intercept' for speed versus torque lines for a range of water head.	143
Figure 4.11	Completed control system block diagram implementing the swing equation	143
Figure 4.12	Control systems block diagram implementing the speed versus load torque transfer function.	144
Figure 4.13	Control systems block diagram implementing the slope (K) and y-intercept (y_{int}) of the speed versus load torque transfer function. The time constant of the system pole ($pole_T$) is also calculated with this block diagram.	145
Figure 4.14	Graph of $T_{load(initial)}$ [Nm] versus water head (m)	146
Figure 4.15	Graph showing comparison of measured and simulated step response of 16m water head on the system.	147
Figure 4.16	Graph showing comparison of measured and simulated step response of 16m water head on the system.	148
Figure 4.17	DC motor characteristics for separately excited and shunt excited, series, and compound.	149
Figure 4.18	Power versus Speed (angular velocity) for various prime movers	150
Figure 4.19	Speed (angular velocity) versus load torque for various prime movers	150
Figure 4.20	Control systems block diagram for alternator frequency	154
Figure 4.21	Control systems block diagram for induced voltage in the alternator	155
Figure 4.22	Graph of Open Circuit test results for the alternator at 1500RPM	156
Figure 4.23	Graph of alternator induced voltage (<i>E</i>) versus field current for open circuit and loaded ($pf = 1$) conditions at 1500RPM	157
Figure 4.24	Control systems block diagram for air gap flux versus field current	158

Figure 4.25	Schematic showing setup for step response tests on the exciter field winding	159
Figure 4.26	Graph of result for a 0.9A step increase in field current.	159
Figure 4.27	Graph of calculated field inductance versus field current for a range of step response experiments	160
Figure 4.28	Graph of $L_f \cdot i_f$ versus i_f , which has the same characteristic as a graph of B versus H for the exciter field winding	161
Figure 4.29	Equivalent electrical circuit representation of the laboratory single phase brushless self excited synchronous alternator with exciter field component values added	162
Figure 4.30	PSCAD equivalent control systems block diagram for the exciter field winding	163
Figure 4.31	Combined open circuit and closed circuit test results for 50Hz operation, including air-gap line open circuit characteristic	164
Figure 4.32	Complete equivalent electrical circuit representation of the laboratory single phase brushless self excited synchronous alternator with exciter field component values added	165
Figure 4.33	Equivalent electrical circuit representation of a single phase brushless self excited synchronous alternator with resistive and inductive (lagging power factor) load.	166
Figure 4.34	Voltage phasor diagrams of equivalent electrical circuit representation.	166
Figure 4.35	PSCAD equivalent control systems block diagram for the unity power factor equations described in Table 4.1. R_{total} is the total electrical resistance calculated in section 4.5.5.	168
Figure 4.36	Equivalent electrical circuit representation of a three phase brushless self excited synchronous alternator	169
Figure 4.37	Equivalent electrical circuit representation of a three phase star connected alternator and phasor diagram	170
Figure 4.38	Equivalent electrical circuit representation of a single phase parallel zigzag connected alternator and phasor diagram	171
Figure 4.39	Equivalent electrical circuit representation of a single phase double delta connected alternator and phasor diagram	172
Figure 4.40	IEEE Type AC5A – Simplified Rotating Rectifier Excitation System Representation copied from Figure 10 of IEEE 421.5- 1992.	177
Figure 4.41	Simplified IEEE Type AC5A model	179
Figure 4.42	Graphs of the Under Frequency Roll-off characteristic for the Newage SA465 AVR and Basler AVC63-2.5 AVR	180
Figure 4.43	PSCAD implementation of the variable defining UFRO condition	181

