
Adding Imperative Programming to The
Pattern Calculus

by

Quy Tuan Nguyen

a thesis submitted for the degree

Doctor of Philosophy

2005

Certificate of Authorship/Originality
I certify that the work in this thesis has not previously been submitted for a
degree nor has it been submitted as part of requirements for a degree except
as fully acknowledged within the text. I also certify that the thesis has been
written by me. Any help that I have received in my research work and the
preparation of the thesis itself has been acknowledged. In addition, I certify
that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note:
Signature removed prior to publication.

Acknowledgment
First and foremost, I would like to thank my supervisor Barry Jay whose
help, stimulating suggestions and encouragement helped me in all the time
of research for and writing of this thesis. Thanks to Murray Cole, Mohammad
Hamdan, Ryan Heise, Gabi Keller, Hai Yan Lu, Clara Murdaca and David
Skillicorn for valuable advice and suggestions.

Also, I would like to give my thanks to my family and friends for all
support and encouragement.

Contents

1 Introduction 1

1.1 Outline of the Thesis.. 3

1.2 Contribution... 4

1.2.1 Personal Contribution .. 4

1.2.2 Significance... 5

1.3 Implementation... 6

1.4 Background... 7

1.4.1 Imperative Programming... 7

1.4.2 Functional Programming... 8

1.4.3 Combining Functional and Imperative Features 9

1.4.4 Adding Location Types and Terms into a Functional

Setting.. 10

1.4.5 Generic Parallel Programs........................... 14

2 Review of the Pattern Calculus 15

2.1 Introduction... 15

2.2 Types .. 16

2.3 Terms.. 18

3

2.4 Constructed Terms... 23

2.5 Reduction.. 24

2.6 Examples.. 27

2.7 Representing Data Structures.. 31

2.8 Conclusion.. 33

3 Restricting Polymorphism to Functions 34

3.1 Introduction... 34

3.2 Value Polymorphism.. 36

3.3 Conclusion.. 39

4 Location Types 41

4.1 Introduction... 41

4.2 Locations.. 43

4.3 Evaluation.. 45

4.4 Properties of Evaluation... 48

4.5 Examples for Primitive Imperative Features................................. 56

4.5.1 Updating Lists ... 57

4.5.2 Linked-Lists... 57

4.6 Constructed Locations... 58

4.7 Reference Types... 65

4.8 While-Loops and For-Loops... 67

4.9 Examples .. 68

4.9.1 Bubble-Sort... 68

4.9.2 Converge... 70

4.10 Vector.. 72

4

734.11 Generic Output

4.11.1 Generic Output... 73

4.11.2 Bracketing.. 75

4.11.3 Supporting Functions for Output......................................77

4.11.4 Output Function... 77

4.12 Implementation... 79

4.13 Limitations... 83

4.14 Conclusions... 84

5 Mutable Data 86

5.1 Introduction... 86

5.2 Types and Terms.. 87

5.3 Evaluation.. 89

5.4 Examples .. 99

5.4.1 Generic Assignment Function..99

5.4.2 Infinite Lists...100

5.4.3 Graphs.. 101

5.5 Implementation... 102

5.6 Conclusion.. 102

6 Generic Data Distribution for Parallel Programming 104

6.1 Introduction... 104

6.2 Generic Data Distribution.. 105

6.2.1 Type of Resulting Pieces... 105

6.2.2 Number of Resulting Pieces... 106

6.2.3 Parameters of Generic Distribution.................................109

5

6.2.4 Requirements of the Distribution....................................... 110

6.3 Algorithm for Generic Distribution...Ill

6.4 Implementation... 115

6.5 Conclusion.. 116

7 Conclusions 117

7.1 Future Work.. 119

6

List of Figures

2.1 The Combinatory Type System... 18

2.2 The Original Pattern Calculus.. 21

2.3 Reduction Rules... 24

3.1 The Pattern Calculus Restricted to Value Polymorphism ... 37

4.1 Evaluation Rules with Location Types.. 47

4.2 Generic Function loc.. 61

4.3 Generic Function val.. 62

4.4 Generic Function assign... 63

4.5 Shape Checking Function... 65

4.6 Functions on References... 66

4.7 Imperative Bubble Sort.. 69

4.8 Imperative Bubble Sort with Ref..70

4.9 Converge Function... 71

4.10 Need-Bracket Function... 76

4.11 Generic Output Function.. 78

5.1 Evaluation Rules with Mutable Data 1...92

5.2 Evaluation Rules with Mutable Data 2..................................... 93

7

5.3 Generic Function assign using Mutable Data........................... 99

5.4 Generic Function refassign using Mutable Data........................ 100

6.1 Generic Tree Distribution .. 114

8

Abstract

By focusing on data and flow control, imperative languages provide a

finely grained and efficient mechanism for directly manipulating state and

memory. By focusing on functions, polymorphism increases the modularity

and reusability of programs. The pattern calculus gives a new account of

polymorphism over arbitrary datatypes which has been used as the foun

dation for building the functional language FISh2. The power of the new

polymorphism is not limited to a functional setting and it can be extended

into an imperative setting. The main contribution of this thesis is to expand

the pattern calculus with imperative features and implement this within a

version of FISh2.

Two approaches are developed in expanding the calculus to imperative

programming based on two setting: functional and imperative. Based on

a functional setting, updatable locations are given separate location types;

while based on an imperative setting, locations and their values share the

same types. In both approaches, structured locations can be defined in the

same way the calculus defines structured data. Hence, generic functions on

locations can be defined by pattern-matching on (location) constructors. In

that way, the power of the combination exceeds that of the boundary of

functional or imperative alone. In particular, with the generic assignment

function, we have a new approach on memory management which performs

inplace update whenever it is reasonable to do so.

2

Similar ideas could be used to extend the power of parametric polymor

phism to parallel programming. To illustrate the approach, a key problem is

addressed in detail, namely, distributing a data structure over a network of

processors.

Chapter 1

Introduction

In typed programming, polymorphism allows the same code to be used with

different types, which results in more general and abstract implementations

of programs. Polymorphism makes languages more expressive by increasing

the reusability of programs, while still maintaining type safety.

The pattern calculus gives a powerful new approach to polymorphism.

One of the key ideas in building polymorphic functions is pattern-matching

programs in which each pattern might have a different type. With these

pattern-matching, functions such as the generic plus and generic equality

can work on arbitrary data. The pattern calculus also gives new account

for representing data, all data structures can be constructed using names

and a finite set of constructors. The theory of data representation gives a

new form of polymorphism that enables to write a generic mapping function.

The pattern calculus has been used as the foundation for the functional

programming language FISh2 [27]. The expressive power of the calculus can

be extended to other styles of programming. The thesis discusses expansions

1

CHAPTER 1. INTRODUCTION 2

of the calculus to handle imperative programming and their implementation

as expansions of FISh2.

Considering different coding styles and the trade-off of different proper

ties, we provide two different approaches of combining the pattern calculus

with imperative features. In the first approach, updatable locations are given

separate location types while in the second, locations and their values share

the same type. In both approaches, the use of assignment as a fully generic

function provides a new approach to memory management where the inplace

update is performed whenever it is reasonable to do so. More generally, one

is able to combine polymorphism with fine control of memory to build simple,

reusable and memory efficient programs.

A new way of memory management can also be exploited in parallel pro

gramming. With the existing tools in the pattern calculus, we can build a

generic data distribution function. The distribution function can be seen as

one step towards the expansion of the pattern calculus to parallel program

ming which supports the construction of generic parallel programs such as a

generic parallel mapping operation.

Generic parallel programming was the main focus of the original thesis

plan. However, during the research, the adding of imperative features turned

out to be more significant and time consuming than estimated. As a result,

the focus of the thesis changed to imperative programming.

CHAPTER 1. INTRODUCTION 3

1.1 Outline of the Thesis

The first chapter is an introduction of this thesis. After the outline (in

this section), there is a section about the outcomes, personal contribution

and significance of this thesis. Next is an overview about implementation

involved in this thesis. The last part of the chapter is the literature review.

The second chapter is about the pattern calculus as introduced by Jay

[35]. We do not include all parts of Jay’s paper in the chapter, for example,

the theory of how to represent data structures is omitted. The main purpose

of the chapter is to give the motivations and to fix the notations for this

thesis.

Without restriction, polymorphism interacts with imperative features in

an ill-typed way. The third chapter discusses a modification of the typing

rules of the pattern calculus that enables the addition of imperative features.

The main reason for being stand-alone is that the chapter sets up the typings

for the next two chapters.

Chapter 4 is an expansion of the pattern calculus with imperative features

based on a functional setting. Based on the pattern calculus as a purely

functional system, location types and terms are added on top. Creations of

locations are explicit. We also add location constructors so that pattern

matching can work on constructed locations. The chapter also includes some

additional imperative features such that while-loops, vectors, and generic

output to enhance the usability of the system. Some examples to show the

expressive power of the system are provided.

Chapter 5 is another expansion of the pattern calculus with imperative

CHAPTER 1. INTRODUCTION 4

features but it is imperative based. All data can be assigned; locations

and their values share the same types. Apart from these differences, this

expansion is similar to the one in Chapter 4.

Chapter 6 introduces a generic data distribution function which is a key

step in generic parallel programming.

Chapter 7 concludes the thesis with some indication of related future

work.

1.2 Contribution

The pattern calculus by itself can be seen as a foundation for a functional

programming language. The overall contribution of this thesis is to expand

the pattern calculus to imperative and parallel programming. The theory is

grounded in the corresponding implementation of the programming language

FISh2.

An early version of the system in Chapter 4 was published as a joint

paper [37] with the title The Polymorphic Imperative: a Generic Approach

to Inplace Update. This paper describes an extension of an earlier version of

the pattern calculus with imperative features. The focus of the paper is on a

generic assignment function that does inplace update whenever it is possible.

1.2.1 Personal Contribution

The results in Chapter 3 were produced by me. The system in Chapter 4

was a join work of Jay, Lu 1 and me. The system in Chapter 5 was developed *

XC. Barry Jay and H.Y. Lu, University of Technology, Sydney, Australia

CHAPTER 1. INTRODUCTION 5

by me. The results in Chapter 6 were join work of Jay, Hamdan 2 and me.

The implementations of the adding imperative features as in Chapters 4

and 5 were done by me based on the foundation produced by Jay [27]. The

generic distribution function in Chapter 6 was implemented by me.

1.2.2 Significance

The choice of styles in programming between functional and imperative can

be seen as a trade-off between expressive power and the direct manipulation

of memory and state. Based on the pattern calculus, the generic combination

of imperative and functional has the strengths of both styles. Programs

written in the system benefit from the elegance and compactness of higher-

order functions and polymorphism in the functional style, as well as the direct

manipulation of memory and state of programs in the imperative style.

The power of the combination exceeds that of functional or imperative

alone. One of the highlights is the generic assignment function (in source

code) that compares the shapes of the memory and the new value so that

inplace update is done whenever it is reasonable to do so. From the functional

programming viewpoint, the generic assignment function can be seen as an

efficient and generic approach to memory management. From the imperative

programming viewpoint, it can be seen as a new and clean approach to

updating large data structures.

As distribution is a key step in parallel programming, the study of generic

distribution provides a new understanding towards generic parallel program

ming. Our choice of distribution is about maximizing the locality and work

2Mohamamd M. Hamdan, Yarmouk University, Irbid, Jordan

CHAPTER 1. INTRODUCTION 6

balance for all processors.

1.3 Implementation

All the calculi in this thesis have been implemented. All examples presented

in this thesis have been written, tested and they produced expected result.

All of the codes are available on request.

This section is an overview about implementation activities involved in

this thesis. All the implementation was done in the programming language

FISh2 [27]. The programming language FISh2 (and its successor bondi) was

built originally by Jay to implement and test various ideas and approaches in

language design. The language has been changing and evolving all the time.

We use Concurrent Versions System (CVS) for backing up and branching

purposes.

There are two sorts of implementation I did for this thesis. The first

one is about compiler implementation for FISh2. The compiler is written

in the programming language OCAML [51]. A typical circle of compiler

implementation work involves:

• getting a stable version of FISh2 and creating a new CVS branch;

• removing unwanted features if necessary;

• adding imperative features into the branch;

• testing and debugging the added features;

• merging all or part of the added imperative features with others’ work.

CHAPTER 1. INTRODUCTION 7

The second one is about writing and testing code in FISh2. A part of the

FISh2 coding is to implement imperative features such as a generic assignment

and a generic output function. Another part of the FISh2 coding is to test

the compiler and to find out new algorithm such as a generic distribution

function.

1.4 Background

1.4.1 Imperative Programming

Imperative is a style of programming where programs are explicit sequences

of commands or statements. Imperative programming gives the computer

a list of instructions to execute in a particular order. Typically, imperative

programs [55, 56] contain declarations of variables, and zero or more assign

ments of values to them. In the imperative style, intermediate values are

usually stored explicitly in variables. Type restrictions may be used for each

variable, the set of values that can be assigned to a variable is determined at

its declaration. Statements allow assignments to be sequenced and iterated.

As a result, the order of execution is significant in imperative programs.

The imperative style, evolving from machine languages, is usually consid

ered to have more direct interaction with the hardware and hence is regarded

as more efficient than other styles [55]. However, the direct interactions also

make it harder to reason about programs [1].

CHAPTER 1. INTRODUCTION

1.4.2 Functional Programming

An overview

Declarative programming describes to the computer a set of constraints and

might let the computer figure out how to satisfy them. The constraints are

usually represented as relationships between variables in terms of functions

or inference rules. Declarative programming contains two main branches:

logic programming and functional programming.

Functional programming languages are typically based on the lambda-

calculus [21]. In a purely functional setting, a program consists of a set of

(possibly recursive) function definitions and an expression [3]. Expressions

in purely functional languages are referential transparent i.e. the value of an

expression is determined at point of declaration. Referential transparency

makes programs in purely functional languages easier to reason about.

With the use of higher-order functions and parametric polymorphism [44],

programs written in functional languages are generally compact and elegant.

However, purely functional programming lacks the ability to directly control

the memory and state of a machine which can lead to inefficient programs

[55].

Hindley-Milner Type System

A large class of functional languages are built on the Hindley-Milner type

system [44]. A type is one of the following: a type variable (meta-variable

X); the unit type 1; a product of two types-, a coproduct of two types; or a

function from one type to another type. The type schemes (meta-variable r)

CHAPTER 1. INTRODUCTION 9

are given by universal quantification (V) of types by type variables.

T ::= X | 1 |T*T|T + T|T-^T

r ::= T | VXr

The use of type schemes allows schematic type variables, i.e. different uses

of a type scheme may instantiate a type variable in different ways.

let-Polymorphism

In the Hindley-Milner calculus, a term (meta-variables s, t) is: a term variable

(meta-variable x); or a constant; or a lambda abstraction (Ax.t)\ or a let

expression (let x = s in t) or application of two terms.

By giving type schemes for term variables, we have the polymorphic uses

of term variables in the body of a let expression. For example, in the expres

sion:

let id = Xx.x in (id 9, id true)

the type variable for the identity function has the type scheme \/X.X —> X.

The universal quantifier VX allows X to be instantiated to any type, of

integers, booleans, etc. Hence id can be applied to both 9 and true. This is

called parametric (sometimes let or Hindley-Milner) polymorphism.

1.4.3 Combining Functional and Imperative Features

Some work tries to combine some functional features and imperative fea

tures in one setting. As an attempt to create an efficient tool for scientific

applications with some functional style behaviours, Single Assignment C [54]

CHAPTER 1. INTRODUCTION 10

was developed as a C-based language that supports concurrency deducibility.

Pizza [52] is a Java-based language that tries to capture parametric polymor

phism. Motivated by Generic Java (GJ) [14], Java [16] also has parametric

polymorphism. FISh [28, 31] 3 is a shape-based array programming language

that has higher-order functions and parametric polymorphism. Haskell pro

gramming language [38] uses monads [67] for input/output; it has a restricted

form of stateful computation that retains referential transparency. The ML

[47] family is considered to be functional languages with some imperative

features. Detailed discussions about them will be the next subsection.

1.4.4 Adding Location Types and Terms into a Func

tional Setting

Many different lines of work e.g. [46, 45, 63, 41, 69, 47] try to provide

functional languages with some advantages of the imperative style; typically

by adding constants for creating, updating and getting values of reference

cells, with control structures such as sequential composition.

Let us explore this using an ML-like syntax [51, 63]. The expression

ref v creates a reference cell of reference type holding an initial value v. The

expression c := v updates the reference cell c with the new value v. The

expression !c gets the value held in the reference cell c. The expression n; v

sequences u and v. The expression [] is the empty list. The expression :: is

the infix operator for creating a list from a head and a tail, hd is a function

returning the head of a non-empty list. (u, v) is a pair of two components

3This is FISh, not to be confused with FISh2.

CHAPTER 1. INTRODUCTION 11

u and V] fst and snd are two functions for extracting the first and second

components of a pair.

Referential transparency no longer holds for references. Consider the

program:

let x = ref 9 in while \x > 0 do x := lx — 1 done.

It terminates but replacing all the occurrences of x by ref 9 the new program

does not terminate.

In a purely functional setting, all variables can have polymorphic type

scheme. A typical example is a polymorphic empty list:

let x = [] in (true :: x, 1 :: x).

The let expression binds x to a polymorphic empty list. The use of poly

morphism enables the first part of the pair to have s as a list of booleans

and the second part of the pair to have x as a list of integers.

Unfortunately, the combination of polymorphism and updatable locations

(references) does not come for free. One might let some bad programs get

through such as the following ill-typed line of code:

let x = ref [] in x true :: \x\ (hd !x) + 1.

