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Abstract

Conventional processes used to treat water and wastewater mainly removes the 

suspended solids, pathogens and biodegradable organic matter. The majority of 

persistent organic pollutants are not generally removed by these processes.

Persistent organic pollutants (POPs) constitute a class of anthopogenic substances (man­

made) and can be found as trace quantity elsewhere in environment. They are toxic and 

bio-accumulate in humans, plants, animals, and have significant adverse impacts on 

human health and the environment, even at very low concentrations. They may cause 

cancer and disorders in the reproductive and immune systems as well as affecting the 

human developmental process. POPs do not readily break down in the environment with 

half-lives in soils in the order of years, although they may be transformed both 

physically and chemically over long periods of time. They exist in agricultural runoff, 

drainage to the sewerage system and industrial discharge.

In this study, three organic pollutants were selected for investigation humic acid as 

natural organic matter (NOM), metsulfuron methyl herbicide as POP, and biological 

treated sewage effluent (BTSE).

In the first part of the study, removal of humic substance representing NOM was 

investigated with various types of photocatalytic reactors. The percentage of dissolved 

organic carbon (DOC) removal with a batch reactor with titanium dioxide (Ti02) as the 

photocatalyst ranged from 20 to 60 %. When powdered activated carbon (PAC) was 

added together with Ti02 in the photo reactor, an improvement of more than twice DOC 

removal was noticed compared with the same amount of Ti02 used alone. From these
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results, the use of PAC - Ti02 demonstrated superior removal of humic substance 

within a shorter contact time and higher removal efficiencies compared with using Ti02 

alone. Solid phase micro extraction coupled with Gas Chromatography and Flame 

ionisation detector (SPME/GC FID) equipped with DB-5 column was used to 

investigate the intermediate photo products during the photo-catalytic reaction. The 

manner in which intermediate photoproducts evolve and transform was demonstrated by 

the GC FID peak. The photo reaction can be summarised in the following way. The 

photo resistant by-products was adsorbed on the PAC-Ti02 surface as shown in GC 

peak results. From DOC measurements, it is estimated that less than 25 % of the initial 

material remained. It is noted that during the PAC-Ti02 batch process humic substance 

was removed immediately without forming a large amount of intermediate macro­

molecules of humic substance.

In the photocatalysis continuous reactor, the humic substance removal efficiency was 

studied at different detention time (different flowrates). Better results were achieved at 

longer detention times as there was more contact time. When the PAC was added, the 

results also indicate that the photo-catalytic adsorption hybrid system removed a 

significant amount of humic substance (80% DOC removal) within a shorter contact 

time compared with using Ti02 alone.

In a recirculated continuous plug flow reactors the factors for controlling removal rates 

in heterogeneous catalysis are mass transfer and surface reaction controls. These factors 

were improved when a high recirculation flow rate of 250 mL/min was used where flow 

is turbulent. When a small amount of PAC was added in addition to TiC>2, DOC removal 

improved to 80% in a shorter operation time of less than 10 minutes. The results with
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various types of reactors indicate that recirculated continuous reactor gave the highest 

efficiency for removal of NOM (humic substance) in a shorter detention time.

In the second part of the study, the removal efficiency of metsulfuron methyl 

representing persistent organic pollutants (POPs) was studied. Batch reactor 

experiments conducted with different doses of Ti02 and a small amount of PAC of 0.05 

g/L revealed that the TOC removal efficiency can be significantly increased up to 80%. 

Further, the concentration profile and the rate constant showed superior photocatalysis 

performance in the presence of PAC. The PAC added during the photo-oxidation 

absorbed the intermediate compounds and thereby promoted the photocatalytic 

oxidation. The photooxidation with a detention time of 0.5 to 2 hours resulted in 

intermediate products of smaller molecular weight substances. In this study, a detailed 

analysis with SPME/GC (solid phase micro extraction/gas chromatography) was made to 

study on the photo oxidation intermediates. Following 10 min of residence time in the 

batch reactor the MM partitioned to smaller molecular weight compounds (or substrate) 

which occurred at different peak times during the GC (12.10, 14.25, 17.40, 19.63 and 

20.18 minutes). After 5 hours of residence time in batch reactor, same substrate was found 

to be degraded. The photo oxidation was faster when activated carbon was used together 

with TiCb. The substrate that occurred at the peak times of 19.96 and 18.32 minutes during 

the GC had nearly disappeared, while the peak at time 14.27 minutes was lower. Some 

anionic by - photoproducts was investigated by using ion-chromatography. Nitrate and 

nitrite ions were formed as by-photoproducts. The formation of NO3' and NO2’ anions 

occurred was faster when PAC was added to the photo-oxidation. Similarly, SCC2’ ions 

form during the photo-oxidation of MM. Where PAC is present in the reactor, the 

concentration of SO4 " ions peaked earlier at approximately 50 min and thereafter reduces
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its (SO42') concentration. The reduction in concentration of SO42" after 50 min may be due 

to a portion being adsorbed on the PAC-TiCE surface and a portion being transformed to 