Figure 4.44	Complete PSCAD implementation of the control systems block modelling of an SA465 AVR including Under Frequency Roll- off characteristic.	182
Figure 4.45	Block diagram of UTS/APACE Exciter Field Supply based on Linear Adjustable Power Supply topology	183
Figure 4.46	Schematic diagram of UTS/APACE Exciter Field Supply	184
Figure 4.47	Sketch of layout of components of UTS/APACE Exciter Field Supply	185
Figure 4.48	Photograph of an assembled UTS/APACE Exciter Field Supply	185
Figure 4.49	Theoretical and measured output voltage range versus alternator terminal voltage for the linear DC exciter supply	187
Figure 4.50	Datasheet simplified schematic of LM350 regulator IC output voltage adjustment circuit, and Dropout Voltage characteristic.	187
Figure 4.51	Control systems block diagram for constant DC field current input into the air gap flux versus field current model.	190
Figure 4.52	Typical PID control system block diagram	192
Figure 4.53	PID compensator in UTS APACE micro hydroelectric control system	194
Figure 4.54	Abridged graph of ballast load nominal dissipated power versus controller output binary word for the Renewable Energy lab test rig	196
Figure 4.55	PSCAD control system block diagram for the ballast load frequency controller	197
Figure 4.56	PSCAD equivalent electrical circuit model for R _{total}	198
Figure 5.1	Normalised (about $240V_{AC}$) alternator terminal voltage, Normalised (about $21V_{DC}$) exciter field voltage, and Normalised (about 50Hz) system frequency versus time during start-up transient conditions for various excitation sources	204
Figure 5.2	Normalised (about $240V_{AC}$) alternator terminal voltage, Normalised (about $21V_{DC}$) exciter field voltage, and Normalised (about 50Hz) system frequency versus time during start-up transient conditions for various AVR stability settings	211
Figure 5.3	Graphs comparing the response of various system parameters versus time (sec) for an increase and decrease in hydro power with the ballast load frequency controller and linear regulator exciter supply (left hand side), and AVR controlled exciter supply (right hand side).	214
Figure 5.4	Graphs comparing the alternator terminal voltage and system frequency for the system with AVR controlled excitation. The UFRO is set at 45Hz.	217

Figure 5.5	System parameter responses to a 125W step load (applied and rejected) with linear exciter field supply with no ballast load frequency controller (left hand side graphs), and with ballast load frequency controller (right hand side graphs)	219
Figure 5.6	System parameter responses to a 125W step load (applied and rejected) with AVR controlled exciter field supply with no ballast load frequency controller (left hand side graphs), and with ballast load frequency controller (right hand side graphs)	220
Figure 5.7	System parameter responses to a 1kW step load (applied and rejected) with linear exciter field supply with no ballast load frequency controller (left hand side graphs), and with ballast load frequency controller (right hand side graphs)	221
Figure 5.8	System parameter responses to a 1kW step load (applied and rejected) with AVR controlled exciter field supply with no ballast load frequency controller (left hand side graphs), and with ballast load frequency controller (right hand side graphs)	222
Figure 5.9	Equivalent electrical circuit representation of a single phase brushless self excited synchronous alternator with resistive (unity power factor) load.	223
Figure 5.10	Speed versus Torque curve showing locus of steady state operating points for micro-hydro system with constant DC excitation and no ballast load frequency controller	226
Figure 5.11	Speed versus Torque curves showing new steady state operating points for diesel-generator system with AVR controlled excitation	227
Figure 5.12	Speed versus Torque curves a single steady state operating points for micro-hydro system with constant DC excitation and with ballast load frequency controller	229
Figure 5.13	Steady state electrical power versus frequency for various water head input, with various Resistive Load characteristic curves for constant DC excitation.	233
Figure 5.14	Coefficient of the load characteristic equation (5.17) versus R_{load} (Ohms) showing $R_{load} = 4$ Ohms results in maximum power transfer	234
Figure 5.15	Steady state electrical power versus frequency for various water head input, with various Resistive Load characteristic curves for AVR controlled excitation.	235
Figure 5.16	Steady state electrical power versus frequency for various water head input, with various Resistive Load characteristic curves for AVR controlled excitation.	236
Figure 5.17	Trajectory for P_{elect} during load application and rejection for DC excited system with no controller operating on the negative slope of the power speed curve.	240