The let expression binds a: to a reference cell initialized to an empty list.

If the polymorphism is unconstrained, then the first part of the sequential

composition uses the cell as a reference to a list of booleans and the second

CHAPTER 1. INTRODUCTION 12

part of the sequential composition uses the cell as a reference to a list of

integers; which results in a run time type exception when a boolean is added

to an integer.

A naive attempt to detect such type errors is to require that a term whose

type contains a reference type is monomorphic. However, that is not enough

as the following example shows:

let fref x = let r = ref x in (fun u —dr, fun u —> r := u) in

let t — fref [] in (snd t) [9]; true :: ((fst t) true)

The types of fref and t do not employ reference types. However, unrestricted

polymorphism for the reference in the closure of fref creates a similar ill-typed

problem as in the previous example. If the type scheme of t is VX, Y.{Y —>

list X) * (list X —>■ unit) then using X in the first part of the pair as boolean

type and in the second as integer type results in a run time type exception.

Next, we discuss some approaches for having both polymorphism and

updatable references.

1. The system developed by Wright [69] introduces value polymorphism

using a separate class of expressions called values:

Expressions e ::= v \ e\ 62 | let x = e\ in e2 | ref e | !e | x := e

Values v ::= x | Xx.e

The system introduces two inference rules for let expressions. For typ

ing the expression let x = s in t, the variable x has a polymorphic type

scheme only when s is a value. As none of the values can be actual

CHAPTER 1. INTRODUCTION 13

updatable references, all the references in the system are monomorphic.

2. The 1990 version of Standard ML [46] defines non-expansive expres

sions, but it allows some type variables in the expansive case to be

generalized. By detecting the creation of mutable values by ref oper

ator, Standard ML (1990 version) introduces a subclass of imperative

type variables; and any type substituted for an imperative type variable

must contain only imperative type variables. When the bound body

of a let expression is expansive, then imperative type variables are not

generalized.

The 1997 revision of Standard ML [47] adopts value polymorphism.

3. SML New Jersey (1993) [63] associates each variable with an associated

integer measuring the “degree of weakness” or “strength”. This is the

number of function applications to be applied before a reference is ac

tually created. If the type variable is unconstrained then the integer is

infinity. Each function application reduces the “strength” of variables.

Only variables with positive strength can be generalized.

4. Leroy [41] introduces closure typing to keep track of references embed

ded in functions by defining labels for all the functions in the closure

and constraints of these labels on type variables. All the type variables

contain constraints in themselves so that it is always clear which vari

ables can be generalized. The main aim of this work is to reduce the

impact of an imperative type system on a purely functional one.

CHAPTER 1. INTRODUCTION 14

1.4.5 Generic Parallel Programs

A current trend in computing is that the size of the problems to be solved is

increasing. However, the speed of a single processor is coming to its physical

limits because of thermal generation/dissipation properties and electronic

signal speeds [60], [12] etc. Parallel (high performance) computers provide a

may of solving the problems [43].

Parallel programming is more difficult to understand and to implement

than sequential programming because of the extra obligations to manage dis

tribution of data, synchronization and communication between processors. A

typical example is the quick-sort algorithm for arrays. Implemented in C,

the program is about 30 lines of code. However, a public available parallel

version of the same algorithm using C plus MPI [61] is about 1700 lines [49].

Moreover, when dealing with structured data, the parallel program becomes

more complicated because one must either separate the structure from the

data by flattening of the data structure or manipulate structured data di

rectly. Because of the complexity of parallel programming, the properties of

modularity and reusability in parallel programs become more important than

in sequential programming [5]. When dealing directly with parallel programs

on structured data [57], one can take advantage of generic programming to

make parallel programming more reusable by writing generic parallel pro

grams [17, 18, 4, 50], i.e. one parallel program working on different sorts of

data structures.

Chapter 2

Review of the Pattern Calculus

This chapter reviews the pattern calculus as introduced by Jay [35] with

some minor modifications. All the modifications have been discussed with

Jay. We do not aim to repeat all of the Jay’s paper here but just give the

motivations and tools needed later in the thesis.

2.1 Introduction

There is a significant class of operations that are shared by all data structures.

The aim of generic programming is to have the same operations that work

on arbitrary data types in a safe way. The pattern calculus [35] is a novel

contribution to generic programming with new account of pattern-matching

and data structures. One of the key ideas is that these operations are built

on pattern-matching programs in which each pattern might have a different

type. For example, the generic plus operation can be defined in the pattern

calculus as a pattern-matching of four cases. The first two cases are for

15

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 16

addition of two integers or two real numbers. The third case is to deal with

compound data structures. The last one is the default one. These four cases

are to cover all data structures. Details of the operation will be presented

later in the chapter. With pattern-matching such as one for the generic plus,

we have a generic way to traverse all paths of an arbitrary data structure.

The idea (path polymorphism) is noticed but not given a prominent role on

Jay’s paper [35], However, a system that supports path polymorphism is the

core path of this chapter; and will be exploited later in this thesis.

The pattern calculus also gives a new account datatypes. Using the com

binatory type system, type variables can represent structure as well as data.

This is the important in typing some generic functions such as mapping and

folding in the pattern calculus. Moreover, the ability to represent arbitrary

data structures using a fixed set of built-in constructors provides another

possibility for complete case analysis for all data structures.

The system satisfies standard properties such as reduction is Church-

Rosser, reduction preserves typing, typings of terms are stable under type

substitution, type inference is correct.

2.2 Types

Using the functorial type system [36], a typical data type will be represented

by the application of a type F to another type (or tuple of types) of data

X. The idea is developed further in the combinatory type system which is

given in Figure 2.1. It contains rules for type contexts (meta-variable A),

types (meta-variables S and T) and type schemes (meta-variable r). A type

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 17

context is a sequence (maybe empty) of distinct type variables. The judgment

A b asserts that A is a well-form type context. In the original paper [35], Jay

defines a type to be one of the following: a type variable (meta-variable A); a

type constant (meta-variable C); an application of two types. The judgment

A b T asserts that T is a well-form type in type context A. Also in the

original paper, Jay introduces a type constant Function, and Function S T

is the type of functions from S to T. In this research, it proves useful to

distinguish function types from applications. We propose a minor change

here, that is a new type form called function type, for any two types S and

T. We define S -» T is the function type from S to T instead of using the

application of the constant Function. The key point of the change is that,

there is no type which is both a function type and an application of types.

The raw type schemes are types under quantification by type variables. The

judgment Absr asserts that r is a well-form raw type scheme in type context

A. The free and bound variables of a type or raw type scheme are defined

in the usual way, as is a -conversion of bound variables. A type scheme is an

equivalence class of raw type schemes under a -conversion of bound variables

[47]. A type scheme is closed if it has no free variables.

There are some primitive built-in type constants such as: primint (prim

itive integer number type); primfloat (primitive real number type); primchar

(primitive character type). Other type constants such as int (proper integer

number type); float (proper float number type); char (proper character type);

bool (boolean type); list are introduced through abstract datatype declara

tions. Details about declared types are in Section 7 of the pattern calculus

paper [35] and they are similar to ones of ML.

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 18

Type contexts (A) -— — ----- ■— X qL AJ v ’ h A,Ah *

Types (S,T)
A h A

A e A
Ah C

AhS AhT
Ah ST

Ah 5 A h T
Ah5^T

Type schemes (r)
Ah T
Ah ST

A, A hs r
A hs VA.r

Figure 2.1: The Combinatory Type System

Type substitution, type unification and most general unifier are defined

in the usual ways [47].

A type is data-form if it is a type constant or an application of two types.

A key property is that no data-form type is also a function type. For each

type T, the arity of T is a natural number defined by: if T is a type constant

or a type variable or an application of two types, then the arity of T is zero;

if T is a function type Tx —> T2, then the arity of T is one plus the artity of

T2. The arity of a type scheme VA.T is the arity of T.

2.3 Terms

In conventional functional languages, “interesting” terms are all functions.

The pattern calculus balances the importance of functions and data struc

tures.

Constructors (meta-variable c) are used to build data structures in the

pattern calculus. These include primitive datum terms (meta-variable d)

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 19

of primitive integers, primitive floating point reals or primitive characters.

Other examples of built-in constructors are un; evr; ths; bind; rep; and exn.

Other constructors are introduced through abstract datatype declaration

such as true; false; cons; nil. Details about declared constructors are in

Section 7 of the pattern calculus paper [35]. The operators are given by:

datum operators (with the overloading meta-variable d); and the primitive

equality primequal. The term constants (meta-variable b) are given by: con

structors; and operators. Each constant comes equipped with a given closed

type scheme. Primitive integers, primitive floating point real numbers and

primitive characters are of types (trivial type schemes) primint, primfloat and

primchar, respectively. An example of a datum operator is the primplusint

of type primint —>• primint —>■ primint for adding two primitive integers. The

constant primequal is to check if the two terms are the same constructor; and

its type scheme is VAT, Y.X —> Y —» bool. There is also a special constructor

exn with the type scheme MX.X for handling exceptions.

Patterns (meta-variable p) are given by: term variables (meta-variable

x,y); constructors; or applications of one pattern to another. The judgment

A; T h0 p : T asserts that p is a pattern of type T in context A; T. The

applicative pattern p pi requires that the contexts of p and p\ are independent

from each other. Also, each term variable cannot appear more than once in

a pattern.

Raw terms (meta-variables s, t) are given by: term variables, term con

stants, applications of terms, extensions, let-terms and recursions. The judg

ment A; T h t : T asserts that t is a raw term of type T in context A; T.

Free, bound variables and term substitution are defined in the usual way.

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 20

Free variables (fv) of an extension is defined as

fv (at p use s else t) = fv(t) U (fv(s) — fv(p)).

Terms are defined as equivalent classes of raw terms under a -conversion of

bound variables.

One of the key novelties of the calculus is the powerful branching and

binding construct (named extension):

at p use s else t

where s and t are called the default function and specialization of the ex

tension respectively.

The type derivation rules of the pattern calculus are given in Figure 2.2.

The type derivation for let-expression let x = s in t allows the variable x a

polymorphic type scheme. This works well for a purely functional system.

The term &x(x, t) is a polymorphic recursion with the fix-point oft with

respect to the recursion variable x. It is called polymorphic because a type

scheme is given to x when deciding the type of t. Different uses of the recur

sion variable in defining a generic function may exploit different instantiations

of its type scheme.

A term is called an explicit function if it is an extension or a partially-

applied constant. It is clear that all explicit functions (apart from terms

headed by exn) have function types.

Next, we define some syntactic sugar. Note that some core notations

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 21

Term contexts (T)

Patterns (p)

A b
A; b

A; T b A bs r
A;T,x : t b

x ^ r

X\ x : X bQ x : X A; b0 c : T

A; T b o p ■ T A1;rlRoPl:T1 A,A1,X]r,T1R

c : VA.T

Terms (s,t)

A, Ai; tT, vTi\-0 p px \ vX

A; T b r(x)=VA1.T

v = U{Tx -+X,T)

A; T b x : aT a : At ^ A

A; T b b:VAx.T
A; T b b : aT a : Ax -)• A

A; r b s : T —» S A;TbbT
A]TR st: S

A; T b t : T S' Ai; r: b0 p : Ti A^^uT,^ b s : vS
A; T b at p use 5 else t : T —> S

A;Tb C.T^S Au^K p:Tx A^T^b

v = U{TuT)

A; T b at p use s else t : T -» S

A,Ai;rbs:5 A;T,x : VAj.Sb t :T

W(T!,T)t

A; T b let x — s in t : T

A,Ax;T,x : VAi.T b t:T
A, Ax; T b fix (x, t) : T

Figure 2.2: The Original Pattern Calculus

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 22

of many other programming systems such as Xx.t and match... with are

syntactic sugar here.

The syntax | p —> t is syntactic sugar for the program fragment

at p use t else .

A sequence of such fragments is a pattern-match with the ultimate exn de

fault. For example, | x —>• x is syntactic sugar for at x use x else exn. In

these pattern-matches, the wild-card symbol _ represents a fresh variable

in the pattern part (p). The syntax match s with t is syntactic sugar for

t s, especially when t is a pattern-match. The usual lambda abstraction Xx.t

is syntactic sugar for at x use t else exn. We use at p\ and P2 use s else t

as syntactic sugar for

at pi

use at p2 use s else Xy.t (p\ y)

else Xx.Xy.t (x y).

This extension tries to match p\ with x and P2 with y with failure at any

point applying the default to a reconstructed version of x y.

As the usual syntax for defining functions, let x p = s is syntactic sugar

for let x = at p use s else exn (especially when p is a variable). For example,

let f x = x + 1 is syntactic sugar for let / = at x use x + 1 else exn.

To define a recursive term using the let-expression, we use let rec x = s

as syntactic sugar for let x = fix(x, s).

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 23

2.4 Constructed Terms

The arity of a term constant b is defined to be positive infinity if b is the exn

constructor, and otherwise to be the arity of its given type scheme.

A term is headed by a term constant b if it is b itself or an application

s t where s is headed by b. The list of arguments of a term t headed by a

constant is: the empty list if t is just the constant; is the concatenation of

the t2 with the list of arguments of t\ if t is the application of ti to t2- A

term headed by a constant b is called & fully-applied constant if the number of

arguments of the term equals the arity of b\ and it is called a partially-applied

constant if the number of arguments of the term is strictly smaller than the

arity of b.

A constructed term is a term headed by a constructor. The application

of a constructed term to another term is called a applicative constructed

term. A term t cannot become a constructor if t is an applicative term or an

extension or a partially-applied operator. A term t cannot become applicative

if t is an extension or a constructor or a partially-applied operator. A pattern

p and a term t cannot match in exactly the following two cases: first, when

p is a constructor c, and either t is a constructor other than c or f cannot

become a constructor; second, when p is a applicative term and t cannot

become applicative. Two terms cannot compare in exactly the following two

cases: first, (at least) one of them cannot become a constructor; second, they

are two distinct constructors.

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 24

(at x use s else t) p > s[ti/x]
(at c use s else t) c > s

(at pi p2 use s else t)(ti t2) > (at pi and p2 use s else t) ti t2

if ti is a constructed term
(at p use s else t) R > t ti if p and ti cannot match

let x = s in t > t[s/x\
fix (x,t) > t{fix (x, t)/x)

d0 d\ ... dfc > d' if d0 di ... dk equals d'
primequal c c > true

primequal t t\ > false if t, ti cannot compare

Figure 2.3: Reduction Rules

2.5 Reduction

The basic reduction rules (denoted by relation >) are given in Figure 2.3.

We will discuss all the cases.

There are four reduction rules for the application of an extension to a

term. If the pattern is a variable x then specialization occurs with t\ sub

stituting for x as the argument. If the pattern is a constructor c and the

argument is also c then the result is the specialization s. If the pattern is

an application pi P2 and the argument is an applicative term t\ t2 then spe

cialization occurs. The specialization tries to match pi with ti and p2 with

t2 with failure at any point applying the default to a reconstructed version

of t\ t2 as defined in Section 2.3. If the pattern and the argument cannot

match then the result is the application of the default to the argument. The

reduction of let-terms substitutes the bound variable with the body of the let.

The reduction of a fix-point results in its body with the recursion variable

replaced by the fix-point. The reduction of a fully applied datum operator

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 25

results in the expected datum. The reduction of the application of primequal

to two terms results in: true if the two terms are the same constructor; and

false otherwise.

We present here one lemma about the property of term substitution which

will be used in later chapters of the thesis.

Lemma 1 Typings of terms are stable under term substitution. That is, if

there are derivations A; T, x : VAi .S b t : T and A, ApT h s : 5 then there

is a derivation of A, Ai;T b t[s/x\ : T.

Proof: The proof is by induction on the structure of the derivation of the

typing of t. We do a case analysis on the type rules in Figure 2.2. All the

cases are standard.

variable If t is variable x then t[s/x\ is s. We know that A; V b x : aT where

a : Ai —> A. Combining that with the assumption A;T,a; : VAi.S b

x : T and A, A^T b s : S. So we can conclude that A,Ai;T b

t[s/x\ : T. If t is variable different from x then from the assumption

A;r,a: : VAi.S b t : T we can deduce that A; T b t : T which is the

same as A, Ai; T b t[s/x] : T.

constant If t is a constant b then t{s/x\ is just b. From the assumption

A; r,:r : VAi.S b c : T we can deduce that A; T b c : T which is the

same as A; T b c[s/x\ : T (as A, Ai; T b).

application If t is an application ti t2 then there is a type 7j such that

A; T, x : VAX.S b tx : Tx ^ T and A; T, x : VAX.S b t2 : Ti. Ap

plying the induction hypothesis for t\ and t2 we know that A, A^T b

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 26

ti[s/:r] : Tj —>• T and A, Ai;T h t2[s/x\ : T\. Using the typing rule for

application we can conclude that A, Ai; T h {t\ t2)\s/x\ : T.

fix-point If t is of the form fix(xi,U), with a -conversion we can assume

that x\ is not in : VAi.S. The only way to get the type A;T,x :

VAX.S h fix(x1,ti) : T is by A', A"; T,a; : VA^S,^ : VA".T h R : T

(where A = A', A"). Applying the induction hypothesis for t\ we

have A, Ai;r, Xi : VA".T h ti[s/x\ : T. With the typing rule for fix-

point, we can deduce that A, A^T h fix(xi, Ufs/x]) : T and hence

A, Ai; T h fix(xi, t\)\s/x\ : T.

extension If t is of the form at p use t\ else t2, there are two sub-cases.

