Production and Analysis of Alloy Composites Exhibiting Improved Bonding Using a Novel Vacuum Casting Process

A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy

by

Paul Huggett
MSc, BAppSc(Hons)(Mat)

Faculty of Science

University of Technology, Sydney
In memory of my daughter
Lisa Michelle Huggett
ABSTRACT

A new composite manufacturing process has been developed that permits the production of white iron/steel composites. The key differences of the new vacuum casting process compared to other current processes for composite manufacture include:

i. Elimination of machining or grinding
ii. Removal of brazing alloy
iii. Enhanced design flexibility
iv. Enhanced control of microstructural features
v. Lower cost of production

The new vacuum casting process involves the following key steps:

- Heating a white cast iron and steel substrate together within a vacuum furnace until the temperature inside the vacuum furnace is typically 50°C above the liquidus of the white cast iron.
- Before the white cast iron becomes molten, adding a partial pressure of inert gas (typically nitrogen) into the vacuum furnace to increase the pressure of the chamber above the vapour pressure of the liquid white cast iron.
- Holding the temperature above the liquidus of the white cast iron to allow the white iron to partially dissolve the steel substrate.

The experimental work outlined in this research has permitted the development of a low melting point white cast iron having the nominal composition of Fe-12Cr-1.6Mn-1.0Ni-0.5Si-4.1C, with a measured liquidus temperature of 1209°C. The microstructure of the low melting point alloy consists of a small volume fraction of primary austenite, with a eutectic of $\mathrm{M_7C_3}$ carbides and austenite. Some of the $\mathrm{M_7C_3}$ carbides have undergone a quasi-peritectic reaction. The austenite has undergone a partial transformation to form ledeburite (ferrite plus $\mathrm{M_3C}$ carbide in the form of cementite).
The microstructures of the vacuum cast samples show the presence of four zones within the interface region.

i. Zone 1 – original steel substrate, consisting of hypoeutectoid steel

ii. Zone 2 – heat affected zone steel substrate

iii. Zone 3 – “carbide-free” area of low melting point white cast iron adjacent to interface

iv. Zone 4 – low melting point white cast iron

Manufacturing and field trials have been conducted on a range of composite products to establish the potential benefit of using composite white iron/steel components in mining wear applications. The vacuum casting process has been used successfully to produce a significant volume of trial wear parts, indicating the process is robust enough to be considered for repetitive production, and can also be adapted to manufacture a wide range of products.
DECLARATION OF ORIGINALITY

I certify that this thesis has not been submitted previously for any degree and is not being submitted as part of candidature for any degree. The research work presented was performed under the guidance of Associate Professor Besim Ben-Nissan and Dr Greg Heness of the Department of Chemistry, Materials and Forensic Science (UTS). I certify that I have written the thesis and that help that I have received in its preparation, and all sources used, have been duly acknowledged.

Paul Huggett
ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor and mentor Associate Professor Besim Ben-Nissan for his patience, guidance, and understanding throughout this research and in particular during the period of grieving after the loss of my daughter Lisa to cancer in 2003.

I would also like to thank my co-supervisor and friend Dr Greg Heness for his support and guidance.

Special thanks is also extended to Dr Richard Wuhrer for his support and assistance with the electron microscopy and microanalysis, some of which has involved many sessions of after-hours of work.

The following people have provided assistance with various aspects of the research project:

- Dr Ron Wise and Lynton McCreery from Cape Range Wireless Ltd who assisted with project funding.
- Stan Jones for providing labour and assistance during foundry trials and alloy production.
- The staff at the AMTC Central TAFE, Subiaco Campus for the provision of foundry facilities.

Finally, I extend my sincere thanks, love and appreciation to my wife Carolyn who has not only endured her own loss and personal grieving during the course of this study, but has also provided inspiration, patience and focus when at times I was unable to see my way forward.
TABLE OF CONTENTS

Abstract iii
Declaration of Originality v
Acknowledgements vi
Table of Contents vii
List of Figures xi
List of Tables xxiv
Nomenclature xxvi
Outline of Thesis xxvii
Publications Arising from Thesis Work xxviii

