The role of the osteoclast during endochondral ossification in a rat fracture model

Michelle Maree McDonald

Submitted for the degree of Doctor of Philosophy

The Orthopaedic Research and Biotechnology Department, The Children's Hospital Westmead

The University of Technology Sydney

May 2007

Cerificate of authorship

Certificate of authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree as fully acknowledged within the text.

I also certify that the thesis has been written by me, any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Acknowledgements and Dedication

Many people have contributed to this thesis. Principal amongst these is my mentor and co-supervisor Associate Professor David Little, without whom this thesis may never have been completed. His scientific insight, encouragement and commitment to the project have been inspirational. Professor Little has provided extensive support and advice above and beyond that expected of a mentor or supervisor. My gratitude towards Professor Little extends beyond a debt that could ever be repaid. I am extremely thankful for his consistent belief in me. He has instilled in me a desire to continue learning and exploring the world of science that I would have never imagined possible.

I would like to thank my principal supervisor Dr Tamara Sztynda for her patience, support and infinite advice over the past 4 years. Dr Sztynda has motivated me to rise to each challenge I have faced. Her enthusiasm for research is inspiring and her implausible attention to detail has left a great impression on me. Dr Sztynda is a teacher with no boundaries whom I have enjoyed learning from for many years. I aspire to teach others in the future half as well as she does.

The Children's Hospital at Westmead has provided me with all the necessary infrastructure support to complete my experimental work and I am extremenly grateful to the institute.My colleagues here have been a valuable support system; in particular I would like to thank Dr Aaron Schindeler, for his patience and guidance when teaching a typical histologist about the world of cell culture and for instilling some of his extensive knowledge on scientific writing in me. To Dr Negin Amanat, thank you for all your engineering expertise and perserverence when teaching me. To the lab staff, thank you all for your friendly words of support. In particular, I would like to thank Kathy Mikulec and Alyson Morse and Helen Chapman for their extremely competent technical help which allowed me to focus and complete this enormous task. To Rachel Peat for assiting with the completion of this thesis and friendly advice.

The Mechanical Engineering department at Sydney University provided the equipment that allowed me to perform mechanical testing, and the Electron Microscopy unit provided access to microCT equipment for analysis. Staff from the Bone Program at the Garvan Institute, were also instrumental in supporting this work. Finally, the staff at the Institute of Medical and Veterniary Science in Adelaide assisted this work by performing some back scatter electon analysis on my samples.

To my parents, family and friends, I would like to express my gratitude to you all for your eternal belief in me and encouragement to keep at it, even when times got very hard. I finally finished my book and in doing so I've proven my nerd status in the family. To my fiancé Paul, you are the reason I continue to push myself to climb mountains in life, I know you will always be behind me to catch me if I fall. Thank you for opening my mind and heart to a life of endless possibilities.

Finally, to my two loving grandmothers, Grandma Morris, who passed away in January 2006 and Nan O'Donnell, who passed on in February 2007. I know you will be smiling down on me with the pride and love that only Grandmothers know. Thank you for believing in me, to you both I dedicate this, the first PhD thesis in the families.

Table of contents

Certificate of authorship	I
Acknowledgements	II
Table of contents	I-VII
List of IllustrationsVI	I-XII
Abbreviations XII-	·XVI
Abstract	XVII
Chapter 1 Introduction	1
1.1 Bone Biology	1
1.1.1 Background	1
1.2 Development and regulation at the growth plate	2
1.2.1 Long bone and physis formation	2
1.2.2 Chondrocyte development and maturation	3
1.2.3 Paracrine regulation of the growth plate	5
1.2.4 Growth cartilage calcification	7
1.2.5 Vascularisation of calcified cartilage	8
1.2.5.1 Early theories of vascularisation	8
1.2.6 Recent theories - Growth factors and angiogenesis	10
1.2.6.1 Vascular endothelial growth factor	
1.2.6.2 Matrix metalloproteinase's (MMPs)	10
1.2.6.3 The current understanding of the activity of osteoclasts and	
chondroclasts at the chondro-osseous junction	14
1.2.6.4 Elimination of osteoclast/chondroclast activity from the	
vascularisation of chondral matrix	15
1.3 The mechanism of endochondral fracture repair	
131 General overview	17
1.3.2 Growth plate processes are recapitulated during fracture healing	
1.3.2.1 Paracrine regulation	
1.3.2.2 Matrix metalloproteinase (MMP) activity	
1.3.2.3 Angiogenesis	
1 3 2 4 Hard callus remodelling requires osteoclastic resorption	25
1.3.3 Animal models of fracture repair	
1.4 Osteoclast activity during skeletal growth and repair	
1 4 1 The cell biology of the osteoclast	27
1 4 2 Regulation of osteoclast formation and activity	32
1.4.3 The role of the osteoclast in bone growth and remodelling	
1 4 4 The role of the osteoclast in bone repair	35
1 4 5 Animal models of defective osteoclastogenesis	37
1 4 5 1 Animal models of osteoclast dysfunction	38
1 4 6 The incisor absent (<i>ia/ia</i>) rat	47
1461 Bone phenotype in the <i>ja/ja</i> rat	47
1462 Osteoclast function in the <i>ia/ia</i> rat	49
1 4 6 3 Fracture repair in the <i>ia/ia</i> rat	51
1 4 7 Pharmacological inhibition of osteoclast formation and activity	53
1471 Recombinant OPG	53
1472 Cathepsin K inhibitor	53
1.4.7.3 RANK:Fc	
1.4.7.4 RANKL inhibition (Denosumab)	
1.4.7.5 Bisphosphonates	
·····	

