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Abstract

By focusing on data and flow control, imperative languages provide a 

finely grained and efficient mechanism for directly manipulating state and 

memory. By focusing on functions, polymorphism increases the modularity 

and reusability of programs. The pattern calculus gives a new account of 

polymorphism over arbitrary datatypes which has been used as the foun

dation for building the functional language FISh2. The power of the new 

polymorphism is not limited to a functional setting and it can be extended 

into an imperative setting. The main contribution of this thesis is to expand 

the pattern calculus with imperative features and implement this within a 

version of FISh2.

Two approaches are developed in expanding the calculus to imperative 

programming based on two setting: functional and imperative. Based on 

a functional setting, updatable locations are given separate location types; 

while based on an imperative setting, locations and their values share the 

same types. In both approaches, structured locations can be defined in the 

same way the calculus defines structured data. Hence, generic functions on 

locations can be defined by pattern-matching on (location) constructors. In 

that way, the power of the combination exceeds that of the boundary of 

functional or imperative alone. In particular, with the generic assignment 

function, we have a new approach on memory management which performs 

inplace update whenever it is reasonable to do so.
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Similar ideas could be used to extend the power of parametric polymor

phism to parallel programming. To illustrate the approach, a key problem is 

addressed in detail, namely, distributing a data structure over a network of 

processors.



Chapter 1

Introduction

In typed programming, polymorphism allows the same code to be used with 

different types, which results in more general and abstract implementations 

of programs. Polymorphism makes languages more expressive by increasing 

the reusability of programs, while still maintaining type safety.

The pattern calculus gives a powerful new approach to polymorphism. 

One of the key ideas in building polymorphic functions is pattern-matching 

programs in which each pattern might have a different type. With these 

pattern-matching, functions such as the generic plus and generic equality 

can work on arbitrary data. The pattern calculus also gives new account 

for representing data, all data structures can be constructed using names 

and a finite set of constructors. The theory of data representation gives a 

new form of polymorphism that enables to write a generic mapping function. 

The pattern calculus has been used as the foundation for the functional 

programming language FISh2 [27]. The expressive power of the calculus can 

be extended to other styles of programming. The thesis discusses expansions

1



CHAPTER 1. INTRODUCTION 2

of the calculus to handle imperative programming and their implementation 

as expansions of FISh2.

Considering different coding styles and the trade-off of different proper

ties, we provide two different approaches of combining the pattern calculus 

with imperative features. In the first approach, updatable locations are given 

separate location types while in the second, locations and their values share 

the same type. In both approaches, the use of assignment as a fully generic 

function provides a new approach to memory management where the inplace 

update is performed whenever it is reasonable to do so. More generally, one 

is able to combine polymorphism with fine control of memory to build simple, 

reusable and memory efficient programs.

A new way of memory management can also be exploited in parallel pro

gramming. With the existing tools in the pattern calculus, we can build a 

generic data distribution function. The distribution function can be seen as 

one step towards the expansion of the pattern calculus to parallel program

ming which supports the construction of generic parallel programs such as a 

generic parallel mapping operation.

Generic parallel programming was the main focus of the original thesis 

plan. However, during the research, the adding of imperative features turned 

out to be more significant and time consuming than estimated. As a result, 

the focus of the thesis changed to imperative programming.
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1.1 Outline of the Thesis

The first chapter is an introduction of this thesis. After the outline (in 

this section), there is a section about the outcomes, personal contribution 

and significance of this thesis. Next is an overview about implementation 

involved in this thesis. The last part of the chapter is the literature review.

The second chapter is about the pattern calculus as introduced by Jay 

[35]. We do not include all parts of Jay’s paper in the chapter, for example, 

the theory of how to represent data structures is omitted. The main purpose 

of the chapter is to give the motivations and to fix the notations for this 

thesis.

Without restriction, polymorphism interacts with imperative features in 

an ill-typed way. The third chapter discusses a modification of the typing 

rules of the pattern calculus that enables the addition of imperative features. 

The main reason for being stand-alone is that the chapter sets up the typings 

for the next two chapters.

Chapter 4 is an expansion of the pattern calculus with imperative features 

based on a functional setting. Based on the pattern calculus as a purely 

functional system, location types and terms are added on top. Creations of 

locations are explicit. We also add location constructors so that pattern

matching can work on constructed locations. The chapter also includes some 

additional imperative features such that while-loops, vectors, and generic 

output to enhance the usability of the system. Some examples to show the 

expressive power of the system are provided.

Chapter 5 is another expansion of the pattern calculus with imperative
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features but it is imperative based. All data can be assigned; locations 

and their values share the same types. Apart from these differences, this 

expansion is similar to the one in Chapter 4.

Chapter 6 introduces a generic data distribution function which is a key 

step in generic parallel programming.

Chapter 7 concludes the thesis with some indication of related future 

work.

1.2 Contribution

The pattern calculus by itself can be seen as a foundation for a functional 

programming language. The overall contribution of this thesis is to expand 

the pattern calculus to imperative and parallel programming. The theory is 

grounded in the corresponding implementation of the programming language 

FISh2.

An early version of the system in Chapter 4 was published as a joint 

paper [37] with the title The Polymorphic Imperative: a Generic Approach 

to Inplace Update. This paper describes an extension of an earlier version of 

the pattern calculus with imperative features. The focus of the paper is on a 

generic assignment function that does inplace update whenever it is possible.

1.2.1 Personal Contribution

The results in Chapter 3 were produced by me. The system in Chapter 4 

was a join work of Jay, Lu 1 and me. The system in Chapter 5 was developed *

XC. Barry Jay and H.Y. Lu, University of Technology, Sydney, Australia



CHAPTER 1. INTRODUCTION 5

by me. The results in Chapter 6 were join work of Jay, Hamdan 2 and me.

The implementations of the adding imperative features as in Chapters 4 

and 5 were done by me based on the foundation produced by Jay [27]. The 

generic distribution function in Chapter 6 was implemented by me.

1.2.2 Significance

The choice of styles in programming between functional and imperative can 

be seen as a trade-off between expressive power and the direct manipulation 

of memory and state. Based on the pattern calculus, the generic combination 

of imperative and functional has the strengths of both styles. Programs 

written in the system benefit from the elegance and compactness of higher- 

order functions and polymorphism in the functional style, as well as the direct 

manipulation of memory and state of programs in the imperative style.

The power of the combination exceeds that of functional or imperative 

alone. One of the highlights is the generic assignment function (in source 

code) that compares the shapes of the memory and the new value so that 

inplace update is done whenever it is reasonable to do so. From the functional 

programming viewpoint, the generic assignment function can be seen as an 

efficient and generic approach to memory management. From the imperative 

programming viewpoint, it can be seen as a new and clean approach to 

updating large data structures.

As distribution is a key step in parallel programming, the study of generic 

distribution provides a new understanding towards generic parallel program

ming. Our choice of distribution is about maximizing the locality and work

2Mohamamd M. Hamdan, Yarmouk University, Irbid, Jordan
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balance for all processors.

1.3 Implementation

All the calculi in this thesis have been implemented. All examples presented 

in this thesis have been written, tested and they produced expected result. 

All of the codes are available on request.

This section is an overview about implementation activities involved in 

this thesis. All the implementation was done in the programming language 

FISh2 [27]. The programming language FISh2 (and its successor bondi) was 

built originally by Jay to implement and test various ideas and approaches in 

language design. The language has been changing and evolving all the time. 

We use Concurrent Versions System (CVS) for backing up and branching 

purposes.

There are two sorts of implementation I did for this thesis. The first 

one is about compiler implementation for FISh2. The compiler is written 

in the programming language OCAML [51]. A typical circle of compiler 

implementation work involves:

• getting a stable version of FISh2 and creating a new CVS branch;

• removing unwanted features if necessary;

• adding imperative features into the branch;

• testing and debugging the added features;

• merging all or part of the added imperative features with others’ work.
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The second one is about writing and testing code in FISh2. A part of the 

FISh2 coding is to implement imperative features such as a generic assignment 

and a generic output function. Another part of the FISh2 coding is to test 

the compiler and to find out new algorithm such as a generic distribution 

function.

1.4 Background

1.4.1 Imperative Programming

Imperative is a style of programming where programs are explicit sequences 

of commands or statements. Imperative programming gives the computer 

a list of instructions to execute in a particular order. Typically, imperative 

programs [55, 56] contain declarations of variables, and zero or more assign

ments of values to them. In the imperative style, intermediate values are 

usually stored explicitly in variables. Type restrictions may be used for each 

variable, the set of values that can be assigned to a variable is determined at 

its declaration. Statements allow assignments to be sequenced and iterated. 

As a result, the order of execution is significant in imperative programs.

The imperative style, evolving from machine languages, is usually consid

ered to have more direct interaction with the hardware and hence is regarded 

as more efficient than other styles [55]. However, the direct interactions also 

make it harder to reason about programs [1].
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1.4.2 Functional Programming

An overview

Declarative programming describes to the computer a set of constraints and 

might let the computer figure out how to satisfy them. The constraints are 

usually represented as relationships between variables in terms of functions 

or inference rules. Declarative programming contains two main branches: 

logic programming and functional programming.

Functional programming languages are typically based on the lambda- 

calculus [21]. In a purely functional setting, a program consists of a set of 

(possibly recursive) function definitions and an expression [3]. Expressions 

in purely functional languages are referential transparent i.e. the value of an 

expression is determined at point of declaration. Referential transparency 

makes programs in purely functional languages easier to reason about.

With the use of higher-order functions and parametric polymorphism [44], 

programs written in functional languages are generally compact and elegant. 

However, purely functional programming lacks the ability to directly control 

the memory and state of a machine which can lead to inefficient programs

[55].

Hindley-Milner Type System

A large class of functional languages are built on the Hindley-Milner type 

system [44]. A type is one of the following: a type variable (meta-variable 

X); the unit type 1; a product of two types-, a coproduct of two types; or a 

function from one type to another type. The type schemes (meta-variable r)
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are given by universal quantification (V) of types by type variables.

T ::= X | 1 |T*T|T + T|T-^T 

r ::= T | VXr

The use of type schemes allows schematic type variables, i.e. different uses 

of a type scheme may instantiate a type variable in different ways.

let-Polymorphism

In the Hindley-Milner calculus, a term (meta-variables s, t) is: a term variable 

(meta-variable x); or a constant; or a lambda abstraction (Ax.t)\ or a let 

expression (let x = s in t) or application of two terms.

By giving type schemes for term variables, we have the polymorphic uses 

of term variables in the body of a let expression. For example, in the expres

sion:

let id = Xx.x in (id 9, id true)

the type variable for the identity function has the type scheme \/X.X —> X. 

The universal quantifier VX allows X to be instantiated to any type, of 

integers, booleans, etc. Hence id can be applied to both 9 and true. This is 

called parametric (sometimes let or Hindley-Milner) polymorphism.

1.4.3 Combining Functional and Imperative Features

Some work tries to combine some functional features and imperative fea

tures in one setting. As an attempt to create an efficient tool for scientific 

applications with some functional style behaviours, Single Assignment C [54]
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was developed as a C-based language that supports concurrency deducibility. 

Pizza [52] is a Java-based language that tries to capture parametric polymor

phism. Motivated by Generic Java (GJ) [14], Java [16] also has parametric 

polymorphism. FISh [28, 31] 3 is a shape-based array programming language 

that has higher-order functions and parametric polymorphism. Haskell pro

gramming language [38] uses monads [67] for input/output; it has a restricted 

form of stateful computation that retains referential transparency. The ML 

[47] family is considered to be functional languages with some imperative 

features. Detailed discussions about them will be the next subsection.

1.4.4 Adding Location Types and Terms into a Func

tional Setting

Many different lines of work e.g. [46, 45, 63, 41, 69, 47] try to provide 

functional languages with some advantages of the imperative style; typically 

by adding constants for creating, updating and getting values of reference 

cells, with control structures such as sequential composition.

Let us explore this using an ML-like syntax [51, 63]. The expression 

ref v creates a reference cell of reference type holding an initial value v. The 

expression c := v updates the reference cell c with the new value v. The 

expression !c gets the value held in the reference cell c. The expression n; v 

sequences u and v. The expression [ ] is the empty list. The expression :: is 

the infix operator for creating a list from a head and a tail, hd is a function 

returning the head of a non-empty list. (u, v) is a pair of two components

3This is FISh, not to be confused with FISh2.
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u and V] fst and snd are two functions for extracting the first and second 

components of a pair.

Referential transparency no longer holds for references. Consider the 

program:

let x = ref 9 in while \x > 0 do x := lx — 1 done.

It terminates but replacing all the occurrences of x by ref 9 the new program 

does not terminate.

In a purely functional setting, all variables can have polymorphic type 

scheme. A typical example is a polymorphic empty list:

let x = [ ] in (true :: x, 1 :: x).

The let expression binds x to a polymorphic empty list. The use of poly

morphism enables the first part of the pair to have s as a list of booleans 

and the second part of the pair to have x as a list of integers.

Unfortunately, the combination of polymorphism and updatable locations 

(references) does not come for free. One might let some bad programs get 

through such as the following ill-typed line of code:

let x = ref [ ] in x true :: \x\ (hd !x) + 1.

The let expression binds a: to a reference cell initialized to an empty list. 

If the polymorphism is unconstrained, then the first part of the sequential 

composition uses the cell as a reference to a list of booleans and the second



CHAPTER 1. INTRODUCTION 12

part of the sequential composition uses the cell as a reference to a list of 

integers; which results in a run time type exception when a boolean is added 

to an integer.

A naive attempt to detect such type errors is to require that a term whose 

type contains a reference type is monomorphic. However, that is not enough 

as the following example shows:

let fref x = let r = ref x in (fun u —dr, fun u —> r := u) in 

let t — fref [ ] in (snd t) [9]; true :: ((fst t) true)

The types of fref and t do not employ reference types. However, unrestricted 

polymorphism for the reference in the closure of fref creates a similar ill-typed 

problem as in the previous example. If the type scheme of t is VX, Y.{Y —> 

list X) * (list X —>■ unit) then using X in the first part of the pair as boolean 

type and in the second as integer type results in a run time type exception.

Next, we discuss some approaches for having both polymorphism and 

updatable references.

1. The system developed by Wright [69] introduces value polymorphism 

using a separate class of expressions called values:

Expressions e ::= v \ e\ 62 | let x = e\ in e2 | ref e | !e | x := e

Values v ::= x | Xx.e

The system introduces two inference rules for let expressions. For typ

ing the expression let x = s in t, the variable x has a polymorphic type 

scheme only when s is a value. As none of the values can be actual
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updatable references, all the references in the system are monomorphic.

2. The 1990 version of Standard ML [46] defines non-expansive expres

sions, but it allows some type variables in the expansive case to be 

generalized. By detecting the creation of mutable values by ref oper

ator, Standard ML (1990 version) introduces a subclass of imperative 

type variables; and any type substituted for an imperative type variable 

must contain only imperative type variables. When the bound body 

of a let expression is expansive, then imperative type variables are not 

generalized.

The 1997 revision of Standard ML [47] adopts value polymorphism.

3. SML New Jersey (1993) [63] associates each variable with an associated 

integer measuring the “degree of weakness” or “strength”. This is the 

number of function applications to be applied before a reference is ac

tually created. If the type variable is unconstrained then the integer is 

infinity. Each function application reduces the “strength” of variables. 

Only variables with positive strength can be generalized.

4. Leroy [41] introduces closure typing to keep track of references embed

ded in functions by defining labels for all the functions in the closure 

and constraints of these labels on type variables. All the type variables 

contain constraints in themselves so that it is always clear which vari

ables can be generalized. The main aim of this work is to reduce the 

impact of an imperative type system on a purely functional one.
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1.4.5 Generic Parallel Programs

A current trend in computing is that the size of the problems to be solved is 

increasing. However, the speed of a single processor is coming to its physical 

limits because of thermal generation/dissipation properties and electronic 

signal speeds [60], [12] etc. Parallel (high performance) computers provide a 

may of solving the problems [43].

Parallel programming is more difficult to understand and to implement 

than sequential programming because of the extra obligations to manage dis

tribution of data, synchronization and communication between processors. A 

typical example is the quick-sort algorithm for arrays. Implemented in C, 

the program is about 30 lines of code. However, a public available parallel 

version of the same algorithm using C plus MPI [61] is about 1700 lines [49]. 

Moreover, when dealing with structured data, the parallel program becomes 

more complicated because one must either separate the structure from the 

data by flattening of the data structure or manipulate structured data di

rectly. Because of the complexity of parallel programming, the properties of 

modularity and reusability in parallel programs become more important than 

in sequential programming [5]. When dealing directly with parallel programs 

on structured data [57], one can take advantage of generic programming to 

make parallel programming more reusable by writing generic parallel pro

grams [17, 18, 4, 50], i.e. one parallel program working on different sorts of 

data structures.



Chapter 2

Review of the Pattern Calculus

This chapter reviews the pattern calculus as introduced by Jay [35] with 

some minor modifications. All the modifications have been discussed with 

Jay. We do not aim to repeat all of the Jay’s paper here but just give the 

motivations and tools needed later in the thesis.