CHAPTER 1 3

CHAPTER 2 6

2.1 White Cast Iron Metallurgy 7
2.2 Classification of cast Irons 7
2.3 White Iron Microstructure 8
 2.3.1 Hypoeutectic White Iron 8
 2.3.2 Eutectic White Irons 9
 2.3.3 Hypereutectic White Irons 11
2.4 Effect of Alloying Elements 13
2.5 Wear Characteristics of White Cast Irons 14
 2.5.1 Abrasion 18
 2.5.2 Adhesion 20
 2.5.3 Erosion 22
 2.5.4 Wear of White Irons 24
 2.5.5 Effect of Mechanical Properties 24
 2.5.6 Strain Accommodation 27
 2.5.7 Microstructure 28
2.6 Iron-Chromium-Carbon Phase Diagram 34
2.7 Determination of Predicted Alloy Microconstituent Compositions 46
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1:</td>
<td>Hypoeutectic white iron microstructure.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2:</td>
<td>Eutectic white iron microstructure.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3:</td>
<td>Eutectic carbide rods (after deep etching)</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4:</td>
<td>Typical hypereutectic white iron microstructure.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.5:</td>
<td>Abrasive wear.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.6:</td>
<td>Four modes of abrasion</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.7:</td>
<td>Adhesive wear</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.8:</td>
<td>Erosive wear modes</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.9:</td>
<td>Effect of alloy steel hardness on overall wear resistance</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.10:</td>
<td>Relationship between wear resistance, hardness and fracture toughness</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.11:</td>
<td>Effect of carbide volume fraction on wear of alloy white irons</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.12:</td>
<td>Relationship between primary carbide volume fraction and abrasive wear rate for hypoeutectic white irons</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.13:</td>
<td>Abrasive wear as a function of the ratio of hardness of particle to the hardness of the material</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.14:</td>
<td>Liquidus projection for the Fe-Cr-C system</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.15:</td>
<td>Summary of reaction sequences for the Fe-Cr-C system</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.16:</td>
<td>Fe-Si-Cr-C liquidus projection for 0.5 wt% Si after Schon and Sinitora</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.17:</td>
<td>Calculated phase diagram for the Fe-30Cr-C alloy series</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.18:</td>
<td>Calculated phase diagram for the Fe-10Cr-C alloy series</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.19:</td>
<td>Calculated phase diagram for Fe-12Cr-C alloy series</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2.20:</td>
<td>Compositional end points for Fe-12Cr-C phase diagram</td>
<td>43</td>
</tr>
<tr>
<td>Figure 2.21:</td>
<td>Calculated phase diagram for the Fe-12Cr-1.0Ni-0.6Si-1.6Mn-C alloy series</td>
<td>44</td>
</tr>
<tr>
<td>Figure 2.22:</td>
<td>Calculated phase diagram from FACTSAGE for the Fe-12Cr-1.0Ni-0.6Si-1.6Mn-4C alloy</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.23:</td>
<td>Relationship between eutectic carbide chromium</td>
<td>49</td>
</tr>
</tbody>
</table>
content and the alloy chromium/carbon ratio

Figure 2.24: Schematic diagram for thermal analysis setup.

Figure 2.25: Relationship of trial alloy compositions to Fe-Cr-C phase diagram (by Thorpe and Chico)

Figure 2.26: Typical microstructure for the Fe-12Cr-1.6Mn-1.0Ni-0.5Si-4.1C (Alloy C1) low melting point white cast iron (etched in acid-ferric chloride)

Figure 2.27: Image analysis threshold selection of carbides to determine carbide volume fraction (CVF).

Figure 2.28: Thermal analysis cooling curve for Fe-8.0Cr-2.0Mn-0.5Si-3.4C alloy

Figure 2.29: Thermal analysis cooling curve for Fe-8.0Cr-2.0Mn-0.5Si-3.6C alloy

Figure 2.30: Thermal analysis cooling curve for Fe-8.0Cr-2.0Mn-0.5Si-3.9C alloy

Figure 2.31: Thermal analysis cooling curve for Fe-8.0Cr-2.0Mn-0.5Si-4.2 alloy

Figure 2.32: Thermal analysis cooling curve for Fe-10.0Cr-2.0Mn-0.7Si-3.3C alloy

Figure 2.33: Thermal analysis cooling curve for Fe-10.0Cr-2.0Mn-0.7Si-3.6C alloy

Figure 2.34: Thermal analysis cooling curve for Fe-10.0Cr-2.0Mn-0.7Si-4.1C alloy

Figure 2.35: Thermal analysis cooling curve for Fe-12.0Cr-1.6Mn-1.0Ni-0.5Si-4.1C alloy

Figure 2.36: Phase diagram based on experimental data for Fe-8Cr-2Mn-0.5Si-C alloy series with published data from Thorpe and Chico