1.5 Bisp 1.5.1	bhosphonates Mechanisms of bisphosphonate action	55 55
1.5.2	Bisphosphonates for the treatment of osteoporosis	57
1.5.2.1	Bisphophonates and mineralisation of bone	. 58
1.5.2.2	2 Potential complications of bisphophonate therapy	. 59
1.5.2.3	3 Regimen options for bisphsphonate treatment	. 59
1.5.3	Bisphosphonates and fracture repair	60
1.5.4	Bisphosphonates and bone growth	64
1.5.5	Zoledronic acid and fracture repair	65
1.5.6	Bisphosphonate dosing regimes	67
1.6 Stu	dy hypotheses and conclusions	. 68
Chapter 2 Ju	ustification of methods	70
2.1 Use	of the einhorn rat fracture model	70
2.1.1	Species selection	70
2.1.2	The incisor absent rat	70
2.1.3	Bonnarens and Einhorn Closed fracture model	. 70
2.1.4	Fixation	72
2.1.5	Exclusion criteria	73
2.2 Fra	cture repair time course of analysis	73
2.2.1	Background on initial endochondral fracture union	. 73
2.2.2	Time points examined to assess initial endochondral repair	. 73
2.2.3	Background on hard callus remodelling during fracture repair	. 73
2.2.4	Time points examined to assess hard callus remodelling	. 74
2.3 Sele	ection of Bisphosphonate dosing regimes	. 74
2.3.1	Background on zolderonic acid	74
2.3.2	Single dose compared to weekly dosing of ZA	. 75
2.3.3	Determination of ZA dosage	75
2.3.4	Systemic effects of ZA treatment	76
2.4 Rac	liological Analysis	77
2.4.1	X-ray	77
2.4.2	Dual Energy X-ray Absorbitometry (DEXA)	. 78
2.4.3	Quantitative computerized tomography (QCT)	78
2.4.4	Micro computerised tomography	79
2.5 Hist	ological techniques	80
2.5.1	Histomorphometric analysis using BIOQUANT	. 81
2.6 Ana	lysis of serum markers of bone metabolism	. 82
2.7 Med	chanical testing of fracture samples	82
2.7.1	Background on torsional mechanical testing technique	. 83
2.7.2	Test protocol	83
2.7.3	Outcome parameters	83
2.8 ln v	itro studies	84
2.8.1	Justification for <i>in vitro</i> examinations	84
2.8.2	Primary cell culture technique	. 84
2.9 Dos	e finding study for the MMP inhibitor MMI270	. 85
2.9.1	Background on MMP activity during fracture healing	. 85
2.9.2	MMI270, a broad spectrum MMP inhibitor in fracture repair	. 85
2.9.3	MMI270 dose finding study	. 86
2.10 Ove	erall methodological aims	. 86
.	••••••••••••••••••••••••••••••••••••••	
Chapter 3 E	trects of zoledronic acid treatment on endochondral fracture union	. 87
3.1 Intro	pduction	87
3.2 Stu	dy Design	89
3.3 Res		90
3.3.1	Radiological analysis of fracture union	90