The first sub-case is when x is not in the free variables of p. We know

that t[s/x] is at p use ti[s/x\ else t2[s/x\. Applying the induction

hypothesis for t\ and t2 we have A,Ai;T h t[s/x\ : T. The second

sub-case is when x is in the free variables of p. We know that x cannot

be in the free variables of t2 and hence x is not a free variable of t and

the lemma holds for the sub-case.

let If t is of the form let x\ = U in t2, there are two sub-cases. The

first sub-case is when x is not X\. We know that t\s/x] is let x\ =

ti[s/x\ in t2[s/x\. Applying the induction hypothesis for t\ and t2 we

have A, A^r h t[s/x] : T. The second sub-case is when x is x\. We

know that x is not a free variable of t and the lemma holds for the

sub-case.

□

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 27

2.6 Examples

This subsection contains some standard utilities for a programming language.

Most of them will be used in the later chapters of this thesis. Note that

one can introduce new type constants and constructors using simple type

declaration and type declaration in a similar way as in ML. For more details

see Section 7 of the pattern calculus paper [35].

The pairing (binary product) is defined by:

type pair X Y = pair of X and Y.

We might use the usual syntax (rr, y) for the term pair x y and X * Y for the

type pair X Y. For example, (9, true) is a pair (term) of the type int * bool .

The booleans are defined by

type bool = true | false.

The infix-operation of conjunction (&&) and disjunction (||) and other op

erations on booleans such as not : bool —» bool can be defined in the usual

way.

The standard conditional if b then s else t is syntactic sugar for the

application if_then_else b s t\ where the function if_then_else is defined as

if_then_else : bool —> X —y X —y X =

| true —y (| s —y | _ -y s)

| false —^ (| _ —^ | t —y f).

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 28

Based on primequal the generic equality function equal can be defined as

equal : X —> X —> bool =

let rec (equalO : X -» Y —> bool) =

| xq xi —v (| y0 yi —i► if (equalO x0 yo) then (equalO X\ y\) else false)

| x —t- (| y —> primequal x y)

in equalO

Note that when the applications rc0 X\ and yo yi share the same type, their

components x0 and yo might have different types. So, equal has to be defined

through equalO of a looser type X —»• Y —»■ bool. We face the same issue

when defining some other generic binary functions such as generic addition

and multiplication functions.

To pattern-match against integers as in the function plus bellow, the

proper integers are abstract datatypes building on the primitive integers.

The same method is used for floats and characters.

type int = int of primint

type float = float of primfloat

type char = char of primchar

In this thesis, primitive datum values are marked with enclosing < • • • >.

For example, the expression < 9 > represents the primitive integer of value

9. The corresponding proper integer 9 is then int <9>. Character values

are marked with enclosing '.. / to avoid confusion with numbers (such as 9),

normal spacing (blank character), or mathematical symbols. For example,

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 29

proper character 'a' is then char <'a'>.

Similar to the generic equality function, the generic plus function can be

defined using primitive operators primplusint and primplusfloat which add two

primitive integers and two primitive floats respectively in:

plus : X -► X ->• X =

let rec (plusO : X —> Y —» X) =

| int xq —> (| int y0 —» int (primplusint Xo yo))

| float xo —y (| float y0 —> float (primplusfloat xo yo))

I Xo Xi ->■ (I y0 Vi ->■ (plusO xo y0) (plusO xl yx))

| x —» (| y —y if primequal x y then x else exn)

in plusO

We might use the usual infix-operation + in the place of the generic plus

function. For example 9 + 9 is syntactic sugar for plus 9 9. Other generic

arithmetic functions such as generic multiplication can be defined in a similar

way to plus. As an example of specialized codes, we add an extra case for

the multiplication of two complex numbers. Suppose complex numbers are

defined as:

type Complex = Complex of primfloat and primfloat.

Base on primitive operators primmultint, primmultfloat and primminusfloat

acting on primitive integers and primitive floats, the generic multiplication

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 30

function can be defined as:

mult :X^X^X =

let rec (multO : X —> Y —> X) =

| Complex xo x\ —¥ (| Complex yo y\ —> Complex

(primminusfloat (primmultfloat xq yo) (primmultfloat x\ jq))

(primplusfloat (primmultfloat x0 yi) (primmultfloat x\ yo)))

| int Xo —> (| int y0 —» int (primmultint xq Vo))

| float x0 —>■ (| float y0 float (primmultfloat x0 yo))

I Xi -» (| yo y\ -t (multo Xo yo) (multO xx yx))

| x —>• (| y if primequal x y then x else exn)

in multO

The ability of defining patterns of different types and the applicative pat

tern (such as Xo X\ in the generic equality) give a new form of polymorphism.

Jay calls it path polymorphism which is a simple and generic way to traverse

all paths of an arbitrary data structure.

The type of list is defined as:

type list X = nil | cons of X and list X.

The usual syntax for lists is accepted, such as [] for the empty list nil and

[1,2,3] for cons 1 (cons 2 (cons 3 nil)). The common operations of list: head

xThe name was not in the original paper [35], but in later development of the pattern
calculus, Jay gave it that name.

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 31

and tail are defined in the usual way:

tail : list X —> list X = | cons h t —* t

head : list X —» X = | cons ht h

The type of string is defined as:

type string = string of list primchar.

The usual syntax for strings is accepted, such as “a6c” for the string

string (cons <'a!> (cons <'b'> (cons <’d> nil))).

2.7 Representing Data Structures

This section is an overview about, representation of data as discussed in Sec

tion 8 of the pattern calculus paper [35]. It contains some bases for con

structing higher-order functions such as mapping or folding. However, the

expansions with imperative features do not depend on the representation of

data. In particular, after this chapter, we do not refer to this section.

A key step in understanding generic functions is to understand the nature

of datatypes. Using category theory, there is a clear boundary separating

structure from data [30]. Using the functorial type system [36], a typical

data type will be represented by the application of a type F to another type

(or tuple of types) of data X.

Generic functions in the pattern calculus such as mapping, folding and

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 32

zipping employ parametric polymorphism in typing the structure part as well

as in the data part. For example, one can generalize the function

maplist: (X ->■ Y) ->■ list X ->• list Y

to function mapl which works not only on list but any structure F:

mapl :{X^Y)^FX^FY

where X and Y are type variables, and F is a structure (type) variable. In

the pattern calculus, mapl is a special case of a more general function map

when there is only one sort of data.

As the generic mapping function can act on structures holding several

sorts of data, we define a datatype arrow as a form of gathering functions

from one tuple to another.

type arrow has

arrow X Y = onefun of (X —> Y)

or arrow(Xi, X2)(Fi, F2) = bthfun of arrow(X1,Y1) and arrow(X2,l2)

Since all data structures can be represented using a fixed finite set of

constructors [36], in order to write generic function working on arbitrary

data type, we just need to give the cases for each constructor in the set. One

example is the function

map : arrow X Y —>• F X —>• F Y.

CHAPTER 2. REVIEW OF THE PATTERN CALCULUS 33

Two of the common uses of mapping are mapl and map2 functions:

mapl / = map (onefun /)

map2 f g = map (bthfun (onefun /) (onefun g))

For example, mapl (Xx.x + 1) acts on all data structures of integers

(adding 1 to those). This is an example for another new form of polymor

phism: structure polymorphism. 2

2.8 Conclusion

The pattern calculus gives a new account of both pattern-matching and

datatypes to provide new approaches for generic programming. With a new

understanding about pattern-matching, one has the path polymorphism as

a generic way to traverse arbitrary data structures. Details of path poly

morphism are given in this chapter; as we will try to expand the power path

polymorphism further in later chapter of the thesis. We also give an overview

about structure polymorphism which is interesting but we are not going to

exploit that later in the thesis.

When I was writing this thesis, the pattern calculus (Jay’s research in

generic programming) has been developed to support further new forms of

polymorphism. However, due to the time limit, I could not work much

on the newer version of the pattern calculus; this thesis focuses on path

polymorphism as in [35].

2Again, the name was not in the original paper, but appeared in later development of
the pattern calculus.

Chapter 3

Restricting Polymorphism to

Functions

This chapter introduces some modifications of the pattern calculus that will

better support the imperative features considered in the next two chapters.

3.1 Introduction

Parametric polymorphism provides a tool to write reusable and modular

programs. Assignment on locations provides an effective and efficient way

to program. The combination of parametric polymorphism and assignment

promises a great tool for programming. A large amount of work, most no

ticeably, the ML family of programming languages, covers the combination.

Unfortunately, the combination is not very straightforward. Based on

a purely functional setting, polymorphism allows one term to be used with

different types. In an imperative setting, the uses of one identifier (term

34

CHAPTER 3. RESTRICTING POLYMORPHISM TO FUNCTIONS 35

variable) usually refer to one fixed memory location. As one fixed memory

location commonly cannot accommodate different types, the two ideas of

polymorphism and inplace update cannot freely coexist without compromis

ing type safety. The following lines of code (in an OCAML syntax [51]) help

to illustrate the point further b

let x = ref [] in

x := true :: !x;

(List.hd \x) + 9;;

The let expression binds i to a reference cell initialized to an empty list of

polymorphic type list of X. If the polymorphism is unconstrained, then X can

be instantiated to different types. The assignment in the body instantiates

X with boolean type while the addition in the body (in the third line of

the code) instantiates X with integer type. Evaluating the combination will

result in a run time type exception when the boolean true is added to the

integer 9.

The problem is due to having some updatable data being polymorphic.

However, there is no pressing need for any updatable data to be polymor

phic. In a functional language based on A-calculus [15], every term has the

nature of functions so they are all potentially polymorphic. Since the expres

sive power of polymorphism in a functional language is all in polymorphic

functions; the existence of polymorphic data structures, such as the empty 1

1In OCAML, ref := and ! are three operators for creating, updating and getting the
value of reference cells.
The semi-colon punctuation (;) is the infix operator for sequential composition.
The double-colon (::) is the infix operator for creating a list from a head and a tail, List.hd
is a function return the head of non-empty list.

CHAPTER 3. RESTRICTING POLYMORPHISM TO FUNCTIONS 36

list, is incidental. From an imperative viewpoint, functions are different from

data and inplace assignment acts only on data. Combining the two ideas, we

can set up a natural boundary between (potentially) polymorphic functions

and updatable data structures. Hence, to solve the typing problem of com

bining parametric polymorphism and updatable data it suffices to separate

functions and data in the type system.

3.2 Value Polymorphism

In this section, we introduce a modification of the type rules to naturally

support parametric polymorphism and imperative features. The rules sup

porting polymorphism are those for typing let-terms and fixpoints.

The let typing rule of the original pattern calculus (in Figure 2.2):

A, AijTb s : 5 A;L,x -.VA^SP t:T

A; T h let x = s in t : T

gives the variable x a polymorphic type by using the type scheme VAi.S.

We are going to restrict the use of this rule; for example when s is an

extension (known to be function). For the default case, we introduce a new

monomorphic let rule that simply gives x the monomorphic type (scheme)

S (without quantification).

A;Tbs:S A;T,x : S P t : T

A; T h let x = s in t : T

CHAPTER 3. RESTRICTING POLYMORPHISM TO FUNCTIONS 37

Term contexts (T)

Patterns (p)

Ah
A; h

A; T h AhjT
A; T, x : r h

x 0 r

X‘,x:X\-0x:X A; h0 c : T

A]T\-0p:T Ai; Ti h0 px : Tx A, Ai, X; T, rx h

c : VA.T

Terms (s,t)

A, Ai;fr,x>Fi h0 p pi :

A; T h T(x) = VAi.T

v — U{Ti -+X,T)

A; T h x : aT cr : Ai —>• A

A; T h C: VAi.T
A; r h c : aT <7 : Ai —>• A

A;T h s : T ->5 A; T h t : T
A;r h s t : S

A; T h t : T —>■ S A^ Ti h0 p : T\ A, Ai; ur, vFi h s : vS
A; T h at p use s else t : T —» S

A; r h t : T —> S' Ai; rx hQ p : Ti A^^.Tjh

v = U(T1,T)

A; T h at p use s else t : T —» S

A, Ai; T h s : S' A;T,x : VAi.Sh t :T

U(TuT) t

A; r h let x = s in t : T

A; T h s : S A; T, x : S h t : T
A; T h let x = s in t : T

A,Ai;r,x : VAi.T h t :T

s is non-expansive

A, Ai; T h fix (x, t) : T
t is non-expansive

A;r,i:Thi:T
A; T h fix (x, t) : T

Figure 3.1: The Pattern Calculus Restricted to Value Polymorphism

CHAPTER 3. RESTRICTING POLYMORPHISM TO FUNCTIONS 38

This idea is the same as the “value polymorphism” approach [69] (re

viewed in Chapter 1) that limits polymorphism for only non-expansive terms.

We will use the same term here. A term is called non-expansive if it is an

extension or a variable. As discussed above, we could define non-expansive

to be extensions only but the addition of variables is proved to be convenient

without compromising safety. In fact, one could try to add more terms to be

non-expansive but we did not find any convincing need for more.

In the expression let x = s in t, if s is non-expansive, then x is treated

polymorphically in t, in the default case, x is treated monomorphically in t.

A,Ai;rhs:5 A;r,x :VA1.S'ht:T _ _
-- s is non-expansive

A; T h let x = s in t : T

A similar modification is for the rule for fix-points. One polymorphic

rule for fix from the original pattern calculus now becomes two rules. The

polymorphic one is used only for non-expansive terms:

A,A1;r,i:VA1.Thi:T
------------------------------------t is non-expansive

A, Ai; r h fix (x, t) : T

The default is used the monomorphic rule:

A;T,x:TLt:T

A; T h fix (x, t) : T

In most, as functions can be used polymorphically, so can data structure.

Variables bound to data are free to be used polymorphically. For example,

CHAPTER 3. RESTRICTING POLYMORPHISM TO FUNCTIONS 39

OCAML is able to type the following lines of code

let x — [] in (0 :: x, true :: x)

let x = [] in x :: x

in which the empty list is used polymorphically by defining it to be one of the

values. We could do the same here in our system by declaring the empty list

(or a class of term containing the empty list) to be non-expansive. However,

we choose not to do so, and this is no loss. Data (non-function terms)

with the potential of having more than one type usually contains little real

information, such as the nil list or vector of length zero. In our viewpoint,

limiting the polymorphism on data does not reduce the expressive power of

the language in any significant way. By giving up polymorphism only on

non-function terms, we can add the imperative features into the system in a

simple and fully type safe way.

3.3 Conclusion

Parametric polymorphism can be safely integrated into an imperative system

in a simple way. The key point is to separate extensions (functions) which

are potentially polymorphic from updatable terms. We use the polymorphic

let rule for non-expansive terms only, and use the monomorphic let rule for

other terms. The two rules for let expressions (and the two for fix-points)

are the way to combine polymorphic functions and monomorphic updatable

data into one small simple system.

In this chapter, we apply value polymorphism to the pattern calculus.

CHAPTER 3. RESTRICTING POLYMORPHISM TO FUNCTIONS 40

In fact, we have not yet introduced any complete system with both of these

features, i.e. we have not introduced any formal definition of location nor

update. The reason is that we do not yet want to commit the idea into a

specific system. As a result, it can be used in different systems in flexible

ways. In the next two chapters, one can see how the idea can be used

for systems where locations are built in a functional way as well as in an

imperative way.

In the research, I spent some times exploring alternative approaches to

value polymorphism. One interesting observation is that the typing might be

used to separate functions which are potentially polymorphic from updatable

terms. The combinatory type provides a sound foundation for the separation.

I would have worked on this approach for longer if time permitted. With

some small modification, the new idea can be used in other combinations of

parametric polymorphism and updatable locations. In particular, one might

modify ML to use it so that the imperative features can be contained in a

clearer and more elegant type system.

Chapter 4

Location Types

4.1 Introduction

One of the great strengths of functional programming languages is that it

relieves the programmer of the need to manage memory, which helps make

programs shorter and easier to reason about. The price to be paid is that

their compilers must take a conservative approach to memory allocation,

often allocating new heap-space and garbage collecting the old values when

inplace update would have been perfectly safe.

A significant effort has been made to improve the efficiency of this process.

For example, types in compilation [6, 8, 10, 20, 68] uses type information to

ensure the safety of some inplace updating. This works well for integers,

floats and tuples built of such simple types, but does not handle recursive

types such as lists where the type does not determine the shape of its values.

Monitoring list lengths etc. may be attempted using sized types [25, 53] or

other dependently-typed systems, e.g. [72] with the aim of extracting compile

41

CHAPTER 4. LOCATION TYPES 42

time information.

This chapter adds imperative features to the pattern calculus. All the

theory in this chapter is backed up by an implementation which is a version

of FISh2 with imperative features. There are some choices in designing an

imperative system. The most important choice for the system in this chapter

is that there will be a separate class of location types which are distinct from

the existing functional types as in ML. This choice gives the name of this

chapter; the next chapter will explore an alternative in which locations share

the same type with their values.

The system is built in two steps. First, we add to the pattern calculus

the notion of atomic locations and operations on them. Second, we introduce

location constructors. Using location constructors, constructed locations are

built in the same way as constructed data are built in the pattern calculus.

Generic operations on locations using path polymorphism can be defined by

pattern-matching on these location constructors. Other imperative features:

while-loops and for-loops; vector types; generic output are also added to the

system to improve usability.

Using path polymorphism from the pattern calculus, we extend primi

tive assignment on locations to generic assignment on constructed locations.