Figure 2.37: Phase diagram based on experimental data for Fe-10Cr-2Mn-0.5Si-C alloy series with published data from Thorpe and Chico

Figure 2.38: Comparison of experimental data for Fe-8Cr-2Mn-0.5Si-C alloy series with predicted data from Thermocalc

Figure 2.39: Comparison of experimental data for Fe-10Cr-2Mn-0.5Si-C alloy series with predicted data from Thermocalc

Figure 2.40: Low magnification secondary electron image of Alloy C1

Figure 2.41: Detail of Alloy C1

Figure 2.42: Zeiss in-lens image of Alloy C1
Figure 2.43: Zeiss in-lens detail image of Alloy C1 73
Figure 2.44: High magnification Zeiss in-lens image of carbides 74
Figure 3.1: Capillary action and surface wetting 80
Figure 3.2: Hot and cold wall vacuum furnace principles 81
Figure 3.3: Schematic diagram for the vacuum brazing process for steel and white cast iron 84
Figure 3.4: Steel/White iron composite (etchant: 5% HCl acid ferric chloride) 86
Figure 3.5: Close up detail of high carbon iron/copper interface (etchant: 5% HCl acid ferric chloride) 87
Figure 3.6: General Microstructure of 15/3 CrMo iron used for the parts (etchant: 5% HCl acid ferric chloride) 87
Figure 3.7: 75mm and 90mm buttons, 50mm x 50mm blocks of different lengths, 25mm x 25mm x 300mm bars, and other assorted sized blocks 88
Figure 3.8: 50mm x 50mm x 432mm Block, 240mm x 50mm and 240x40 "Chok" Blocks, 50x50 blocks and two skid pads 89
Figure 3.9: Various sizes of skid pads 89

Figure 3.10: Schematic of typical vacuum furnace system 95
Figure 3.11: Typical components of a horizontal vacuum furnace 97
Figure 3.12: Cross-sectioned view of vacuum transfer furnace 97
Figure 3.13: Design of ceramic vacuum tube for use in tube furnace 100
Figure 3.14: Schematic design of vacuum tube furnace 100
Figure 3.15: Vacuum tube furnace used for experimental development of the vacuum casting process 101
Figure 3.16: Vacuum tube furnace used for experimental development of the vacuum casting process 101
Figure 3.17: Typical heating curve for vacuum tube furnace 103
Figure 3.18: Schematic diagram of hot-wall vacuum furnace 106
Figure 3.19: Hot wall vacuum furnace 107
Figure 3.20: Hot wall vacuum furnace with front door open 107
Figure 3.21: Internal view of heating elements and hot zone of hot wall vacuum furnace 108
Figure 3.22: View of control panel for hot wall vacuum furnace 108
Figure 3.23: View of vacuum pump and isolation valves for hot 109
Figure 3.24: Typical temperature profile for hot wall vacuum furnace

Figure 3.25: Prepared steel substrate after surface preparation and cleaning

Figure 3.26: Prepared white iron Alloy C1 charge and steel substrate

Figure 3.27: Typical bonded steel/white iron test sample after heat treatment in the vacuum tube furnace

Figure 3.28: Typical suction-cutter dredge head (shown in the raised position)

Figure 3.29: Typical mould arrangement for suction-cutter dredge bucket teeth

Figure 3.30: Typical original and worn steel bucket tooth used on the suction-cutter dredge.

Figure 3.31: Effect of soak duration on melting of white cast iron

Figure 3.32: Effect of nitrogen partial pressure on melting and bonding of white cast iron

Figure 3.33: Detail of edge bloating on the full vacuum tested composite sample

Figure 3.34: Excellent melting and bonding of the white iron to the steel substrate for a soak temperature of 1259°C, partial pressure of 200mbar and soak duration of 60 minutes.

Figure 3.35: Relationship between temperature above liquidus and required soak time to achieve a satisfactory bond

Figure 3.36: Macro images of sectioned samples with variations in partial pressure (soak temperature 1259°C, 60 minute soak duration)

Figure 3.37: Macro images of sectioned samples with variation in soak duration (soak temperature 1209°C, 200mbar partial pressure)

Figure 3.38: Optical micrograph of vacuum cast interface (etchant acid ferric chloride)

Figure 3.39: Detail of interface area (etchant acid ferric chloride)

Figure 3.40: Optical micrograph of vacuum cast interface (etchant acid ferric chloride). Note the continuation of the M2C carbides in the white cast iron from the Fe3C carbides in the steel.