3.3.2 Quantitative computerized tomographic (QCT) analysis of the	
fracture callus	. 91
3.3.3 Histological analysis of endochondral ossification	. 95
3.3.3.1 Histomorphometry of cartilage content	. 95
3.3.4 Histological analysis of endochondral ossification during long bone	
growth	. 96
3.3.4.1 Histomorphometry of growth plate height during ZA influenced	
growth	. 96
3.4 Discussion	. 98
Chapter 4 Endochondral fracture union in the osteoclast mutant <i>ia/ia</i> rat	101
4.1 Introduction	101
4.2 Study design	102
4 2 1 Phenotyne analysis study	102
122 Fracture study	102
4.2 Doculto	100
4.3 Results	103
4.3.1 The incisor absent rat bone phenotype	103
	103
4.3.1.2 Histological analysis	106
4.3.1.3 Serum analysis of resorption markers	108
4.3.1.4 In vitro primary osteoclast culture analysis	109
4.3.2 Confirmation of osteopetrosis in fracture experiment rats	115
4.3.2.1 Radiological analysis	115
4.3.2.2 Histology	116
4.3.3 Analysis of initial fracture repair in <i>ia/ia</i> rats	120
4331 Radiological analysis	120
4.3.3.2 Histological analysis of endochondral ossification	124
4.4 Discussion	128
4.4 Discussion	120
4.4.1 Recovery norm oscopenosis in the incisor absent rat.	120
4.4.2 Assessment of resolution activity in fracture experiment rats	101
4.4.3 Endocrinordal fracture repair in the <i>ia/ia</i> rat	132
4.4.4 Endochondral ossification at the growth plate occurs normally in	
the <i>ia/ia</i> rat	133
4.4.5 Hard callus remodelling in the incisor absent rat fracture callus1	133
Chapter 5 A single bolus dose of zoledronic acid is superior to weekly dosing, enhancing hard callus size and strength with minimal delays	
in remodelling after fracture.	135
5.1 Introduction	135
5.2 Study Design	136
5.3 Results	137
5.3.1 Radiographic analysis	137
5.3.1.1 Fracture union	137
5.3.1.2 Quantitative computerised tomography (QCT)	138
5.3.2 Mechanical testing at 6 weeks and 26 weeks	143
5.3.3 Hard callus remodelling with ZA treatment	147
5331 OCT analysis	1 4 7
5.3.2.2 Histology and histomorphometry	1/0
5.3.3.2 Thistology and historiorphometry	140
	149
0.4 DISCUSSION	100
Chapter 6 Dose finding study for MMI270 MMP inhibitor in Rats	153
6.1 Introduction	153
6.2 Study design	154
6.2.1 Fracture repair study	154

6.2.2	Dose finding study	155
6.3 Re	sults	156
6.3.1	Fracture study	156
6.3.1.	1 Radiographic union	156
6.3.1.	2 QCT analysis of fracture callus	157
6.3.1.	3 Dual energy x-ray absorbitometry (DEXA) scan data of non	157
624	Operated remuis	101
0.3.1.	4 Elistological analysis of fracture fielding	100
0.3.2	Results from dose linding study for MiMiZ70	158
0.3.2.	Radiographic analysis	150
6.4 Dia	2 Histological analysis	. 159
0.4 DIS		101
Chapter 7 D	Discussion and Conclusion	164
	dochondral ossification during repair and growth proceeds	104
	mally even with hisphosphopate inhibition of osteoclastic resorption	164
711	Padiological union was achieved regardless of 7A treatment	164
7.1.1	Normal rate of endochendral essification with 74 treatment	165
7.1.2	Enhanced net hard callus production with 7A treatment	172
7.1.3 7.2 En/	Enhanced her hard callus production with ZA freatment	17Z
	The is/is ret demonstrates esteenstrasis due to insetive	1.175
1.2.1	The <i>la/la</i> fat demonstrates osteopetrosis due to mactive	475
700	Superimental is is rate exhibited insettive recording throughout	175
1.2.2	Experimental <i>la/la</i> rais exhibited inactive resorption throughout	477
700	Tracture repair experiments.	177
7.2.3	Endocronoral fracture repair occurs normally in the absence of	4 7 7
704	functionally resorbing osteoclasts in the <i>Ia/Ia</i> rat.	1//
7.2.4	Normal Endochondral growth plate height in the <i>ia/ia</i> rat	178
7.2.5	Hard callus remodelling is delayed in the <i>ia/ia</i> rat fracture callus.	178
7.2.6	Normal endochondral ossification in the <i>ia/ia</i> rat suggests the	
	redundancy of osteoclastic resorption during this initial stage of	
	fracture repair	179
7.3 Effe	ects of Bolus compared to continuous ZA treatment on hard callus	
ren	nodelling	181
7.3.1	Enhanced net hard callus production but not callus strength with	
	Weekly ZA treatment compared to bolus	181
7.3.2	Superior hard callus remodelling with Bolus ZA compared to	
	Weekly ZA treatment.	183
7.3.3	Single Bolus dosing of ZA is preferential to Weekly dosing	
	during the late stage fracture healing	184
7.4 Hig	h dose levels of the MMP inhibitor MMI270 interferes with normal	
gro	wth plate endochondral ossification	187
7.4.1	Anti-inflammatory dose levels of MMI270 do not interfere with	
	endochondral fracture union.	187
7.4.2	High dose MMI270 interferes with normal endochondral growth,	
	lengthening the growth plate of long bones.	187
7.4.3	MMI270 can be utilised to inhibit MMP activity and thus elucidate	
	its activities during endochondral ossification	188
7.5 Coi	nclusion	189
Chapter 8 A	opendix	190
8.1 Ani	mal Handling and Surgery	190
8.1.1	Basic Animal Care	190
8.1.2	The Einhorn closed rat fracture model	190
8.1.3	Optimisation of the closed rat fracture technique in the incisor	
-	absent rat	192

