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List of abbreviations
AC 

APACE 
APACE VFEG 

ANT 

AVR 

DC 

EES 

MOV 

NRSE 
OV1 

PIC 
PID 

PSCAD 

RAPS 
RESCO 

RET 

RPM 

SCR 

SIVEC 
STEEP 

TRL 

UFRO

Alternating current

Appropriate Technology for Community and Environment Inc.

APACE - Village First Electrification Group
Actor network theory

Automatic voltage regulator

Direct current
Economic and environmental sustainability

Metal oxide varistor

New and renewable sources of energy

Objectively verified indicators

Pacific Island Country
Proportional Integral Derivative

Power Systems Computer Aided Design

Remote area power system
Renewable Energy Service Company
Renewable energy technologies

Revolutions per minute

Silicon controlled rectifier
Solomon Islands Village Electrification Council

Social, Technical, Economic, Environmental, Political

Technology readiness level
Under frequency roll-off
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t Time [sec] 

m Metres [m]

V Voltage [V]
/ Electrical current [A]

R Resistance [D]

P Power [W]

F Force [N]

T Torque [Nm]

J Moment of inertia [kgm' ] 
co Angular velocity [rad sec"1]

/ Frequency [Hz]
A Total dux linkage [Wb-tums] 

cf) Magnetic dux [Wb]

E Alternator induced voltage [V] 

v Laplace complex frequency variable 

a SCR firing or conduction angle (deg)

S Phase angle of induced voltage with respect to Va [deg] 

[// Phase angle of armature current with respect to Va [deg] 

N Number of turns of the conductor (in making a winding) 
Iref Reference current [A]

Ifieid Exciter field winding current [A]
Lf Inductance of the exciter field winding [H]

Rf Resistance of the exciter field winding [Q]

Ra Resistance of the armature winding [H]

Va Alternator (armature) terminal voltage [V]

Vref Reference voltage [V] 
coc Electrical frequency [rad sec"1]

ojm Angular velocity of mechanical components [rad sec"1] 

Xs Alternator synchronous reactance [f>]
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Abstract
This thesis develops an understanding of the context, and operating nexus linking 

synchronous machine excitation requirements and ballast load frequency controllers in 

remote area power supplies in developing communities in the Pacific. A framework has 

been developed to serve as a guide for this study as well as future technology transfer 

projects. Remaining chapters in the thesis coalesce to offer confidence in the hardware 

solutions presented: an alternative, simpler exciter supply circuit; and a novel method 

for drying alternator windings.

The thesis stems from an ongoing need for the APACE-VFEG technical team to 

develop dedicated systems and hardware solutions for micro-hydroelectric systems. The 

close relationship between system designer and rural community users has afforded a 

wealth of valuable ‘technical’ experience and knowledge. Much of this ‘intellectual 

property’ remains in-house. We have evidence to show there is merit in the models and 

community partnership approach adopted; this study affords an appropriate vehicle to 

research this ‘contextual’ material with more rigour.

A void between two standpoints is apparent: one where researchers identify barriers to 

technology transfer at a systems or sociology level - and lack depth in technical design 

aspects; the other standpoint where electronic systems designers typically remain 

focussed on component level analysis of their equipment - and hence fail to consider 

the broader contextual issues. The study promotes the thesis that, beyond the barriers to 

technological diffusion at institutional, social, and political level (which appear to 

dominate the issues normally considered), problems remain in providing sustainable 

technical solutions for this small Pacific island context.

The framework is developed to provide guidance for this study and for future 

technology transfer projects. Soft Systems Methodology, STEEP analysis, the concepts 

of Actor Network Theory, and technology compatibility, readiness, and maturity afford 

pertinent insights to the framework at the institutional, actor, and technical levels.

A review of literature pertinent to this study has been completed and gaps identified in 

the general body of knowledge associated with micro-hydroelectric systems for 

consideration in this study. Focus areas include the assumption that an Automatic 

Voltage Regulator (AVR) is the only solution, the requirements for flywheels, and the
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various explanations for what causes the unsatisfactory operation of (AVR excited) 

ballast load controlled micro-hydroelectric systems.

This thesis shows that despite the complexity of interconnections and time constants 

involved, a complete and verified control systems model developed from first principles 

is achievable. Relationships between the system steady state operating points and the 

equations describing the system parameters (accelerating torque, moment of inertia, 

armature current, alternator rotor speed) are modelled, simulated, and verified with 

measured responses on a full scale micro-hydroelectric test rig. Further system testing 

shows an alternative solution to the AVR exists, flywheels may not be a necessity, and 

the cause of the unsatisfactory operation (with AVR excitation) stems from the similar 

time constants of the two feedback control systems (the frequency controller and 

voltage regulator) as well as the Under Frequency Roll-Off characteristic of the AVR.

Two hardware solutions are specified, designed, simulated, implemented, and verified: 

the alternative exciter field supply; and a novel method for drying alternator windings. 

The specifications prepared have sufficient detail to afford confidence in the hardware 

solutions developed - they address the technical requirements and broader contextual 

requirements of a technology to be transferred into a developing community.

Two feedback control circuits have been completed: one to replicate the constant field 

current design of the existing APACE constant current exciter supply; the other to 

incorporate voltage regulation attributes (which address the constraints of the existing 

APACE solution). Experiments have been conducted to verify the predicted (simulated) 

operating characteristics. Although designed for the Renewable Energy Laboratory 

alternator, the alternative exciter supply is based on the specifications for a range of 

AVRs and hence the solution is expected to be transferable to a broad range of 

machines, as well as applications beyond those described in this study. A review of the 

new technology developed has been completed, with a view to verifying the designs 

against the specifications as well as the framework guidelines.

Moisture is the prime cause of machine winding insulation deterioration and corrosion 

of metallic parts, and this is certainly the case in humid or rainy conditions, such as 

those prevalent in the wet tropics. Moreover, moisture can demonstrably have 

catastrophic impacts if it is allowed to expand in the confined space of the windings 

during start-up. Given that the mechanism for moisture ingress (and egress) is not
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perceptible to users in this context, the existing remedy has been counter-intuitive and 

difficult to transfer. A novel method for drying machine windings has been developed 

and implemented to address this essential requirement. The method is safer and more 

intuitive for the system operators and reduces risks of damage to equipment.

Finally, this study is considered an incremental step towards improved system 

sustainability. That is, rather than being seen as an exit point, the outcomes from this 

study have proven the concept at component level. The recommendation is therefore to 

commence planning on the next phase, which may be to consider combining all the 

various control system components together into a single package. Consideration of 

such a design integration will benefit from the contextual framework suggested here.
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