Figure 3.41: Location of microstructural zones on vacuum cast interface

Figure 3.42: Detail of carbide-free zone in interface area (etchant
Figure 3.43: Typical microhardness profile for vacuum cast white iron/steel composite (+65°C above Liquidus, 60 minute soak, 200mbar partial pressure)

Figure 3.44: Microhardness profile for vacuum cast white iron/steel composite (+25°C above liquidus, zero soak, 200mbar partial pressure)

Figure 3.45: Microhardness profile for vacuum cast white iron/steel composite (+zero °C above liquidus, zero soak, 200mbar partial pressure)

Figure 3.46: Microhardness profile for vacuum cast white iron/steel composite (+25 °C above liquidus, 30 min soak, 200mbar partial pressure)

Figure 3.47: Microhardness profile for heat treated vacuum cast white iron/steel composite at 1100°C for 10 minutes (Original +50 °C above liquidus, 30 min soak, 200mbar partial pressure)

Figure 3.48: Microhardness profile for heat treated vacuum cast white iron/steel composite at 1100°C for 30 minutes (Original +50 °C above liquidus, 30 min soak, 200mbar partial pressure)

Figure 3.49: Schematic diagram of solid/liquid interface during the vacuum casting process

Figure 3.50: Vacuum casting process flow chart

Figure 3.51: Schematic diagram of steel shell for white iron/steel composite

Figure 4.1: Optical bright field image of vacuum cast interface.

Figure 4.2: Optical bright field image detail of vacuum cast interface.

Figure 4.3: Optical bright field image detail of vacuum cast interface.

Figure 4.4: Optical bright field image detail of vacuum cast interface.

Figure 4.5: Optical bright field image detail of vacuum cast interface. Four distinct zones within the alloy composite can be identified.

Figure 4.6: SE image of vacuum cast interface (sample unetched).

Figure 4.7: SE image of vacuum cast white cast iron region
Figure 4.8: SE image detail of Zone 4 white cast iron, with carbide and ferrous matrix (sample etched in acid-ferric chloride 20 seconds) 153

Figure 4.9: SE image of Zone 3 white cast iron which exhibits essentially a carbide-free region, with some M3C carbide extending perpendicular to interface 153

Figure 4.10: SE image detail of Zone 3, with M3C carbide extending perpendicular to interface (sample etched in acid-ferric chloride 20 seconds) 154

Figure 4.11: SE image of Zone 2 near Zone 1, with regions of ferrite surrounded by pearlite (sample etched in acid-ferric chloride 20 seconds) 155

Figure 4.12: SE image detail of Figure 4.11 of Zone 2 near Zone 1, with regions of ferrite surrounded by pearlite (sample etched in acid-ferric chloride 20 seconds) 155

Figure 4.13: UTS Jeol 35CF fitted with two EDS detectors and Moran Scientific XRM System 157

Figure 4.14: EDS analysis for ferrous region in vacuum cast composite sample 159

Figure 4.15: EDS analysis for eutectic carbide in vacuum cast white cast iron region (analysis region is shown in yellow). 160

Figure 4.16: EDS analyses for vacuum cast sample interface for three ferrous zones 161

Figure 4.17: Moran Scientific Jeol 733 microprobe with three EDS x-ray detectors and three WDS detectors 164

Figure 4.18: Pseudo colour x-ray map for low chromium white cast iron 165

Figure 4.19: Compositional map for iron rich phase in low chromium white cast iron. Yellow colouring represents location of iron rich phase. 166

Figure 4.20: Compositional map for chromium rich carbides in low chromium white cast iron. Yellow colouring represents location of chromium rich phase. 167

Figure 4.21: Compositional map for low chromium carbides in low chromium white cast iron. Yellow colouring represents location of low chromium carbides. 168

Figure 4.22: Compositional map for manganese rich phase in low chromium white cast iron. Yellow colouring represents location of manganese rich phase. 169

Figure 4.23: Composite colour x-ray map produced from overlay of selected compositional phase areas from Figures 170
Figure 4.40: Composite colour x-ray map produced from overlay of selected compositional phase areas for chromium, iron and manganese from Figures 4.26 to 4.32 for the steel/white iron interface area.