8.1.3.1	Surgical techniques and modifications	192
8.1.3.2	Exclusion criteria	193
8.1.4	Dosing Regimes	193
8.1.4.1	Bisphosphonate	193
8.1.4.2	Matrix metalloproteinase inhibitor	194
8.1.5	Sample harvest	195
8.2 Radi	ological Analysis:	196
8.2.1	Radiographs	196
8.2.2	DEXA	197
8.2.3	Quantitative Computerised Tomography (QCT) analysis	197
8.2.4	Micro Computerised Tomography (µCT)	198
8.3 Histo	logy	199
8.3.1	Sample preparation	199
8.3.2	Un-decalcified histological processing and sectioning (resin):	
	ia/ia rat phenotype samples only	200
8.3.3	Decalcified histology sample processing and sectioning	
	(paraffin): Right Femora and posterior left distal femora	201
8.3.4	Histological Staining Methods	202
8.3.4.1	Paraffin sections:	202
8.3.4.2	Resin Section Stains:	204
8.3.5	Histomorphometric Analysis	205
8.3.5.1	Bioquant software setup for sample group analysis	206
8.3.5.2	Fracture callus analysis	206
8.3.5.3	Growth plate	208
8.3.5.4	Metaphyseal BV/TV analysis	209
8.4 Biom	echanical testing	210
8.4.1	Sample harvest and preparation	210
8.4.2	Testing apparatus	211
8.4.3	Testing procedure	212
8.4.4	Analysis of data	212
8.5 In vit	ro primary osteoclast culture experiments	213
8.5.1	RANKL-induce culture in plastic wells	213
8.5.1.1	Bone marrow collection	213
8.5.1.2	Cell proliferation and differentiation	214
8.5.1.3	TRAP staining of osteoclasts	215
8.5.1.4	Analysis of osteoclast differentiation	215
8.5.2	RANKL-induce osteoclast culture on calcium phosphate discs	216
8.5.2.1	Bone marrow collection – as per section 8.5.1.1	216
8.5.2.2	Cell proliferation and differentiation	216
8.5.2.3	Von Kossa stain on calcium phosphate discs	216
8.5.2.4	Analysis of resorption pit formation	216
8.5.3	RANKL-induce osteoclast cultures on human bone discs	217
8.5.3.1	Bone marrow collection – as per section 8.5.1.1	217
8.5.3.2	Cell proliferation and differentiation	217
8.5.3.3	Analysis of collagen breakdown products by ELISA	217
8.6 Seru	m analysis of resorption markers	218
8.6.1	ELISA assay for CTX	218
8.6.1.1	Sample harvest	218
8.6.1.2	ELISA method	218
8.6.1.3	Data analysis	219
8.7 Statis	stical analysis of data	219
References		226