2.1 Introduction

There is a significant class of operations that are shared by all data structures. 

The aim of generic programming is to have the same operations that work 

on arbitrary data types in a safe way. The pattern calculus [35] is a novel 

contribution to generic programming with new account of pattern-matching 

and data structures. One of the key ideas is that these operations are built 

on pattern-matching programs in which each pattern might have a different 

type. For example, the generic plus operation can be defined in the pattern 

calculus as a pattern-matching of four cases. The first two cases are for

15
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addition of two integers or two real numbers. The third case is to deal with 

compound data structures. The last one is the default one. These four cases 

are to cover all data structures. Details of the operation will be presented 

later in the chapter. With pattern-matching such as one for the generic plus, 

we have a generic way to traverse all paths of an arbitrary data structure. 

The idea (path polymorphism) is noticed but not given a prominent role on 

Jay’s paper [35], However, a system that supports path polymorphism is the 

core path of this chapter; and will be exploited later in this thesis.

The pattern calculus also gives a new account datatypes. Using the com

binatory type system, type variables can represent structure as well as data. 

This is the important in typing some generic functions such as mapping and 

folding in the pattern calculus. Moreover, the ability to represent arbitrary 

data structures using a fixed set of built-in constructors provides another 

possibility for complete case analysis for all data structures.

The system satisfies standard properties such as reduction is Church- 

Rosser, reduction preserves typing, typings of terms are stable under type 

substitution, type inference is correct.

2.2 Types

Using the functorial type system [36], a typical data type will be represented 

by the application of a type F to another type (or tuple of types) of data 

X. The idea is developed further in the combinatory type system which is 

given in Figure 2.1. It contains rules for type contexts (meta-variable A), 

types (meta-variables S and T) and type schemes (meta-variable r). A type
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context is a sequence (maybe empty) of distinct type variables. The judgment 

A b asserts that A is a well-form type context. In the original paper [35], Jay 

defines a type to be one of the following: a type variable (meta-variable A); a 

type constant (meta-variable C); an application of two types. The judgment 

A b T asserts that T is a well-form type in type context A. Also in the 

original paper, Jay introduces a type constant Function, and Function S T 

is the type of functions from S to T. In this research, it proves useful to 

distinguish function types from applications. We propose a minor change 

here, that is a new type form called function type, for any two types S and 

T. We define S -» T is the function type from S to T instead of using the 

application of the constant Function. The key point of the change is that, 

there is no type which is both a function type and an application of types. 

The raw type schemes are types under quantification by type variables. The 

judgment Absr asserts that r is a well-form raw type scheme in type context 

A. The free and bound variables of a type or raw type scheme are defined 

in the usual way, as is a -conversion of bound variables. A type scheme is an 

equivalence class of raw type schemes under a -conversion of bound variables 

[47]. A type scheme is closed if it has no free variables.

There are some primitive built-in type constants such as: primint (prim

itive integer number type); primfloat (primitive real number type); primchar 

(primitive character type). Other type constants such as int (proper integer 

number type); float (proper float number type); char (proper character type); 

bool (boolean type); list are introduced through abstract datatype declara

tions. Details about declared types are in Section 7 of the pattern calculus 

paper [35] and they are similar to ones of ML.
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Type contexts (A) -— — ----- ■— X qL AJ v ’ h A,Ah *

Types (S,T)
A h A

A e A
Ah C

AhS AhT 
Ah ST

Ah 5 A h T 
Ah5^T

Type schemes (r)
Ah T 
Ah ST

A, A hs r 
A hs VA.r

Figure 2.1: The Combinatory Type System

Type substitution, type unification and most general unifier are defined 

in the usual ways [47].

A type is data-form if it is a type constant or an application of two types. 

A key property is that no data-form type is also a function type. For each 

type T, the arity of T is a natural number defined by: if T is a type constant 

or a type variable or an application of two types, then the arity of T is zero; 

if T is a function type Tx —> T2, then the arity of T is one plus the artity of 

T2. The arity of a type scheme VA.T is the arity of T.

2.3 Terms

In conventional functional languages, “interesting” terms are all functions. 

The pattern calculus balances the importance of functions and data struc

tures.

Constructors (meta-variable c) are used to build data structures in the 

pattern calculus. These include primitive datum terms (meta-variable d)
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of primitive integers, primitive floating point reals or primitive characters. 

Other examples of built-in constructors are un; evr; ths; bind; rep; and exn. 

Other constructors are introduced through abstract datatype declaration 

such as true; false; cons; nil. Details about declared constructors are in 

Section 7 of the pattern calculus paper [35]. The operators are given by: 

datum operators (with the overloading meta-variable d); and the primitive 

equality primequal. The term constants (meta-variable b) are given by: con

structors; and operators. Each constant comes equipped with a given closed 

type scheme. Primitive integers, primitive floating point real numbers and 

primitive characters are of types (trivial type schemes) primint, primfloat and 

primchar, respectively. An example of a datum operator is the primplusint 

of type primint —>• primint —>■ primint for adding two primitive integers. The 

constant primequal is to check if the two terms are the same constructor; and 

its type scheme is VAT, Y.X —> Y —» bool. There is also a special constructor 

exn with the type scheme MX.X for handling exceptions.

Patterns (meta-variable p) are given by: term variables (meta-variable 

x,y); constructors; or applications of one pattern to another. The judgment 

A; T h0 p : T asserts that p is a pattern of type T in context A; T. The 

applicative pattern p pi requires that the contexts of p and p\ are independent 

from each other. Also, each term variable cannot appear more than once in 

a pattern.

Raw terms (meta-variables s, t) are given by: term variables, term con

stants, applications of terms, extensions, let-terms and recursions. The judg

ment A; T h t : T asserts that t is a raw term of type T in context A; T. 

Free, bound variables and term substitution are defined in the usual way.
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Free variables (fv) of an extension is defined as

fv (at p use s else t) = fv(t) U (fv(s) — fv(p)).

Terms are defined as equivalent classes of raw terms under a -conversion of 

bound variables.

One of the key novelties of the calculus is the powerful branching and 

binding construct (named extension):

at p use s else t

where s and t are called the default function and specialization of the ex

tension respectively.

The type derivation rules of the pattern calculus are given in Figure 2.2. 

The type derivation for let-expression let x = s in t allows the variable x a 

polymorphic type scheme. This works well for a purely functional system.

The term &x(x, t) is a polymorphic recursion with the fix-point oft with 

respect to the recursion variable x. It is called polymorphic because a type 

scheme is given to x when deciding the type of t. Different uses of the recur

sion variable in defining a generic function may exploit different instantiations 

of its type scheme.

A term is called an explicit function if it is an extension or a partially- 

applied constant. It is clear that all explicit functions (apart from terms 

headed by exn) have function types.

Next, we define some syntactic sugar. Note that some core notations
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Term contexts (T)

Patterns (p)

A b 
A; b

A; T b A bs r
A;T,x : t b

x ^ r

X\ x : X bQ x : X A; b0 c : T

A; T b o p ■ T A1;rlRoPl:T1 A,A1,X]r,T1R

c : VA.T

Terms (s,t)

A, Ai; tT, vTi\-0 p px \ vX

A; T b r(x)=VA1.T

v = U{Tx -+X,T)

A; T b x : aT a : At ^ A 

A; T b b:VAx.T
A; T b b : aT a : Ax -)• A

A; r b s : T —» S A;TbbT 
A]TR st: S

A; T b t : T S' Ai; r: b0 p : Ti A^^uT,^ b s : vS 
A; T b at p use 5 else t : T —> S

A;Tb C.T^S Au^K p:Tx A^T^b

v = U{TuT)

A; T b at p use s else t : T -» S 

A,Ai;rbs:5 A;T,x : VAj.Sb t :T

W(T!,T)t

A; T b let x — s in t : T

A,Ax;T,x : VAi.T b t:T 
A, Ax; T b fix (x, t) : T

Figure 2.2: The Original Pattern Calculus
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of many other programming systems such as Xx.t and match... with are 

syntactic sugar here.

The syntax | p —> t is syntactic sugar for the program fragment

at p use t else .

A sequence of such fragments is a pattern-match with the ultimate exn de

fault. For example, | x —>• x is syntactic sugar for at x use x else exn. In 

these pattern-matches, the wild-card symbol _ represents a fresh variable 

in the pattern part (p). The syntax match s with t is syntactic sugar for 

t s, especially when t is a pattern-match. The usual lambda abstraction Xx.t 

is syntactic sugar for at x use t else exn. We use at p\ and P2 use s else t 

as syntactic sugar for

at pi

use at p2 use s else Xy.t (p\ y) 

else Xx.Xy.t (x y).

This extension tries to match p\ with x and P2 with y with failure at any 

point applying the default to a reconstructed version of x y.

As the usual syntax for defining functions, let x p = s is syntactic sugar 

for let x = at p use s else exn (especially when p is a variable). For example, 

let f x = x + 1 is syntactic sugar for let / = at x use x + 1 else exn.

To define a recursive term using the let-expression, we use let rec x = s 

as syntactic sugar for let x = fix(x, s).
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2.4 Constructed Terms

The arity of a term constant b is defined to be positive infinity if b is the exn 

constructor, and otherwise to be the arity of its given type scheme.

A term is headed by a term constant b if it is b itself or an application 

s t where s is headed by b. The list of arguments of a term t headed by a 

constant is: the empty list if t is just the constant; is the concatenation of 

the t2 with the list of arguments of t\ if t is the application of ti to t2- A 

term headed by a constant b is called & fully-applied constant if the number of 

arguments of the term equals the arity of b\ and it is called a partially-applied 

constant if the number of arguments of the term is strictly smaller than the 

arity of b.

A constructed term is a term headed by a constructor. The application 

of a constructed term to another term is called a applicative constructed 

term. A term t cannot become a constructor if t is an applicative term or an 

extension or a partially-applied operator. A term t cannot become applicative 

if t is an extension or a constructor or a partially-applied operator. A pattern 

p and a term t cannot match in exactly the following two cases: first, when 

p is a constructor c, and either t is a constructor other than c or f cannot 

become a constructor; second, when p is a applicative term and t cannot 

become applicative. Two terms cannot compare in exactly the following two 

cases: first, (at least) one of them cannot become a constructor; second, they 

are two distinct constructors.



CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 24

(at x use s else t) p > s[ti/x]
(at c use s else t) c > s

(at pi p2 use s else t)(ti t2) > (at pi and p2 use s else t) ti t2

if ti is a constructed term
(at p use s else t) R > t ti if p and ti cannot match

let x = s in t > t[s/x\
fix (x,t) > t{fix (x, t)/x)

d0 d\ ... dfc > d' if d0 di ... dk equals d'
primequal c c > true

primequal t t\ > false if t, ti cannot compare

Figure 2.3: Reduction Rules

2.5 Reduction

The basic reduction rules (denoted by relation >) are given in Figure 2.3. 

We will discuss all the cases.

There are four reduction rules for the application of an extension to a 

term. If the pattern is a variable x then specialization occurs with t\ sub

stituting for x as the argument. If the pattern is a constructor c and the 

argument is also c then the result is the specialization s. If the pattern is 

an application pi P2 and the argument is an applicative term t\ t2 then spe

cialization occurs. The specialization tries to match pi with ti and p2 with 

t2 with failure at any point applying the default to a reconstructed version 

of t\ t2 as defined in Section 2.3. If the pattern and the argument cannot 

match then the result is the application of the default to the argument. The 

reduction of let-terms substitutes the bound variable with the body of the let. 

The reduction of a fix-point results in its body with the recursion variable 

replaced by the fix-point. The reduction of a fully applied datum operator
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results in the expected datum. The reduction of the application of primequal 

to two terms results in: true if the two terms are the same constructor; and 

false otherwise.

We present here one lemma about the property of term substitution which 

will be used in later chapters of the thesis.

Lemma 1 Typings of terms are stable under term substitution. That is, if 

there are derivations A; T, x : VAi .S b t : T and A, ApT h s : 5 then there 

is a derivation of A, Ai;T b t[s/x\ : T.

Proof: The proof is by induction on the structure of the derivation of the 

typing of t. We do a case analysis on the type rules in Figure 2.2. All the 

cases are standard.

variable If t is variable x then t[s/x\ is s. We know that A; V b x : aT where 

a : Ai —> A. Combining that with the assumption A;T,a; : VAi.S b 

x : T and A, A^T b s : S. So we can conclude that A,Ai;T b 

t[s/x\ : T. If t is variable different from x then from the assumption 

A;r,a: : VAi.S b t : T we can deduce that A; T b t : T which is the 

same as A, Ai; T b t[s/x] : T.

constant If t is a constant b then t{s/x\ is just b. From the assumption 

A; r,:r : VAi.S b c : T we can deduce that A; T b c : T which is the 

same as A; T b c[s/x\ : T (as A, Ai; T b).

application If t is an application ti t2 then there is a type 7j such that 

A; T, x : VAX.S b tx : Tx ^ T and A; T, x : VAX.S b t2 : Ti. Ap

plying the induction hypothesis for t\ and t2 we know that A, A^T b
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ti[s/:r] : Tj —>• T and A, Ai;T h t2[s/x\ : T\. Using the typing rule for 

application we can conclude that A, Ai; T h {t\ t2)\s/x\ : T.

fix-point If t is of the form fix(xi,U), with a -conversion we can assume 

that x\ is not in : VAi.S. The only way to get the type A;T,x : 

VAX.S h fix(x1,ti) : T is by A', A"; T,a; : VA^S,^ : VA".T h R : T 

(where A = A', A"). Applying the induction hypothesis for t\ we 

have A, Ai;r, Xi : VA".T h ti[s/x\ : T. With the typing rule for fix- 

point, we can deduce that A, A^T h fix(xi, Ufs/x]) : T and hence 

A, Ai; T h fix(xi, t\)\s/x\ : T.

extension If t is of the form at p use t\ else t2, there are two sub-cases. 

The first sub-case is when x is not in the free variables of p. We know 

that t[s/x] is at p use ti[s/x\ else t2[s/x\. Applying the induction 

hypothesis for t\ and t2 we have A,Ai;T h t[s/x\ : T. The second 

sub-case is when x is in the free variables of p. We know that x cannot 

be in the free variables of t2 and hence x is not a free variable of t and 

the lemma holds for the sub-case.

let If t is of the form let x\ = U in t2, there are two sub-cases. The 

first sub-case is when x is not X\. We know that t\s/x] is let x\ = 

ti[s/x\ in t2[s/x\. Applying the induction hypothesis for t\ and t2 we 

have A, A^r h t[s/x] : T. The second sub-case is when x is x\. We 

know that x is not a free variable of t and the lemma holds for the 

sub-case.

□
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2.6 Examples

This subsection contains some standard utilities for a programming language. 

Most of them will be used in the later chapters of this thesis. Note that 

one can introduce new type constants and constructors using simple type 

declaration and type declaration in a similar way as in ML. For more details 

see Section 7 of the pattern calculus paper [35].

The pairing (binary product) is defined by:

type pair X Y = pair of X and Y.

We might use the usual syntax (rr, y) for the term pair x y and X * Y for the 

type pair X Y. For example, (9, true) is a pair (term) of the type int * bool . 

The booleans are defined by

type bool = true | false.

The infix-operation of conjunction (&&) and disjunction (||) and other op

erations on booleans such as not : bool —» bool can be defined in the usual 

way.

The standard conditional if b then s else t is syntactic sugar for the 

application if_then_else b s t\ where the function if_then_else is defined as

if_then_else : bool —> X —y X —y X =

| true —y ( | s —y | _ -y s)

| false —^ ( | _ —^ | t —y f).
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Based on primequal the generic equality function equal can be defined as

equal : X —> X —> bool =

let rec (equalO : X -» Y —> bool) =

| xq xi —v ( | y0 yi —i► if (equalO x0 yo) then (equalO X\ y\) else false)

| x —t- ( | y —> primequal x y) 

in equalO

Note that when the applications rc0 X\ and yo yi share the same type, their 

components x0 and yo might have different types. So, equal has to be defined 

through equalO of a looser type X —»• Y —»■ bool. We face the same issue 

when defining some other generic binary functions such as generic addition 

and multiplication functions.

To pattern-match against integers as in the function plus bellow, the 

proper integers are abstract datatypes building on the primitive integers. 

The same method is used for floats and characters.

type int = int of primint 

type float = float of primfloat 

type char = char of primchar

In this thesis, primitive datum values are marked with enclosing < • • • >. 

For example, the expression < 9 > represents the primitive integer of value 

9. The corresponding proper integer 9 is then int <9>. Character values 

are marked with enclosing '.. / to avoid confusion with numbers (such as 9), 

normal spacing (blank character), or mathematical symbols. For example,



CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 29

proper character 'a' is then char <'a'>.