Figure 4.41: Secondary electron (SE) image and x-ray maps for vacuum cast sample white cast iron carbides

Figure 4.42: Carbon x-ray map for vacuum cast white iron/steel
interface performed on a Jeol 733 Microprobe SEM

Figure 4.38: Single line profile from x-ray map for carbon WDS scan

Figure 4.39: Relationship between carbon x-ray counts and carbon weight percent for vacuum cast alloy sample from Figure 4.38.

Figure 4.40: Carbon x-ray map for vacuum cast white iron/steel interface with x-ray line scan profile overlayed showing decrease in carbon content through a linear band parallel to the interface.

Figure 4.41: BSE image of sample shown in carbon map in Figure 4.37 for vacuum cast white iron/steel interface with x-ray line scan profile overlayed.

Figure 4.42: Single line profile from x-ray map for multi-element EDS scan.

Figure 4.43: Relationship between chromium x-ray counts and chromium weight percent for vacuum cast alloy sample from Figure 4.42.

Figure 4.44: Relationship between manganese x-ray counts and manganese weight percent for vacuum cast alloy sample from Figure 4.42.

Figure 4.45: Relationship between nickel x-ray counts and nickel weight percent for vacuum cast alloy sample from Figure 4.42.

Figure 4.46: Typical EBSD SEM arrangement [59].

Figure 4.47: Location of EBSD map for vacuum cast composite bond produced at 1274°C for 60 minute soak.

Figure 4.48: EBSD Map for vacuum cast composite bond produced at 1274°C for 60 minute soak for region shown in Figure 4.47

Figure 4.49: EBSD Map for vacuum cast composite bond produced at 1274°C for 60 minute soak overlayed onto SE image from Figure 4.47

Figure 4.50: Higher magnification image of EBSD sample produced at 1274°C for 60 minute soak

Figure 4.51: Kichuchi patterns and indexing data for M₃C carbide found in sample shown in Figure 4.50

Figure 4.52: Kichuchi patterns and indexing data for BCC ferrite found in white iron ferrous matrix shown in Figure 4.50

Figure 4.53: Kichuchi patterns and indexing data for BCC ferrite found in the “carbide-free” zone shown in Figure 4.50

Figure 4.54: Kichuchi patterns and indexing data for Fe₃C carbide
found as pearlite in the sample shown in Figure 4.50

Figure 4.55: Correlation of Kichuchi patterns to vacuum cast interface based on Figure 4.50 and portion of EBSD map for selected region.

Figure 4.56: SE image for “carbide-free” region of the sample produced at 1274°C for 60 minute soak at higher magnification compared to Figures 4.47 and 4.50.

Figure 4.57: Overlay of EBSD data for BCC ferrite onto the SE image for “carbide-free” region of the sample produced at 1274°C for 60 minute soak based on Figure 4.56.

Figure 4.58: Overlay of EBSD data for M₃C carbides onto the SE image for “carbide-free” region of the sample produced at 1274°C for 60 minute soak based on Figure 4.56.

Figure 4.59: Overlay of complete EBSD map onto the SE image for “carbide-free” region of the sample produced at 1274°C for 60 minute soak based on Figure 4.56.

Figure 4.60: Detail of EBSD map for “carbide-free” region of the sample produced at 1274°C for 60 minute soak based on Figure 4.56.

Figure 4.61: EBSD map overlayed onto SE image for vacuum cast interface between white cast iron and steel substrate.

Figure 4.62: Lower magnification EBSD map overlayed onto SE image for vacuum cast interface between white cast iron and steel substrate.

Figure 4.63: Location of higher resolution EBSD map for eutectic carbides in the white cast iron (Zone 4) of the vacuum cast composite.

Figure 4.64: EBSD map for eutectic carbides in the white cast iron (Zone 4) of the vacuum cast composite.

Figure 4.65: Overlay of EBSD map onto SE image for eutectic carbides in the white cast iron (Zone 4) of the vacuum cast composite.

Figure 4.66: Typical steel dissolution as a result of the contact with liquid white cast iron during the vacuum casting process.

Figure 4.67: Comparison between microhardness and carbon content for diffusion away from the interface in the steel substrate for the vacuum cast white iron/steel composite produced at 1274°C with a 60 minute soak. (100g HV load used).

Figure 4.68: Comparison between microhardness and carbon content for diffusion away from the interface in the
steel substrate for the vacuum cast white iron/steel composite produced at 1209°C with a zero soak. (100g HV load used).

Figure 4.69: Comparison between measured and calculated carbon content in steel substrate adjacent to vacuum cast interface. Sample produced at 1274°C for 60 minute soak.