List of Illustrations

Figure 1.1	Schematic depiction of the formation of long bones.	3
Figure 1.2	Histological image of a mammalian growth plate, author's image.	4
Figure 1.3	Histology image of a mammalian growth plate demonstrating	
	mineralisation of cartilage septa, authors image	5
Figure 1.4	Schematic representation of Paracrine regulation of growth plate cartilage maturation.	7
Figure 1.5	Schematic diagram of the role of MMPs in angiogenesis.	11
Figure 1.6	Image of histology section showing the differences in growth plate morphology in WT, MMP-9 KO, MM-13 KO and MMP-9;MMP-13 double KO mice.	13
Figure 1.7	Image of histology section showing localisation of macrophages at the chondro-osseous junction.	16
Figure 1.8	Histology sections demonstrating endochondral fracture healing.	18
Figure 1.9	Schematic drawing of vascular invasion during endochondral ossification in healing fractures.	23
Figure 1.10	Diagram of the two main stages of osteoclastic resorption, adhesion and cytodifferentiation and subsequent resorption.	28
Figure 1.11	Depiction of the stages leading to bone resorption.	50
Figure 1.12	Generic formula for a bisphosphonate	56
Table 1.1	Outlines the approximate relative potencies (to Etidronate) of bisphosphonates in inhibition of metaphyseal bone resorption in vivo	57
Figure 1.13	Effect of incadronate on rat fracture healing.	62
Figure 1.14	Effect of incadronate on rat fracture healing.	63
Figure 1.15	The chemical structure of Zoledronic Acid.	66
Figure 1.16	The effects of various bisphosphonates on MMP activities, activation, production, and malignant cell invasion	67
Figure 2.1	Image of closed fracture apparatus sketch from Bonnarens and Einhorn used to develop apparatus used in this study.	71
Figure 2.2	Image of closed fracture apparatus used in experiments.	72
Figure 2.3	Comparison of resolution and detail obtained from QCT and μCT scans.	79
Table 3.1	Sample numbers harvested for each treatment groups at 1, 2, 4 and 6 weeks post fracture.	89
Table 3.2	X-ray grading of samples at 2, 4 and 6 weeks post fracture	90
Figure 3.1	Representative X-rays at each time point examined for each treatment group.	91
Figure 3.2	Bar chart of Mean values for Callus BMC for all treatment groups at 2, 4 and 6 weeks post fracture.	92
Table 3.3	Quantitative computerise tomography data for fractured femurs for all treatment groups at 2, 4 and 6 weeks post fracture.	93
Figure 3.3	Bar chart of mean values for callus volume for all treatment groups at 2, 4 and 6 weeks post fracture.	94

Figure 3.4	Bar Chart of mean values for percentage callus vascular bone content for all treatment groups at 2, 4 and 6 weeks post fracture.	95
Figure 3.5	Representative sections from Saline, Bolus LD and HD ZA and Weekly LD and HD ZA at 2, 4 and 6 weeks post fracture.	96
Figure 3.6	Mean values for femoral growth plate height for all treatment groups at 2, 4 and 6 week post fracture time points.	97
Figure 3.7	Representative sections of growth plate from distal femurs of each treatment group at each time point examined author's images.	98
Figure 4.1	Bar chart demonstrating mean femur length in <i>ia/ia</i> and wt/het rats.	104
Figure 4.2	Representative X-ray images of tibiae at each time point examined for phenotype analysis.	105
Figure 4.3	Bar charts of mean values for proximal tibia BMC and BMD for <i>ia/ia</i> and wt/het rats from DEXA scan analysis.	106
Figure 4.4	Bar charts of mean proximal and distal metaphyseal BV/TV.	107
Figure 4.5	Representative Von Kossa stained sections at 3, 5, 7, 9, 12, and 20 weeks of age used for BV/TV analysis.	108
Figure 4.6	Bar chart of mean values of serum CTX levels in <i>ia/ia</i> and wt/het rats at each time point examined.	109
Figure 4.7a	Representative images of osteoclast differentiation and resorption assays at 5 and 9 weeks of age.	111
Figure 4.7b	Representative images of osteoclast differentiation and resorption assays at 12 and 20 weeks of age.	111
Figure 4.8a	Bar chart of mean osteoclast number per region of interest (ROI) in wt/het and <i>ia/ia</i> cell cultures at 5, 9,12 and 20 weeks of age.	112
Figure 4.8b	Bar chart of mean percent area of calcium phosphate disc resorbed for both wt/het and <i>ia/ia</i> cell cultures at 5, 9 , 12 and 20 weeks of age.	113
Table 4.1	Data values for Helical peptide concentrations from human bone disc culture experiment.	114
Figure 4.9	Image of TRAP positive cells on human bone chip discs in culture after media removed for analysis.	114
Figure 4.10	Representative x-ray images of Proximal tibia from wt/het and <i>ia/ia</i> samples from rats at the 1, 2, and 3 week time points of the fracture experiments.	115
Figure 4.11	Bar charts of mean proximal tibial metaphyseal BMC measured by DEXA in wt/het and <i>ia/ia</i> rats from racture experiments at 1, 2, and 3 weeks post fracture.	116
Table 4.2	Data generated from histomorphometric analysis of proximal tibial metaphysis in growing <i>ia/ia</i> and wt/het rats.	117
Figure 4.12	Bar charts of mean values for tibial metaphyseal BV/TV of fracture samples for both <i>ia/ia</i> and wt/het genotypes at 1, 2 and 3 weeks post fracture.	118
Figure 4.13	Representative proximal tibia Von Kossa stained sections of wt/het and <i>ia/ia</i> rat samples at 1, 2, and 3 weeks post fracture.	118
Figure 4.14	Bar charts of mean values for tibial metaphyseal trabeculae thickness of fracture samples for both <i>ia/ia</i> and wt/het genotypes at 1, 2 and 3 weeks post fracture.	119