Similar to the generic equality function, the generic plus function can be 

defined using primitive operators primplusint and primplusfloat which add two 

primitive integers and two primitive floats respectively in:

plus : X -► X ->• X =

let rec (plusO : X —> Y —» X) =

| int xq —> ( | int y0 —» int (primplusint Xo yo))

| float xo —y ( | float y0 —> float (primplusfloat xo yo))

I Xo Xi ->■ ( I y0 Vi ->■ (plusO xo y0) (plusO xl yx))

| x —» ( | y —y if primequal x y then x else exn) 

in plusO

We might use the usual infix-operation + in the place of the generic plus 

function. For example 9 + 9 is syntactic sugar for plus 9 9. Other generic 

arithmetic functions such as generic multiplication can be defined in a similar 

way to plus. As an example of specialized codes, we add an extra case for 

the multiplication of two complex numbers. Suppose complex numbers are 

defined as:

type Complex = Complex of primfloat and primfloat.

Base on primitive operators primmultint, primmultfloat and primminusfloat 

acting on primitive integers and primitive floats, the generic multiplication
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function can be defined as:

mult :X^X^X =

let rec (multO : X —> Y —> X) =

| Complex xo x\ —¥ ( | Complex yo y\ —> Complex

(primminusfloat (primmultfloat xq yo) (primmultfloat x\ jq)) 

(primplusfloat (primmultfloat x0 yi) (primmultfloat x\ yo)))

| int Xo —> ( | int y0 —» int (primmultint xq Vo))

| float x0 —>■ ( | float y0 float (primmultfloat x0 yo))

I Xi -» ( | yo y\ -t (multo Xo yo) (multO xx yx))

| x —>• ( | y if primequal x y then x else exn) 

in multO

The ability of defining patterns of different types and the applicative pat

tern (such as Xo X\ in the generic equality) give a new form of polymorphism. 

Jay calls it path polymorphism which is a simple and generic way to traverse 

all paths of an arbitrary data structure.

The type of list is defined as:

type list X = nil | cons of X and list X.

The usual syntax for lists is accepted, such as [ ] for the empty list nil and 

[1,2,3] for cons 1 (cons 2 (cons 3 nil)). The common operations of list: head

xThe name was not in the original paper [35], but in later development of the pattern 
calculus, Jay gave it that name.
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and tail are defined in the usual way:

tail : list X —> list X = | cons h t —* t 

head : list X —» X = | cons ht h

The type of string is defined as:

type string = string of list primchar.

The usual syntax for strings is accepted, such as “a6c” for the string 

string (cons <'a!> (cons <'b'> (cons <’d> nil))).

2.7 Representing Data Structures

This section is an overview about, representation of data as discussed in Sec

tion 8 of the pattern calculus paper [35]. It contains some bases for con

structing higher-order functions such as mapping or folding. However, the 

expansions with imperative features do not depend on the representation of 

data. In particular, after this chapter, we do not refer to this section.

A key step in understanding generic functions is to understand the nature 

of datatypes. Using category theory, there is a clear boundary separating 

structure from data [30]. Using the functorial type system [36], a typical 

data type will be represented by the application of a type F to another type 

(or tuple of types) of data X.

Generic functions in the pattern calculus such as mapping, folding and
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zipping employ parametric polymorphism in typing the structure part as well 

as in the data part. For example, one can generalize the function

maplist: (X ->■ Y) ->■ list X ->• list Y 

to function mapl which works not only on list but any structure F:

mapl :{X^Y)^FX^FY

where X and Y are type variables, and F is a structure (type) variable. In 

the pattern calculus, mapl is a special case of a more general function map 

when there is only one sort of data.

As the generic mapping function can act on structures holding several 

sorts of data, we define a datatype arrow as a form of gathering functions 

from one tuple to another.

type arrow has

arrow X Y = onefun of (X —> Y)

or arrow(Xi, X2)(Fi, F2) = bthfun of arrow(X1,Y1) and arrow(X2,l2)

Since all data structures can be represented using a fixed finite set of 

constructors [36], in order to write generic function working on arbitrary 

data type, we just need to give the cases for each constructor in the set. One 

example is the function

map : arrow X Y —>• F X —>• F Y.
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Two of the common uses of mapping are mapl and map2 functions: 

mapl / = map (onefun /)

map2 f g = map (bthfun (onefun /) (onefun g))

For example, mapl (Xx.x + 1) acts on all data structures of integers 

(adding 1 to those). This is an example for another new form of polymor

phism: structure polymorphism. 2

2.8 Conclusion

The pattern calculus gives a new account of both pattern-matching and 

datatypes to provide new approaches for generic programming. With a new 

understanding about pattern-matching, one has the path polymorphism as 

a generic way to traverse arbitrary data structures. Details of path poly

morphism are given in this chapter; as we will try to expand the power path 

polymorphism further in later chapter of the thesis. We also give an overview 

about structure polymorphism which is interesting but we are not going to 

exploit that later in the thesis.

When I was writing this thesis, the pattern calculus (Jay’s research in 

generic programming) has been developed to support further new forms of 

polymorphism. However, due to the time limit, I could not work much 

on the newer version of the pattern calculus; this thesis focuses on path 

polymorphism as in [35].

2Again, the name was not in the original paper, but appeared in later development of 
the pattern calculus.



Chapter 3

Restricting Polymorphism to 

Functions

This chapter introduces some modifications of the pattern calculus that will 

better support the imperative features considered in the next two chapters.

3.1 Introduction

Parametric polymorphism provides a tool to write reusable and modular 

programs. Assignment on locations provides an effective and efficient way 

to program. The combination of parametric polymorphism and assignment 

promises a great tool for programming. A large amount of work, most no

ticeably, the ML family of programming languages, covers the combination.

Unfortunately, the combination is not very straightforward. Based on 

a purely functional setting, polymorphism allows one term to be used with 

different types. In an imperative setting, the uses of one identifier (term

34
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variable) usually refer to one fixed memory location. As one fixed memory 

location commonly cannot accommodate different types, the two ideas of 

polymorphism and inplace update cannot freely coexist without compromis

ing type safety. The following lines of code (in an OCAML syntax [51]) help 

to illustrate the point further b

let x = ref [ ] in 

x := true :: !x;

(List.hd \x) + 9;;

The let expression binds i to a reference cell initialized to an empty list of 

polymorphic type list of X. If the polymorphism is unconstrained, then X can 

be instantiated to different types. The assignment in the body instantiates 

X with boolean type while the addition in the body (in the third line of 

the code) instantiates X with integer type. Evaluating the combination will 

result in a run time type exception when the boolean true is added to the 

integer 9.

The problem is due to having some updatable data being polymorphic. 

However, there is no pressing need for any updatable data to be polymor

phic. In a functional language based on A-calculus [15], every term has the 

nature of functions so they are all potentially polymorphic. Since the expres

sive power of polymorphism in a functional language is all in polymorphic 

functions; the existence of polymorphic data structures, such as the empty 1

1In OCAML, ref := and ! are three operators for creating, updating and getting the 
value of reference cells.
The semi-colon punctuation (;) is the infix operator for sequential composition.
The double-colon (::) is the infix operator for creating a list from a head and a tail, List.hd 
is a function return the head of non-empty list.
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list, is incidental. From an imperative viewpoint, functions are different from 

data and inplace assignment acts only on data. Combining the two ideas, we 

can set up a natural boundary between (potentially) polymorphic functions 

and updatable data structures. Hence, to solve the typing problem of com

bining parametric polymorphism and updatable data it suffices to separate 

functions and data in the type system.

3.2 Value Polymorphism

In this section, we introduce a modification of the type rules to naturally 

support parametric polymorphism and imperative features. The rules sup

porting polymorphism are those for typing let-terms and fixpoints.

The let typing rule of the original pattern calculus (in Figure 2.2):

A, AijTb s : 5 A;L,x -.VA^SP t:T 

A; T h let x = s in t : T

gives the variable x a polymorphic type by using the type scheme VAi.S.

We are going to restrict the use of this rule; for example when s is an 

extension (known to be function). For the default case, we introduce a new 

monomorphic let rule that simply gives x the monomorphic type (scheme) 

S (without quantification).

A;Tbs:S A;T,x : S P t : T

A; T h let x = s in t : T
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Term contexts (T)

Patterns (p)

Ah 
A; h

A; T h AhjT
A; T, x : r h

x 0 r

X‘,x:X\-0x:X A; h0 c : T

A ]T\-0p:T Ai; Ti h0 px : Tx A, Ai, X; T, rx h

c : VA.T

Terms (s,t)

A, Ai;fr,x>Fi h0 p pi :

A; T h T(x) = VAi.T

v — U{Ti -+X,T)

A; T h x : aT cr : Ai —>• A 

A; T h C: VAi.T
A; r h c : aT <7 : Ai —>• A

A;T h s : T ->5 A; T h t : T 
A;r h s t : S

A; T h t : T —>■ S A^ Ti h0 p : T\ A, Ai; ur, vFi h s : vS 
A; T h at p use s else t : T —» S

A; r h t : T —> S' Ai; rx hQ p : Ti A^^.Tjh

v = U(T1,T)

A; T h at p use s else t : T —» S 

A, Ai; T h s : S' A;T,x : VAi.Sh t :T

U(TuT) t

A; r h let x = s in t : T

A; T h s : S A; T, x : S h t : T 
A; T h let x = s in t : T

A,Ai;r,x : VAi.T h t :T

s is non-expansive

A, Ai; T h fix (x, t) : T
t is non-expansive

A;r,i:Thi:T 
A; T h fix (x, t) : T

Figure 3.1: The Pattern Calculus Restricted to Value Polymorphism
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This idea is the same as the “value polymorphism” approach [69] (re

viewed in Chapter 1) that limits polymorphism for only non-expansive terms. 

We will use the same term here. A term is called non-expansive if it is an 

extension or a variable. As discussed above, we could define non-expansive 

to be extensions only but the addition of variables is proved to be convenient 

without compromising safety. In fact, one could try to add more terms to be 

non-expansive but we did not find any convincing need for more.

In the expression let x = s in t, if s is non-expansive, then x is treated 

polymorphically in t, in the default case, x is treated monomorphically in t.

A,Ai;rhs:5 A;r,x :VA1.S'ht:T _ _
------------------------------------------------------  s is non-expansive

A; T h let x = s in t : T

A similar modification is for the rule for fix-points. One polymorphic 

rule for fix from the original pattern calculus now becomes two rules. The 

polymorphic one is used only for non-expansive terms:

A,A1;r,i:VA1.Thi:T
------------------------------------t is non-expansive

A, Ai; r h fix (x, t) : T

The default is used the monomorphic rule:

A;T,x:TLt:T 

A; T h fix (x, t) : T

In most, as functions can be used polymorphically, so can data structure. 

Variables bound to data are free to be used polymorphically. For example,
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OCAML is able to type the following lines of code

let x — [ ] in (0 :: x, true :: x)

let x = [ ] in x :: x

in which the empty list is used polymorphically by defining it to be one of the 

values. We could do the same here in our system by declaring the empty list 

(or a class of term containing the empty list) to be non-expansive. However, 

we choose not to do so, and this is no loss. Data (non-function terms) 

with the potential of having more than one type usually contains little real 

information, such as the nil list or vector of length zero. In our viewpoint, 

limiting the polymorphism on data does not reduce the expressive power of 

the language in any significant way. By giving up polymorphism only on 

non-function terms, we can add the imperative features into the system in a 

simple and fully type safe way.

3.3 Conclusion

Parametric polymorphism can be safely integrated into an imperative system 

in a simple way. The key point is to separate extensions (functions) which 

are potentially polymorphic from updatable terms. We use the polymorphic 

let rule for non-expansive terms only, and use the monomorphic let rule for 

other terms. The two rules for let expressions (and the two for fix-points) 

are the way to combine polymorphic functions and monomorphic updatable 

data into one small simple system.

In this chapter, we apply value polymorphism to the pattern calculus.



CHAPTER 3. RESTRICTING POLYMORPHISM TO FUNCTIONS 40

In fact, we have not yet introduced any complete system with both of these 

features, i.e. we have not introduced any formal definition of location nor 

update. The reason is that we do not yet want to commit the idea into a 

specific system. As a result, it can be used in different systems in flexible 

ways. In the next two chapters, one can see how the idea can be used 

for systems where locations are built in a functional way as well as in an 

imperative way.

In the research, I spent some times exploring alternative approaches to 

value polymorphism. One interesting observation is that the typing might be 

used to separate functions which are potentially polymorphic from updatable 

terms. The combinatory type provides a sound foundation for the separation. 

I would have worked on this approach for longer if time permitted. With 

some small modification, the new idea can be used in other combinations of 

parametric polymorphism and updatable locations. In particular, one might 

modify ML to use it so that the imperative features can be contained in a 

clearer and more elegant type system.



Chapter 4

Location Types

4.1 Introduction

One of the great strengths of functional programming languages is that it 

relieves the programmer of the need to manage memory, which helps make 

programs shorter and easier to reason about. The price to be paid is that 

their compilers must take a conservative approach to memory allocation, 

often allocating new heap-space and garbage collecting the old values when 

inplace update would have been perfectly safe.

A significant effort has been made to improve the efficiency of this process. 

For example, types in compilation [6, 8, 10, 20, 68] uses type information to 

ensure the safety of some inplace updating. This works well for integers, 

floats and tuples built of such simple types, but does not handle recursive 

types such as lists where the type does not determine the shape of its values. 

Monitoring list lengths etc. may be attempted using sized types [25, 53] or 

other dependently-typed systems, e.g. [72] with the aim of extracting compile

41



CHAPTER 4. LOCATION TYPES 42

time information.

This chapter adds imperative features to the pattern calculus. All the 

theory in this chapter is backed up by an implementation which is a version 

of FISh2 with imperative features. There are some choices in designing an 

imperative system. The most important choice for the system in this chapter 

is that there will be a separate class of location types which are distinct from 

the existing functional types as in ML. This choice gives the name of this 

chapter; the next chapter will explore an alternative in which locations share 

the same type with their values.

The system is built in two steps. First, we add to the pattern calculus 

the notion of atomic locations and operations on them. Second, we introduce 

location constructors. Using location constructors, constructed locations are 

built in the same way as constructed data are built in the pattern calculus. 

Generic operations on locations using path polymorphism can be defined by 

pattern-matching on these location constructors. Other imperative features: 

while-loops and for-loops; vector types; generic output are also added to the 

system to improve usability.

Using path polymorphism from the pattern calculus, we extend primi

tive assignment on locations to generic assignment on constructed locations. 

Defining generic assignment in this way, inplace update is used whenever it 

is reasonable to do so, based on matching the structure of the location with 

that of its new value. Of course, the inplace update cannot be applied when 

the structures (shapes) are different. We suggest the use of locations of lo

cations - which are called references in this chapter, to be assured of safety 

when the inplace update is not appropriate. One of the main aims of this
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chapter is to allow assignments to determine at run-time whether to assign 

inplace or not.

Two sets of examples are provided. Those in Section 4.5 show that the 

system has all the expressive power of the imperative features in systems such 

that ML. Those in Section 4.9 illustrate some of the novel expressive power 

of the system. Bubble-sort shows how a space efficient sorting program can 

be written using higher-order functions and pattern-matching. The program 

converge shows how to iterate a function on a data structure while using 

space efficiently.

4.2 Locations

This section adds to the pattern calculus some primitive imperative features 

similar to the style of ML [63]. The features include: a command type; 

location types; the skip constant; and primitive operations to create new 

locations, to get the values of locations and to assign to locations. A key point 

is that the primitive assignment is treated as an atomic built-in operation, 

simple to describe but extravagant with space in some cases.

The work in this section is based on the pattern calculus with value 

polymorphism as described in the previous chapter. The definition of types, 

terms and type derivation rules are unchanged.

First, the new type constant

comm
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is equipped with a term constant

skip : comm.

The execution of the command skip has no (side) effect. We decide that 

skip is a constructor so that it can be pattern-matched. One might choose to 

identify the type unit with the command type (and identify the constructor 

un with skip). However, our choice here is to make them distinct so that the 

addition of imperative features is separated from the representation of data.

One might choose to have sequential composition as a new term constant 

of the system. However, our choice is to define sequential composition as an 

extension to reduce the number of new constants in the system:

(seq : comm —>• X —> X) = | skip —>• ( | y —¥ y) .

We may use the usual syntactic sugar x; y for seq x y.

Next, considering assignable locations, each type T has the associated 

location type

loc T

of locations that store (assignable) values of type T. There is no restriction 

on the type T so we can have locations that hold any terms, including other 

locations and functions e.g. loc int, loc (list int), loc (loc int) and loc (int —> int) 

are all types.

We also introduce three new constants for creating a new location with
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a given value; getting the value from a location; and updating the value of a 

location:

primloc : MX.X -» loc X 

primval : VX.Ioc X —¥ X 

primassign : VJA.Ioc X —> X —y comm.

A term of the form primloc t creates a new location whose initial value is that 

of t. A term of the form primval t represents the value stored at the location 

t. A term of the form primassign 11' updates the location t with the value of 

t'. The calculus does not specify how locations are to be deleted; this must 

be handled elsewhere e.g. by some form of garbage collection [11],

We also introduce a new constant for printing constructors (especially 

primitive datum constructors)

output-basic : VX.X -» comm.