Figure 4.70: Comparison between measured and calculated carbon content in steel substrate adjacent to vacuum cast interface. Sample produced at 1209°C for zero soak.

Figure 4.71: Comparison between measured and calculated chromium content in steel substrate adjacent to vacuum cast interface. Sample produced at 1274°C for 60 minute soak.

Figure 4.72: Comparison between measured and calculated nickel content in steel substrate adjacent to vacuum cast interface. Sample produced at 1274°C for 60 minute soak.

Figure 5.1: Excavator application in open pit mining

Figure 5.2: Typical bucket tooth installation on large mining excavator bucket

Figure 5.3: Bucket teeth test position

Figure 5.5: Geometry of the wear of excavator bucket teeth

Figure 5.6: Effect of bucket tooth position on wear rate for bucket-wheel excavator trials

Figure 5.7: Relationship of wear and impact levels for different mining applications

Figure 5.8: Types of rock zones experienced in open pit mining operations

Figure 5.9: Full white iron cast bucket tooth (equivalent to ESCO V66RDX tooth)

Figure 5.10: Comparison of cast white iron and cast steel bucket teeth

Figure 5.11: Machined V66RDX steel bucket tooth ready to vacuum braze white iron wear plate on front tip

Figure 5.12: Multi-laminate bucket tooth tip.

Figure 5.13: Finished vacuum brazed multi-laminated bucket tooth tip.

Figure 5.14: New and worn original Cr/Mo steel dredge bucket teeth (ESCO V19TY)

Figure 5.15: Steel moulds coated with refractory ceramic paint,
with steel parts inserted and measured white iron charge positioned in side chutes.

Figure 5.16: Closer view of steel part positioned with steel plate, and white iron charge located in side chute

Figure 5.17: Loading the hot walled vacuum furnace with trial composite white iron/steel parts in steel moulds

Figure 5.18: Close up view of hot walled vacuum furnace showing arrangement of steel moulds on furnace tray prior to final placement

Figure 5.19: View of multiple steel moulds for composite white iron/steel parts placed into hot walled vacuum furnace

Figure 5.20: Several finished composite white iron/steel bucket teeth with original worn steel part (a) and painted composite part (b)

Figure 5.21: Detail of finished composite tooth (a), painted composite tooth (b) and original worn Cr/Mo steel tooth (c)

Figure 5.22: Detail view of comparison between worn original Cr/Mo steel bucket tooth (a) and new composite white iron/steel bucket tooth (b)

Figure 5.23: View of steel mould with ceramic coating on inside surfaces to assist with stopping bonding of white iron to the steel mould

Figure 5.24: View of steel mould with steel part positioned using retaining plate.

Figure 5.25: Completed wider tip composite part after removal from the metal mould

Figure 5.26: Side view of wider tip composite white iron/steel bucket tooth

Figure 5.27: Original as-received steel part and new wide tip composite wear part

Figure 5.28: Front view of original as-received steel part and new wide tip composite wear part

Figure 5.29: Ceramic coated mould after removal of the finished composite part

Figure 5.30: Worn steel dredge wide bucket lip

Figure 5.31: Side view of worn steel dredge wide bucket lip

Figure 5.32: Dual attachment cavities for wide bucket lip

Figure 5.33: Wide bucket tooth lip part inserted into furnace ready to start the cycle

Figure 5.34: View of mould, white iron charge and steel part
placed into position

Figure 5.35: View of completed wide bucket lip still in the mould after casting 258

Figure 5.36: Detail view of completed wide bucket lip still in the mould after casting. 259

Figure 5.37: View of excellent wetting between the white iron and the steel 259

Figure 5.38: Side view of steel mould and composite part after removal from the furnace 260

Figure 5.39: Finished composite wide bucket lip after removal from the mould 260

Figure 5.40: View of the finished composite wide bucket tooth prior to final painting 261

Figure 5.41: End view of wide bucket lip showing excellent bonding around the complete part 262

Figure 5.42: First production trial part with a final mass of 9.02kg. Subsequent cycles were adjusted for a total composite mass of 9.40kg. 262

Figure 5.43: Comparison of sizes of wide bucket lip composite part to ESCO V19TY bucket teeth 263

Figure 5.44: Cast chromium/molybdenum steel bucket tooth tip with cavity to receive white iron 264