Figure 5.18	Trajectory for P_{elect} during load application and rejection for DC excited system with ballast load controller operating on the negative slope of the power speed curve.	241
Figure 5.19	Trajectory for P_{elect} during load application and rejection for AVR excited system with no controller operating on the negative slope of the power speed curve.	242
Figure 5.20	Complete PSCAD control system block diagram modelling the complete micro hydroelectric system test facility in the Renewable Energy Laboratory	245
Figure 5.21	Comparison of PSCAD simulation response and measured system response versus time (sec). 125W step load with linear power supply, no ballast load controller.	249
Figure 5.22	Comparison of PSCAD simulation response and measured system response versus time (sec). 125W step load with linear power supply, with ballast load controller	250
Figure 5.23	Comparison of PSCAD simulation response and measured system response versus time(sec). 1kW step load with linear power supply, no ballast load controller	251
Figure 5.24	Comparison of PSCAD simulation response and measured system response versus time (sec). 1kW step load with linear power supply, with ballast load controller	252
Figure 5.25	Comparison of PSCAD simulation response and measured system response versus time (sec). 125W step load with AVR controlled exciter supply, no ballast load controller.	253
Figure 5.26	Comparison of PSCAD simulation response and measured system response versus time (sec). 125W step load with AVR controlled exciter supply, with ballast load controller.	254
Figure 5.27	Comparison of PSCAD simulation response and measured system response versus time (sec). 1kW step load with AVR controlled exciter supply, no ballast load controller.	255
Figure 5.28	Comparison of PSCAD simulation response and measured system response versus time (sec). 1kW step load with AVR controlled exciter supply, with ballast load controller.	256
Figure 5.29	PSCAD simulation response of various system parameters versus time (sec) for an increase and decrease in hydro power with the ballast load frequency controller and linear regulator exciter supply (left hand side), and AVR controlled exciter supply (right hand side).	257
Figure 5.30	PSCAD simulation of frequency response for system with DC excitation and 22m and 34m (head) water power input.	258
Figure 5.31	PSCAD simulation of frequency response for AVR excited system with 22m (head) water power input.	258
Figure 6.1	Generator compounding curves (Source: Fitzgerald)	274

Figure 6.2	Typical Self Excited AVR Control System with schematic representation of a brushless synchronous alternator	278
Figure 6.3	The AVR Block Diagram (Source Newage International)	279
Figure 6.4	The AVR Design Details Block Diagram (Source Newage International)	280
Figure 6.5	Alternator terminal voltage transient response (Source Newage International)	281
Figure 6.6	Top level block diagram representation of the Alternative Exciter Field Supply	283
Figure 6.7	Power stage circuit topology and MultiSim simulated output showing SCR current waveform (Red curve) versus alternator terminal voltage reference waveform (Green curve).	284
Figure 6.8	MultiSim simulated exciter field winding current waveform (Blue curve) versus SCR current waveform (Red curve)	285
Figure 6.9	Peak field current through the field windings versus SCR firing angle α [degress]	286
Figure 6.10	Schematic diagram of the power stage	288
Figure 6.11	Comparison of measured SCR current and alternator terminal voltage versus time.	289
Figure 6.12	Comparison of measured exciter field winding current and alternator terminal voltage versus time.	290
Figure 6.13	Schematic diagram of the resetting peak detector circuit	292
Figure 6.14	Sample input waveform to resetting peak detector circuit with corresponding waveforms at nodes and output	293
Figure 6.15	Simulated resetting peak detector circuit using MultiSim	294
Figure 6.16	Result of MultiSim simulation of resetting peak detector circuit showing a comparison of input (red) versus output (blue) waveforms.	295
Figure 6.17	Measured response from implemented resetting peak detector circuit comparing peak field current [Apk] waveform with DC output voltage waveform.	295
Figure 6.18	Alternator terminal voltage, reference ramp waveform, and firing angle signals versus time.	297
Figure 6.19	Block diagram representation of the open loop control of the SCR conduction angle	298
Figure 6.20	Block diagram representation of the closed loop control of the SCR conduction angle via measurement of exciter field current	299

Figure 6.21	MultiSim simulation of a 1 Amp step change in set point field current (I_{ref}) (a) I_{ref} (red) and output of peak detector (blue) versus time for $0 < t < 1000$ ms (b) reference ramp wavefom (red) and firing voltage V_{α} (grey) for $160 < t < 360$ ms (c) alternator terminal voltage waveform (green) and SCR current for $160 < t < 360$ ms	300
Figure 6.22	Sketch showing change SCR conduction current for change in system frequency.	301
Figure 6.23	Block diagram representation of the closed loop control of the SCR conduction angle with voltage via measurement of exciter field current and alternator terminal voltage.	304
Figure 6.24	Schematic diagram of the exciter field current, and alternator terminal voltage feedback control circuitry	305
Figure 6.25	Graph of the measured alternator terminal voltage (<i>Va</i>) and exciter field current verus time (sec) during self excitation.	307
Figure 6.26	Graphs of various system parameters versus time (sec) for a (near) step increase in alternator load factor	310
Figure 6.27	Graphs of various system parameters versus time (sec) for a step change in alternator power factor	311
Figure 6.28	Photograph of prototype alternative exciter field supply.	312
Figure 6.29	Turbine House, Manawai Village (Solomon Islands) showing penstock manifold (foreground) and pole mounted step-up transformer (background)	314
Figure 6.30	Alternator arrives at Bulelavata Village (Solomon Islands) in a dug-out canoe	315
Figure 6.31	Typical Drying out curve (Source Newage International)	317
Figure 6.32	Installed cross-flow turbine and alternator, Bulelavata Village (Solomon Islands)	318
Figure 6.33	Hot rocks are placed around the alternator casing to dry the windings, Bulelavata Village (Solomon Islands)	318
Figure 6.34	Schematic diagram of CT based exciter field supply for drying alternator windings using the short circuit technique.	319
Figure 6.35	MultiSim model of proposed CT based exciter field supply for drying alternator windings using short circuit technique.	320
Figure 6.36	Results from MultiSim simulation of CT based exciter field supply for drying alternator windings using short circuit technique.	321
Figure 6.37	Photograph of prototype CT based exciter field supply for drying alternator windings using short circuit technique	323