Detail description about the function is given later in this chapter when 

discussing about generic output.

4.3 Evaluation

This section describes the evaluation rules of the system.

The values (meta-variable v) are given by:

v ::= x | at p use s else t \ b v\ ... Vk {k < arity(6) if b is an operator}.
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That is, a value is either: a term variable; an extension; a constructed term 

whose arguments are all values; or a partially-applied operator whose argu

ments are all values. For example, primassign x and primplusint < 9 > are 

values but primassign x 9 and primplusint <9> <5> are not.

A store (meta-variable E) is a partial function from term variables to 

values. We use the syntax E,x i-» r to update the store E with a new 

mapping x v (if x is already in the domain of E then the new value 

replaces the old one). We use dom E for the domain of a store E.

An evaluation context (E, t) is a pair of a store E and a term t. Evaluation 

employs a big-step operational semantics [65], where evaluating to a value 

is defined directly from the evaluation rules. Evaluation rules are expressed 

using judgements of the form

(E,*)=»(E»

where (E,t) and (S', v) are evaluation contexts and v is a value.

The evaluation rules are given in Figure 4.1. Note that the order of 

the rules is significant and these rules need to be applied in order. The 

significance of the order in evaluation rules makes two reduction rules for 

pattern-match failure to be handled by one evaluation rule. Note that the 

store gets a passive role in the first ten rules. Most of these rules are derived 

from the reduction rules of the Pattern Calculus (Figure 2.3). If t > t' is 

such a rule, then as a first approximation we have the evaluation rule

(S,Q=»(E»
(E,f)^(E',u)
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(E,t[fix (x,t)/x]) => (E',n)
Rule 1 (E,fix (x,t)) =$■ (E',u)

(E, s) => (E', vo) (E',t[v0/xl) => (Z",vi)
Rule 2 (E, let x = s in t) =$■ (E", ux)

(E,sKx])^(E',u1)
Rule 3 (E. (at x use s else t) v) =$■ (E',ui)

(E,s)^(E»
Rules 4,5 (S, (at c use s else t) c) => (S', w)

(E, (at pi and p2 use s else t) ti t2) =>• (E',v) ti t2 is a value
(E, (at pi p2 use s else /) (fx t2)) => (E',u) h is a constructed term

(S, t v) =» (E',vx)
Rule 6 (E. (at p use s else t) v) => (S', ui)

v headed by an operator
Rule 7 (E, v Vi) =3- (E, Vi) Vi headed by exn

Rule 8 7 7 7 \ , 7 \ d do dn-\ dn(S, d do • • • an_i) (S, dnJ

Rule 9 (E, primequal c c) =>■ (E,true)

Rule 10 (E, primequal i>x r>2) =>■ (E, false)

Rules 11,12,13 (E, primloc v) ==> (E, u >—> v, u) U ^res^

(E, primval u) =>• (E, E(w)) u c UUMIAJ (E, primval v) (E, exn v)

Rule 14 v uG domE(E, primassign u v) =>• (E, u n, skip)

Rule 15 (E, primassign n0 Vi) =$■ (E,exn v0)
------ :—:---:------ ———- outDut v if v is a constructorRule 16 (E, output-basic v) => (E, skip)

Rules 17,18 (E,n) =» (E,n)

(E, to) => (E;, vq) (E',tx) => (E",ni) (E",no vi) =>• (E'",n2) t0,ti are not
(E,t0 ti) =4> (E'",^) both values

Figure 4.1: Evaluation Rules with Location Types
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The correct interpretation typically involves evaluation of sub-terms too.

The first six rules involve evaluation of let-terms, fix-terms and applica

tions of extensions to terms. The seventh rule is the standard approach to 

evaluate an application to an exception. The eighth rule summarizes the eval

uation of fully-applied datum operators. The next two rules are to evaluate 

the applications of primequal to two terms.

The next five rules are to evaluate terms involving the imperative con

stants primloc, primval and primassign which may involve modifying and look

ing up the store.

The last two rules are standard rules about the evaluation of value and 

application of terms. A value is evaluated to itself. An application to t\ is 

evaluated by first evaluating to and then evaluating t\ follow by evaluating 

the application of the two results.

The evaluation rules do not constrain the implementation of storage op

erations. One expects that assignment of datum values such as integers or 

floats will be performed inplace and that assignment of functions will be by 

allocating fresh memory. The delicate case is an assignment of structured 

data, such as a list. This will be addressed in sub-section 4.5.1.

4.4 Properties of Evaluation

We will show that evaluation preserves typing. To do so, it requires agree

ment between the types of variables as understood in the term context and 

the types of their corresponding value in the store.

When referring to some particular known store S, we call a term variable
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a store variable (meta-variable u) if it is in the domain of E. We decide that 

all store variables have monomorphic (trivial) type schemes.

We define a new property about the relation between the typing of the 

store variables and of their values. The judgement A; F l~£ E asserts that 

the store E is well-typed, in context A; T. For a store E with n variables 

{ui i—> ui,...,un vn}, A; T hE E means that A;T h and A; F b Wj : Tj. 

In other words, in the type context A; T, a store E is called well-typed if 

the domain of E is a subset of the domain of T and each store variable in 

T must be of the location type corresponding to the type of its value in E. 

Note that there is no restriction on using a store variable in its value or in 

value of another store variable. That allows the ability to define recursive 

and mutually recursive locations in the system. An example of recursive 

locations is in Sub-Section 4.5.2.

Note that the type context has to expand during the evaluation to cope 

with the new store variables. In particular, the evaluation of primloc v results 

in a new store variable u with the associate initial value v. To type the result 

of the evaluation, we need to expand the type context with the new term 

variable u. The type (scheme) of a store variable u is initialized to be the 

type derived from the type of its initial value v. With the evaluation rule

(E, primloc v) => (E, u u, u) u fresh
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the type scheme of u is given by the location type of the type of v.

A; T bE £ A;T\-v:T 
-------------------------------------u fresh
A; T, u : loc Thj;

By that choice of extending the type context, if the store is well-typed before, 

then clearly it remains well-typed after the evaluation of primloc v.

We introduce a new form of typing rule for an evaluation context. The 

judgement A; T b* (£,f) : T asserts that the store is well-typed (A; T bE £) 

and t has type T in the context of A; F (A; V b t : T).

Theorem 2 Evaluation preserves typing. That is, if A; T b* (£,f) : T and 

(£,t) (£',u) then there is a context Ti such that A;r,Ti b* (£',u) : T.

Proof: The proof is by induction on the structure of the evaluation of 

(£,f). In all the cases from Figure 4.1, apart from those involving primval, 

primloc and primassign, the store has a passive role. So, the proof corresponds 

to the cases for the proof of subject reduction in the pattern calculus [35]. 

Note that the proof uses the substitution lemma, (Chapter 2, Lemma 1). We 

include here the proofs for Rules 1 and 2, as the typing rules of these cases 

have been changed by “value polymorphism”, Rules 11,12 and 14, as these 

involve the store.

Rule 1
(£, f[fix (x,t)/x\) => (T',v)

(£,fix (x,t)) => (£',u)

From the assumption A; T bj (£, fix (x, t)) : T it follows that A; T b^ £ 

and A;f b fix (x,t) : T. There are two possible cases for typing of
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fix-points.

If the polymorphic fix rule is used, there must be a derivation

A2,A1;r,x : VAj.T b t : T where A2,Ai = A. Let a be a 

renaming substitution such that a : Ai —> A3 and A, A3; T is 

well defined. We can deduce that A;T,a: : VA3.T b t : oT and 

A, A3;T b fix (x,t) '■ T. Applying the substitution lemma we 

have A, A3; T b f[fix (x,t)/x\ : <jT. Renaming the variable in A3 

back to Ai by a-1 we have A2, ApT b i[fix {x,t)/x} : a~1aT. So 

now we know that A; T b* (E,t[fix (x,t)/x\) '■ T. Combining it 

with the induction hypothesis on the evaluation of t[fix (x,t)/x\, 

we know that there is r\ such that A; T, Tx bj (S', v) : T.

If the monomorphic fix ride is used, there must be a derivation

A; T, x : T b t : T. Applying the substitution lemma we have 

A, T b f[fix (x,t)/x\ : T. Combining it with the induction hy

pothesis on the evaluation of f[fix (x,t)/:r], we know that there is 

Ti such that A; Rid b* (E',u) : T.

Rule 2
(E,s)^(E>0) (E',fR0/3:])^(E»,u1)

(E, let x = s in t) =4- (E", Vi)

From the assumption A; T bj (E, let x = s in t) : T it follows that 

A; T bs E and A; T b let x = s in t : T. There are two possible cases 

for typing of let-expressions.

If the polymorphic let rule is used, then s is non-expansive. From 

the definition of non-expansive we know (E, s) =>■ (E, s) so E' is
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£ and wo is s. From the polymorphic let rule, there are some Ai 

such that A, Ap T b s : S and A; T, x : VAi .S b t : T. Using the 

substitution lemma for t and s we know that A, Ap T b t[s/x] : T. 

Since Ai is not needed for typing T (in the type of t) we have 

A,T b t[s/x\ : T. That implies A;T bj (£,t[s/a;]) : T. Applying 

the induction hypothesis to the evaluation of (£',t[wo/x\) we can 

conclude that there is Ti such that A; T, Ti bj (£", V\) : T.

If the monomorphic let rule is used, we have A; F b s : S and A; T, x : 

S b t : T and so A; T bj (£, s) : S. Applying the induction 

hypothesis to the evaluation of s, we can conclude that there is 

Tj such that A;r,Ti bj (£',r>o) : S. So we have A;T, Tx b^ £'. 

Moreover, using the substitution lemma for t and Vo we know that 

A;r,ri b t[vo/x] : T. That implies A; T, Tj bj (£', t[vo/x}) : T. 

Applying the induction hypothesis to the evaluation of (£', t[v0/x]) 

we can conclude that there is T2 such that A; T, Tj, T2 bj (£", ui) : 

T.

Rule 11
(£, primloc v) => (£, u i-> v,u) U ^res^

From the assumption A; T bj (£, primloc v)) : T we know that £ is a 

well-typed store, and that T is of the form loc T' for some T' which is 

a type for v. With the typing rule for new store variable (u), we have 

£, u v is also well-typed store in the context A; T, u : loc T' and u 

can take the type loc T' and so A; T, u : T bj (£, u i-> v, u) : T
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Rule 12
(E, primval u) =>• (E, E(u)) U ^ ^°m ^

From the assumption that E is a well-typed store and the typing of 

primval the claim holds.

Rule 14
(E, primassign «»)^ (E, u i—> v, skip) U ^ ^°m ^

From the assumption that E is a well-typed store it follows that A; T F 

u : loc T and u is in the domain of E since E is well-typed. From the 

well-typedness of primassign u v we can deduce that A;T F v : T. So 

the updated store E, u M- v remains well-typed. Moreover, the types 

of primassign u v and skip are both comm, so the claim holds.

□

A store E is called closed if for all variables u in the domain of E, all free 

variables of E(tt) are in the domain of the store E. The evaluation context 

(E, t) is called closed if E is closed and all free variables of the term t are in 

the domain of E.

Lemma 3 Evaluation preserves closedness. That is, suppose there is an 

evaluation (E,t) (E',u) and (E, t) is closed then (E',u) is also closed.

Proof: The proof is by induction on the structure of evaluation.

We do a case analysis on the evaluation rules in Figure 4.1. Most of 

the cases are straight forward using the induction hypothesis. The more 

interesting cases are for Rules 1,2,11 and 12. Let D be the set of all term 

variables in the domain of E.
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(E, t[fix (x,t)/x]) => (E',w) 
(E, fix (x, t)) =>• (S', v)

From the assumption about the closedness of (E, fix (x,t)) it follows 

that fv(t) — {x} C D. We can deduce that (E,t[fix (x,t)/x\) is also 

closed. Using that with the induction hypothesis on the evaluation of 

(E,f[fix (x,t)/x\) we can conclude that (E',w) is closed.

Rule 2
(E, s) =» (E>0) (E',t[v0/x}) =» (E",m) 

(E, let x = s in t) =>■ (E", vi)

From the assumption about the closedness of (E, let x = s in t) it 

follows that (E, s) is closed. Applying the induction hypothesis on the 

evaluation of (E,s) we have (E',w0) is closed. So (S', t[v0/x\) is closed 

and applying the induction hypothesis on the evaluation of that term 

we have (E",Wi) is closed.

Rule 11

(E, primloc v) => (E, v,u) u fresh

From the assumption about the closedness of (E, primloc v), all free 

variables of v are in the domain of E and since u is a term variable in 

the domain of the store E, u •—>• v so the evaluation context (E, u M- v,u) 

remains closed.

Rule 12

(E, primval u) =>• (E,E(it)) u G domE

From the assumption that (E, primval u) is closed, and u is a term
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variable in the domain of E, we know that all free variables in E (u) are 

in the domain of E so (E, E(it)) is closed.

□

Combining this above lemma with the previous theorem we can claim 

that evaluation preserves well-typedness and closedness. A closed and well- 

typed term is called a program. The following theorem discusses the property 

of evaluation on programs.

Theorem 4 Evaluation of programs never gets stuck. That is, if we have a 

derivation A; T \~t (E,t) : T and (E,t) is closed then there is an evaluation 

rule where the left hand side of the conclusion matches with (E,t).

Proof: Note that although the order of evaluation rules is significant, we need 

only find a single rule that can be applied.

The proof is by case analysis on the structure of t, and is mostly based 

on the definition of values and the evaluation rules in Figure 4.1.

When t is a variable, constant, or extension then t is a value. We could 

always apply the second last rule which states that any value evaluates 

to itself.

When t is a fix point construction, then the first rule applies.

When t is a let-expression, then the second rule applies.

The only case left is when t is an application. As one could try and apply 

the last rule when at least one of the parts of the application is not 

a value, without loss of generality, now we can assume that t has the
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form vo V\ where Vo and v\ are values. Now consider the cases for the 

choices of v0.

If Vo is a variable, then the closed condition of the evaluation context 

forces u0 to be a variable in the domain of the store and the well- 

typedness of the store forces it to be of location type. However, 

the function part of an application (always of function type) can 

never be of location type, therefore this case never happens.

If Vo is an extension, then Rule 6 applies.

If Vo is headed by a constant b then t is also headed by b. By the well- 

typedness of t and the definition of values (as vo,V\ are values), 

there are two cases of such a term t. If t is a value, we can apply the 

rule which states that any value evaluates to itself. Alternatively, 

if t is a fully-applied operator whose arguments are all values, we 

can apply one of the Rules 7,8,10,11,13,15 and 16.

□

4.5 Examples for Primitive Imperative Fea

tures

This chapter as presented so far is an expansion of the pattern calculus with 

primitive imperative features. This section contains some small examples 

for that expansion. The main aim of the examples is to illustrate that the 

imperative features behave in the usual ways such that those of ML.
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4.5.1 Updating Lists

Previously, we have defined a type of list with syntactic sugar [1, 2, 3] for the 

list of three number 1, 2 and 3. Now consider the example of creating and 

updating lists

let x — primloc [1] in 

primassign x [2]; 

primassign x [8,9].

Clearly, the first assignment could be inplace, but any simple implementation 

of primassign will miss this opportunity since it will not be able to distinguish 

this case from the second, shape-changing assignment.

4.5.2 Linked-Lists

This subsection defines a typical imperative structure, linked-list:

type link X = link of X and loc (link X).

A linked-list of type X contains a term of type X and a location linked to 

another linked-list of X. Some examples of linked-lists are: 11

11 = primloc (link 1 exn)

12 = primloc (link 2 l\)
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One can change l\ into a recursive (self linked) list by:

primassign l\ (link 3 l\).

In functional terms, l\ is now a list holding an infinite number of integers 

3.

4.6 Constructed Locations

This section introduces location constructors into the system. With location 

constructors, structured locations are built out of smaller locations in the 

same way constructed terms are built. Using pattern-matching on location 

constructors, generic functions for locating, valuing and assigning are defined 

in the source code based on their primitive versions, just as the generic 

function plus is based on datum addition. Inplace update is possible when the 

structure of the location is matched by that of its new value. This matching 

is based on comparing constructors.

For pattern-matching against locations, we introduce a new constructor 

for creating location type:

conloc : VX.X -4 loc X.

Note that even though the two constants primloc and conloc have the same 

type, their roles are quite separate, primloc is not a constructor but a built-in 

term for creating directly updatable locations (associated with some variable 

of the store), conloc is a constructor to be applied to other constructors.
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A term built by conloc is a constructed term that can be used in pattern

matching and it does not directly associate with any variable of the store. 

Hence, the use of primval or primassign on a term constructed by conloc results 

in an exception.

As larger terms are built by application of smaller terms, for constructing 

larger locations, we introduce a new built-in constructor for converting a 

location of an application to the application of locations:

locap : VX, Kloc (X -> Y) -> loc X -> loc Y.