Defining generic assignment in this way, inplace update is used whenever it

is reasonable to do so, based on matching the structure of the location with

that of its new value. Of course, the inplace update cannot be applied when

the structures (shapes) are different. We suggest the use of locations of lo

cations - which are called references in this chapter, to be assured of safety

when the inplace update is not appropriate. One of the main aims of this

CHAPTER 4. LOCATION TYPES 43

chapter is to allow assignments to determine at run-time whether to assign

inplace or not.

Two sets of examples are provided. Those in Section 4.5 show that the

system has all the expressive power of the imperative features in systems such

that ML. Those in Section 4.9 illustrate some of the novel expressive power

of the system. Bubble-sort shows how a space efficient sorting program can

be written using higher-order functions and pattern-matching. The program

converge shows how to iterate a function on a data structure while using

space efficiently.

4.2 Locations

This section adds to the pattern calculus some primitive imperative features

similar to the style of ML [63]. The features include: a command type;

location types; the skip constant; and primitive operations to create new

locations, to get the values of locations and to assign to locations. A key point

is that the primitive assignment is treated as an atomic built-in operation,

simple to describe but extravagant with space in some cases.

The work in this section is based on the pattern calculus with value

polymorphism as described in the previous chapter. The definition of types,

terms and type derivation rules are unchanged.

First, the new type constant

comm

CHAPTER 4. LOCATION TYPES 44

is equipped with a term constant

skip : comm.

The execution of the command skip has no (side) effect. We decide that

skip is a constructor so that it can be pattern-matched. One might choose to

identify the type unit with the command type (and identify the constructor

un with skip). However, our choice here is to make them distinct so that the

addition of imperative features is separated from the representation of data.

One might choose to have sequential composition as a new term constant

of the system. However, our choice is to define sequential composition as an

extension to reduce the number of new constants in the system:

(seq : comm —>• X —> X) = | skip —>• (| y —¥ y) .

We may use the usual syntactic sugar x; y for seq x y.

Next, considering assignable locations, each type T has the associated

location type

loc T

of locations that store (assignable) values of type T. There is no restriction

on the type T so we can have locations that hold any terms, including other

locations and functions e.g. loc int, loc (list int), loc (loc int) and loc (int —> int)

are all types.

We also introduce three new constants for creating a new location with

CHAPTER 4. LOCATION TYPES 45

a given value; getting the value from a location; and updating the value of a

location:

primloc : MX.X -» loc X

primval : VX.Ioc X —¥ X

primassign : VJA.Ioc X —> X —y comm.

A term of the form primloc t creates a new location whose initial value is that

of t. A term of the form primval t represents the value stored at the location

t. A term of the form primassign 11' updates the location t with the value of

t'. The calculus does not specify how locations are to be deleted; this must

be handled elsewhere e.g. by some form of garbage collection [11],

We also introduce a new constant for printing constructors (especially

primitive datum constructors)

output-basic : VX.X -» comm.

Detail description about the function is given later in this chapter when

discussing about generic output.

4.3 Evaluation

This section describes the evaluation rules of the system.

The values (meta-variable v) are given by:

v ::= x | at p use s else t \ b v\ ... Vk {k < arity(6) if b is an operator}.

CHAPTER 4. LOCATION TYPES 46

That is, a value is either: a term variable; an extension; a constructed term

whose arguments are all values; or a partially-applied operator whose argu

ments are all values. For example, primassign x and primplusint < 9 > are

values but primassign x 9 and primplusint <9> <5> are not.

A store (meta-variable E) is a partial function from term variables to

values. We use the syntax E,x i-» r to update the store E with a new

mapping x v (if x is already in the domain of E then the new value

replaces the old one). We use dom E for the domain of a store E.

An evaluation context (E, t) is a pair of a store E and a term t. Evaluation

employs a big-step operational semantics [65], where evaluating to a value

is defined directly from the evaluation rules. Evaluation rules are expressed

using judgements of the form

(E,*)=»(E»

where (E,t) and (S', v) are evaluation contexts and v is a value.

The evaluation rules are given in Figure 4.1. Note that the order of

the rules is significant and these rules need to be applied in order. The

significance of the order in evaluation rules makes two reduction rules for

pattern-match failure to be handled by one evaluation rule. Note that the

store gets a passive role in the first ten rules. Most of these rules are derived

from the reduction rules of the Pattern Calculus (Figure 2.3). If t > t' is

such a rule, then as a first approximation we have the evaluation rule

(S,Q=»(E»
(E,f)^(E',u)

CHAPTER 4. LOCATION TYPES 47

(E,t[fix (x,t)/x]) => (E',n)
Rule 1 (E,fix (x,t)) =$■ (E',u)

(E, s) => (E', vo) (E',t[v0/xl) => (Z",vi)
Rule 2 (E, let x = s in t) =$■ (E", ux)

(E,sKx])^(E',u1)
Rule 3 (E. (at x use s else t) v) =$■ (E',ui)

(E,s)^(E»
Rules 4,5 (S, (at c use s else t) c) => (S', w)

(E, (at pi and p2 use s else t) ti t2) =>• (E',v) ti t2 is a value
(E, (at pi p2 use s else /) (fx t2)) => (E',u) h is a constructed term

(S, t v) =» (E',vx)
Rule 6 (E. (at p use s else t) v) => (S', ui)

v headed by an operator
Rule 7 (E, v Vi) =3- (E, Vi) Vi headed by exn

Rule 8 7 7 7 \ , 7 \ d do dn-\ dn(S, d do • • • an_i) (S, dnJ

Rule 9 (E, primequal c c) =>■ (E,true)

Rule 10 (E, primequal i>x r>2) =>■ (E, false)

Rules 11,12,13 (E, primloc v) ==> (E, u >—> v, u) U ^res^

(E, primval u) =>• (E, E(w)) u c UUMIAJ (E, primval v) (E, exn v)

Rule 14 v uG domE(E, primassign u v) =>• (E, u n, skip)

Rule 15 (E, primassign n0 Vi) =$■ (E,exn v0)
------ :—:---:------ ———- outDut v if v is a constructorRule 16 (E, output-basic v) => (E, skip)

Rules 17,18 (E,n) =» (E,n)

(E, to) => (E;, vq) (E',tx) => (E",ni) (E",no vi) =>• (E'",n2) t0,ti are not
(E,t0 ti) =4> (E'",^) both values

Figure 4.1: Evaluation Rules with Location Types

CHAPTER 4. LOCATION TYPES 48

The correct interpretation typically involves evaluation of sub-terms too.

The first six rules involve evaluation of let-terms, fix-terms and applica

tions of extensions to terms. The seventh rule is the standard approach to

evaluate an application to an exception. The eighth rule summarizes the eval

uation of fully-applied datum operators. The next two rules are to evaluate

the applications of primequal to two terms.

The next five rules are to evaluate terms involving the imperative con

stants primloc, primval and primassign which may involve modifying and look

ing up the store.

The last two rules are standard rules about the evaluation of value and

application of terms. A value is evaluated to itself. An application to t\ is

evaluated by first evaluating to and then evaluating t\ follow by evaluating

the application of the two results.

The evaluation rules do not constrain the implementation of storage op

erations. One expects that assignment of datum values such as integers or

floats will be performed inplace and that assignment of functions will be by

allocating fresh memory. The delicate case is an assignment of structured

data, such as a list. This will be addressed in sub-section 4.5.1.

4.4 Properties of Evaluation

We will show that evaluation preserves typing. To do so, it requires agree

ment between the types of variables as understood in the term context and

the types of their corresponding value in the store.

When referring to some particular known store S, we call a term variable

CHAPTER 4. LOCATION TYPES 49

a store variable (meta-variable u) if it is in the domain of E. We decide that

all store variables have monomorphic (trivial) type schemes.

We define a new property about the relation between the typing of the

store variables and of their values. The judgement A; F l~£ E asserts that

the store E is well-typed, in context A; T. For a store E with n variables

{ui i—> ui,...,un vn}, A; T hE E means that A;T h and A; F b Wj : Tj.

In other words, in the type context A; T, a store E is called well-typed if

the domain of E is a subset of the domain of T and each store variable in

T must be of the location type corresponding to the type of its value in E.

Note that there is no restriction on using a store variable in its value or in

value of another store variable. That allows the ability to define recursive

and mutually recursive locations in the system. An example of recursive

locations is in Sub-Section 4.5.2.

Note that the type context has to expand during the evaluation to cope

with the new store variables. In particular, the evaluation of primloc v results

in a new store variable u with the associate initial value v. To type the result

of the evaluation, we need to expand the type context with the new term

variable u. The type (scheme) of a store variable u is initialized to be the

type derived from the type of its initial value v. With the evaluation rule

(E, primloc v) => (E, u u, u) u fresh

CHAPTER 4. LOCATION TYPES 50

the type scheme of u is given by the location type of the type of v.

A; T bE £ A;T\-v:T
-------------------------------------u fresh
A; T, u : loc Thj;

By that choice of extending the type context, if the store is well-typed before,

then clearly it remains well-typed after the evaluation of primloc v.

We introduce a new form of typing rule for an evaluation context. The

judgement A; T b* (£,f) : T asserts that the store is well-typed (A; T bE £)

and t has type T in the context of A; F (A; V b t : T).

Theorem 2 Evaluation preserves typing. That is, if A; T b* (£,f) : T and

(£,t) (£',u) then there is a context Ti such that A;r,Ti b* (£',u) : T.

Proof: The proof is by induction on the structure of the evaluation of

(£,f). In all the cases from Figure 4.1, apart from those involving primval,

primloc and primassign, the store has a passive role. So, the proof corresponds

to the cases for the proof of subject reduction in the pattern calculus [35].

Note that the proof uses the substitution lemma, (Chapter 2, Lemma 1). We

include here the proofs for Rules 1 and 2, as the typing rules of these cases

have been changed by “value polymorphism”, Rules 11,12 and 14, as these

involve the store.

Rule 1
(£, f[fix (x,t)/x\) => (T',v)

(£,fix (x,t)) => (£',u)

From the assumption A; T bj (£, fix (x, t)) : T it follows that A; T b^ £

and A;f b fix (x,t) : T. There are two possible cases for typing of

CHAPTER 4. LOCATION TYPES 51

fix-points.

If the polymorphic fix rule is used, there must be a derivation

A2,A1;r,x : VAj.T b t : T where A2,Ai = A. Let a be a

renaming substitution such that a : Ai —> A3 and A, A3; T is

well defined. We can deduce that A;T,a: : VA3.T b t : oT and

A, A3;T b fix (x,t) '■ T. Applying the substitution lemma we

have A, A3; T b f[fix (x,t)/x\ : <jT. Renaming the variable in A3

back to Ai by a-1 we have A2, ApT b i[fix {x,t)/x} : a~1aT. So

now we know that A; T b* (E,t[fix (x,t)/x\) '■ T. Combining it

with the induction hypothesis on the evaluation of t[fix (x,t)/x\,

we know that there is r\ such that A; T, Tx bj (S', v) : T.

If the monomorphic fix ride is used, there must be a derivation

A; T, x : T b t : T. Applying the substitution lemma we have

A, T b f[fix (x,t)/x\ : T. Combining it with the induction hy

pothesis on the evaluation of f[fix (x,t)/:r], we know that there is

Ti such that A; Rid b* (E',u) : T.

Rule 2
(E,s)^(E>0) (E',fR0/3:])^(E»,u1)

(E, let x = s in t) =4- (E", Vi)

From the assumption A; T bj (E, let x = s in t) : T it follows that

A; T bs E and A; T b let x = s in t : T. There are two possible cases

for typing of let-expressions.

If the polymorphic let rule is used, then s is non-expansive. From

the definition of non-expansive we know (E, s) =>■ (E, s) so E' is

CHAPTER 4. LOCATION TYPES 52

£ and wo is s. From the polymorphic let rule, there are some Ai

such that A, Ap T b s : S and A; T, x : VAi .S b t : T. Using the

substitution lemma for t and s we know that A, Ap T b t[s/x] : T.

Since Ai is not needed for typing T (in the type of t) we have

A,T b t[s/x\ : T. That implies A;T bj (£,t[s/a;]) : T. Applying

the induction hypothesis to the evaluation of (£',t[wo/x\) we can

conclude that there is Ti such that A; T, Ti bj (£", V\) : T.

If the monomorphic let rule is used, we have A; F b s : S and A; T, x :

S b t : T and so A; T bj (£, s) : S. Applying the induction

hypothesis to the evaluation of s, we can conclude that there is

Tj such that A;r,Ti bj (£',r>o) : S. So we have A;T, Tx b^ £'.

Moreover, using the substitution lemma for t and Vo we know that

A;r,ri b t[vo/x] : T. That implies A; T, Tj bj (£', t[vo/x}) : T.

Applying the induction hypothesis to the evaluation of (£', t[v0/x])

we can conclude that there is T2 such that A; T, Tj, T2 bj (£", ui) :

T.

Rule 11
(£, primloc v) => (£, u i-> v,u) U ^res^

From the assumption A; T bj (£, primloc v)) : T we know that £ is a

well-typed store, and that T is of the form loc T' for some T' which is

a type for v. With the typing rule for new store variable (u), we have

£, u v is also well-typed store in the context A; T, u : loc T' and u

can take the type loc T' and so A; T, u : T bj (£, u i-> v, u) : T

CHAPTER 4. LOCATION TYPES 53

Rule 12
(E, primval u) =>• (E, E(u)) U ^ ^°m ^

From the assumption that E is a well-typed store and the typing of

primval the claim holds.

Rule 14
(E, primassign «»)^ (E, u i—> v, skip) U ^ ^°m ^

From the assumption that E is a well-typed store it follows that A; T F

u : loc T and u is in the domain of E since E is well-typed. From the

well-typedness of primassign u v we can deduce that A;T F v : T. So

the updated store E, u M- v remains well-typed. Moreover, the types

of primassign u v and skip are both comm, so the claim holds.

□

A store E is called closed if for all variables u in the domain of E, all free

variables of E(tt) are in the domain of the store E. The evaluation context

(E, t) is called closed if E is closed and all free variables of the term t are in

the domain of E.

Lemma 3 Evaluation preserves closedness. That is, suppose there is an

evaluation (E,t) (E',u) and (E, t) is closed then (E',u) is also closed.

Proof: The proof is by induction on the structure of evaluation.

We do a case analysis on the evaluation rules in Figure 4.1. Most of

the cases are straight forward using the induction hypothesis. The more

interesting cases are for Rules 1,2,11 and 12. Let D be the set of all term

variables in the domain of E.

CHAPTER 4. LOCATION TYPES 54

(E, t[fix (x,t)/x]) => (E',w)
(E, fix (x, t)) =>• (S', v)

From the assumption about the closedness of (E, fix (x,t)) it follows

that fv(t) — {x} C D. We can deduce that (E,t[fix (x,t)/x\) is also

closed. Using that with the induction hypothesis on the evaluation of

(E,f[fix (x,t)/x\) we can conclude that (E',w) is closed.

Rule 2
(E, s) =» (E>0) (E',t[v0/x}) =» (E",m)

(E, let x = s in t) =>■ (E", vi)

From the assumption about the closedness of (E, let x = s in t) it

follows that (E, s) is closed. Applying the induction hypothesis on the

evaluation of (E,s) we have (E',w0) is closed. So (S', t[v0/x\) is closed

and applying the induction hypothesis on the evaluation of that term

we have (E",Wi) is closed.

Rule 11

(E, primloc v) => (E, v,u) u fresh

From the assumption about the closedness of (E, primloc v), all free

variables of v are in the domain of E and since u is a term variable in

the domain of the store E, u •—>• v so the evaluation context (E, u M- v,u)

remains closed.

Rule 12

(E, primval u) =>• (E,E(it)) u G domE

From the assumption that (E, primval u) is closed, and u is a term

CHAPTER 4. LOCATION TYPES 55

variable in the domain of E, we know that all free variables in E (u) are

in the domain of E so (E, E(it)) is closed.

□

Combining this above lemma with the previous theorem we can claim

that evaluation preserves well-typedness and closedness. A closed and well-

typed term is called a program. The following theorem discusses the property

of evaluation on programs.

Theorem 4 Evaluation of programs never gets stuck. That is, if we have a

derivation A; T \~t (E,t) : T and (E,t) is closed then there is an evaluation

rule where the left hand side of the conclusion matches with (E,t).

Proof: Note that although the order of evaluation rules is significant, we need

only find a single rule that can be applied.

The proof is by case analysis on the structure of t, and is mostly based

on the definition of values and the evaluation rules in Figure 4.1.

When t is a variable, constant, or extension then t is a value. We could

always apply the second last rule which states that any value evaluates

to itself.

When t is a fix point construction, then the first rule applies.

When t is a let-expression, then the second rule applies.

The only case left is when t is an application. As one could try and apply

the last rule when at least one of the parts of the application is not

a value, without loss of generality, now we can assume that t has the

CHAPTER 4. LOCATION TYPES 56

form vo V\ where Vo and v\ are values. Now consider the cases for the

choices of v0.

If Vo is a variable, then the closed condition of the evaluation context

forces u0 to be a variable in the domain of the store and the well-

typedness of the store forces it to be of location type. However,

the function part of an application (always of function type) can

never be of location type, therefore this case never happens.

If Vo is an extension, then Rule 6 applies.

If Vo is headed by a constant b then t is also headed by b. By the well-

typedness of t and the definition of values (as vo,V\ are values),

there are two cases of such a term t. If t is a value, we can apply the

rule which states that any value evaluates to itself. Alternatively,

if t is a fully-applied operator whose arguments are all values, we

can apply one of the Rules 7,8,10,11,13,15 and 16.

□

4.5 Examples for Primitive Imperative Fea

tures

This chapter as presented so far is an expansion of the pattern calculus with

primitive imperative features. This section contains some small examples

for that expansion. The main aim of the examples is to illustrate that the

imperative features behave in the usual ways such that those of ML.