List of abbreviations

AC Alternating current

APACE Appropriate Technology for Community and Environment Inc.

APACE VFEG APACE – Village First Electrification Group

- ANT Actor network theory
- AVR Automatic voltage regulator
 - DC Direct current
- EES Economic and environmental sustainability
- MOV Metal oxide varistor
- NRSE New and renewable sources of energy
 - OVI Objectively verified indicators
 - PIC Pacific Island Country
 - PID Proportional Integral Derivative
- PSCAD Power Systems Computer Aided Design
 - RAPS Remote area power system
- RESCO Renewable Energy Service Company
 - RET Renewable energy technologies
 - RPM Revolutions per minute
 - SCR Silicon controlled rectifier
- SIVEC Solomon Islands Village Electrification Council
- STEEP Social, Technical, Economic, Environmental, Political
 - TRL Technology readiness level
- UFRO Under frequency roll-off

List of symbols

- t Time [sec]
- *m* Metres [m]
- V Voltage [V]
- *I* Electrical current [A]
- *R* Resistance $[\Omega]$
- P Power [W]
- F Force [N]
- T Torque [Nm]
- J Moment of inertia $[kgm^{-2}]$
- ω Angular velocity [rad sec⁻¹]
- f Frequency [Hz]
- λ Total flux linkage [Wb-turns]
- ϕ Magnetic flux [Wb]
- *E* Alternator induced voltage [V]
- *s* Laplace complex frequency variable
- α SCR firing or conduction angle (deg)
- δ Phase angle of induced voltage with respect to V_a [deg]
- ψ Phase angle of armature current with respect to V_a [deg]
- *N* Number of turns of the conductor (in making a winding)
- *I_{ref}* Reference current [A]
- I_{field} Exciter field winding current [A]
 - L_f Inductance of the exciter field winding [H]
 - R_f Resistance of the exciter field winding [Ω]
 - R_a Resistance of the armature winding [Ω]
 - V_a Alternator (armature) terminal voltage [V]
- *V_{ref}* Reference voltage [V]
- ω_e Electrical frequency [rad sec⁻¹]
- ω_m Angular velocity of mechanical components [rad sec⁻¹]
- X_S Alternator synchronous reactance [Ω]

List of Relevant Publications and Awards

- P.Bryce and R.Jarman, "Rural electrification as exemplifying myths and legends of appropriate technology", *XIX Pacific Science Congress*, UNSW Australia, July 1999
- P. Bryce and R. Jarman, "Manawai Harbour Micro Hydroelectic Scheme: A case study in Appropriate Technology Transfer", *International Small Islands Studies Association (ISISA) Conference*, Isle of Skye, October 2000
- R. Jarman and P.Bryce, "Investigation of the behaviour of an AVR in a ballast load frequency controlled stand alone micro-hydroelectric system", *Australasian Universities Power Electronics Conference (AUPEC'04)*, Brisbane, September 2004
- R. Jarman, "Alternative Exciter Supply for use on Synchronous Alternators in Micro-Hydroelectric Applications", *UTS:Engineering Postgraduate Research Showcase*, Sydney, May 2004. [Runner-up best presentation]
- R. Jarman, "Energy in remote rural communities addressing a known technical problem in micro-hydroelectric power systems", *Australian Institute of Energy*, NSW Branch Postgraduate Awards, Sydney, November 2004. [Winner of Gold Award Excellence in Engineering Science and Innovation]
- R.Jarman and P.Bryce, "Serving Solomon", *International Water Power and Dam Construction*, United Kingdom, August 2005 [Feature cover story]
- R.Jarman and P.Bryce, "Experimental investigation and modelling of the interaction between an AVR and ballast load frequency controller in a stand alone micro-hydroelectric system", *International Journal of Renewable Energy* [accepted for publication August 2006]

Abstract

This thesis develops an understanding of the context, and operating nexus linking synchronous machine excitation requirements and ballast load frequency controllers in remote area power supplies in developing communities in the Pacific. A framework has been developed to serve as a guide for this study as well as future technology transfer projects. Remaining chapters in the thesis coalesce to offer confidence in the hardware solutions presented: an alternative, simpler exciter supply circuit; and a novel method for drying alternator windings.