Figure 4.15	Bar charts of mean values for tibial metaphyseal trabecular number of fracture samples for both <i>ia/ia</i> and wt/het genotypes at 1, 2 and 3 weeks post fracture.	119
Figure 4.16	Bar charts of percent union rates of both wt/het and <i>ia/ia</i> rats at 1, 2, and 3 weeks post fracture as assessed radiologically.	120
Figure 4.17	Representative cross sectional QCT scan images of the central region of the fracture site of both wt/het and <i>ia/ia</i> fracture samples at 1, 2 and 3 weeks post fracture.	122
Table 4.3	Data generated from quantitative computerised tomography (QCT) scans of operated and non-operated femora of <i>ia/ia</i> and wt/het rats.	123
Figure 4.18	Representative sections of wt/het and <i>ia/ia</i> samples at each time point examined demonstrating normal endochondral ossification.	125
Figure 4.19	Bar chart of mean precent of callus containing vascular bone tissue for wt/het and <i>ia/ia</i> samples at 1, 2 and 3 weeks post fracture.	126
Figure 4.20	Bar charts of mean total callus area and avascular callus area for both wt/het and <i>ia/ia</i> samples at 1, 2 and 3 weeks post fracture.	126
Figure 4.21	Bar chart of mean growth plate height from the proximal tibia for oth wt/het and <i>ia/ia</i> samples at the 1, 2 and 3 weeks post fracture time points.	127
Figure 4.22	Representative sections of proximal tibial growth plates from wt/het and <i>ia/ia</i> samples at 1, 2 and 3 weeks post fracture.	128
Table 5.1	Treatment groups and sample allocations.	137
Table 5.2	The number of samples united or not united per treatment group at 6, 12 and 26 weeks post fracture.	138
Figure 5.1	Representative x-ray images of samples from each treatment group at 6 weeks demonstrating complete union at this stage.	138
Figure 5.2	Representative cross sectional images from QCT scans at the central region of the fracture site for each treatment group at 4, 6, 12 and 26 weeks post fracture.	139
Table 5.3	Mean values for data generated by QCT for bone mineral content (BMC), bone volume (Volume) and polar moment of inertia.	140
Figure 5.3a	Bar chart showing mean callus BMC for all treatment groups from 2 – 26 weeks post fracture.	141
Figure 5.3b	Bar chart showing mean callus bone volume for all treatment groups from 2 – 26 weeks post fracture.	141
Figure 5.4a	Bar chart of mean fracture callus peak torque to failure for each treatment group at 6 and 26 weeks post fracture.	143
Table 5.4	Data generated from mechanical testing of both operated and non-operated femurs at 6 and 26 weeks post fracture. Data is presented at mean (standard deviation).	144
Figure 5.4b	Bar chart of mean values for fracture callus peak stress for each treatment group at 6 and 26 weeks post fracture.	145
Figure 5.4c	Bar chart of mean values for fracture callus shear modulus for each treatment groups at 6 and 26 weeks post fracture.	146
Figure 5.5	Bar charts of mean values for percentage of callus neo-cortical bone and primary callus area at 6, 12 and 26 weeks post fracture for each treatment group.	147