For each constructor c of type X —>■ Y, we will create the corresponding 

function of type loc X —» loc Y in two steps: the first step is to create the 

location constructor conloc c of type loc (X —> F); the second step is to use 

locap to convert the location of a function to the function between locations. 

For example, the constructor:

int : primint —>■ int

has the corresponding location constructor

locap (conloc int) : (loc primint) —»• loc int.

For example, the proper integer 9 which is a constructed term:

int <9> : int
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has a corresponding constructed location term of the form

locap (conloc int) (primloc <9>) : loc int.

For a constructor of n (zero, one or more) arguments, we need to apply locap 

n times to the location constructor to create a function between locations. 

Take our favourite constructor of two arguments bind as an example:

bind (ths 1) [2] : B I list int

combines two smaller structures of integers ths 1 and the list [2]. The two 

smaller primitive locations primloc (ths 1) and primloc [2] are combined by 

the location constructor conloc bind to get:

locap (locap (conloc bind) (primloc (ths 1))) (primloc [2]) : loc(£? / list int).

The use of location constructors seems to be long and hard to read but, in 

many cases, programmers can avoid writing code containing conloc or locap 

as they can use generic functions that we are going to provide instead. With 

all the location constructors defined, now we can build generic functions 

acting on locations. The generic function loc defined in Figure 4.2 creates 

constructed locations for constructed terms; and creates primitive locations 

for primitive datum types; it applies conloc otherwise e.g. for functions, com

mands and locations themselves. It is a simple use of path polymorphism to 

create constructed locations in a generic way.
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loc : X —y loc X
int / ■ locap (conloc int) (primloc t)

| float t —> locap (conloc float) (primloc t) 

| char t —>■ locap (conloc char) (primloc t)
| t\ £2 -* locap (loc ti) (loc £2)
I t —> conloc t

Figure 4.2: Generic Function loc

For example,

loc (bind (ths 1) (ths 2))

evaluates to

locap (locap (conloc bind) (locap (conloc ths) (locap (conloc int) «i))) 

(locap (conloc ths) (locap (conloc int) U2))

where ux and 112 are fresh locations holding the primitive integers < 1 > and 

<2> respectively.

Here is a bigger example. The concrete representation of the list [9] is 

tag nm(cons) bind (ths 9) (tag nm(nil) (evr un)), and so

loc [9]

evaluates to

locap (locap (conloc tag) (conloc nm(cons)))

locap (locap (conloc bind) (locap (conloc ths) (locap (conloc int) u)))

(locap (locap (conloc tag) (conloc nm(cons)))(locap (conloc evr) (conloc un)))
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where u is a fresh location holding the primitive integer <9>.

Similarly, the generic valuation function val is defined in Figure 4.3. It is 

the inverse of function loc.

val :\ocX =
| locap (conloc int) t —y int (primval t)
| locap (conloc float) t —>• float (primval t) 

| locap (conloc char) t char (primval t)

| locap ti t2 —> (val fi) (val t2)

I conloc t —> t

Figure 4.3: Generic Function val

For example,

val (locap (locap (conloc bind)(locap (conloc ths) (locap (conloc int) Mi))) 

(locap (conloc ths) (locap (conloc int) u2)))

(where u\ and u2 are fresh locations holding the primitive integers < 1 > and 

< 2 > respectively), evaluates to

(bind (ths 1) (ths 2)).

Here is a bigger example,

val (locap (locap (conloc tag) (conloc nm(cons)))

locap (locap (conloc bind) (locap (conloc ths) (locap (conloc int) «)))

(locap (locap (conloc tag) (conloc nm(nil)))(locap (conloc evr) (conloc un))))

(where u is a fresh location holding the primitive integer <9>), evaluates to
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assign : loc X —» X —> comm =
let rec (assignO : loc X —>■ Y -» comm) =

| locap (conloc int) x —> ( | int y —v primassign x y)

| locap (conloc float) x —> ( | float y primassign x y)
| locap (conloc char) x —>■ ( | char y primassign x y)
| locap xo x —> ( | y0 y —> assignO rr0 yo', assignO x y)
| conloc x —} ( | y —y if primequal x y then skip else exn) 

in assignO

Figure 4.4: Generic Function assign

the list

[9].

A term is called pure-data if it is a constructor or an application of two 

pure-data terms. As primval is the reverse of primloc; val is the reverse of loc.

Lemma 5 If t is a pure-data term then val (loc t) evaluates to t.

Proof: The proof is by induction on the structure of t. The first case is when 

t is a constructor c. We know that loc t evaluates to conloc c; and val (loc t) 

evaluates to c. The second case is when t is the application t\ t2- If t is 

a proper integer, float or character, the proof follows the first three lines of 

codes in the functions loc and val. If t is of other form, then we can apply 

the induction hypothesis on ti and t2 and then the proof follows. □

The generic assignment function assign is defined in Figure 4.4. It follows 

the same basic pattern as the generic functions loc and val but takes two 

arguments. When a location was created by primloc then the assignment on 

that location invokes primassign. Otherwise, assign will attempt to match the 

location constructor with that of the new value. The matching may fail in two
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ways: first, one of them is an applicative term and the other is not; second, 

they are distinct constructors. Note that it is not possible to use primassign 

in such cases, since primassign applies only to primitive locations. The reason 

for assign to be defined through assignO of a loose type loc X —> Y —>■ comm 

is that the applications Xq x and yo y might share the same type while their 

components x0 and y0 have different types. It is the same issue when we 

define other generic binary functions like equality or plus functions.

When the assignment failure exn occurs, maybe some parts of the loca

tion have been assigned to some new value. For example, the assignment 

assign (loc [1, 2]) [9] updates the first element of the list by 9, and then fails 

when updating the second element. We decide not to back track to recover 

the old value held in the location. We do acknowledge that might make some 

programs harder to reason about. One way to avoid the failure is to check 

the shape before doing the assignment. If the shapes of the location and the 

new value correspond then the assignment is going to succeed and vice-versa. 

The generic function for checking the shapes is in Figure 4.5.

As with generic plus or assign, from shapecheckO, one might define another 

function shapecheck with more restricted type loc X —> X -4 bool as

(shapecheck : loc X —>• X —> bool) = shapecheckO

Here is our previous example in Subsection 4.5.1 modified to use generic
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(shapecheckO : loc X —¥ Y —> bool) u v = 
match (tt, v) with 

| (locap (conloc int) x, int y) —>• true 
| (locap (conloc float) x, float y) —> true 
| (locap (conloc char) x, char y) —>■ true 
| (locap xq x, y0 y) ->

shapecheckO x0 yo && shapecheckO x y 
| (conloc x, y) —> primequal x y 
I _ —>■ false

Figure 4.5: Shape Checking Function

operations instead of primitive ones:

let X — loc [1] in 

assign x [2]; 

assign x [8, 9].

Now the first assignment is inplace, as desired, but the second assignment 

will fail, since the structure of nil (coming from the tail of value x currently 

holding) will not equal to the structure of [9] (coming from the list [8,9]).

4.7 Reference Types

So far, we have a primitive assignment that avoids failure by using fresh 

memory, and a generic assignment that updates inplace, but may fail if the 

shapes disagree. These two can be combined on locations of locations (or 

references) to produce an assignment operation that never fails but is inplace 

when possible.
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(ref : X —> ref X) x = primloc (loc x) 
(refval : ref X —> X) = val (primval x) 
(refassign : ref X —>■ X —» comm) x y = 

match (assign (primval x) y) with 
| skip -4 skip
| exn -4 primassign x (loc y).

Figure 4.6: Functions on References 

The type of references of type T is loc loc T also written as

ref T

Basic functions on references are defined in Figure 4.6. refassign will perform 

inplace update if possible, but defaults to primitive assignment otherwise.

It is convenient to have some syntactic sugar for operations on locations 

of locations: let \x denote refval x; and x y denote refassign x y. Here is 

our earlier example which is modified to use references:

let x = ref [1] in

x := [2]; 

x := [8, 9].

Now the first assignment is inplace and the second assignment is by primitive 

assignment on the outer location.
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4.8 While-Loops and For-Loops

Since we already have general recursion in the language, while-loops and 

therefore for-loops could be built using tail recursion. The while-loop

while tb do tc done

that repeatedly executes command tc till the boolean R becomes false is 

syntactic sugar whileloop R tc. Where the recursive function whileloop is 

defined as:

(whileloop : bool —» comm —>■ comm) R tc

lot rec f x = if R then (tc\ f x) else skip in / skip

Similarly, the for-loop

for % — n to m do tc done

that repeatedly executes command tc for each i in the range of integer from 

n to m could be seen as syntactic sugar of a function application where the 

function is built on while-loop:

(forloop : int —» int —>• (int —> comm) —> comm) n m tc = 

let i = ref n in whileloop (H < m) (tc !i; i := H + 1)

Obviously, these for- and while-loops can be optimized. Details about 

that will be discussed later in the section about the implementation.



CHAPTER 4. LOCATION TYPES 68

4.9 Examples

This section uses some examples to illustrate how higher-order functions 

and pattern-matching can be combined with inplace update, user-control of 

memory and generic functions to produce short, expressive, space efficient 

programs.

4.9.1 Bubble-Sort

Bubble-sort 1 works by first sorting the tail and then bubbling the head to its 

correct position. Here is a purely functional algorithm. First one can define 

a function that bubbles the head into its correct position.

(funbubble : (X -> X -> bool) -* X -> list X -)• list X) g x =

| nil —> [re]

| cons h t —y if g x h then cons h (funbubble g x t) 

else cons x (cons h t)

The next part is the main function for sorting:

(funbubblesort : {X —> X —» bool) —> list X —> list X) g =

| nil —> nil

| cons ht funbubble g h (funbubblesort g t)

Of couse, we can build funbubble as an application of a generic folding func

tion. However, we want to keep it simple since we want to build its imperative 

version.
1 Similar algorithms are called insertion-sort in some other works
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(swap : loc X loc X —> comm) x y = 
let t = val x in 
assign x (val y)\ assign y t

(bubble : (X —> X —> bool) —> loc X —> loc list X —>• comm) g x = 
| conloc nil -4 skip 
| locap (locap (conloc cons) h) t —v 

if g (val x) (val h) 
then swap x h; bubble g h t 
else skip

(bubblesort : (X —> X —> bool) -4 loc list X —> comm) g =
| conloc nil -4 skip
| conloc cons h t —> bubblesort g t; bubble g h t

Figure 4.7: Imperative Bubble Sort

Suppose the space needed for each list entry is large. By handling loca

tions not their actual values, this algorithm uses space proportional to the 

square of the list length. The following imperative algorithm bubblesort de

fined in Figure 4.7 has a similar structure but only uses a constant amount of 

new memory (when performing swap). The drawback of this program is that 

the assignments in swap may fail, or be expensive to execute when the struc

tures are large. The solution is to instantiate the polymorphic bubblesort to 

a type ref Y of locations to get a program of type

bubblesort : (ref Y -4 ref Y —> bool) —¥ loc list ref Y comm

which can easily be modified to produce a program bubblesortloc in Fig

ure 4.8. bubblesortloc will never fail in assignment but update inplace when
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(swaploc : ref X —» ref X —» comm) x y = 
let t = \x in
x :=y, y :=t

(bubbleloc : (X —$■ X -4 bool) —> loc ref X -4 loc list ref X -4 comm) g x — 
| conloc nil —> skip 
| locap (locap (conloc cons) h) t —> 

if g !(val x) !(val h)
then swaploc (val x) (val h); bubbleloc g h t 
else skip

(bubblesortloc : {X —> X —> bool) —> loc list ref X -4 comm) g =
| conloc nil —>• skip
| conloc cons ht —¥ bubblesortloc g t; bubbleloc g h t

Figure 4.8: Imperative Bubble Sort with Ref

reasonable.

4.9.2 Converge

The function converge defined in Figure 4.9 iterates a function / : X —> X 

until the result stabilizes, i.e. until some test t : X —> X —> bool applied 

to the old and new values becomes true. This captures a common situation 

when modelling the evolution of some system to a steady state. For example, 

when X is instantiated to the type of real number and / is instantiated to 

the function cos, and t is the test if two real numbers are close enough 

(their difference is smaller than some fix number) then converge results in an 

approximate solution for the equation cos x = x.

The use of explicit locations allows the programmer to indicate that ex

actly two locations are required at any one time, rather than a unbounded
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(converge : (X —> X) —> (X —> X —> bool) —>X^X)ftx = 
let y = ref x in 
let z = ref (/ x) in 
while not (t \y Iz) do 

y:=f lz;
z f \y

done;
■y

Figure 4.9: Converge Function

number. Moreover, if the computation (application of /) does not change the 

shape of the data then exactly two locations are used for the whole evaluation 

of the program; e.g. the function cos as described above. A more significant 

example is by instantiating x to static (fixed shape) object in the physical 

world, such as using matrixes or three dimensional arrays to represent the 

heat of plates or solid objects. When the sizes of the matrixes and arrays are 

large, the guarantee of inplace update is much more needed. Further, assign

ment will be done inplace if possible, with fresh memory allocated only when 

necessary. This will yield significant benefits when the shape of the data (y 

and z) occasional changes through the computation such as operations on 

graphs and ordered trees. For example, it is common to represent complex 

dynamical systems using structures built of regions whose behaviours are of 

approximately equal complexity. If a region is quiet then its representation 

maintains it shape, and inplace update succeeds. Conversely, if a region is 

eventful then the shape of its representation is likely to change, and require 

fresh memory.
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4.10 Vector

This section introduces vector types to the system. We do not aim to have 

efficiently operated data here but just try to show that a vector type can 

be added to the system. Later in this chapter, we will discuss our vector 

implementation which is more efficient but also more complicated.

Operationally, a vector is an indexed sequence of locations. We could 

introduce a vector-like type vector as abstract datatype:

type vector T = vec of (list (loc T)).

A data structure of type vector of T can be seen as a (functional) structure 

of data where each data is a location holding value of type T. Note that the 

calculus has no constraint on the shapes of different entries. As the shapes 

might be different, inplace update of one entry by another might fail.

Next, we could provide two functions acting on data of type vector T:

(veclen : vector T —> int) = | vec l -» listlen l

(entry : vector T —> int —» loc T) = | vec l —>• listentry l

where listlen and listentry are standard operations to calculate the length and
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to return an entry of a list

(listlen : list T —> int) =

| nil -» 0

| cons h t —y 1 + (listlen t)

(listentry : list T —> int —> T) l n =

if n < 1 then head l else listentry (tail l) (n — 1)

veclen v results in the number of components of v. entry v n results in 

the nth entry of v. Note that entries of vectors are all locations, so they are 

updatable. Apart from entries access times, the given vector seems to process 

most standard functionality of vectors.

4.11 Generic Output

4.11.1 Generic Output

This section considers generic output as an imperative feature in the system.

First, consider how it is done in some other languages. ML provides an 

effective built-in mechanism for output any data, however, one cannot spe

cialize output for some data structures in a generic way. In object-oriented 

languages such as Java [16], the inheritance mechanism provides program

mers with the ability to specialize output for their own classes by overriding 

the “toString” method. Using monads [67], the “show” function in Haskell 

[38] also allows the ability to specialize output for each datatype. However, 

the default case for “show” does not work for newly defined datatypes with
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out mentioning the function “show” in their declaration. There are two main 

features for the generic output that we are interested in: an effective default 

display and the ability to specialize the display. ML has the first feature not 

the second. Java has the second feature. However, if a new class is built from 

the scratch (it is a child of only the Object class), then the default display 

(“toString”) for that class is minimal. Haskell has both features, however, 

the use monads does not provide much flexibility in some cases [42].

We will introduce the generic output function in the source code. With the 

new expresive power from the pattern calculus especially path polymorphism, 

our generic output function has an effective default display as one of ML and 

also it has the ability to specialize code of output for any data structure. 

Moreover, these two features work harmoniously in all levels of nested data 

structures. One of the significant points of writing the output function in 

the source code is that it moves a large part of term formatting code out of 

the compiler.

One might require that the outputting function should hide the tag form 

representation of abstract datatype, e.g. for outputting the empty list it 

prints “nil” instead of the concrete representation tag nm(nil) (evr un). We 

do this in our implementation at the cost of adding one more constant into 

the system for converting data from the concrete (tag) form to the abstract 

form. However, we decide not to do it here since the focus of this thesis is 

not in representation of datatypes.

There are many additional features one could add to the output such 

as: only printing pairs of brackets in case of possible ambiguity; printing a 

new line when the number of characters printing reaches a certain number;
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alignment of sub-terms in a uniform way - all by adding more auxiliary 

generic supporting functions. However, we will include only one feature, the 

bracketing, as an example though other features could be added in similar 

ways.

4.11.2 Bracketing

When printing an application, strictly speaking, one may always put the 

argument part under a pair of brackets; however, as a convention in computer 

science, the pair of brackets are omitted when there is no possible ambiguity. 