CHAPTER 4. LOCATION TYPES 57

4.5.1 Updating Lists

Previously, we have defined a type of list with syntactic sugar [1, 2, 3] for the

list of three number 1, 2 and 3. Now consider the example of creating and

updating lists

let x — primloc [1] in

primassign x [2];

primassign x [8,9].

Clearly, the first assignment could be inplace, but any simple implementation

of primassign will miss this opportunity since it will not be able to distinguish

this case from the second, shape-changing assignment.

4.5.2 Linked-Lists

This subsection defines a typical imperative structure, linked-list:

type link X = link of X and loc (link X).

A linked-list of type X contains a term of type X and a location linked to

another linked-list of X. Some examples of linked-lists are: 11

11 = primloc (link 1 exn)

12 = primloc (link 2 l\)

CHAPTER 4. LOCATION TYPES 58

One can change l\ into a recursive (self linked) list by:

primassign l\ (link 3 l\).

In functional terms, l\ is now a list holding an infinite number of integers

3.

4.6 Constructed Locations

This section introduces location constructors into the system. With location

constructors, structured locations are built out of smaller locations in the

same way constructed terms are built. Using pattern-matching on location

constructors, generic functions for locating, valuing and assigning are defined

in the source code based on their primitive versions, just as the generic

function plus is based on datum addition. Inplace update is possible when the

structure of the location is matched by that of its new value. This matching

is based on comparing constructors.

For pattern-matching against locations, we introduce a new constructor

for creating location type:

conloc : VX.X -4 loc X.

Note that even though the two constants primloc and conloc have the same

type, their roles are quite separate, primloc is not a constructor but a built-in

term for creating directly updatable locations (associated with some variable

of the store), conloc is a constructor to be applied to other constructors.

CHAPTER 4. LOCATION TYPES 59

A term built by conloc is a constructed term that can be used in pattern

matching and it does not directly associate with any variable of the store.

Hence, the use of primval or primassign on a term constructed by conloc results

in an exception.

As larger terms are built by application of smaller terms, for constructing

larger locations, we introduce a new built-in constructor for converting a

location of an application to the application of locations:

locap : VX, Kloc (X -> Y) -> loc X -> loc Y.

For each constructor c of type X —>■ Y, we will create the corresponding

function of type loc X —» loc Y in two steps: the first step is to create the

location constructor conloc c of type loc (X —> F); the second step is to use

locap to convert the location of a function to the function between locations.

For example, the constructor:

int : primint —>■ int

has the corresponding location constructor

locap (conloc int) : (loc primint) —»• loc int.

For example, the proper integer 9 which is a constructed term:

int <9> : int

CHAPTER 4. LOCATION TYPES 60

has a corresponding constructed location term of the form

locap (conloc int) (primloc <9>) : loc int.

For a constructor of n (zero, one or more) arguments, we need to apply locap

n times to the location constructor to create a function between locations.

Take our favourite constructor of two arguments bind as an example:

bind (ths 1) [2] : B I list int

combines two smaller structures of integers ths 1 and the list [2]. The two

smaller primitive locations primloc (ths 1) and primloc [2] are combined by

the location constructor conloc bind to get:

locap (locap (conloc bind) (primloc (ths 1))) (primloc [2]) : loc(£? / list int).

The use of location constructors seems to be long and hard to read but, in

many cases, programmers can avoid writing code containing conloc or locap

as they can use generic functions that we are going to provide instead. With

all the location constructors defined, now we can build generic functions

acting on locations. The generic function loc defined in Figure 4.2 creates

constructed locations for constructed terms; and creates primitive locations

for primitive datum types; it applies conloc otherwise e.g. for functions, com

mands and locations themselves. It is a simple use of path polymorphism to

create constructed locations in a generic way.

CHAPTER 4. LOCATION TYPES 61

loc : X —y loc X
int / ■ locap (conloc int) (primloc t)

| float t —> locap (conloc float) (primloc t)

| char t —>■ locap (conloc char) (primloc t)
| t\ £2 -* locap (loc ti) (loc £2)
I t —> conloc t

Figure 4.2: Generic Function loc

For example,

loc (bind (ths 1) (ths 2))

evaluates to

locap (locap (conloc bind) (locap (conloc ths) (locap (conloc int) «i)))

(locap (conloc ths) (locap (conloc int) U2))

where ux and 112 are fresh locations holding the primitive integers < 1 > and

<2> respectively.

Here is a bigger example. The concrete representation of the list [9] is

tag nm(cons) bind (ths 9) (tag nm(nil) (evr un)), and so

loc [9]

evaluates to

locap (locap (conloc tag) (conloc nm(cons)))

locap (locap (conloc bind) (locap (conloc ths) (locap (conloc int) u)))

(locap (locap (conloc tag) (conloc nm(cons)))(locap (conloc evr) (conloc un)))

CHAPTER 4. LOCATION TYPES 62

where u is a fresh location holding the primitive integer <9>.

Similarly, the generic valuation function val is defined in Figure 4.3. It is

the inverse of function loc.

val :\ocX =
| locap (conloc int) t —y int (primval t)
| locap (conloc float) t —>• float (primval t)

| locap (conloc char) t char (primval t)

| locap ti t2 —> (val fi) (val t2)

I conloc t —> t

Figure 4.3: Generic Function val

For example,

val (locap (locap (conloc bind)(locap (conloc ths) (locap (conloc int) Mi)))

(locap (conloc ths) (locap (conloc int) u2)))

(where u\ and u2 are fresh locations holding the primitive integers < 1 > and

< 2 > respectively), evaluates to

(bind (ths 1) (ths 2)).

Here is a bigger example,

val (locap (locap (conloc tag) (conloc nm(cons)))

locap (locap (conloc bind) (locap (conloc ths) (locap (conloc int) «)))

(locap (locap (conloc tag) (conloc nm(nil)))(locap (conloc evr) (conloc un))))

(where u is a fresh location holding the primitive integer <9>), evaluates to

CHAPTER 4. LOCATION TYPES 63

assign : loc X —» X —> comm =
let rec (assignO : loc X —>■ Y -» comm) =

| locap (conloc int) x —> (| int y —v primassign x y)

| locap (conloc float) x —> (| float y primassign x y)
| locap (conloc char) x —>■ (| char y primassign x y)
| locap xo x —> (| y0 y —> assignO rr0 yo', assignO x y)
| conloc x —} (| y —y if primequal x y then skip else exn)

in assignO

Figure 4.4: Generic Function assign

the list

[9].

A term is called pure-data if it is a constructor or an application of two

pure-data terms. As primval is the reverse of primloc; val is the reverse of loc.

Lemma 5 If t is a pure-data term then val (loc t) evaluates to t.

Proof: The proof is by induction on the structure of t. The first case is when

t is a constructor c. We know that loc t evaluates to conloc c; and val (loc t)

evaluates to c. The second case is when t is the application t\ t2- If t is

a proper integer, float or character, the proof follows the first three lines of

codes in the functions loc and val. If t is of other form, then we can apply

the induction hypothesis on ti and t2 and then the proof follows. □

The generic assignment function assign is defined in Figure 4.4. It follows

the same basic pattern as the generic functions loc and val but takes two

arguments. When a location was created by primloc then the assignment on

that location invokes primassign. Otherwise, assign will attempt to match the

location constructor with that of the new value. The matching may fail in two

CHAPTER 4. LOCATION TYPES 64

ways: first, one of them is an applicative term and the other is not; second,

they are distinct constructors. Note that it is not possible to use primassign

in such cases, since primassign applies only to primitive locations. The reason

for assign to be defined through assignO of a loose type loc X —> Y —>■ comm

is that the applications Xq x and yo y might share the same type while their

components x0 and y0 have different types. It is the same issue when we

define other generic binary functions like equality or plus functions.

When the assignment failure exn occurs, maybe some parts of the loca

tion have been assigned to some new value. For example, the assignment

assign (loc [1, 2]) [9] updates the first element of the list by 9, and then fails

when updating the second element. We decide not to back track to recover

the old value held in the location. We do acknowledge that might make some

programs harder to reason about. One way to avoid the failure is to check

the shape before doing the assignment. If the shapes of the location and the

new value correspond then the assignment is going to succeed and vice-versa.

The generic function for checking the shapes is in Figure 4.5.

As with generic plus or assign, from shapecheckO, one might define another

function shapecheck with more restricted type loc X —> X -4 bool as

(shapecheck : loc X —>• X —> bool) = shapecheckO

Here is our previous example in Subsection 4.5.1 modified to use generic

CHAPTER 4. LOCATION TYPES 65

(shapecheckO : loc X —¥ Y —> bool) u v =
match (tt, v) with

| (locap (conloc int) x, int y) —>• true
| (locap (conloc float) x, float y) —> true
| (locap (conloc char) x, char y) —>■ true
| (locap xq x, y0 y) ->

shapecheckO x0 yo && shapecheckO x y
| (conloc x, y) —> primequal x y
I _ —>■ false

Figure 4.5: Shape Checking Function

operations instead of primitive ones:

let X — loc [1] in

assign x [2];

assign x [8, 9].

Now the first assignment is inplace, as desired, but the second assignment

will fail, since the structure of nil (coming from the tail of value x currently

holding) will not equal to the structure of [9] (coming from the list [8,9]).

4.7 Reference Types

So far, we have a primitive assignment that avoids failure by using fresh

memory, and a generic assignment that updates inplace, but may fail if the

shapes disagree. These two can be combined on locations of locations (or

references) to produce an assignment operation that never fails but is inplace

when possible.

CHAPTER 4. LOCATION TYPES 66

(ref : X —> ref X) x = primloc (loc x)
(refval : ref X —> X) = val (primval x)
(refassign : ref X —>■ X —» comm) x y =

match (assign (primval x) y) with
| skip -4 skip
| exn -4 primassign x (loc y).

Figure 4.6: Functions on References

The type of references of type T is loc loc T also written as

ref T

Basic functions on references are defined in Figure 4.6. refassign will perform

inplace update if possible, but defaults to primitive assignment otherwise.

It is convenient to have some syntactic sugar for operations on locations

of locations: let \x denote refval x; and x y denote refassign x y. Here is

our earlier example which is modified to use references:

let x = ref [1] in

x := [2];

x := [8, 9].

Now the first assignment is inplace and the second assignment is by primitive

assignment on the outer location.

CHAPTER 4. LOCATION TYPES 67

4.8 While-Loops and For-Loops

Since we already have general recursion in the language, while-loops and

therefore for-loops could be built using tail recursion. The while-loop

while tb do tc done

that repeatedly executes command tc till the boolean R becomes false is

syntactic sugar whileloop R tc. Where the recursive function whileloop is

defined as:

(whileloop : bool —» comm —>■ comm) R tc

lot rec f x = if R then (tc\ f x) else skip in / skip

Similarly, the for-loop

for % — n to m do tc done

that repeatedly executes command tc for each i in the range of integer from

n to m could be seen as syntactic sugar of a function application where the

function is built on while-loop:

(forloop : int —» int —>• (int —> comm) —> comm) n m tc =

let i = ref n in whileloop (H < m) (tc !i; i := H + 1)

Obviously, these for- and while-loops can be optimized. Details about

that will be discussed later in the section about the implementation.

CHAPTER 4. LOCATION TYPES 68

4.9 Examples

This section uses some examples to illustrate how higher-order functions

and pattern-matching can be combined with inplace update, user-control of

memory and generic functions to produce short, expressive, space efficient

programs.

4.9.1 Bubble-Sort

Bubble-sort 1 works by first sorting the tail and then bubbling the head to its

correct position. Here is a purely functional algorithm. First one can define

a function that bubbles the head into its correct position.

(funbubble : (X -> X -> bool) -* X -> list X -)• list X) g x =

| nil —> [re]

| cons h t —y if g x h then cons h (funbubble g x t)

else cons x (cons h t)

The next part is the main function for sorting:

(funbubblesort : {X —> X —» bool) —> list X —> list X) g =

| nil —> nil

| cons ht funbubble g h (funbubblesort g t)

Of couse, we can build funbubble as an application of a generic folding func

tion. However, we want to keep it simple since we want to build its imperative

version.
1 Similar algorithms are called insertion-sort in some other works

CHAPTER 4. LOCATION TYPES 69

(swap : loc X loc X —> comm) x y =
let t = val x in
assign x (val y)\ assign y t

(bubble : (X —> X —> bool) —> loc X —> loc list X —>• comm) g x =
| conloc nil -4 skip
| locap (locap (conloc cons) h) t —v

if g (val x) (val h)
then swap x h; bubble g h t
else skip

(bubblesort : (X —> X —> bool) -4 loc list X —> comm) g =
| conloc nil -4 skip
| conloc cons h t —> bubblesort g t; bubble g h t

Figure 4.7: Imperative Bubble Sort

Suppose the space needed for each list entry is large. By handling loca

tions not their actual values, this algorithm uses space proportional to the

square of the list length. The following imperative algorithm bubblesort de

fined in Figure 4.7 has a similar structure but only uses a constant amount of

new memory (when performing swap). The drawback of this program is that

the assignments in swap may fail, or be expensive to execute when the struc

tures are large. The solution is to instantiate the polymorphic bubblesort to

a type ref Y of locations to get a program of type

bubblesort : (ref Y -4 ref Y —> bool) —¥ loc list ref Y comm

which can easily be modified to produce a program bubblesortloc in Fig

ure 4.8. bubblesortloc will never fail in assignment but update inplace when

CHAPTER 4. LOCATION TYPES 70

(swaploc : ref X —» ref X —» comm) x y =
let t = \x in
x :=y, y :=t

(bubbleloc : (X —$■ X -4 bool) —> loc ref X -4 loc list ref X -4 comm) g x —
| conloc nil —> skip
| locap (locap (conloc cons) h) t —>

if g !(val x) !(val h)
then swaploc (val x) (val h); bubbleloc g h t
else skip

(bubblesortloc : {X —> X —> bool) —> loc list ref X -4 comm) g =
| conloc nil —>• skip
| conloc cons ht —¥ bubblesortloc g t; bubbleloc g h t

Figure 4.8: Imperative Bubble Sort with Ref

reasonable.

4.9.2 Converge

The function converge defined in Figure 4.9 iterates a function / : X —> X

until the result stabilizes, i.e. until some test t : X —> X —> bool applied

to the old and new values becomes true. This captures a common situation

when modelling the evolution of some system to a steady state. For example,

when X is instantiated to the type of real number and / is instantiated to

the function cos, and t is the test if two real numbers are close enough

(their difference is smaller than some fix number) then converge results in an

approximate solution for the equation cos x = x.

The use of explicit locations allows the programmer to indicate that ex

actly two locations are required at any one time, rather than a unbounded

CHAPTER 4. LOCATION TYPES 71

(converge : (X —> X) —> (X —> X —> bool) —>X^X)ftx =
let y = ref x in
let z = ref (/ x) in
while not (t \y Iz) do

y:=f lz;
z f \y

done;
■y

Figure 4.9: Converge Function

number. Moreover, if the computation (application of /) does not change the

shape of the data then exactly two locations are used for the whole evaluation

of the program; e.g. the function cos as described above. A more significant

example is by instantiating x to static (fixed shape) object in the physical

world, such as using matrixes or three dimensional arrays to represent the

heat of plates or solid objects. When the sizes of the matrixes and arrays are

large, the guarantee of inplace update is much more needed. Further, assign

ment will be done inplace if possible, with fresh memory allocated only when

necessary. This will yield significant benefits when the shape of the data (y

and z) occasional changes through the computation such as operations on

graphs and ordered trees. For example, it is common to represent complex

dynamical systems using structures built of regions whose behaviours are of

approximately equal complexity. If a region is quiet then its representation

maintains it shape, and inplace update succeeds. Conversely, if a region is

eventful then the shape of its representation is likely to change, and require

fresh memory.

CHAPTER 4. LOCATION TYPES 72

4.10 Vector

This section introduces vector types to the system. We do not aim to have

efficiently operated data here but just try to show that a vector type can

be added to the system. Later in this chapter, we will discuss our vector

implementation which is more efficient but also more complicated.

Operationally, a vector is an indexed sequence of locations. We could

introduce a vector-like type vector as abstract datatype:

type vector T = vec of (list (loc T)).

A data structure of type vector of T can be seen as a (functional) structure

of data where each data is a location holding value of type T. Note that the

calculus has no constraint on the shapes of different entries. As the shapes

might be different, inplace update of one entry by another might fail.

Next, we could provide two functions acting on data of type vector T:

(veclen : vector T —> int) = | vec l -» listlen l

(entry : vector T —> int —» loc T) = | vec l —>• listentry l

where listlen and listentry are standard operations to calculate the length and

CHAPTER 4. LOCATION TYPES 73

to return an entry of a list

(listlen : list T —> int) =

| nil -» 0

| cons h t —y 1 + (listlen t)

(listentry : list T —> int —> T) l n =

if n < 1 then head l else listentry (tail l) (n — 1)

veclen v results in the number of components of v. entry v n results in

the nth entry of v. Note that entries of vectors are all locations, so they are

updatable. Apart from entries access times, the given vector seems to process

most standard functionality of vectors.

4.11 Generic Output

4.11.1 Generic Output

This section considers generic output as an imperative feature in the system.