Figure 5.6	Representative images of sections of samples from each treatment group at 6, 12 and 26 weeks.	148
Figure 5.7	Representative 3D cross sectional reconstruction images from the central fracture region generated from micro CT scans at 26 weeks for each treatment group.	149
Table 6.1	Union rates in MMI270 and vehicle groups as determined from radiographs.	155
Figure 6.1	Representative X-ray images of fractured femora from each treatment group at each harvest time point.	155
Table 6.2	Data generated from QCT scans of operated femurs for bone mineral content (BMC), bone mineral density (BMD), bone volume (Volume) and polar moment of inertia.	156
Table 6.3	Data generated from DEXA scans of non-operated femurs	156
Figure 6.2	Representative X-ray images of proximal tibia from each treatment group from dose finding study after 4 weeks of dosing with MMI270.	157
Figure 6.3a	Representative images of histological sections of proximal tibia stained with Saffranin O, Light Green for each treatment group.	158
Figure 6.3b	Representative images of histological sections from the proximal tibia stained with Saffranin O, Light Green for control and high	
	dose (120mg/kg) SC.	159
Figure 6.3c	Representative images of histological sections of proximal tibial growth plates stained with Von Kossa and Toludine Blue for control and high dose (120mg/kg) MMI270 SC.	160
Figure 7.1	Histological images of TRAP positive cells localised at the chondro-osseous junction.	165
Figure 7.2	Image of histology section showing localisation of macrophages at the chondro-osseous junction.	166
Figure 7.3a	Histological images of a lack of TRAP positive cells in op/op mouse metaphyseal bone.	168
Figure 7.3b	Histology sections of the chondro-osseous junction of op/op mice (B and F) compared to their normal littler mates (A and E).	169
Figure 7.3c	X-ray images and histology sections of endochondral fracture repair of op/op mice (G, H, I and K).	170
Figure 8.1	Surgical insertion of the intramedullary k-wire.	190
Figure 8.2	Post surgery x-ray demonstrating correct placement of intramedullary k-wire and creation of a clean transverse mid diaphyseal fracture using the apparatus	190
Table 8.1	Post operative grading by radiographs.	191
Table 8.2	ZA treatment groups.	193
Figure 8.3	Chemical formula and supplier details for zoledronic acid as used in this investigation.	193
Figure 8.4	Chemical formula for the MMP inhibitor MMI270 used in this investigation.	194
Figure 8.5	Radiograph examples of fracture calluses.	195
Figure 8.6	Example of a cross sectional CT scan slice image generated from Stratec QCT scan data using Scion image.	197
Figure 8.7	Images of bone tissue sections stained with a) H&E, b) Saffranin O/Light Green, c) Alcian Blue/Sirius Red, and d) Von Kossa.	204

Figure 8.8	Example of image analysis using Bioquant to determine the area of each callus containing vascular bone tissue.	206
Figure 8.9	Example of image analysis using Bioquant to determine the area of each callus containing remodelled neo-cortical bone.	207
Figure 8.10	Example of image analysis using Bioquant to determine the average growth plate height for ZA treated Wistar rats and <i>ia/ia</i> phenotype samples.	208
Figure 8.11	Example of image analysis using Bioquant to determine the metaphyseal BV/TV.	209
Figure 8.12	A close up photograph of the ELF testing apparatus testing a fracture sample in torsion.	210

Abbreviations

ALN	Alendronate
ανβ3	Alpha V beta 3
ANOVA	Analysis of Variance
ATP	Adenosine triphosphate
bFGF	Basic fibroblastic growth factor
BMC	Bone mineral content
BMD	Bone mineral density
BMU	Bone remodelling unit
BP	Bisphosphonate
BPs	Bisphosphonates
BV/TV	Bone volume/ total volume (%)
CIC-7	Chlorine channel - 7
Col X	Collagen type X
CSF-1	Colony stimulating factor-1
CMC	Carboxymethyl cellulose
СТХ	C-terminal telopeptide cross-links
DEPC	Diethylpolycarbonate
DEXA	Dual energy X-ray Absorbtiometry
DMSO	Dimethyl sulfoxide
ECM	Extracellular matrix
EDTA	Ethlyenediaminetetra Acetic Acid (disodium salt)
ELISA	Enzyme-linked immunosorbent assay
FBS	Foetal Bovine Serum
FPPS	Farensyl diphosphate synthase