For example, when printing the application of a function / to number 9, 

instead of printing /(9), it is convention to print just / 9. We need the 

function:

need.bracket : X —> bool

that determines if a pair of brackets are needed for a term when it is an 

argument in an application. In standard cases, the result of the function 

need_bracket is true when the input is an application and false otherwise, so 

the last two default cases for the function are:

| x y —> true 

| x —> false.

However, sometimes when we give specialized code for the generic output 

function, we need to put specialized code for need_bracket too. For example, 

the specialized printing of list and string does not need brackets to prevent 

ambiguity, that results in two following lines of specialized code in the func-
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(neecLbracket : X —»■ bool) = 
| int x —> false 
| float x —> false 
| char x -» false 
| nil —> false 
| cons x y —> false 
| string x —>■ false 
| pair x y —» false 
| vec x —» false 
| x y —>■ true 
I x —¥ false

Figure 4.10: Need-Bracket Function

tion need .bracket:

| cons x y —> false 

| string x —>• false.

The complete code for the function need.bracket is defined in Figure 4.10.

We now can create an auxiliary function print.bk, together with the func

tion output, they form a mutually recursive pair of functions. The function 

print.bk prints a pair of brackets when needed while performing printing of 

the input:

(print.bk : X —>■ comm) t = 

if need.bracket t then

output-basic <'('>; output t; output-basic <')'> 

else

output-basic output t.
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4.11.3 Supporting Functions for Output

The output function written in Figure 4.11 calls two supporting functions. 

The first one is an auxiliary function named listiter, it is a simple application 

fold-left on list:

(listiter : (X —>■ comm) —> list X —> comm) / =

| nil —> skip

| cons h t —> (/ h); listiter / t.

The second one, the built-in operator output_basic is introduced earlier in 

this chapter as an imperative feature. The function provides a basic built-in 

mechanism for displaying constructors (especially primitive datum construc

tors). For example output-basic < 9 > and output-basic < 'a' > will print 

integer 9 and character a on the output device respectively; output-basic un 

will print the string “un” on the output device (without the quotation marks).

4.11.4 Output Function

This section discusses the generic output function. Our implementation of 

output adopts the following typical syntax for displaying pairs, lists, strings 

and vectors, for example:

the list of three integers 1, 2 and 3 is to be output as [1, 2, 3]; 

the pair of integer 0 and float 9.9 is to be output as (0,9.9); 

the string representing the word Tony is to be output as “Tony”;

the vector of two integers 0 and 9 is to be output as {0,9}.
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(output : X —>■ comm) =
| int x —> output-basic x 
| float x —* output-basic x 
| char x —>• output-basic x 

| pair x y —>•
output-basic <'('>;
Output X]

output-basic <V>; 
output y;
output-basic <,),>;

| nil-> output-basic <'['>; output-basic <']'>
| cons h t —>■

output-basic <'['>; 
output /i;
listiter (fun v —> (output-basic output x)) t;
output-basic <']'>;

| string x —)• 
output-basic 
listiter output-basic x; 
output-basic 

| vec x —>
output-basic <'{'>; 
let / = veclen (vec x) in 
if (l = 0) then 

skip 
else

output (primval (entry (vec x) 0)); 
for * = 1 to (l — 1) do 

output-basic <7>; 
output (primval (entry (vec x) *)) 

done;
output-basic <'}'>;

| x y —> output x; print_bk y 
| x —>• output-basic x

Figure 4.11: Generic Output Function
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These displays are different from the results of the default case of function 

output. New pattern-matching to constructors: nil and cons; pair; string; and 

vec make the above differences in the cases of corresponding structures of 

list, pair, string and vector. The output code is in Figure 4.11. Note that 

the user can augment or change the output function to specialize the display 

of some particular data structures. In order to do that, the user just needs 

to add new cases on constructors for creating the data structures as the first 

pattern-matches in the output function. Note that complex numbers have 

been defined in Chapter 2 as:

type Complex = Complex of primfloat and primfloat.

Similar to the special rule for multiplication of complex numbers, we can 

put the new specialized code for displaying complex numbers:

| Complex x y —¥ 

output-basic x\ 

output-basic <'+'>; 

output-basic < V >; 

output-basic y.

4.12 Implementation

As stated in the introduction chapter, all material has been implemented. All 

examples have been coded and tested; and they produced expected results. 

Codes are available on request.
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We 2 could have implemented the exact system as presented above. How

ever, in some points in our implementation, we make some derivations from 

the theory, mostly for optimization purposes.

The theory in the previous sections introduces sequential composition as 

a form of an application of an extension.

(seq : comm —> X —> X) = | skip —>■ ( | y —¥ y) .

However, the implementation adds seq as another constant of the language 

with an optimized evaluation rule. We could modify the theory by adding a 

new evaluation rule for seq to meet the implementation but we choose not 

to do so for the simplicity of the theory.

Similar derivations are with the implementation of while-loop and for- 

loop. Our implementation adds them as new constants of the system with 

optimized evaluation rules.

The implementation for vectors is more delicate. Note that the definition 

of vector in the theory (in Section 4.10) results in a datatype with linear 

accessing time. We aim to have vectors with constant accessing time. For 

efficiency reason, instead of using the type list (loc X) as in the theory, we 

introduce a new type constant:

primvector.

Each type X has an associated type primvector X. We also introduce a new

2For detail about my involvement, see Subsection 1.2.1 in Chapter 1
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class of terms of primitive vectors of those primitive vector types. A primitive 

vector of type primvector X contains a collection of values of type X in a way 

that supports constant accessing time. 3

To pattern-match on vectors, as the same way we deal with integers, 

vectors are defined based on the primitive type as:

type vector X = vec of (primvector X).

For creating a new primitive vector of given length whose components are 

all initialized to the same given value, we introduce a new built-in term:

locvec : int -» X —> primvector X.

A term of the form locvec n x creates n new distinct locations (in the envi

ronment store) all initialized to the value x, and a new structure (primitive 

vector) holding these locations. We also introduce vecnil as built-in term for 

vector of length 0.

We also introduce two new constants associated with primitive vectors:

primveclen : primvector X —>■ int 

primentry : primvector X —>• int —> loc X.

Given a primitive vector v and an integer i, the term primveclen v represents 

the length of v, and the term primentry i v represents the ith component of 

v. Out of bound vector error, i.e. when i is negative or greater than or equal

3We use arrays in the host language (OCAML) to ensure that property.
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to the length of v, will be caught as a runtime exception. The key point of 

getting all new primitives for vectors is that now accessing time for entries 

is constant.

Operations on abstract vectors can be derived from the corresponding 

operations on primitive types by simple pattern-matching:

(veclen : vector X —>■ int) = | vec v —>• primveclen v 

(entry : vector X —> int —>■ loc X) = | vec v —> (

| int n —> primentry v (int n))

We also introduce syntactic sugar for creating vectors. A new vector can 

be created by specifying all of its components. An expression starting and 

ending with { and } respectively and enclosing the body of a non-empty list 

of terms of type A" separating by commas is a new vector of X. For example, 

the expression {1.1, 2.3} represents a new vector containing two floats. Note 

that the term represented by { } is a new vector of zero length, vec vecnil.

In our implementation, the outputting function hides the tag form repre

sentation of an abstract datatype, e.g. for outputting the empty list it prints 

“nil” instead of the concrete representation tag nm(nil) (evr un); at the cost 

of adding one more constant into the system for converting data from the 

concrete tag form representation to the abstract representation.

Our implementation also includes the standard type inference mechanism. 

It is based on the type inference in the pattern calculus. The type inference is 

working for all examples we have tried (including all the examples presented 

in this thesis).
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4.13 Limitations

Before concluding this chapter, we discuss some limitations of the system 

some of which can be seen as motivation for the building the uniform system 

(in the next chapter). Although the idea of location constructors is similar 

to that of normal constructors, the actual uses of location constructors are 

long and complicated. As the number of constructors is doubled by adding 

location constructors, there is a possibility that in some parts of coding, the 

programmers have to double the amount of pattern-matches in dealing with 

constructors and location constructors.

Another limitation is the separation of inplace and out-place updates, 

that might lead to inefficiency when assigning a large data structure and 

at a later point discovering that the shapes are not matching and having to 

reassign everything out-place. The decision of not back-tracking when inplace 

update fails might make some programs hard to reason about; especially 

when coupling with aliasing which by itself is a complicated topic [13, 55]. 

The following example tries to illustrate the point. In the expression:

let x — loc v in 

let y = primloc x in

y := u; val x

the return value val x depends on the internal mechanism with which the 

assignment y := u is done. If u and v are of the same shape then the 

assignment is by inplace and hence the return value is the same as r. If u 

and v are of different shapes then the attempt to assign inplace fails, the
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attempt changes some parts of the data held in x to be the corresponding 

parts in v. When performing the out-place assignment, the value held in x 

does not change, and hence the result val x has mixed part between u and 

v. However, by using ref, refval and refassign but not the primitive ones we 

do not have access to the inner layer (ref creates two layers of location) and 

hence we can avoid the problem.

The confusion is a part of the price to be paid when having the purely 

functional types separated from the location types. To use imperative fea

ture, the users usually have to know the different between functional and 

imperative types; and have to convert data from one form to another using 

operations such as loc and val. In the next chapter, a different approach that 

unifies the functional and imperative types will help to overcome some of 

those limitations.

4.14 Conclusions

Based on the pattern calculus as the theory for a purely functional language, 

this chapter is about the extension of the calculus with imperative features. 

One of the objectives is to add more expressive power to the system with 

the minimum effect on the purely functional features. The clear separation 

between functional types and imperative types allows choices for which style 

is to be used. Based on path polymorphism that is to build generic functions 

in the pattern calculus, this chapter shows that imperative operations can 

be used generically for creating, reading from and writing to constructed lo

cations. The advantage of this approach is that it naturally supports inplace
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update, something that is hard to achieve in other languages supporting re

cursive types. By adding a layer of indirection, one can wrap inplace update 

within a safe form of assignment on reference types.

The expressive power of the approach is shown through some represen

tative examples. Bubble-sort shows how the functional programming style, 

with its pattern-matching and recursion can be used to define efficient im

perative code. The converge program nicely illustrates the value of sharing 

control between the programmer and the system: the programmer specifies 

how many data structures are required while the system determines when 

fresh storage is required. The examples also show how the power of the 

generic programming style combines naturally with the imperative features 

to provide flexible programming on large data structures.

The ideas and examples in this chapter show that the pattern calculus 

is able to combine the functional and imperative programming styles within 

a single, simple calculus. The added features of while-loops and for-loops, 

vector types and the generic output function is evidence for the orthogonality 

of the system. The addition of loops and vector types shows the potential 

of optimizing the system without affecting its soundness. The addition of a 

generic output function also shows that exploiting the expressive power of 

the system can help to reduce the complexity of the compiler.



Chapter 5 

Mutable Data

5.1 Introduction

This chapter, like the previous chapter, is about extending the pattern cal

culus with imperative features. The theory is (again) implemented as a 

version of FISh2 with imperative features. In the previous chapter, impera

tive features are added on top of a functional system, the pattern calculus. 

In particular, there is a new class of location terms (updatable locations) 

whose types are distinct ones of their value. In this chapter, the type of a 

location is identical to the type of the value held in the location. All data are 

potentially updatable and so must be stored in mutable locations. From the 

user’s viewpoint, all data are handled through implicit references; we provide 

a cloning constant for copying the actual data.

The previous chapter introduces location constructors with the use of 

conloc and locap. Although the theory is simple, the actual uses of location 

constructors are long and potentially confusing. There is a solid reason for the

86
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complexity, the uses of conloc and locap maintain the type separation between 

references and their values. This chapter will try to shift the task to the 

calculus so that the users do not need to handle referencing and dereferencing 

explicitly so that constructed locations are easier to describe and use than 

in the previous chapter.

In spite of the above differences, there are still many common points be

tween the two systems in the previous and this chapter. Both systems use 

value polymorphism as described in Chapter 3 in dealing with polymorphism 

and updatable locations. Both systems use the power of generic functions 

from the pattern calculus to build a generic assignment function which pro

vides a flexible and efficient mechanism for memory management. Many 

other aspects of the two systems such as generic output, vector, while- and 

for-loops are very similar, in both theory and implementation. Hence, we 

omit them in this chapter.

This chapter will explore some of the different choices in building such a 

system to effectively setting on one. A summary of benefits and weaknesses 

will be made at the conclusion of this chapter. The goal here is to explore 

many possible interesting examples in a well-typed system. We do not claim 

that the system is the best nor that it contains all of the desired features.

5.2 Types and Terms

The types and the terms of this system are built on those of the pattern calcu

lus. Like the previous chapter, we use value polymorphism to accommodate 

both updatable locations and polymorphic functions, so it is sufficient to
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introduce some imperative constants.

Type comm

Term skip : comm

primassign : VX.X —> X —>■ comm 

clone : VX.X -» X 

output.basic : \/X.X —>• comm

First, we introduce the command type comm with the associate constructor 

skip of type comm, skip is a constructor so that one can pattern-match on it. 

The arity of skip is defined specially to be positive infinity to ensure that skip 

will never be stored F Second, we introduce primitive assignment primassign 

with given type scheme VX.X —> X -> comm. Next, we introduce the cloning 

operation clone with given type scheme VX.X —> X. Finally, we introduce a 

primitive printing operation output-basic exactly as in the previous chapter 

for printing constructors.

Comparing to the previous chapter, there is no explicit location type 

here and hence no operations to create new location or getting value from a 

location. The primitive assignment can take the first input of any type. So 

any values that might be assigned have to be locations (references) holding 

some terms. More details about primassign and clone will be discussed later 

when the store has been formally defined.

Sequential composition can be defined exactly the same as in the previous 1

1It is a small choice in designing the system. One might choose to store skip which 
results in a little different system.
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chapter:

(seq : comm —> X —y X) = | skip —> ( | y —>■ y) .

We also may use the usual syntactic sugar x;y for seq x y.

5.3 Evaluation

In the previous chapters, the set of possible results of an evaluation (value) is 

the same as the set of terms which can be stored. However, in this chapter, 

they are two different sets. In particular, (explicit) functions will be values 

that are not stored; and the content of store variables will not be returned 

as the results of evaluation (but the store variable will be).

First, we define what can be a result of an evaluation. A value, meta

variable v, is given by:

v ::= x | at p use s else t \ b V\ ... Vk {k < arity(6)}.

That is, a value is either: a term variable; an extension; or a partially-applied 

constant whose arguments are all values. Some examples of values are: x; 

Xx.x; cons; and int. Some examples of non-value terms are: nil; x 9; and 

int <9> (the proper integer 9).

Note that all values are either term variables or explicit functions (includ

ing the skip constructor and terms headed by exn). Fully-applied constructors 

are to be stored in locations. Fully-applied operators require their own eval

uation rules.

Next, we define what can be stored in a location. A term is called storable



CHAPTER 5. MUTABLE DATA 90

(or data) if it is a fully-applied constructor where all the arguments are values. 

Some examples of storable terms are: nil; 9; and cons Xx.x y.

Axiom 6 A well-typed fully-applied constructor has data-form type.

Note that a data-form type is defined in Chapter 2 to be a type constant 

or an application of two types. From the axiom, we know that all data has 

data-form types.

In this chapter, the distinction between a location and the actual term 

held in the location are handled inside the calculus. So the definitions of 

values and data capture some major design choices for the system. The defi

nition of values determines the possible results of evaluations. The definition 

of data determines which terms can be updated. Comparing with the pre

vious chapter, the choices are also there, but for the users of the system to 

choose. For example, in the previous chapter, there are two choices for con

structing a “larger” location: by creating one location out of one large term 

(using primloc); or by combining smaller locations (using conloc and locap). 

The flexibility also causes the complexity (in the syntax and reasoning) in 

the uses. One of the changes in this chapter is that we make a fixed choice 

(inside the calculus) when defining storable terms.

In the previous chapter, we introduce locations in two steps. First, loca

tions created by primloc are atomic or unstructured. Second, constructed lo

cations are built on atomic ones and location constructors to support pattern

matching. In this chapter, the choices of atomic or constructed locations 

come in the design of the system. The decision that a fully-applied con

structor is storable only when its arguments are values (not storable terms)
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implies that “larger” locations are always constructed out of “smaller” ones. 

In a typical larger location, the content of the location is the application of a 

constructor to other smaller locations. This choice of constructed locations 

allows partial update of a larger location which will be exploited later in the 

chapter.

A key point in designing such a system is the right balance between values 

and storable terms. Our choice here for not storing function is similar to the 

Object-Oriented (00) approach. An extension (a function, a method) such 

as Xx.x by itself is not data (not a updatable term, not an object). However, 

by wrapping an extension inside an constructed term such as ths Xx.x, we 

have an storable term or an object in the 00 view. One alternative is to 

define values to be variables only and to expand the set of storable terms 

with extension.