First, consider how it is done in some other languages. ML provides an

effective built-in mechanism for output any data, however, one cannot spe

cialize output for some data structures in a generic way. In object-oriented

languages such as Java [16], the inheritance mechanism provides program

mers with the ability to specialize output for their own classes by overriding

the “toString” method. Using monads [67], the “show” function in Haskell

[38] also allows the ability to specialize output for each datatype. However,

the default case for “show” does not work for newly defined datatypes with

CHAPTER 4. LOCATION TYPES 74

out mentioning the function “show” in their declaration. There are two main

features for the generic output that we are interested in: an effective default

display and the ability to specialize the display. ML has the first feature not

the second. Java has the second feature. However, if a new class is built from

the scratch (it is a child of only the Object class), then the default display

(“toString”) for that class is minimal. Haskell has both features, however,

the use monads does not provide much flexibility in some cases [42].

We will introduce the generic output function in the source code. With the

new expresive power from the pattern calculus especially path polymorphism,

our generic output function has an effective default display as one of ML and

also it has the ability to specialize code of output for any data structure.

Moreover, these two features work harmoniously in all levels of nested data

structures. One of the significant points of writing the output function in

the source code is that it moves a large part of term formatting code out of

the compiler.

One might require that the outputting function should hide the tag form

representation of abstract datatype, e.g. for outputting the empty list it

prints “nil” instead of the concrete representation tag nm(nil) (evr un). We

do this in our implementation at the cost of adding one more constant into

the system for converting data from the concrete (tag) form to the abstract

form. However, we decide not to do it here since the focus of this thesis is

not in representation of datatypes.

There are many additional features one could add to the output such

as: only printing pairs of brackets in case of possible ambiguity; printing a

new line when the number of characters printing reaches a certain number;

CHAPTER 4. LOCATION TYPES 75

alignment of sub-terms in a uniform way - all by adding more auxiliary

generic supporting functions. However, we will include only one feature, the

bracketing, as an example though other features could be added in similar

ways.

4.11.2 Bracketing

When printing an application, strictly speaking, one may always put the

argument part under a pair of brackets; however, as a convention in computer

science, the pair of brackets are omitted when there is no possible ambiguity.

For example, when printing the application of a function / to number 9,

instead of printing /(9), it is convention to print just / 9. We need the

function:

need.bracket : X —> bool

that determines if a pair of brackets are needed for a term when it is an

argument in an application. In standard cases, the result of the function

need_bracket is true when the input is an application and false otherwise, so

the last two default cases for the function are:

| x y —> true

| x —> false.

However, sometimes when we give specialized code for the generic output

function, we need to put specialized code for need_bracket too. For example,

the specialized printing of list and string does not need brackets to prevent

ambiguity, that results in two following lines of specialized code in the func-

CHAPTER 4. LOCATION TYPES 76

(neecLbracket : X —»■ bool) =
| int x —> false
| float x —> false
| char x -» false
| nil —> false
| cons x y —> false
| string x —>■ false
| pair x y —» false
| vec x —» false
| x y —>■ true
I x —¥ false

Figure 4.10: Need-Bracket Function

tion need .bracket:

| cons x y —> false

| string x —>• false.

The complete code for the function need.bracket is defined in Figure 4.10.

We now can create an auxiliary function print.bk, together with the func

tion output, they form a mutually recursive pair of functions. The function

print.bk prints a pair of brackets when needed while performing printing of

the input:

(print.bk : X —>■ comm) t =

if need.bracket t then

output-basic <'('>; output t; output-basic <')'>

else

output-basic output t.

CHAPTER 4. LOCATION TYPES 77

4.11.3 Supporting Functions for Output

The output function written in Figure 4.11 calls two supporting functions.

The first one is an auxiliary function named listiter, it is a simple application

fold-left on list:

(listiter : (X —>■ comm) —> list X —> comm) / =

| nil —> skip

| cons h t —> (/ h); listiter / t.

The second one, the built-in operator output_basic is introduced earlier in

this chapter as an imperative feature. The function provides a basic built-in

mechanism for displaying constructors (especially primitive datum construc

tors). For example output-basic < 9 > and output-basic < 'a' > will print

integer 9 and character a on the output device respectively; output-basic un

will print the string “un” on the output device (without the quotation marks).

4.11.4 Output Function

This section discusses the generic output function. Our implementation of

output adopts the following typical syntax for displaying pairs, lists, strings

and vectors, for example:

the list of three integers 1, 2 and 3 is to be output as [1, 2, 3];

the pair of integer 0 and float 9.9 is to be output as (0,9.9);

the string representing the word Tony is to be output as “Tony”;

the vector of two integers 0 and 9 is to be output as {0,9}.

CHAPTER: 4. LOCATION TYPES 78

(output : X —>■ comm) =
| int x —> output-basic x
| float x —* output-basic x
| char x —>• output-basic x

| pair x y —>•
output-basic <'('>;
Output X]

output-basic <V>;
output y;
output-basic <,),>;

| nil-> output-basic <'['>; output-basic <']'>
| cons h t —>■

output-basic <'['>;
output /i;
listiter (fun v —> (output-basic output x)) t;
output-basic <']'>;

| string x —)•
output-basic
listiter output-basic x;
output-basic

| vec x —>
output-basic <'{'>;
let / = veclen (vec x) in
if (l = 0) then

skip
else

output (primval (entry (vec x) 0));
for * = 1 to (l — 1) do

output-basic <7>;
output (primval (entry (vec x) *))

done;
output-basic <'}'>;

| x y —> output x; print_bk y
| x —>• output-basic x

Figure 4.11: Generic Output Function

CHAPTER 4. LOCATION TYPES 79

These displays are different from the results of the default case of function

output. New pattern-matching to constructors: nil and cons; pair; string; and

vec make the above differences in the cases of corresponding structures of

list, pair, string and vector. The output code is in Figure 4.11. Note that

the user can augment or change the output function to specialize the display

of some particular data structures. In order to do that, the user just needs

to add new cases on constructors for creating the data structures as the first

pattern-matches in the output function. Note that complex numbers have

been defined in Chapter 2 as:

type Complex = Complex of primfloat and primfloat.

Similar to the special rule for multiplication of complex numbers, we can

put the new specialized code for displaying complex numbers:

| Complex x y —¥

output-basic x\

output-basic <'+'>;

output-basic < V >;

output-basic y.

4.12 Implementation

As stated in the introduction chapter, all material has been implemented. All

examples have been coded and tested; and they produced expected results.

Codes are available on request.

CHAPTER 4. LOCATION TYPES 80

We 2 could have implemented the exact system as presented above. How

ever, in some points in our implementation, we make some derivations from

the theory, mostly for optimization purposes.

The theory in the previous sections introduces sequential composition as

a form of an application of an extension.

(seq : comm —> X —> X) = | skip —>■ (| y —¥ y) .

However, the implementation adds seq as another constant of the language

with an optimized evaluation rule. We could modify the theory by adding a

new evaluation rule for seq to meet the implementation but we choose not

to do so for the simplicity of the theory.

Similar derivations are with the implementation of while-loop and for-

loop. Our implementation adds them as new constants of the system with

optimized evaluation rules.

The implementation for vectors is more delicate. Note that the definition

of vector in the theory (in Section 4.10) results in a datatype with linear

accessing time. We aim to have vectors with constant accessing time. For

efficiency reason, instead of using the type list (loc X) as in the theory, we

introduce a new type constant:

primvector.

Each type X has an associated type primvector X. We also introduce a new

2For detail about my involvement, see Subsection 1.2.1 in Chapter 1

CHAPTER 4. LOCATION TYPES 81

class of terms of primitive vectors of those primitive vector types. A primitive

vector of type primvector X contains a collection of values of type X in a way

that supports constant accessing time. 3

To pattern-match on vectors, as the same way we deal with integers,

vectors are defined based on the primitive type as:

type vector X = vec of (primvector X).

For creating a new primitive vector of given length whose components are

all initialized to the same given value, we introduce a new built-in term:

locvec : int -» X —> primvector X.

A term of the form locvec n x creates n new distinct locations (in the envi

ronment store) all initialized to the value x, and a new structure (primitive

vector) holding these locations. We also introduce vecnil as built-in term for

vector of length 0.

We also introduce two new constants associated with primitive vectors:

primveclen : primvector X —>■ int

primentry : primvector X —>• int —> loc X.

Given a primitive vector v and an integer i, the term primveclen v represents

the length of v, and the term primentry i v represents the ith component of

v. Out of bound vector error, i.e. when i is negative or greater than or equal

3We use arrays in the host language (OCAML) to ensure that property.

CHAPTER 4. LOCATION TYPES 82

to the length of v, will be caught as a runtime exception. The key point of

getting all new primitives for vectors is that now accessing time for entries

is constant.

Operations on abstract vectors can be derived from the corresponding

operations on primitive types by simple pattern-matching:

(veclen : vector X —>■ int) = | vec v —>• primveclen v

(entry : vector X —> int —>■ loc X) = | vec v —> (

| int n —> primentry v (int n))

We also introduce syntactic sugar for creating vectors. A new vector can

be created by specifying all of its components. An expression starting and

ending with { and } respectively and enclosing the body of a non-empty list

of terms of type A" separating by commas is a new vector of X. For example,

the expression {1.1, 2.3} represents a new vector containing two floats. Note

that the term represented by { } is a new vector of zero length, vec vecnil.

In our implementation, the outputting function hides the tag form repre

sentation of an abstract datatype, e.g. for outputting the empty list it prints

“nil” instead of the concrete representation tag nm(nil) (evr un); at the cost

of adding one more constant into the system for converting data from the

concrete tag form representation to the abstract representation.

Our implementation also includes the standard type inference mechanism.

It is based on the type inference in the pattern calculus. The type inference is

working for all examples we have tried (including all the examples presented

in this thesis).

CHAPTER 4. LOCATION TYPES 83

4.13 Limitations

Before concluding this chapter, we discuss some limitations of the system

some of which can be seen as motivation for the building the uniform system

(in the next chapter). Although the idea of location constructors is similar

to that of normal constructors, the actual uses of location constructors are

long and complicated. As the number of constructors is doubled by adding

location constructors, there is a possibility that in some parts of coding, the

programmers have to double the amount of pattern-matches in dealing with

constructors and location constructors.

Another limitation is the separation of inplace and out-place updates,

that might lead to inefficiency when assigning a large data structure and

at a later point discovering that the shapes are not matching and having to

reassign everything out-place. The decision of not back-tracking when inplace

update fails might make some programs hard to reason about; especially

when coupling with aliasing which by itself is a complicated topic [13, 55].

The following example tries to illustrate the point. In the expression:

let x — loc v in

let y = primloc x in

y := u; val x

the return value val x depends on the internal mechanism with which the

assignment y := u is done. If u and v are of the same shape then the

assignment is by inplace and hence the return value is the same as r. If u

and v are of different shapes then the attempt to assign inplace fails, the

CHAPTER 4. LOCATION TYPES 84

attempt changes some parts of the data held in x to be the corresponding

parts in v. When performing the out-place assignment, the value held in x

does not change, and hence the result val x has mixed part between u and

v. However, by using ref, refval and refassign but not the primitive ones we

do not have access to the inner layer (ref creates two layers of location) and

hence we can avoid the problem.

The confusion is a part of the price to be paid when having the purely

functional types separated from the location types. To use imperative fea

ture, the users usually have to know the different between functional and

imperative types; and have to convert data from one form to another using

operations such as loc and val. In the next chapter, a different approach that

unifies the functional and imperative types will help to overcome some of

those limitations.

4.14 Conclusions

Based on the pattern calculus as the theory for a purely functional language,

this chapter is about the extension of the calculus with imperative features.

One of the objectives is to add more expressive power to the system with

the minimum effect on the purely functional features. The clear separation

between functional types and imperative types allows choices for which style

is to be used. Based on path polymorphism that is to build generic functions

in the pattern calculus, this chapter shows that imperative operations can

be used generically for creating, reading from and writing to constructed lo

cations. The advantage of this approach is that it naturally supports inplace

CHAPTER 4. LOCATION TYPES 85

update, something that is hard to achieve in other languages supporting re

cursive types. By adding a layer of indirection, one can wrap inplace update

within a safe form of assignment on reference types.

The expressive power of the approach is shown through some represen

tative examples. Bubble-sort shows how the functional programming style,

with its pattern-matching and recursion can be used to define efficient im

perative code. The converge program nicely illustrates the value of sharing

control between the programmer and the system: the programmer specifies

how many data structures are required while the system determines when

fresh storage is required. The examples also show how the power of the

generic programming style combines naturally with the imperative features

to provide flexible programming on large data structures.

The ideas and examples in this chapter show that the pattern calculus

is able to combine the functional and imperative programming styles within

a single, simple calculus. The added features of while-loops and for-loops,

vector types and the generic output function is evidence for the orthogonality

of the system. The addition of loops and vector types shows the potential

of optimizing the system without affecting its soundness. The addition of a

generic output function also shows that exploiting the expressive power of

the system can help to reduce the complexity of the compiler.

Chapter 5

Mutable Data

5.1 Introduction

This chapter, like the previous chapter, is about extending the pattern cal

culus with imperative features. The theory is (again) implemented as a

version of FISh2 with imperative features. In the previous chapter, impera

tive features are added on top of a functional system, the pattern calculus.

In particular, there is a new class of location terms (updatable locations)

whose types are distinct ones of their value. In this chapter, the type of a

location is identical to the type of the value held in the location. All data are

potentially updatable and so must be stored in mutable locations. From the

user’s viewpoint, all data are handled through implicit references; we provide

a cloning constant for copying the actual data.

The previous chapter introduces location constructors with the use of

conloc and locap. Although the theory is simple, the actual uses of location

constructors are long and potentially confusing. There is a solid reason for the

86

CHAPTER 5. MUTABLE DATA 87

complexity, the uses of conloc and locap maintain the type separation between

references and their values. This chapter will try to shift the task to the

calculus so that the users do not need to handle referencing and dereferencing

explicitly so that constructed locations are easier to describe and use than

in the previous chapter.

In spite of the above differences, there are still many common points be

tween the two systems in the previous and this chapter. Both systems use

value polymorphism as described in Chapter 3 in dealing with polymorphism

and updatable locations. Both systems use the power of generic functions

from the pattern calculus to build a generic assignment function which pro

vides a flexible and efficient mechanism for memory management. Many

other aspects of the two systems such as generic output, vector, while- and

for-loops are very similar, in both theory and implementation. Hence, we

omit them in this chapter.

This chapter will explore some of the different choices in building such a

system to effectively setting on one. A summary of benefits and weaknesses

will be made at the conclusion of this chapter. The goal here is to explore

many possible interesting examples in a well-typed system. We do not claim

that the system is the best nor that it contains all of the desired features.

5.2 Types and Terms

The types and the terms of this system are built on those of the pattern calcu

lus. Like the previous chapter, we use value polymorphism to accommodate

both updatable locations and polymorphic functions, so it is sufficient to

CHAPTER 5. MUTABLE DATA

introduce some imperative constants.

Type comm

Term skip : comm

primassign : VX.X —> X —>■ comm

clone : VX.X -» X

output.basic : \/X.X —>• comm

First, we introduce the command type comm with the associate constructor

skip of type comm, skip is a constructor so that one can pattern-match on it.

The arity of skip is defined specially to be positive infinity to ensure that skip

will never be stored F Second, we introduce primitive assignment primassign

with given type scheme VX.X —> X -> comm. Next, we introduce the cloning

operation clone with given type scheme VX.X —> X. Finally, we introduce a

primitive printing operation output-basic exactly as in the previous chapter

for printing constructors.

Comparing to the previous chapter, there is no explicit location type

here and hence no operations to create new location or getting value from a

location. The primitive assignment can take the first input of any type. So

any values that might be assigned have to be locations (references) holding

some terms. More details about primassign and clone will be discussed later

when the store has been formally defined.

Sequential composition can be defined exactly the same as in the previous 1

1It is a small choice in designing the system. One might choose to store skip which
results in a little different system.

CHAPTER 5. MUTABLE DATA 89

chapter:

(seq : comm —> X —y X) = | skip —> (| y —>■ y) .

We also may use the usual syntactic sugar x;y for seq x y.

5.3 Evaluation

In the previous chapters, the set of possible results of an evaluation (value) is

the same as the set of terms which can be stored. However, in this chapter,

they are two different sets. In particular, (explicit) functions will be values

that are not stored; and the content of store variables will not be returned

as the results of evaluation (but the store variable will be).

First, we define what can be a result of an evaluation. A value, meta

variable v, is given by:

v ::= x | at p use s else t \ b V\ ... Vk {k < arity(6)}.

That is, a value is either: a term variable; an extension; or a partially-applied

constant whose arguments are all values. Some examples of values are: x;

Xx.x; cons; and int. Some examples of non-value terms are: nil; x 9; and

int <9> (the proper integer 9).

Note that all values are either term variables or explicit functions (includ

ing the skip constructor and terms headed by exn). Fully-applied constructors

are to be stored in locations. Fully-applied operators require their own eval

uation rules.

Next, we define what can be stored in a location. A term is called storable

CHAPTER 5. MUTABLE DATA 90

(or data) if it is a fully-applied constructor where all the arguments are values.

Some examples of storable terms are: nil; 9; and cons Xx.x y.

Axiom 6 A well-typed fully-applied constructor has data-form type.

Note that a data-form type is defined in Chapter 2 to be a type constant

or an application of two types. From the axiom, we know that all data has

data-form types.

In this chapter, the distinction between a location and the actual term

held in the location are handled inside the calculus. So the definitions of

values and data capture some major design choices for the system. The defi

nition of values determines the possible results of evaluations. The definition

of data determines which terms can be updated. Comparing with the pre

vious chapter, the choices are also there, but for the users of the system to

choose. For example, in the previous chapter, there are two choices for con

structing a “larger” location: by creating one location out of one large term

(using primloc); or by combining smaller locations (using conloc and locap).