Figure 5.45: As-cast composite steel/white cast iron bucket tooth tip. 265

Figure 5.46: Hot “chok” bar mould with cast parts after removal at 1000°C from furnace 266

Figure 5.47: Finished composite white iron/steel “chok” bar after casting using vacuum based process 267

Figure 5.48: Detail view of excellent bonding between white cast iron and steel backing plate. 268

Figure 5.49: As-cast composite wear bar manufactured from “C” channel with welded end caps 268

Figure 5.50: Vacuum cast composite tensile test sample dimensions 269

Figure 5.51: End view of completed composite debonding test sample 270

Figure 5.52: Composite debonding test sample 271

Figure 5.53: Detail of bonding/interface between centre rod, white cast iron and outer shell of composite tensile test sample 271

Figure 5.54: Location of trial full white iron bucket teeth on
Komatsu PC1000 excavator bucket

Figure 5.55: Location of trial single laminate white iron/steel bucket teeth on Komatsu PC1000 excavator bucket 276

Figure 5.56: Location of trial multi-laminate white iron/steel bucket teeth on Hitachi EX1800 excavator bucket 277

Figure 5.57: View of suction-cutter dredge head raised from the water for maintenance. 279

Figure 5.58: Closer view of bucket arrangement on suction-cutter dredge head. Note wide bucket lip and smaller side bucket teeth. 279

Figure 5.59: Vacuum cast small composite bucket teeth trialled at Cable Sands Mine, Capel, Western Australia (New composite on left) 280

Figure 5.60: Relationship Between Carbon Content and Abrasive Wear Rate for Fe-12Cr-1.6Mn-1.0Ni-0.6Si-C Alloy Series (DSRW Test based on ASTM G65-04) 282

Figure 5.61: Comparative wear rates for chromium/molybdenum steel and white cast iron in excavator application (Greenbushes Mine) 284

Figure 5.62: Comparative wear rates for chromium/molybdenum steel and multi-layer vacuum brazed white cast iron in excavator application (Golden Feather Mine) 285

Figure 5.63: Comparison of Volumetric Wear Rates for Cr/Mo Steel and Composite Alloy Parts (Cable Sands Jangardup Mine Site) 286
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1:</td>
<td>Typical liquidus temperatures for commercial white cast irons.</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.2:</td>
<td>Classification of wear modes</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.3:</td>
<td>Classification of wear processes by wear mechanisms.</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.4:</td>
<td>Summary of factors which influence wear</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.5:</td>
<td>Hardness of minerals and microconstituents</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.6:</td>
<td>Summary of Invariant Reactions</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.7:</td>
<td>Comparison of predicted and observed microstructures for high chromium white irons</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.8:</td>
<td>Calculated lowest liquidus temperatures for the C-Cr-Fe-Mn-Mo system</td>
<td>39</td>
</tr>
<tr>
<td>Table 2.9:</td>
<td>Typical phase microanalysis results for hypoeutectic white iron</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.10:</td>
<td>Typical phase microanalysis results for eutectic white iron</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.11:</td>
<td>Typical phase microanalysis results for hypereutectic white iron</td>
<td>48</td>
</tr>
<tr>
<td>Table 2.12:</td>
<td>Phase elemental distributions (based on empirical data)</td>
<td>50</td>
</tr>
<tr>
<td>Table 2.13:</td>
<td>Estimated phase compositions for proposed</td>
<td>50</td>
</tr>
<tr>
<td>Table 2.14:</td>
<td>Summary of test alloy compositions</td>
<td>52</td>
</tr>
<tr>
<td>Table 2.15:</td>
<td>Summary of alloy microstructures</td>
<td>56</td>
</tr>
<tr>
<td>Table 2.16:</td>
<td>Measured thermal arrests for trial alloys</td>
<td>58</td>
</tr>
<tr>
<td>Table 2.17:</td>
<td>EDS analysis data for Alloy C1</td>
<td>74</td>
</tr>
<tr>
<td>Table 3.1:</td>
<td>Effect of furnace atmosphere on maximum element temperature [52]</td>
<td>102</td>
</tr>
<tr>
<td>Table 3.2:</td>
<td>Test sample matrix covering variations in temperature, time at soak and partial pressure of inert gas</td>
<td>115</td>
</tr>
<tr>
<td>Table 3.3:</td>
<td>Summary of Zone 2 and 3 depths based on microhardness data for vacuum cast samples</td>
<td>133</td>
</tr>
<tr>
<td>Table 3.4:</td>
<td>Effect of heat treatment on Zone 2 depth for vacuum cast composite</td>
<td>134</td>
</tr>
<tr>
<td>Table 4.1:</td>
<td>EDS phase analysis after carbon correction for ferrous phase zones shown in Figure 4.16 for</td>
<td>162</td>
</tr>
</tbody>
</table>
vacuum cast sample.