The definitions of: a store (meta-variable E); store variable (meta-variable 

u); and an evaluation context (E,t) are exactly as in the previous chapter 

(see Section 4.3. Again, we decide that all store variables have monomorphic 

(trivial) type scheme. We use dom E for the domain of store E. In the 

context of a given store E, for a term t we define \t to be E(t) if t is a term 

variable in the domain of E and t otherwise. This ! mechanism plays the role 

of the primval constant in the previous chapter.

Evaluation rules are expressed the same way as in the previous chapter 

using judgements of the form

(E, t) =4> (S', v)
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where (E, t) and (S', v) are evaluation contexts.

(E, t[fix (x,t)/x]) =£• (E',u)
Rule 1 (E, fix (x,t)) (E',u)

(E,S)=*(E>o) (E ',t[v0/x])=>(E",v)
Rule 2 (E, let x = s in t) =>- (E", v) 

(S,s[u2/z]) => (E',u)
Rule 3 (E, (at x use s else t) v2) =$■ (E',u) 

(E,s)=f(E» ly
Rule 4
Rule 5

(E, (at c use s else t) v2) =>- (E',u)

(E, (at pi and P2 use s else t) t\ t2) =>• (S', v) \v2 = t\ t2

(E, (at pi p2 use s else t) v2) => (E',u) h is a constructed term
_______ (E,t v2) =>• (E',v)_______

Rule 6 (E, (at p use s else t) v2) => (E', v)

Rule 7

!ui, \v2 are the same constructor
(E, prim equal Vi v2) => (E, u (->• true, u) u fresh

--------------------------------------------------  ?/ irpsliRule 8 (E, primequal Vi v2) =>• (E, u false, u)

Rule 9

—----------;—:----------- ———-r output \v if !t> is a constructor(E, output_basic v) => (E,skip)
v headed by an operator

Rule 10 (E, v Vi) => (E, ux) vx headed by exn

Figure 5.1: Evaluation Rules with Mutable Data 1

The evaluation rules are defined in two parts: Figure 5.1 and Figure 5.2. 

Most of the rules are the same or very similar to the ones in the previous 

chapter. The rules in the first figure are based on the reduction rules (dis

cussed in the review of the pattern calculus). The rules in the second figure 

are mainly about the imperative features. The main different from the pre
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vious chapter is the rules for primassign. Evaluation of assignment on terms 

that cannot become data such as functions results in exception. That is a 

consequence of our choice of storable terms. The rules for clone acts in usual 

way, evaluation of clone will make a fresh copy (clone) of a store variable. If 

the argument of clone is any value other than a store variable, the result of 

evaluation is an exception.

Rule 11

(E,f) => (E',tt) (E',f2) =>■ (E", m2) u G dom(E')
(E, primassign 1t2) =4- (E",u i-» E"(w2)>skip) u2 G dom(E")

(E,t)^(E» (E', t2) =>■ (E", v2)
Rule 12 (E, primassign t t2) => (E",exn)

Rule 13
Ui G dom E

(E, clone u-i) =$> (E, u 1-4 E(ui), it) u fresh

Rule 14 (S, clone v) =>■ (E,exn)

Rule 15 (E,u) =>■ (E,u)

Rule 16

E(rij) d*i
rv* a \ —v rv , j/ ^ d di dn d(E,dui--- un)=^(E,MK4d,«) ufresh

Rule 17

cv 1... Vk is storable
(E,c vi.. • Vk) =>• (E, u 1—y c V\... Vk,u) u fresh

Rule 18

(E,fi) =» (E',ui) (E', t2) => (E", v2) (E,ui y2) => (E» ti,f2 are not
(T,ti t2) (E'",r/) both values

Figure 5.2: Evaluation Rules with Mutable Data 2

The rest of this section establishes some standard properties of evaluation. 

Like the previous chapter, we define a new property about the relation
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between the typing of the store variables and of their values. The judgement 

A; T hs E asserts that the store E is well-typed, in context A; I\ Suppose E 

is {u\ Vi,..., un h->■ vn} then A; T bj; E if and only if E; T is well-formed 

and there are types Tj such that r(iij) = Tj and A; T b n, : Tj.

In other words, in the type context A; T, a store E is called well-typed if 

the domain of E is a subset of the domain of T and each store variable in T 

must be of the type corresponding to the type of its value in E.

As in the previous chapter, the type context has to expand during the 

evaluation to cope with the new store variables. In particular, when a term 

is one of the four cases: a fully-applied primequal; a storable term; a fully 

applied datum operation; or a cloning of a store variable, the evaluation of 

the term results in a new store variable u which must be added to the context 

as well as the store.

The evaluation rules for all the four cases are of the form

... => (E, u e->- ti, u)

where tj is the initial term. Note that t/ is storable. We can extend the type 

context with a new variable u whose type (scheme) is the type of tj.

A; T E A; T b f/ : T 
---------------------------------- u fresh

A; T, u : T bs E, u i-» tj

By that choice of extending the type context, if the store is well-typed before, 

then clearly it remains well-typed after the evaluation.

As in the previous chapter, we introduce a new form of judgement for
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typing an evaluation context. The judgement A; F hi (E, t) : T asserts that 

the evaluation context (E, t) is well-typed and t has type T in the context of 

A; T and the store E.

The theorem about evaluation preserving typing is exactly the same as 

Theorem 2 in the previous chapter.

Theorem 7 Evaluation preserves typing. That is, if there are derivations 

A;T hj (E, f) : T and (E,t) =>• (E',u) then there is a context Id such that 

A; T, Tx h■(Z',v):T.

Proof: The proof is done by induction on the structure of evaluation based 

on the evaluation rules in Figure 5.1 and Figure 5.2. For all of the cases, the 

proofs are identical or very similar to the ones of Theorem 2 in the previous 

chapter. Examples of the differences are the cases for Rules 11,12,13, and 

16.

Rule 11

(S,t)=»(E',u) (S',t2)=»(E",u2)
(E, primassign t t2) => (S", u i—y E"(u2), skip)

u G dom(E') 

u2 £ dom(E")

From the assumption A; T hj (E, primassign t t2) : T it follows that 

A;T p£ E and there is some type Tj such that A;T hj (E,t) : T\. 

Applying the induction hypothesis on the evaluation of (E, t) we know 

there is Ti such that A;T,Ti h* (E',u) : T\. Applying the induction 

hypothesis on the evaluation of (E', £2) we know there is T2 such that 

A;r,r1,r2 Pi (E",u2) : T\. From the definition of a well-typed store 

we know A;r,Fi,r2 h E"(u2) : Tj and hence A;r,Fi,r2 E",u i->
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E"(u2). Moreover, from the typing of primassign we know that T is 

comm and we have A; T, I\, T2 bj (£", u i-> E"(w2), skip) : T.

12 (E,f)^(E',u) (E',f2)=»(E'>2)

(E, primassign t t2) => (E",exn)

Since exn can take the type comm, the proof for this case follows the 

one of Rule 11.

Rule 13
U\ G dom E

(E, clone => (E, u E(ui), u) u fregh

Since the store is well-typed before the evaluation, the store remains 

well-typed after cloning a store variable by choosing the same type for 

u as one of u^. Moreover, from the type of clone we know that clone U\ 

and u shared the same type. The proof for this case follows.

Rule 16
E('Uj) di

(E, d u\ - ■ • un) =>■ (E, u i—y d', u) ^ dn — d

u fresh

From the assumption A; T b, (E, d U\ ■ • ■ un) : T it follows that A; T 

E. Hence di has the same type as Ui for all i. So we know that 

d d\ - ■ ■ dn (or d') has type T. Moreover the type (scheme) of the 

new store variable u is chosen to be the type of d'. We can conclude 

that A; T bj (E, u t-4 d', u) : T.

□
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The definitions of closedness are exactly as in the previous chapter. A 

store E is called dosed if for every variable u in the domain of E, all free 

variables of E(u) are in the domain of the store E. The evaluation context 

(E, t) is called dosed if E is closed and all free variables of the term t are in 

the domain of E. As in the previous chapter, we have the lemma:

Lemma 8 Evaluation preserves closedness. That is, suppose there is an 

evaluation (E,t) (E',u) and (E,t) is dosed then (E',w) is also dosed.

Proof: Again, the proof is by induction on the structure of evaluation. We 

do a case analysis on the evaluation rules in Figure 5.1 and Figure 5.2. For 

all of the cases, the proofs are identical or very similar to the ones in the 

previous chapter. □

As in the previous chapter, combining this above lemma with the previous 

theorem we can claim that evaluation preserves well-typedness and closed

ness. A closed and well-typed term is called a program. We have the same 

theorem as in the previous chapter discussing programs evaluation.

Theorem 9 Evaluation of programs never gets stuck. That is, if we have a 

derivation A;T h; (E,t) : T and (E,t) is dosed then there is an evaluation 

rule where the left hand side of the conclusion matches with (E,t).

Proof: The proof is similar to the one of Theorem 4 in the previous 

chapter. The proof is by case analysis on the structure of t, and it is mostly 

based on the definition of values and the evaluation rules in Figure 5.1 and 

Figure 5.2.

When t is a variable or an extension then t is a value. We could always 

apply Rule 15 which states that any value evaluates to itself.
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When t is a fix point construction, then the first rule applies.

When t is a let-expression, then the second rule applies.

When t is a constant then t is either storable hence Rule 17 applies; or 

partially-applied (a value) which we can apply the rule for values too.

The only case left is when t is an application. As one could try and apply 

the last rule when at least one of the parts of the application is not 

a value, without loss of generality, now we can assume that t has the 

form Vo V\ where vq and v\ are values. Now consider the cases for the 

choices of n0.

If vo is a variable, the closed condition of the evaluation context forces 

Vo to be a variable in the domain of the store. The well-typedness 

of the store forces no to be of data-form type (the same type 

as some data stored in v0). However, the function part of an 

application (always of function type) can never be of data-form 

type, therefore this case never happens;

If % is an extension, then Rule 6 applies.

If n0 is headed by a constant b, then t is also headed by b. By the well- 

typedness of t and the definition of values (as uo,ui are values), 

there are three cases of such a term t. Case one, t is partially- 

applied and hence a value, we can apply the rule which states that 

any value evaluates to itself. Case two, t is a fully-applied operator 

whose arguments are all values, we can apply one of the Rules 

8,9,11,12,14 and 16. Case three, t is a fully-applied constructor
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(assign : X —> X —> comm) =
let rec (assignO : X —> Y —> comm) =

| int x -» ( | int y —> primassign x y)

| float x —} ( | float y —>• primassign x y)
| char x -> ( | char y —» primassign x y)
| x0 x -)■ ( | y0 y assignO x0 yo; assignO x y)
I x ( | y if primequal a; y then skip else exn) 

in assignO

Figure 5.3: Generic Function assign using Mutable Data

whose arguments are all values, then t is storable, we can apply 

the Rule 17.

□

5.4 Examples

This section will discuss some typical examples showing the expressive power 

of the system which is (almost) equivalent to the one of previous chapter. 

The major difference from the examples in the previous chapter is the loss 

of conloc and locap.

5.4.1 Generic Assignment Function

The generic assignment in Figure 5.3 has the same structure to the generic 

assign in Figure 4.4 in the previous chapter. The only different is that the 

function in this chapter contains no conloc nor locap.

This function has the same strength and weakness as the one in the
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(refassign : ref X —> X -» comm) x y = 
match (assign x y) with 

| skip —> skip 
| exn —»• primassign x y.

Figure 5.4: Generic Function refassign using Mutable Data

previous chapter. Most importantly, the generic assignment still tries to do 

the inplace update if the structures of the new data and the old location 

match, and fails (return an exception) otherwise. Another example for the 

similarity, when an assignment failure occurs, parts of the location might 

have been assigned to new values. We can avoid the problem using the same 

method as in the previous chapter: checking the shapes before assignment 

by a function similar to shapecheck function in Figure 4.5.

In the previous chapter, we have a mixture of inplace and primitive as

signment by using two levels of location (see Section 4.7). We can do the 

same thing here in a simpler form.

As in the previous chapter, refassign in Figure 5.4 will perform inplace 

update if possible, but defaults to primitive assignment otherwise.

5.4.2 Infinite Lists

Similar to the self linked list in the previous chapter, here, an infinite list can 

be represented using self references. The program

let x = [ ] in 

primassign x (cons 9 x)\x
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terminates. The result of evaluation is a store variable u where the store is 

{u2 i—><9>,Ui int u\,u cons U\ u}. So u is a recursive location and it 

can also be seen as a list holding infinite number of integers 9.

Comparing to the linked-lists (in Subsection 4.5.2) in the previous chap

ter, we do not have to define a new datatype for lists with locations. However, 

updating a list involving itself without creating a recursive location can be 

done using clone. For example, the program

let x = [0] in

primassign x (cons 9 (clone x))\x 

results in the list [9,0].

5.4.3 Graphs

We define a simple polymorphic directed graph holding two sorts of data: 

one for the nodes, the other for the edges.

type node (X,Y) — node of X and (list ((node (X, Y)) * Y)).

A node (of type node (JA, Y)) can be created by applying the constructor 

node to some term of type X and a list of edges from that node, each edge 

is a pair of a node (of {X, Y)) and some term of type Y.

Now we can construct a simple graph of two nodes and one edge:

let ni = node 1 [ ] in 

let n2 = node 2 [(nl,9.9)].
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We can define a function adding one more edge into a node:

(addedge : node X Y (node (X, Y)) * Y —t comm) = 

| node x l —> ( | e —> primassign l (cons e (clone /)))

And now we can add an edge from n2 to itself:

addedge n2 (n2,2.2).

5.5 Implementation

All implementation issues are similar to ones in the previous chapter. The 

main thing I want to claim here is that all the theory in this chapter has 

been implemented. Again, all examples have been coded and tested; and 

they produced expected results. Codes are available on request.

5.6 Conclusion

Like the previous chapter, this chapter is also about extending the pattern 

calculus with imperative features. This chapter explores a system where 

locations and their values are of the same type. The decision when to get 

the value or when to pass the reference is determined inside the evaluation, 

therefore constructed locations are much easier to use.

In the system, we decide that only data can be stored in a location. 

Functions are not storable and will be treated as values hence assignment on 

functions results in exception. Another key point in the design of the system
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is that a larger location is constructed out of the store variables of smaller 

locations.

Again, generic functions with imperative features can be written in a sim

ple, efficient and elegant way. The key example is still the generic assignment 

function where inplace update is used whenever it is possible to do so.



Chapter 6

Generic Data Distribution for 

Parallel Programming

6.1 Introduction

Data parallelism involves performing a similar computation on many data 

simultaneously. A common paradigm for data parallelism is a single thread 

of control containing three stages: data distribution; local operation; and 

collection. Data distribution divides the data structure into pieces. Local 

operation performs the calculation on the pieces simultaneously. Collection 

assembles the local results into a global result. The communication and 

the synchronization between the stages are usually explicit. That makes 

data parallelism usually easy to use. However, most of the current work in 

data parallelism concerns sequential (linear) data structures like lists, arrays. 

Other work on structured data usually contains a flattening step to change 

the data structure into a sequential one.

104
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Our approach to parallel programming is to manipulate structured data 

directly to improve locality. The uses of parametric polymorphism allow 

one parallel program to act on different data structures, and hence, enable 

more effort to optimize the programs. As the pattern calculus gives a new 

powerful account of parametric polymorphism; the expansion of the calculus 

with parallel features is a great tool for generic parallel programs. As data 

distribution is an important step in parallel programming, the focus of this 

chapter is to build a generic data distribution function. We do not get into 

details of parallel programming such as parallel architecture nor cost models.

6.2 Generic Data Distribution

6.2.1 Type of Resulting Pieces

This subsection discusses the type of resulting pieces of our distribution.

In our research, we have explored an interesting approach: all the pieces 

are data-structures of the same data as that of the original data-structure 

but perhaps different structure. In other words, when the original data struc

ture has type F X then the resulting pieces have type Fi X. Hence, when 

a structure polymorphic function such as map or fold is to be applied the 

original data structure, the same function can be applied to each piece. One 

of the advantages of this approach is that it has the potential to divide any 

data structure into smaller pieces. For example, this approach might divide 

a pair of a list and a tree into smaller pieces; when the first approach cannot 

do since there is no substructure of type pair. This approach is challenging
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since there is no static type for the resulting pieces. Moreover, I could not 

work on it further since I run out of time. However, this approach is an 

interesting topic for future work.

Distribution of regular structures such as a list, vector or matrix, the di

viding is straightforward. One usually divides lists, vectors or matrices into 

collections of sub-lists, sub-vectors or sub-matrices. In this thesis, we gener

alize this usual approach to all data structures; all the resulting pieces have 

the same type as the original data structure. That implies the original data 

structure must be recursively defined and must have recursive substructures 

in order to have a nontrivial distribution. Any data structure without sub

structure with the same types such that a pair of a list and a tree will be left 

as one piece (trivial distribution).

6.2.2 Number of Resulting Pieces

To divide a data structure over p processors, we have to break the data 

structure into n pieces. The n pieces are collected into p subsets, each subset 

is then assigned to one processor as the result of dividing.