The flexibility also causes the complexity (in the syntax and reasoning) in

the uses. One of the changes in this chapter is that we make a fixed choice

(inside the calculus) when defining storable terms.

In the previous chapter, we introduce locations in two steps. First, loca

tions created by primloc are atomic or unstructured. Second, constructed lo

cations are built on atomic ones and location constructors to support pattern

matching. In this chapter, the choices of atomic or constructed locations

come in the design of the system. The decision that a fully-applied con

structor is storable only when its arguments are values (not storable terms)

CHAPTER 5. MUTABLE DATA 91

implies that “larger” locations are always constructed out of “smaller” ones.

In a typical larger location, the content of the location is the application of a

constructor to other smaller locations. This choice of constructed locations

allows partial update of a larger location which will be exploited later in the

chapter.

A key point in designing such a system is the right balance between values

and storable terms. Our choice here for not storing function is similar to the

Object-Oriented (00) approach. An extension (a function, a method) such

as Xx.x by itself is not data (not a updatable term, not an object). However,

by wrapping an extension inside an constructed term such as ths Xx.x, we

have an storable term or an object in the 00 view. One alternative is to

define values to be variables only and to expand the set of storable terms

with extension.

The definitions of: a store (meta-variable E); store variable (meta-variable

u); and an evaluation context (E,t) are exactly as in the previous chapter

(see Section 4.3. Again, we decide that all store variables have monomorphic

(trivial) type scheme. We use dom E for the domain of store E. In the

context of a given store E, for a term t we define \t to be E(t) if t is a term

variable in the domain of E and t otherwise. This ! mechanism plays the role

of the primval constant in the previous chapter.

Evaluation rules are expressed the same way as in the previous chapter

using judgements of the form

(E, t) =4> (S', v)

CHAPTER 5. MUTABLE DATA 92

where (E, t) and (S', v) are evaluation contexts.

(E, t[fix (x,t)/x]) =£• (E',u)
Rule 1 (E, fix (x,t)) (E',u)

(E,S)=*(E>o) (E ',t[v0/x])=>(E",v)
Rule 2 (E, let x = s in t) =>- (E", v)

(S,s[u2/z]) => (E',u)
Rule 3 (E, (at x use s else t) v2) =$■ (E',u)

(E,s)=f(E» ly
Rule 4
Rule 5

(E, (at c use s else t) v2) =>- (E',u)

(E, (at pi and P2 use s else t) t\ t2) =>• (S', v) \v2 = t\ t2

(E, (at pi p2 use s else t) v2) => (E',u) h is a constructed term
_______ (E,t v2) =>• (E',v)_______

Rule 6 (E, (at p use s else t) v2) => (E', v)

Rule 7

!ui, \v2 are the same constructor
(E, prim equal Vi v2) => (E, u (->• true, u) u fresh

-- ?/ irpsliRule 8 (E, primequal Vi v2) =>• (E, u false, u)

Rule 9

—----------;—:----------- ———-r output \v if !t> is a constructor(E, output_basic v) => (E,skip)
v headed by an operator

Rule 10 (E, v Vi) => (E, ux) vx headed by exn

Figure 5.1: Evaluation Rules with Mutable Data 1

The evaluation rules are defined in two parts: Figure 5.1 and Figure 5.2.

Most of the rules are the same or very similar to the ones in the previous

chapter. The rules in the first figure are based on the reduction rules (dis

cussed in the review of the pattern calculus). The rules in the second figure

are mainly about the imperative features. The main different from the pre

CHAPTER 5. MUTABLE DATA 93

vious chapter is the rules for primassign. Evaluation of assignment on terms

that cannot become data such as functions results in exception. That is a

consequence of our choice of storable terms. The rules for clone acts in usual

way, evaluation of clone will make a fresh copy (clone) of a store variable. If

the argument of clone is any value other than a store variable, the result of

evaluation is an exception.

Rule 11

(E,f) => (E',tt) (E',f2) =>■ (E", m2) u G dom(E')
(E, primassign 1t2) =4- (E",u i-» E"(w2)>skip) u2 G dom(E")

(E,t)^(E» (E', t2) =>■ (E", v2)
Rule 12 (E, primassign t t2) => (E",exn)

Rule 13
Ui G dom E

(E, clone u-i) =$> (E, u 1-4 E(ui), it) u fresh

Rule 14 (S, clone v) =>■ (E,exn)

Rule 15 (E,u) =>■ (E,u)

Rule 16

E(rij) d*i
rv* a \ —v rv , j/ ^ d di dn d(E,dui--- un)=^(E,MK4d,«) ufresh

Rule 17

cv 1... Vk is storable
(E,c vi.. • Vk) =>• (E, u 1—y c V\... Vk,u) u fresh

Rule 18

(E,fi) =» (E',ui) (E', t2) => (E", v2) (E,ui y2) => (E» ti,f2 are not
(T,ti t2) (E'",r/) both values

Figure 5.2: Evaluation Rules with Mutable Data 2

The rest of this section establishes some standard properties of evaluation.

Like the previous chapter, we define a new property about the relation

CHAPTER 5. MUTABLE DATA 94

between the typing of the store variables and of their values. The judgement

A; T hs E asserts that the store E is well-typed, in context A; I\ Suppose E

is {u\ Vi,..., un h->■ vn} then A; T bj; E if and only if E; T is well-formed

and there are types Tj such that r(iij) = Tj and A; T b n, : Tj.

In other words, in the type context A; T, a store E is called well-typed if

the domain of E is a subset of the domain of T and each store variable in T

must be of the type corresponding to the type of its value in E.

As in the previous chapter, the type context has to expand during the

evaluation to cope with the new store variables. In particular, when a term

is one of the four cases: a fully-applied primequal; a storable term; a fully

applied datum operation; or a cloning of a store variable, the evaluation of

the term results in a new store variable u which must be added to the context

as well as the store.

The evaluation rules for all the four cases are of the form

... => (E, u e->- ti, u)

where tj is the initial term. Note that t/ is storable. We can extend the type

context with a new variable u whose type (scheme) is the type of tj.

A; T E A; T b f/ : T
---------------------------------- u fresh

A; T, u : T bs E, u i-» tj

By that choice of extending the type context, if the store is well-typed before,

then clearly it remains well-typed after the evaluation.

As in the previous chapter, we introduce a new form of judgement for

CHAPTER 5. MUTABLE DATA 95

typing an evaluation context. The judgement A; F hi (E, t) : T asserts that

the evaluation context (E, t) is well-typed and t has type T in the context of

A; T and the store E.

The theorem about evaluation preserving typing is exactly the same as

Theorem 2 in the previous chapter.

Theorem 7 Evaluation preserves typing. That is, if there are derivations

A;T hj (E, f) : T and (E,t) =>• (E',u) then there is a context Id such that

A; T, Tx h■(Z',v):T.

Proof: The proof is done by induction on the structure of evaluation based

on the evaluation rules in Figure 5.1 and Figure 5.2. For all of the cases, the

proofs are identical or very similar to the ones of Theorem 2 in the previous

chapter. Examples of the differences are the cases for Rules 11,12,13, and

16.

Rule 11

(S,t)=»(E',u) (S',t2)=»(E",u2)
(E, primassign t t2) => (S", u i—y E"(u2), skip)

u G dom(E')

u2 £ dom(E")

From the assumption A; T hj (E, primassign t t2) : T it follows that

A;T p£ E and there is some type Tj such that A;T hj (E,t) : T\.

Applying the induction hypothesis on the evaluation of (E, t) we know

there is Ti such that A;T,Ti h* (E',u) : T\. Applying the induction

hypothesis on the evaluation of (E', £2) we know there is T2 such that

A;r,r1,r2 Pi (E",u2) : T\. From the definition of a well-typed store

we know A;r,Fi,r2 h E"(u2) : Tj and hence A;r,Fi,r2 E",u i->

CHAPTER 5. MUTABLE DATA 96

E"(u2). Moreover, from the typing of primassign we know that T is

comm and we have A; T, I\, T2 bj (£", u i-> E"(w2), skip) : T.

12 (E,f)^(E',u) (E',f2)=»(E'>2)

(E, primassign t t2) => (E",exn)

Since exn can take the type comm, the proof for this case follows the

one of Rule 11.

Rule 13
U\ G dom E

(E, clone => (E, u E(ui), u) u fregh

Since the store is well-typed before the evaluation, the store remains

well-typed after cloning a store variable by choosing the same type for

u as one of u^. Moreover, from the type of clone we know that clone U\

and u shared the same type. The proof for this case follows.

Rule 16
E('Uj) di

(E, d u\ - ■ • un) =>■ (E, u i—y d', u) ^ dn — d

u fresh

From the assumption A; T b, (E, d U\ ■ • ■ un) : T it follows that A; T

E. Hence di has the same type as Ui for all i. So we know that

d d\ - ■ ■ dn (or d') has type T. Moreover the type (scheme) of the

new store variable u is chosen to be the type of d'. We can conclude

that A; T bj (E, u t-4 d', u) : T.

□

CHAPTER 5. MUTABLE DATA 97

The definitions of closedness are exactly as in the previous chapter. A

store E is called dosed if for every variable u in the domain of E, all free

variables of E(u) are in the domain of the store E. The evaluation context

(E, t) is called dosed if E is closed and all free variables of the term t are in

the domain of E. As in the previous chapter, we have the lemma:

Lemma 8 Evaluation preserves closedness. That is, suppose there is an

evaluation (E,t) (E',u) and (E,t) is dosed then (E',w) is also dosed.

Proof: Again, the proof is by induction on the structure of evaluation. We

do a case analysis on the evaluation rules in Figure 5.1 and Figure 5.2. For

all of the cases, the proofs are identical or very similar to the ones in the

previous chapter. □

As in the previous chapter, combining this above lemma with the previous

theorem we can claim that evaluation preserves well-typedness and closed

ness. A closed and well-typed term is called a program. We have the same

theorem as in the previous chapter discussing programs evaluation.

Theorem 9 Evaluation of programs never gets stuck. That is, if we have a

derivation A;T h; (E,t) : T and (E,t) is dosed then there is an evaluation

rule where the left hand side of the conclusion matches with (E,t).

Proof: The proof is similar to the one of Theorem 4 in the previous

chapter. The proof is by case analysis on the structure of t, and it is mostly

based on the definition of values and the evaluation rules in Figure 5.1 and

Figure 5.2.

When t is a variable or an extension then t is a value. We could always

apply Rule 15 which states that any value evaluates to itself.

CHAPTER 5. MUTABLE DATA 98

When t is a fix point construction, then the first rule applies.

When t is a let-expression, then the second rule applies.

When t is a constant then t is either storable hence Rule 17 applies; or

partially-applied (a value) which we can apply the rule for values too.

The only case left is when t is an application. As one could try and apply

the last rule when at least one of the parts of the application is not

a value, without loss of generality, now we can assume that t has the

form Vo V\ where vq and v\ are values. Now consider the cases for the

choices of n0.

If vo is a variable, the closed condition of the evaluation context forces

Vo to be a variable in the domain of the store. The well-typedness

of the store forces no to be of data-form type (the same type

as some data stored in v0). However, the function part of an

application (always of function type) can never be of data-form

type, therefore this case never happens;

If % is an extension, then Rule 6 applies.

If n0 is headed by a constant b, then t is also headed by b. By the well-

typedness of t and the definition of values (as uo,ui are values),

there are three cases of such a term t. Case one, t is partially-

applied and hence a value, we can apply the rule which states that

any value evaluates to itself. Case two, t is a fully-applied operator

whose arguments are all values, we can apply one of the Rules

8,9,11,12,14 and 16. Case three, t is a fully-applied constructor

CHAPTER 5. MUTABLE DATA 99

(assign : X —> X —> comm) =
let rec (assignO : X —> Y —> comm) =

| int x -» (| int y —> primassign x y)

| float x —} (| float y —>• primassign x y)
| char x -> (| char y —» primassign x y)
| x0 x -)■ (| y0 y assignO x0 yo; assignO x y)
I x (| y if primequal a; y then skip else exn)

in assignO

Figure 5.3: Generic Function assign using Mutable Data

whose arguments are all values, then t is storable, we can apply

the Rule 17.

□

5.4 Examples

This section will discuss some typical examples showing the expressive power

of the system which is (almost) equivalent to the one of previous chapter.

The major difference from the examples in the previous chapter is the loss

of conloc and locap.

5.4.1 Generic Assignment Function

The generic assignment in Figure 5.3 has the same structure to the generic

assign in Figure 4.4 in the previous chapter. The only different is that the

function in this chapter contains no conloc nor locap.

This function has the same strength and weakness as the one in the

CHAPTERS. MUTABLE DATA 100

(refassign : ref X —> X -» comm) x y =
match (assign x y) with

| skip —> skip
| exn —»• primassign x y.

Figure 5.4: Generic Function refassign using Mutable Data

previous chapter. Most importantly, the generic assignment still tries to do

the inplace update if the structures of the new data and the old location

match, and fails (return an exception) otherwise. Another example for the

similarity, when an assignment failure occurs, parts of the location might

have been assigned to new values. We can avoid the problem using the same

method as in the previous chapter: checking the shapes before assignment

by a function similar to shapecheck function in Figure 4.5.

In the previous chapter, we have a mixture of inplace and primitive as

signment by using two levels of location (see Section 4.7). We can do the

same thing here in a simpler form.

As in the previous chapter, refassign in Figure 5.4 will perform inplace

update if possible, but defaults to primitive assignment otherwise.

5.4.2 Infinite Lists

Similar to the self linked list in the previous chapter, here, an infinite list can

be represented using self references. The program

let x = [] in

primassign x (cons 9 x)\x

CHAPTER 5. MUTABLE DATA 101

terminates. The result of evaluation is a store variable u where the store is

{u2 i—><9>,Ui int u\,u cons U\ u}. So u is a recursive location and it

can also be seen as a list holding infinite number of integers 9.

Comparing to the linked-lists (in Subsection 4.5.2) in the previous chap

ter, we do not have to define a new datatype for lists with locations. However,

updating a list involving itself without creating a recursive location can be

done using clone. For example, the program

let x = [0] in

primassign x (cons 9 (clone x))\x

results in the list [9,0].

5.4.3 Graphs

We define a simple polymorphic directed graph holding two sorts of data:

one for the nodes, the other for the edges.

type node (X,Y) — node of X and (list ((node (X, Y)) * Y)).

A node (of type node (JA, Y)) can be created by applying the constructor

node to some term of type X and a list of edges from that node, each edge

is a pair of a node (of {X, Y)) and some term of type Y.

Now we can construct a simple graph of two nodes and one edge:

let ni = node 1 [] in

let n2 = node 2 [(nl,9.9)].

CHAPTER 5. MUTABLE DATA 102

We can define a function adding one more edge into a node:

(addedge : node X Y (node (X, Y)) * Y —t comm) =

| node x l —> (| e —> primassign l (cons e (clone /)))

And now we can add an edge from n2 to itself:

addedge n2 (n2,2.2).

5.5 Implementation

All implementation issues are similar to ones in the previous chapter. The

main thing I want to claim here is that all the theory in this chapter has

been implemented. Again, all examples have been coded and tested; and

they produced expected results. Codes are available on request.

5.6 Conclusion

Like the previous chapter, this chapter is also about extending the pattern

calculus with imperative features. This chapter explores a system where

locations and their values are of the same type. The decision when to get

the value or when to pass the reference is determined inside the evaluation,

therefore constructed locations are much easier to use.

In the system, we decide that only data can be stored in a location.

Functions are not storable and will be treated as values hence assignment on

functions results in exception. Another key point in the design of the system

CHAPTER 5. MUTABLE DATA 103

is that a larger location is constructed out of the store variables of smaller

locations.

Again, generic functions with imperative features can be written in a sim

ple, efficient and elegant way. The key example is still the generic assignment

function where inplace update is used whenever it is possible to do so.

Chapter 6

Generic Data Distribution for

Parallel Programming

6.1 Introduction

Data parallelism involves performing a similar computation on many data

simultaneously. A common paradigm for data parallelism is a single thread

of control containing three stages: data distribution; local operation; and

collection. Data distribution divides the data structure into pieces. Local

operation performs the calculation on the pieces simultaneously. Collection

assembles the local results into a global result. The communication and

the synchronization between the stages are usually explicit. That makes

data parallelism usually easy to use. However, most of the current work in

data parallelism concerns sequential (linear) data structures like lists, arrays.

Other work on structured data usually contains a flattening step to change

the data structure into a sequential one.

104

CHAPTER 6. GENERIC DATA DISTRIBUTION 105

Our approach to parallel programming is to manipulate structured data

directly to improve locality. The uses of parametric polymorphism allow

one parallel program to act on different data structures, and hence, enable

more effort to optimize the programs. As the pattern calculus gives a new

powerful account of parametric polymorphism; the expansion of the calculus

with parallel features is a great tool for generic parallel programs. As data

distribution is an important step in parallel programming, the focus of this

chapter is to build a generic data distribution function. We do not get into

details of parallel programming such as parallel architecture nor cost models.

6.2 Generic Data Distribution

6.2.1 Type of Resulting Pieces

This subsection discusses the type of resulting pieces of our distribution.

In our research, we have explored an interesting approach: all the pieces

are data-structures of the same data as that of the original data-structure

but perhaps different structure. In other words, when the original data struc

ture has type F X then the resulting pieces have type Fi X. Hence, when

a structure polymorphic function such as map or fold is to be applied the

original data structure, the same function can be applied to each piece. One

of the advantages of this approach is that it has the potential to divide any

data structure into smaller pieces. For example, this approach might divide

a pair of a list and a tree into smaller pieces; when the first approach cannot

do since there is no substructure of type pair. This approach is challenging

CHAPTER 6. GENERIC DATA DISTRIBUTION 106

since there is no static type for the resulting pieces. Moreover, I could not

work on it further since I run out of time. However, this approach is an

interesting topic for future work.