GTP	Guanosine triphosphate
HD	High dose
HS	Heperan sulfate
HSPG	Heperan sulfate proteoglycans
ia/ia	Incisor absent rat
ICTP	Cross-linked carboxyterminal telopeptide of type I collagen
lhh	Indian hedgehog
IV	Intravenous
КО	Knockout
LD	Low dose
M-CSF	Macrophage colony stimulating factor
μCT	Micro computerised tomography.
Mins	Minutes
MMA	Methylmethacrylate
MMP	Matrix metalloproteinase
MMP-9	Matrix metalloproteinase 9
MMP-13	Matrix metalloproteinase 13
mRNA	Messenger ribonucleic acid
N-BP	Nitrogen containing Bisphosphonate
NLM	Normal littermate
Oc	Osteocalcin
oc/oc	osteosclerotic mouse
OI	Osteogenesis Imperfecta
ор/ор	osteopetrotic mouse
OPG	Osteoprotegerin

OPN	Osteopontin
OVX	Ovariectomised
PBS	Phosphate buffered saline
P-C-P	Phosphorous-carbon-phosphorous
PCNA	Proliferating cell nuclear antigen
PECAM	Proliferating endothelial cell adhesion marker
PFA	Paraformaldehyde
PLGA	Poly L-lactide-co-glycolide
Ptc	Patched 1
PTH	Parathyroid hormone
PTHrP	Parathyroid hormone related protein
QCT	Quantitative computerised tomography
RANK	Receptor-activator of nuclear factor kappa beta
RANKL	Receptor-activator of nuclear factor kappa beta ligand
RNA	Ribonucleic acid
ROI	Region of Interest
RT	Room temperature
SC	Subcutaneous
SD	Standard deviation
SE	Standard error
Tb.N	Trabecular number
Tb.th	Trabecular thickness
TGFβ	Transforming growth factor beta
tl/tl	Toothless rat
TRAP	Tartrate resistant acid phosphatase

Abbreviations

VEGF	Vascular endothelial growth factor
wt/het	wild type / heterozygous
ZA	Zoledronic Acid

Abstract

Bisphosphonates (BPs) are the most common treatment for osteoporosis, due to their powerful ability to inhibit osteoclastic bone resorption. They are also being investigated to augment callus production during fracture healing, however, concerns exist as to the effects of BPs during both initial fracture union and hard callus remodelling. Endochondral ossification during fracture repair is a critical process leading to initial union, and is assumed to be dependent on osteoclast function. Hard callus remodelling, known to be dependent on osteoclast function, is important to the completion of bone repair.

The role of osteoclasts during initial endochondral fracture union was investigated using the BP zoledronic acid (ZA) and in a genetic model of osteoclast inactivity, the incisor absent (*ia/ia*) rat. In addition, the effect of differing ZA treatment regimes on hard callus remodelling was investigated using both Bolus and Weekly ZA dosing. A Bolus of 0.1mg/kg ZA or 5 Weekly doses of 0.02mg/kg ZA or Saline were administered commencing 1 week post surgery in a rat femoral fracture model. Femoral fractures were also produced in *ia/ia* rats. Examinations were performed up to initial union and throughout callus remodelling.

ZA treatment did not alter the rate of endochondral fracture union. All fractures united by 6 weeks, with no difference in the percentage of cartilaginous callus between treatment groups at any time point. Fracture union was achieved by 3 weeks in both *ia/ia* and control rats, again with no difference in the percentage of cartilaginous callus.

In contrast, marked differences in hard callus were evident in the ZA treated groups. ZA increased callus bone mineral content, volume and importantly increased callus strength. Bolus ZA treatment did not delay the commencement of hard callus remodelling at 4 weeks post fracture, whereas this was delayed in the Weekly ZA group. By 12 and 26 weeks Bolus ZA had the same callus content of remodelled neo-cortical bone as Saline, however Weekly ZA had significantly less than saline at these times. These extensive delays in hard callus remodelling with Weekly ZA dosing produced a fracture callus of inferior material properties.

In conclusion, neither ZA treatment nor the absence of active osteoclasts in *ia/ia* rats delayed endochondral fracture union. Thus, this study confirms the redundancy of osteoclasts in this process. Bolus ZA treatment was superior to Weekly ZA dosing; hard callus remodelling proceeded, producing a strong fracture callus with improved material properties. This study supports the use of less frequent ZA doses during fracture repair.