When dividing a list over p processors, a block distribution results in 

p sub-lists. However, in many cases, the distribution is not that simple. 

A typical example is to divide a perfectly balanced binary tree over three 

processors. For simplification, we consider everything in the tree as nodes 

(leaves of the tree can be considered as nodes with no children). Suppose we 

divide all the nodes to the three processors; we call all connecting nodes in 

one processor a piece. If the aim is to have perfect load balance (the numbers
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of nodes in any two processors are different by at most 1), then it is clear 

there must be more than 3 pieces. In fact, we will prove that the number of 

pieces has to be larger than a linear proportion of the depth of the tree as 

Proposition 11 bellow.

The proposition and its proof below are standard and purely mathemat

ical. We need some definitions and a lemma to make the proof easier. For 

each natural number n, let f(n) be the number of ones (1) immediately suc

ceeded by a zero (0) when representing n in base two. For example, as 21, 7 

and 2 (in base ten) are 10101, 111 and 10 (in base two) we have /(21) = 2, 

/(7) = 0 and /(2) = 1. For a collection C of pieces of a tree, let #C be the 

number of elements of C and let s(C) be the total number of nodes in C.

Lemma 10 Let C\, C2 and C3 be three collections of pieces as a result of 

dividing a perfectly balanced binary tree over three processors. We have ffC\ + 

#C2 + #C3 > /(s(Cx))/4.

Proof: The proof of the lemma is by induction on the sum of #Ci + #C2 + 

#C3. Let l be the depth of the tree. The sum of ffC\ + #62 + #63 cannot 

be less than 1 as the tree must have a root. When the sum is 1 then C\ is 

either the empty set or the set of one element which is the whole tree; s(Ci) 

is 0 or 2l+1 — 1. Then we know /(s(C'i)) = 0. Since 1 > 0 = /(s(Ci))/4; this 

establishes the base case for the induction proof.

For inductive step, we are trying to have a new distribution D\,D2 and 

D3 such that

#<?! + #c2 + #C3 = #L>! + #£>2 + #D3 + 1
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so we can apply the induction hypothesis on Di, D2 and D3. There is a piece 

(called S) in C\, C2 or C3 which is a full subtree. So we can create D1, D2 and 

Ds from Ci, C2 and C3 by moving S to join the piece whose nodes include 

the parent of the root of S. Now apply the induction hypothesis on the three 

new collections D\, D2 and D3 we have ffDi + #D2 + #D3 > f(s(Di))/A.. 

When comparing D\ and C\ there are three cases: D\ is the same as Cj; D\ 

is the same as C\ except that one of its pieces gets the extra bit S'; or D\ is 

Ci with the piece S removed. Let t — 1 be the depth of S, the number of 

nodes in S is 2* — 1. We can deduce that s(Ci) is the same as s(Di) or their 

difference is 24 — 1. Then we know that f(s(Ci)) is at most 4 greater than 

f(s(Di)); combining that with the induction hypothesis would complete the 

proof of the lemma.

□

Proposition 11 The number of resulting pieces in distributing a perfectly 

balanced binary tree of depth l over three processors is greater than 1/8—1 if 

the distribution has perfect load balance.

Proof:

If the depth of the tree is odd and equal 2k + 1 then total number of 

nodes in the tree is 22k+2 — 1. Having the perfect load balance, the number 

of nodes for each processors is:

(22fc+2 - l)/3 = 22k + 22k~2 + • • • + 2° = m.

We know that f(m) = k and combine that with the lemma, we have the total
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number of pieces is greater than k/4 which is greater than (2k + l)/8 — 1. 

So, the total number of pieces is greater than (2k + l)/8 — 1.

If the depth of the tree is even and equal 2k then total number of nodes 

in the tree is 22k+1 — 1. Having the perfect load balance, the number of nodes 

for each processors is m or m + 1 where:

m = (22k+1 - 2)/3 = 22k~l + 22fc-3 + • • • + 21.

We know that f(m) = k and f(m+l) = k — l. The proof is then similar to 

the case when the depth of the tree is odd.

□

6.2.3 Parameters of Generic Distribution

The distribution function divides any data structure into smaller pieces ac

cording to the hardware parameters of the machine. The first argument of 

the function is the hardware information of the parallel machine e.g. the 

number of processors, network speed, cache size, etc. The second one is the 

data structure to be distributed. As the first step in the work, the only 

concerned hardware parameter is the number of processors.

As the main theme of this work is about data parallelism and data dis

tribution, the focus is on scalable problems [60, 64], That means we are 

interested in the problem where the size of the input data is significantly 

larger than the number of the processors. For example, when the number of 

processors is larger than the size of input data, the theory does not utilize 

the fact that we can put each datum into a distinct processor.
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6.2.4 Requirements of the Distribution

Since the context of distribution is for parallel programs, the requirements 

for the distribution are closely determined by the requirements of parallel 

programs, which are: granularity; load balance; locality; and communica

tion and synchronization [43]. Among these four, load balance and locality 

largely depend on the choice of distribution and the other two do not. That 

imposes the two main requirements of distribution: load balance; and local

ity. By load balance, we mean that all processors hold approximately the 

same amount of data. Locality means related data tends to be in the same 

processor, and therefore, potentially reduces communication between proces

sors. For example, locality in distributing a tree is about trying to keep a 

node and its sub-nodes in the same processor.

However, the requirements sometimes conflict. Distributing a perfectly 

balanced binary tree helps illustrate the point. The tree can be easily dis

tributed over two, four, or eight processors with perfect locality and perfect 

load balance. However, when dividing all the nodes of the tree for three 

processors, we cannot achieve both perfect work balance and perfect locality. 

As discussed previously, if we want the best possible load balance then the 

number of resulting pieces has to be proportional to the depth of the tree, 

i.e. not perfect locality. On the other hand, if we want perfect locality, (the 

resulting parts are three sub-trees) then the biggest sub-tree is at least double 

the smallest one, i.e. not perfect load balance.
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6.3 Algorithm for Generic Distribution

This section explores an algorithm for the generic data distribution.

As we want all the resulting pieces to have the same type as the original 

data structure, to have a nontrivial distribution, the original data structure 

must have recursive substructures with the same type as the original. Dis

tributing a data structure without substructure with the same types leaves 

the data structure as one piece (trivial distribution). Focusing on non-trivial 

distribution, in this section, the word tree is used to call a recursive abstract 

datatype with substructures with the same type as the original one. Any 

immediate substructure with the same type with a tree is called a subtree of 

that tree. 1

The aim for tree distribution is to break a tree into a set of almost equal 

parts, each part is a set of sub-trees. Below is an algorithm we have used for 

tree distribution.

This algorithm traverses through the tree top-down. We need to keep 

a list (of integers) for the estimated capacity for the amount of data each 

processor should hold. Initially, the list of estimated capacity has all the 

same integers, and the sum of all integers in the list is equal (or slightly 

larger than) the size of data structure that is distributed. The nth element 

of the list is the amount of data that the processor number nth should take. 

Each time some data is assigned to the nth processor, the nth element of 

the list is reduced by the size of the data. In the algorithm below, “small

enough” and “best fit” are relations between the size of the data with the

Tn this section, the term sub-tree represents some sub-structure of the original tree, 
and subtree (of a sub-tree) represents the immediate sub-structure (of the sub-tree)
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current list of estimated work to the processors.

a Small Subtree : If the sub-tree is small enough, (in relation to the work 

assigned for processors), then assign the sub-tree to the best fit pro

cessor. Reduce the estimated work for this processor by the size of the 

sub-tree.

b Big Subtree : If the sub-tree is not small enough then:

bl Updating Parameters Put the node (non-recursive part of the 

sub-tree) on processor zero. Reduce the estimated work for pro

cessor zero by the size of the node.

b2 Recursive Call Apply this algorithm on all sub-recursive struc

tures (all subtrees of the sub-tree) using the same list of estimated 

capacity.

b3 Combination of Recursive Call Combine the results from all 

the recursive calls.

The actual implementations of “size”, “small enough”, and “best fit pro

cessor” might vary. The size function has the type X —> int. It counts the 

number of real data int, float, char. The sub-tree is small enough when there 

is one processor whose estimated work left is greater than or equal to the 

size of the sub-tree. The best fit processor is the processor with the least 

estimated capacity that is greater than or equal to the size of the sub-tree.

In a purely functional approach, we need some mechanism to represent a 

data structure that belongs in remote (different) processors. One solution is
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to introduce a new constructor :

remote : int —> X -> X.

For each data x and an integer n, remote n x can be understood as the data 

x associated with processor number n. In fact, one can treat remote as an 

advance version of the imperative feature clone. As clone x creates a new 

copy of x\ the ultimate goal of remote n x is to make a new copy of x in the 

nth processor.

Using the above algorithm, we can traverse through the input data struc

ture, and mark any substructure to be sent to processor n by remote n. 

Another way to describe that is: distribution is done by marking an appro

priate substructure with remote. A version of the main body of the code can 

be seen in Figure 6.1. From the algorithm described in the previous section, 

we can see the need for supporting functions for the distribution function. 

Among supporting functions for the distribution, setChildren and getChildren 

are two built-in generic functions with the types:

getChildren : X —> list X 

setChildren : list X —^ X —y X.

The evaluation of getChildren x will return a list of substructures (children) of 

x that all have the same type as x. Considering x as a tree then getChildren x 

returns the list of immediate subtrees of x. The result of the evaluation of 

setChildren lx is a tree with the root being the same as one x and all children 

being elements of l. The implementation of these two functions exploits the
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(dist : list int —> X -» list int * X) l x = 
if smallEnough l (size x) then 

let n = mostFit (size x) l in
(updateEntry n (fun s —> s — (size x)) l, remote n x) 

else
let l\ = updateEntry 0 (fun s —> s — (sizeTop a:)) / in 
match (paramaplist dist l\(getChildren x)) with

I (h,xc) —> (l2, setChildren xc x)

(distribution : int —» X —> X) p x = 
snd (dist (sameList p ((size x)/p + 1)) x)

Figure 6.1: Generic Tree Distribution

theory of representation of data; and we are not going to details of those 

in this thesis. However, the compiler code for the two functions as well 

as one for remote are available on request. We also need some standard 

functions acting on lists: mostFit; updateEntry; sizeTop; paramaplist; sameList 

and smallEnough. The exact FISh2 code for all auxiliary functions is given 

bellow.

let rec (size: X -> int) =
I int x -> 1 | float x -> 1 I char x -> 1 
I x y -> (size x) + (size y)
I x -> 0;;

let rec (smallEnough: list int -> int -> bool) 1 x = 
match 1 with 

I nil -> false
I cons h t -> if h >= x then true else smallEnough t x;;

let (mostFit: int -> list int -> int) x 1 =
let rec (gmf: (int*(int*int)) -> list int -> (int*int)) i =

I nil -> (snd inpr)
I cons h t -> (
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if ((h < x) II ((snd (snd i)) <= h)) then 
(gmf ((fst i) + 1, snd i) t) 

else
(gmf ((fst i) + 1, (fst i, h)) t)) 

in fst (snd (gmf (0, (-l,x)) 1));;

let rec (updateEntry: int -> list X -> (X -> X) -> list X) 
n 1 f = 
match 1 with 

I nil -> nil
I cons h t -> if (n = 0) then (cons (f h) t) 

else (cons h (updateEntry (n - 1) t f));;

let appsnd f pr = (fst pr, f (snd pr));;

let rec (paramaplist: (X->Y->X*Z) -> X -> list Y -> X*(list Z)) 
f i =

I nil -> (i, nil)
I cons hd tl -> let t = f i hd in
appsnd (cons (snd t)) (paramaplist f (fst t) tl);;

let rec (sameList: int -> X -> list X) n x =
if n < 1 then nil else Cons x (sameList (n - 1) x);;

let rec (sumSize: list X -> int) =
I nil -> 0
I cons h t -> (size h) + sumSize t;;

let (sizeTop: x -> int) = size x - (sumSize (getChildren x));;

6.4 Implementation

The generic data distribution was developed in 2002 as part of a parallel 

mapping function as a join work of Jay 2, Hamdan 3 and me. At that time, 

FISh2 supported some parallel MPI primitives [62, 61] but they have not

2C. Barry Jay University of Technology, Sydney, Australia
3Mohamamd M. Hamdan, Yarmouk University, Irbid, Jordan
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been maintained since 2002. We run some experiments on pmap but did 

not get any significant results. I implemented the generic data distribution 

function as discuss in the previous section. The function had been tested (it 

is a sequential algorithm and can be run on one processor) and it produced 

expected results on different kinds of data such as lists and various sorts of 

trees. The code has been maintained and presented above. Most of work is 

about writing FISh2 codes. I also added all built-in constructors and functions 

needed for the distribution such as remote and getChildren into the compiler. 

The compiler with those features is available on request.

6.5 Conclusion

Generic programming promises an effective tool for parallel programming. 

Generic data distribution is a key step in building generic parallel programs. 

We have found a new generic algorithm for distributing structured data with 

all the resulting pieces having the same type as the original data structure. 

The algorithm tries to maximize the load balance while preserving major 

part of the structures.
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Conclusions

The pattern calculus, as introduced by Jay [35] 2004, provides a powerful 

and new approach to generic functions. The expressive power of the calculus 

mostly depends on the choice of the constants. We increase its expressive 

power further by extending (or/and changing the properties of) the constants 

to cover different styles of programming.

In designing the type system to support both polymorphism and imper

ative programming, we need to ensure that the two features do not interact 

in any ill-typed way. We use value polymorphism approach, which contains 

simple type rules to get type safety in systems containing both polymorphism 

and updatable location.

Parametric polymorphism can be safely integrated into an imperative 

system in a simple way. The key point is to separate functions which are 

potentially polymorphic from updatable terms. We use the polymorphic let 

rule for extensions (functions) or variables only, and use the monomorphic 

let rule for other terms (and the same for fix-point). The two let rules are

117
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the way for combining polymorphic functions and monomorphic updatable 

data into one small simple system. As a result, all functions in the system 

can be used fully polymorphically in conjunction with updatable locations.

We have two different expansions of the calculus with imperative features. 

They combine the functional and imperative programming styles within a 

single, simple calculus.

The first expansion adds more expressive power to the system with a 

minimum effect on the purely functional features. There is a clear separation 

between the type of a location loc T and the type of its value T. Based on 

the powerful technique for building generic functions of the pattern calculus, 

primitive imperative operations can be used to underpin generic operations 

for creating, reading from and writing to constructed locations. The advan

tage of this approach is that it naturally supports inplace update, something 

that is hard to achieve in other languages supporting recursive types. By 

adding a layer of indirection, one can wrap inplace update within a com

pletely safe form of assignment on reference types. The added features of 

while-loops and for-loops, vector types and the generic output function is 

one proof for the orthogonality of the systems. The addition of loops and 

vector types shows the potential for optimizing the system without affecting 

its soundness. The addition of generic output function also shows that ex

ploiting the expressive power of the system can help to reduce the complexity 

of the compilers.

The second expansion adds the update ability to storable terms. A key 

feature of the system is that there is no boundary between a location and 

its value. The decision when to get the value or when to pass the reference
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are all determined inside the calculus, therefore constructed locations are 

much easier to use. As in the previous expansion, we can construct a generic 

assignment function which naturally supports inplace update.

Generic programming promises an effective tool for parallel programming. 

The expressive power of the pattern calculus can also be exploited in par

allel programming. As the generic assignment is an effective tool for han

dling locations; the generic data distribution plays similar roles in parallel 

programming. Generic data distribution is a key step in building generic 

parallel programs. We have found a new generic algorithm for distributing 

structured data. The algorithm tries to maximize the load balance and the 

locality of data.

7.1 Future Work

The focus of this thesis has been to extend the expressive power of the pattern 

calculus in an imperative setting. It can be used as a base to add extra fea

tures and find more applications. The main future directions are summarized 

as follows.

Finding More Applications The combination of the pattern calculus and 

imperative features promises great expressive power. We can try to 

find some real world applications where the expressive power is utilized 

and magnified. The process might help in identify more useful built-in 

functions.
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Adding the Parallel Features An obvious direction for future work is the 

adding of parallel features to the extension of pattern calculus with im

perative feature. One possible further development is of generic skele

ton (see e.g. [18]). One of the steps, a generic distribution function 

has been outlined in this thesis. The communication between different 

processors can be seen as assignment of data from one processor to 

another.

Object-Orientation Another direction is finding a new approach to object- 

orientation. With the ability to define functions with different algo

rithms for different types, the pattern calculus is proved to be a new 

promising base for object-oriented languages [34]. Adding that with 

the result of this thesis should create a uniform system that supports 

functional, imperative and object-oriented programming styles.

Database Programming Adding imperative features is an important step 

in applying the pattern calculus to database programming [48]. In some 

way, databases can be seen as large constructed locations. With the 

new expressive power from the pattern calculus, especially the generic 

assignment function as an efficient way to deal with large locations, we 

might have a new way to act on databases in a generic way.
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