The thesis stems from an ongoing need for the APACE-VFEG technical team to develop dedicated systems and hardware solutions for micro-hydroelectric systems. The close relationship between system designer and rural community users has afforded a wealth of valuable 'technical' experience and knowledge. Much of this 'intellectual property' remains in-house. We have evidence to show there is merit in the models and community partnership approach adopted; this study affords an appropriate vehicle to research this 'contextual' material with more rigour.

A void between two standpoints is apparent: one where researchers identify barriers to technology transfer at a systems or sociology level – and lack depth in technical design aspects; the other standpoint where electronic systems designers typically remain focussed on component level analysis of their equipment – and hence fail to consider the broader contextual issues. The study promotes the thesis that, beyond the barriers to technological diffusion at institutional, social, and political level (which appear to dominate the issues normally considered), problems remain in providing sustainable *technical* solutions for this small Pacific island context.

The framework is developed to provide guidance for this study and for future technology transfer projects. Soft Systems Methodology, STEEP analysis, the concepts of Actor Network Theory, and technology compatibility, readiness, and maturity afford pertinent insights to the framework at the institutional, actor, and technical levels.

A review of literature pertinent to this study has been completed and gaps identified in the general body of knowledge associated with micro-hydroelectric systems for consideration in this study. Focus areas include the assumption that an Automatic Voltage Regulator (AVR) is the only solution, the requirements for flywheels, and the various explanations for what causes the unsatisfactory operation of (AVR excited) ballast load controlled micro-hydroelectric systems.

This thesis shows that despite the complexity of interconnections and time constants involved, a complete and verified control systems model developed from first principles is achievable. Relationships between the system steady state operating points and the equations describing the system parameters (accelerating torque, moment of inertia, armature current, alternator rotor speed) are modelled, simulated, and verified with measured responses on a full scale micro-hydroelectric test rig. Further system testing shows an alternative solution to the AVR exists, flywheels may not be a necessity, and the cause of the unsatisfactory operation (with AVR excitation) stems from the similar time constants of the two feedback control systems (the frequency controller and voltage regulator) as well as the Under Frequency Roll-Off characteristic of the AVR.

Two hardware solutions are specified, designed, simulated, implemented, and verified: the alternative exciter field supply; and a novel method for drying alternator windings. The specifications prepared have sufficient detail to afford confidence in the hardware solutions developed – they address the technical requirements and broader contextual requirements of a technology to be transferred into a developing community.

Two feedback control circuits have been completed: one to replicate the constant field current design of the existing APACE constant current exciter supply; the other to incorporate voltage regulation attributes (which address the constraints of the existing APACE solution). Experiments have been conducted to verify the predicted (simulated) operating characteristics. Although designed for the Renewable Energy Laboratory alternator, the alternative exciter supply is based on the specifications for a range of AVRs and hence the solution is expected to be transferable to a broad range of machines, as well as applications beyond those described in this study. A review of the new technology developed has been completed, with a view to verifying the designs against the specifications as well as the framework guidelines.

Moisture is the prime cause of machine winding insulation deterioration and corrosion of metallic parts, and this is certainly the case in humid or rainy conditions, such as those prevalent in the wet tropics. Moreover, moisture can demonstrably have catastrophic impacts if it is allowed to expand in the confined space of the windings during start-up. Given that the mechanism for moisture ingress (and egress) is not

-xxii-

perceptible to users in this context, the existing remedy has been counter-intuitive and difficult to transfer. A novel method for drying machine windings has been developed and implemented to address this essential requirement. The method is safer and more intuitive for the system operators and reduces risks of damage to equipment.

Finally, this study is considered an incremental step towards improved system sustainability. That is, rather than being seen as an exit point, the outcomes from this study have proven the concept at component level. The recommendation is therefore to commence planning on the next phase, which may be to consider combining all the various control system components together into a single package. Consideration of such a design integration will benefit from the contextual framework suggested here.