Table 4.2: EDS phase analysis after carbon correction for vacuum cast sample.

Table 4.3: Estimated carbon weight % based on carbon calibration curve shown in Figure 4.39 for positions on x-ray line scan shown in Figure 4.38.

Table 4.4: Estimated chromium weight % based on chromium calibration curve shown in Figure 4.3 for positions on x-ray line scan shown in Figure 4.42.

Table 4.5: Estimated manganese weight % based on manganese calibration curve shown in Figure 4.44 for positions on x-ray line scan shown in Figure 4.42.

Table 4.6: Estimated nickel weight % based on nickel calibration curve shown in Figure 4.45 for positions on x-ray line scan shown in Figure 4.42.

Table 4.7: Carbon Diffusion Coefficients in γ iron

Table 4.8: Chromium Diffusion Coefficients in γ iron

Table 4.9: Nickel diffusion coefficients in γ iron

Table 5.1: Summary of materials used in mining applications

Table 5.2: Relative wear rates for white cast irons used for liner plates

Table 5.3: Abrasive wear rates for hardfacing alloys

Table 5.4: Summary of wear part life for laboratory and mine based testing

Table 5.5: Summary of pendulum groove test data

Table 5.6: Debonding (Tensile) test results for composite white cast iron/steel

Table 5.7: Dry Sand Rubber Wheel Wear Test Results (according to ASTM G65-04)

Table 5.8: Summary of field trial data for full white iron and vacuum brazed wear parts, Greenbushes Mine

Table 5.9: Summary of field trial data for full white iron and vacuum brazed wear parts, Golden Feather Mine

Table 5.10: Summary of field trial data for composite wear parts in dredge application
NOMENCLATURE

$\varphi(y)$ = Gaussian Error Function

Bulk C% = overall carbon weight percent

C_0 = concentration of semi-infinite solid

C_s = surface concentration

C_x = concentration of diffusing species

$C\%$ = carbon weight percent

$Cr\%$ = chromium weight percent

Cr/C = chromium/carbon ratio

D = diffusivity or diffusion coefficient

D_0 = temperature independent pre-exponential, m2/s

$\frac{dC}{dx}$ = concentration gradient

EC Cr% = eutectic Carbide Chromium Content

ECVF% = eutectic carbide volume fraction %

ETC% = eutectic trough carbon %

FM Cr% = ferrous Matrix Chromium Content %

J_x = flux of diffusing species

PC Cr% = primary Carbide Chromium Content

PCVF% = primary carbide volume fraction %

PFMVF% = primary ferrous matrix volume fraction %

Q_d = activation energy for diffusion, J/mol

R = Gas constant, 8.314 J.mol$^{-1}$ K$^{-1}$

t = time, seconds

T = Temperature, Kelvin

x = distance, mm
OUTLINE OF THESIS

Chapter One provides background information and significance of this research work.

Chapter Two describes the development of a low melting point white cast iron. The low melting point white iron development involved analysis of the Fe-Cr-C phase diagram and computer modelling using CALPHAD techniques to result in a white cast iron having a liquidus (melting point) of approximately 1200°C. The low melting point white iron was essential to enable standard electrical element materials to be adopted for the vacuum heat treatment furnace development.

Chapter Three describes the development of the vacuum casting process, providing theory of vacuum heat treatment, background to other composite alloy manufacturing processes, and the experimental work and outcomes for the new vacuum based composite alloy manufacturing process.

Chapter Four provides a detailed analysis of the composite interface developed between a steel substrate and the low melting point white cast iron. The analysis of the interface is used to provide confirmation of the vacuum casting model developed in Chapter 3, and to demonstrate the quality and power of the vacuum process to develop 100% fully bonded metallurgical bonds.

Chapter Five provides detail on the development of trial parts for use in various mining applications. The trial parts involved the manufacture of full scale parts for use on heavy duty mining equipment. Laboratory wear test results are provided and compared to field trial performance.

Chapter Six outlines the conclusion of the thesis and summarises the project outcomes.

References have been listed in the sequence of their use within the main thesis text and then numerically numbered.
Publications Arising from Thesis Work

