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ABSTRACT

A new composite manufacturing process has been developed that permits the 

production of white iron/steel composites.  The key differences of the new 

vacuum casting process compared to other current processes for composite 

manufacture include: 

i. Elimination of machining or grinding 

ii. Removal of brazing alloy 

iii. Enhanced design flexibility 

iv. Enhanced control of microstructural features 

v. Lower cost of production 

The new vacuum casting process involves the following key steps: 

 Heating a white cast iron and steel substrate together within a vacuum 

furnace until the temperature inside the vacuum furnace is typically 50oC

above the liquidus of the white cast iron. 

 Before the white cast iron becomes molten, adding a partial pressure of 

inert gas (typically nitrogen) into the vacuum furnace to increase the 

pressure of the chamber above the vapour pressure of the liquid white 

cast iron. 

 Holding the temperature above the liquidus of the white cast iron to allow 

the white iron to partially dissolve the steel substrate. 

The experimental work outlined in this research has permitted the development 

of a low melting point white cast iron having the nominal composition of Fe-

12Cr-1.6Mn-1.0Ni-0.5Si-4.1C, with a measured liquidus temperature of 1209oC.

The microstructure of the low melting point alloy consists of a small volume 

fraction of primary austenite, with a eutectic of M7C3 carbides and austenite.  

Some of the M7C3 carbides have undergone a quasi-peritectic reaction.  The 

austenite has undergone a partial transformation to form ledeburite (ferrite plus 

M3C carbide in the form of cementite). 
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The microstructures of the vacuum cast samples show the presence of four 

zones within the interface region. 

i. Zone 1 – original steel substrate, consisting of hypoeutectoid steel 

ii. Zone 2 – heat affected zone steel substrate 

iii. Zone 3 – “carbide-free” area of low melting point white cast iron 

adjacent to interface 

iv. Zone 4 – low melting point white cast iron 

Manufacturing and field trials have been conducted on a range of composite 

products to establish the potential benefit of using composite white iron/steel 

components in mining wear applications.  The vacuum casting process has 

been used successfully to produce a significant volume of trial wear parts, 

indicating the process is robust enough to be considered for repetitive 

production, and can also be adapted to manufacture a wide range of products. 
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NOMENCLATURE
y   = Gaussian Error Function

Bulk C%  = overall carbon weight percent 

C0  = concentration of semi-infinite solid  

Cs  = surface concentration 

Cx = concentration of diffusing species 

C% = carbon weight percent 

Cr%  = chromium weight percent 

Cr/C   = chromium/carbon ratio 

D  = diffusivity or diffusion coefficient 

D0  = temperature independent pre-exponential, m2/s

dx
dC   = concentration gradient 

EC Cr%  = eutectic Carbide Chromium Content  

ECVF% = eutectic carbide volume fraction % 

ETC% = eutectic trough carbon % 

FM Cr% = ferrous Matrix Chromium Content %

Jx  = flux of diffusing species 

PC Cr%  = primary Carbide Chromium Content 

PCVF% = primary carbide volume fraction % 

PFMVF% = primary ferrous matrix volume fraction % 

Qd  = activation energy for diffusion, J/mol 

R  = Gas constant, 8.314 J.mol-1.K-1

t  = time, seconds

T  = Temperature, Kelvin 

x  = distance, mm 
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OUTLINE OF THESIS 

Chapter One provides background information and significance of this research 
work.

Chapter Two describes the development of a low melting point white cast iron.  
The low melting point white iron development involved analysis of the Fe-Cr-C 
phase diagram and computer modelling using CALPHAD techniques to result in 
a white cast iron having a liquidus (melting point) of approximately 1200oC.  The 
low melting point white iron was essential to enable standard electrical element 
materials to be adopted for the vacuum heat treatment furnace development. 

Chapter Three describes the development of the vacuum casting process, 
providing theory of vacuum heat treatment, background to other composite alloy 
manufacturing processes, and the experimental work and outcomes for the new 
vacuum based composite alloy manufacturing process. 

Chapter Four provides a detailed analysis of the composite interface 
developed between a steel substrate and the low melting point white cast iron.  
The analysis of the interface is used to provide confirmation of the vacuum 
casting model developed in Chapter 3, and to demonstrate the quality and 
power of the vacuum process to develop 100% fully bonded metallurgical 
bonds.

Chapter Five provides detail on the development of trial parts for use in various 
mining applications.  The trial parts involved the manufacture of full scale parts 
for use on heavy duty mining equipment.  Laboratory wear test results are 
provided and compared to field trial performance. 

Chapter Six outlines the conclusion of the thesis and summarises the project 
outcomes.

References have been listed in the sequence of their use within the main thesis 
text and then numerically numbered. 
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