SO2. In this study, the increase in efficiency of MM degradation is similarly attributed to 

the adsorption of photo-products on the more surface available with TiC>2 coupled with 

the PAC and active sites available to react with the pollutants. This reduces the 

competitive adsorption on active sites of PAC-TiC>2 increasing efficiency of degradation 

of MM. However, complicated photo-oxidation and by-products occur during these 

processes, and it is difficult to determine the actual mechanism of photo-catalytic 

reaction on the PAC-TiCE surface and the role of active sites because sophisticated 

instruments are required to do this. Experiments with recirculated continuous reactor 

were also conducted by using TiCE and Ti02-PAC. The coupling of PAC with 

continuous heterogeneous TiCb photocatalysis leads to a faster degradation of MM than 

the heterogeneous TiCE photocatalysis alone. The incorporation of a small amount of 

PAC of 0.05 g/L with 1.5 g/L of TiC>2 led to 78% removal even with a short residence 

time of 5.25 minutes.

The granular activated carbon (GAC) filter was found to be very effective as a pre­

treatment for the removal of herbicide (MM). Fixed bed column experiments packed 

with GAC were conducted with different GAC bed heights (5, 10 and 15 cm) and 

different effluent velocities. The GAC photocatalytic hybrid system showed upto 90% 

removal with GAC bed depth of 10 and 15 cm. The 10 and 15 cm deep GAC columns 

showed a steady state of effluent concentration. The retention time of GAC followed by 

photoreaction was less than 10 minutes.

Recirculated photocatalytic batch reactor experiments conducted with the biological
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treated sewage effluent showed effective DOC removal. After start up, with the 

recirculated flow of 60 mL/min the effluent DOC was reduced by 60% in a period of 

180 min, and became relatively stable. There were no large differences between results 

obtained with various recirculation flow rates. About 70 to 75 % DOC removal was 

achieved using flow rates of 100 mL/min and 250 mL/min. However, with a 

recirculation flow of 250 mL/min, DOC removal decreased to 65% down from the 73% 

DOC removal obtained with that of 100 mL/min rate. This can be explained in terms of 

the characteristics of the plug flow reactor. The flow rates used in this study were large 

enough to keep the catalyst in suspension, and to promote good mass transfer between 

the reactants. When a small amount of PAC (0.05g/L) was added, a complete removal 

of DOC was observed after 250 and 300 min operation times. The addition of 0.05 g/L 

of PAC adsorbent to the recirculated continuous reactor facilitated better organic 

removal than titania photocatalyst alone. DOC removal was further increased to 75% 

within 30 min of operation.

The membrane photocatalysis hybrid system was used to separate catalyst from the 

effluent. The membrane flux was very low and fouling was high when Ti02 was tried to 

be filtered through MF filter. To facilitated Ti02 separation, (i) pH adjustment and (ii) 

flocculation of HO2 slurry were used. Although the use of pH adjustment achieved 

effective improvement to membrane operation, it was 15% less effective than applying 

a pre-treatment of flocculation of TiCL slurry. Photocatalysis and flocculation pre­

treatment processes before MF/UF also resulted in high (over 90%) DOC removal, 

surpassing those achieved with mixed Ti02 and PAC photocatalyst.
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Nomenclature

a

b

BV

C

Cb

Ce

Cef

Cif

Co

Ct

d

Dx

DOC

EBCT

k

KAd

Kd

kf

Kf

Ks

ks

m

M

n

nT

Ps

: isotherm constants

: constant related to the binding energy of adsorption (L/mg) 

: bed volume

: concentration in bulk solution, mg/L 

: desired concentration of adsorbate at breakthrough (mg/L)

: equilibrium concentration (mg/L)

: effluent adsorbate concentration (mg/L)

: influent adsorbate concentration (mg/L)

: initial concentration (mg/L)

: final concentration (mg/L)

: depth of adsorbent’s bed (m)

: dispersion coefficient in x direction (m /s)

: Dissolved organic carbon concentration (mg/L)

: empty bed contact time

: apparent photodegradation rate constant (min’1 )

: the adsorption coefficient

: linear equilibrium partitioning coefficient (L/mg)

: external film mass transfer coefficient of organic, m/s 

: Freudlich constant indicative of the adsorption capacity

: the Monod half velocity coefficient

: particle phase mass transfer coefficient (1/s)

: amount of adsorbent (g)

: Weight of adsorbent (g)

: experimental constant indicative of the adsorption intensity

: effective porosity (dimensionless)

: solid density of the particles (mg/L)
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qt : amount of adsorbate at any time t, (mg/g)

qe : amount of adsorbate at equilibrium (mg/g)

qm : saturated maximum adsorption capacity (mg/g)

qs : adsorbed phase concentration at the external surface of

adsorbent particle (mg/g)
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r : correlation coefficient

t : service time of column (h)

T : temperature

u : velocity of the fluid (m/s)

V : throughput volume (L)

8b : bed porosity

a : dispersivity (m)

z : bed depth, (m)
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