Distribution of regular structures such as a list, vector or matrix, the di

viding is straightforward. One usually divides lists, vectors or matrices into

collections of sub-lists, sub-vectors or sub-matrices. In this thesis, we gener

alize this usual approach to all data structures; all the resulting pieces have

the same type as the original data structure. That implies the original data

structure must be recursively defined and must have recursive substructures

in order to have a nontrivial distribution. Any data structure without sub

structure with the same types such that a pair of a list and a tree will be left

as one piece (trivial distribution).

6.2.2 Number of Resulting Pieces

To divide a data structure over p processors, we have to break the data

structure into n pieces. The n pieces are collected into p subsets, each subset

is then assigned to one processor as the result of dividing.

When dividing a list over p processors, a block distribution results in

p sub-lists. However, in many cases, the distribution is not that simple.

A typical example is to divide a perfectly balanced binary tree over three

processors. For simplification, we consider everything in the tree as nodes

(leaves of the tree can be considered as nodes with no children). Suppose we

divide all the nodes to the three processors; we call all connecting nodes in

one processor a piece. If the aim is to have perfect load balance (the numbers

CHAPTER 6. GENERIC DATA DISTRIBUTION 107

of nodes in any two processors are different by at most 1), then it is clear

there must be more than 3 pieces. In fact, we will prove that the number of

pieces has to be larger than a linear proportion of the depth of the tree as

Proposition 11 bellow.

The proposition and its proof below are standard and purely mathemat

ical. We need some definitions and a lemma to make the proof easier. For

each natural number n, let f(n) be the number of ones (1) immediately suc

ceeded by a zero (0) when representing n in base two. For example, as 21, 7

and 2 (in base ten) are 10101, 111 and 10 (in base two) we have /(21) = 2,

/(7) = 0 and /(2) = 1. For a collection C of pieces of a tree, let #C be the

number of elements of C and let s(C) be the total number of nodes in C.

Lemma 10 Let C\, C2 and C3 be three collections of pieces as a result of

dividing a perfectly balanced binary tree over three processors. We have ffC\ +

#C2 + #C3 > /(s(Cx))/4.

Proof: The proof of the lemma is by induction on the sum of #Ci + #C2 +

#C3. Let l be the depth of the tree. The sum of ffC\ + #62 + #63 cannot

be less than 1 as the tree must have a root. When the sum is 1 then C\ is

either the empty set or the set of one element which is the whole tree; s(Ci)

is 0 or 2l+1 — 1. Then we know /(s(C'i)) = 0. Since 1 > 0 = /(s(Ci))/4; this

establishes the base case for the induction proof.

For inductive step, we are trying to have a new distribution D\,D2 and

D3 such that

#<?! + #c2 + #C3 = #L>! + #£>2 + #D3 + 1

CHAPTER 6. GENERIC DATA DISTRIBUTION 108

so we can apply the induction hypothesis on Di, D2 and D3. There is a piece

(called S) in C\, C2 or C3 which is a full subtree. So we can create D1, D2 and

Ds from Ci, C2 and C3 by moving S to join the piece whose nodes include

the parent of the root of S. Now apply the induction hypothesis on the three

new collections D\, D2 and D3 we have ffDi + #D2 + #D3 > f(s(Di))/A..

When comparing D\ and C\ there are three cases: D\ is the same as Cj; D\

is the same as C\ except that one of its pieces gets the extra bit S'; or D\ is

Ci with the piece S removed. Let t — 1 be the depth of S, the number of

nodes in S is 2* — 1. We can deduce that s(Ci) is the same as s(Di) or their

difference is 24 — 1. Then we know that f(s(Ci)) is at most 4 greater than

f(s(Di)); combining that with the induction hypothesis would complete the

proof of the lemma.

□

Proposition 11 The number of resulting pieces in distributing a perfectly

balanced binary tree of depth l over three processors is greater than 1/8—1 if

the distribution has perfect load balance.

Proof:

If the depth of the tree is odd and equal 2k + 1 then total number of

nodes in the tree is 22k+2 — 1. Having the perfect load balance, the number

of nodes for each processors is:

(22fc+2 - l)/3 = 22k + 22k~2 + • • • + 2° = m.

We know that f(m) = k and combine that with the lemma, we have the total

CHAPTER 6. GENERIC DATA DISTRIBUTION 109

number of pieces is greater than k/4 which is greater than (2k + l)/8 — 1.

So, the total number of pieces is greater than (2k + l)/8 — 1.

If the depth of the tree is even and equal 2k then total number of nodes

in the tree is 22k+1 — 1. Having the perfect load balance, the number of nodes

for each processors is m or m + 1 where:

m = (22k+1 - 2)/3 = 22k~l + 22fc-3 + • • • + 21.

We know that f(m) = k and f(m+l) = k — l. The proof is then similar to

the case when the depth of the tree is odd.

□

6.2.3 Parameters of Generic Distribution

The distribution function divides any data structure into smaller pieces ac

cording to the hardware parameters of the machine. The first argument of

the function is the hardware information of the parallel machine e.g. the

number of processors, network speed, cache size, etc. The second one is the

data structure to be distributed. As the first step in the work, the only

concerned hardware parameter is the number of processors.

As the main theme of this work is about data parallelism and data dis

tribution, the focus is on scalable problems [60, 64], That means we are

interested in the problem where the size of the input data is significantly

larger than the number of the processors. For example, when the number of

processors is larger than the size of input data, the theory does not utilize

the fact that we can put each datum into a distinct processor.

CHAPTER 6. GENERIC DATA DISTRIBUTION 110

6.2.4 Requirements of the Distribution

Since the context of distribution is for parallel programs, the requirements

for the distribution are closely determined by the requirements of parallel

programs, which are: granularity; load balance; locality; and communica

tion and synchronization [43]. Among these four, load balance and locality

largely depend on the choice of distribution and the other two do not. That

imposes the two main requirements of distribution: load balance; and local

ity. By load balance, we mean that all processors hold approximately the

same amount of data. Locality means related data tends to be in the same

processor, and therefore, potentially reduces communication between proces

sors. For example, locality in distributing a tree is about trying to keep a

node and its sub-nodes in the same processor.

However, the requirements sometimes conflict. Distributing a perfectly

balanced binary tree helps illustrate the point. The tree can be easily dis

tributed over two, four, or eight processors with perfect locality and perfect

load balance. However, when dividing all the nodes of the tree for three

processors, we cannot achieve both perfect work balance and perfect locality.

As discussed previously, if we want the best possible load balance then the

number of resulting pieces has to be proportional to the depth of the tree,

i.e. not perfect locality. On the other hand, if we want perfect locality, (the

resulting parts are three sub-trees) then the biggest sub-tree is at least double

the smallest one, i.e. not perfect load balance.

CHAPTER 6. GENERIC DATA DISTRIBUTION 111

6.3 Algorithm for Generic Distribution

This section explores an algorithm for the generic data distribution.

As we want all the resulting pieces to have the same type as the original

data structure, to have a nontrivial distribution, the original data structure

must have recursive substructures with the same type as the original. Dis

tributing a data structure without substructure with the same types leaves

the data structure as one piece (trivial distribution). Focusing on non-trivial

distribution, in this section, the word tree is used to call a recursive abstract

datatype with substructures with the same type as the original one. Any

immediate substructure with the same type with a tree is called a subtree of

that tree. 1

The aim for tree distribution is to break a tree into a set of almost equal

parts, each part is a set of sub-trees. Below is an algorithm we have used for

tree distribution.

This algorithm traverses through the tree top-down. We need to keep

a list (of integers) for the estimated capacity for the amount of data each

processor should hold. Initially, the list of estimated capacity has all the

same integers, and the sum of all integers in the list is equal (or slightly

larger than) the size of data structure that is distributed. The nth element

of the list is the amount of data that the processor number nth should take.

Each time some data is assigned to the nth processor, the nth element of

the list is reduced by the size of the data. In the algorithm below, “small

enough” and “best fit” are relations between the size of the data with the

Tn this section, the term sub-tree represents some sub-structure of the original tree,
and subtree (of a sub-tree) represents the immediate sub-structure (of the sub-tree)

CHAPTER 6. GENERIC DATA DISTRIBUTION 112

current list of estimated work to the processors.

a Small Subtree : If the sub-tree is small enough, (in relation to the work

assigned for processors), then assign the sub-tree to the best fit pro

cessor. Reduce the estimated work for this processor by the size of the

sub-tree.

b Big Subtree : If the sub-tree is not small enough then:

bl Updating Parameters Put the node (non-recursive part of the

sub-tree) on processor zero. Reduce the estimated work for pro

cessor zero by the size of the node.

b2 Recursive Call Apply this algorithm on all sub-recursive struc

tures (all subtrees of the sub-tree) using the same list of estimated

capacity.

b3 Combination of Recursive Call Combine the results from all

the recursive calls.

The actual implementations of “size”, “small enough”, and “best fit pro

cessor” might vary. The size function has the type X —> int. It counts the

number of real data int, float, char. The sub-tree is small enough when there

is one processor whose estimated work left is greater than or equal to the

size of the sub-tree. The best fit processor is the processor with the least

estimated capacity that is greater than or equal to the size of the sub-tree.

In a purely functional approach, we need some mechanism to represent a

data structure that belongs in remote (different) processors. One solution is

CHAPTER 6. GENERIC DATA DISTRIBUTION 113

to introduce a new constructor :

remote : int —> X -> X.

For each data x and an integer n, remote n x can be understood as the data

x associated with processor number n. In fact, one can treat remote as an

advance version of the imperative feature clone. As clone x creates a new

copy of x\ the ultimate goal of remote n x is to make a new copy of x in the

nth processor.

Using the above algorithm, we can traverse through the input data struc

ture, and mark any substructure to be sent to processor n by remote n.

Another way to describe that is: distribution is done by marking an appro

priate substructure with remote. A version of the main body of the code can

be seen in Figure 6.1. From the algorithm described in the previous section,

we can see the need for supporting functions for the distribution function.

Among supporting functions for the distribution, setChildren and getChildren

are two built-in generic functions with the types:

getChildren : X —> list X

setChildren : list X —^ X —y X.

The evaluation of getChildren x will return a list of substructures (children) of

x that all have the same type as x. Considering x as a tree then getChildren x

returns the list of immediate subtrees of x. The result of the evaluation of

setChildren lx is a tree with the root being the same as one x and all children

being elements of l. The implementation of these two functions exploits the

CHAPTER 6. GENERIC DATA DISTRIBUTION 114

(dist : list int —> X -» list int * X) l x =
if smallEnough l (size x) then

let n = mostFit (size x) l in
(updateEntry n (fun s —> s — (size x)) l, remote n x)

else
let l\ = updateEntry 0 (fun s —> s — (sizeTop a:)) / in
match (paramaplist dist l\(getChildren x)) with

I (h,xc) —> (l2, setChildren xc x)

(distribution : int —» X —> X) p x =
snd (dist (sameList p ((size x)/p + 1)) x)

Figure 6.1: Generic Tree Distribution

theory of representation of data; and we are not going to details of those

in this thesis. However, the compiler code for the two functions as well

as one for remote are available on request. We also need some standard

functions acting on lists: mostFit; updateEntry; sizeTop; paramaplist; sameList

and smallEnough. The exact FISh2 code for all auxiliary functions is given

bellow.

let rec (size: X -> int) =
I int x -> 1 | float x -> 1 I char x -> 1
I x y -> (size x) + (size y)
I x -> 0;;

let rec (smallEnough: list int -> int -> bool) 1 x =
match 1 with

I nil -> false
I cons h t -> if h >= x then true else smallEnough t x;;

let (mostFit: int -> list int -> int) x 1 =
let rec (gmf: (int*(int*int)) -> list int -> (int*int)) i =

I nil -> (snd inpr)
I cons h t -> (

CHAPTER 6. GENERIC DATA DISTRIBUTION 115

if ((h < x) II ((snd (snd i)) <= h)) then
(gmf ((fst i) + 1, snd i) t)

else
(gmf ((fst i) + 1, (fst i, h)) t))

in fst (snd (gmf (0, (-l,x)) 1));;

let rec (updateEntry: int -> list X -> (X -> X) -> list X)
n 1 f =
match 1 with

I nil -> nil
I cons h t -> if (n = 0) then (cons (f h) t)

else (cons h (updateEntry (n - 1) t f));;

let appsnd f pr = (fst pr, f (snd pr));;

let rec (paramaplist: (X->Y->X*Z) -> X -> list Y -> X*(list Z))
f i =

I nil -> (i, nil)
I cons hd tl -> let t = f i hd in
appsnd (cons (snd t)) (paramaplist f (fst t) tl);;

let rec (sameList: int -> X -> list X) n x =
if n < 1 then nil else Cons x (sameList (n - 1) x);;

let rec (sumSize: list X -> int) =
I nil -> 0
I cons h t -> (size h) + sumSize t;;

let (sizeTop: x -> int) = size x - (sumSize (getChildren x));;

6.4 Implementation

The generic data distribution was developed in 2002 as part of a parallel

mapping function as a join work of Jay 2, Hamdan 3 and me. At that time,

FISh2 supported some parallel MPI primitives [62, 61] but they have not

2C. Barry Jay University of Technology, Sydney, Australia
3Mohamamd M. Hamdan, Yarmouk University, Irbid, Jordan

CHAPTER 6. GENERIC DATA DISTRIBUTION 116

been maintained since 2002. We run some experiments on pmap but did

not get any significant results. I implemented the generic data distribution

function as discuss in the previous section. The function had been tested (it

is a sequential algorithm and can be run on one processor) and it produced

expected results on different kinds of data such as lists and various sorts of

trees. The code has been maintained and presented above. Most of work is

about writing FISh2 codes. I also added all built-in constructors and functions

needed for the distribution such as remote and getChildren into the compiler.

The compiler with those features is available on request.

6.5 Conclusion

Generic programming promises an effective tool for parallel programming.

Generic data distribution is a key step in building generic parallel programs.

We have found a new generic algorithm for distributing structured data with

all the resulting pieces having the same type as the original data structure.

The algorithm tries to maximize the load balance while preserving major

part of the structures.

Chapter 7

Conclusions

The pattern calculus, as introduced by Jay [35] 2004, provides a powerful

and new approach to generic functions. The expressive power of the calculus

mostly depends on the choice of the constants. We increase its expressive

power further by extending (or/and changing the properties of) the constants

to cover different styles of programming.

In designing the type system to support both polymorphism and imper

ative programming, we need to ensure that the two features do not interact

in any ill-typed way. We use value polymorphism approach, which contains

simple type rules to get type safety in systems containing both polymorphism

and updatable location.

Parametric polymorphism can be safely integrated into an imperative

system in a simple way. The key point is to separate functions which are

potentially polymorphic from updatable terms. We use the polymorphic let

rule for extensions (functions) or variables only, and use the monomorphic

let rule for other terms (and the same for fix-point). The two let rules are

117

CHAPTER 7. CONCLUSIONS 118

the way for combining polymorphic functions and monomorphic updatable

data into one small simple system. As a result, all functions in the system

can be used fully polymorphically in conjunction with updatable locations.

We have two different expansions of the calculus with imperative features.

They combine the functional and imperative programming styles within a

single, simple calculus.

The first expansion adds more expressive power to the system with a

minimum effect on the purely functional features. There is a clear separation

between the type of a location loc T and the type of its value T. Based on

the powerful technique for building generic functions of the pattern calculus,

primitive imperative operations can be used to underpin generic operations

for creating, reading from and writing to constructed locations. The advan

tage of this approach is that it naturally supports inplace update, something

that is hard to achieve in other languages supporting recursive types. By

adding a layer of indirection, one can wrap inplace update within a com

pletely safe form of assignment on reference types. The added features of

while-loops and for-loops, vector types and the generic output function is

one proof for the orthogonality of the systems. The addition of loops and

vector types shows the potential for optimizing the system without affecting

its soundness. The addition of generic output function also shows that ex

ploiting the expressive power of the system can help to reduce the complexity

of the compilers.

The second expansion adds the update ability to storable terms. A key

feature of the system is that there is no boundary between a location and

its value. The decision when to get the value or when to pass the reference

CHAPTER 7. CONCLUSIONS 119

are all determined inside the calculus, therefore constructed locations are

much easier to use. As in the previous expansion, we can construct a generic

assignment function which naturally supports inplace update.

Generic programming promises an effective tool for parallel programming.

The expressive power of the pattern calculus can also be exploited in par

allel programming. As the generic assignment is an effective tool for han

dling locations; the generic data distribution plays similar roles in parallel

programming. Generic data distribution is a key step in building generic

parallel programs. We have found a new generic algorithm for distributing

structured data. The algorithm tries to maximize the load balance and the

locality of data.

7.1 Future Work

The focus of this thesis has been to extend the expressive power of the pattern

calculus in an imperative setting. It can be used as a base to add extra fea

tures and find more applications. The main future directions are summarized

as follows.

Finding More Applications The combination of the pattern calculus and

imperative features promises great expressive power. We can try to

find some real world applications where the expressive power is utilized

and magnified. The process might help in identify more useful built-in

functions.

CHAPTER 7. CONCLUSIONS 120

Adding the Parallel Features An obvious direction for future work is the

adding of parallel features to the extension of pattern calculus with im

perative feature. One possible further development is of generic skele

ton (see e.g. [18]). One of the steps, a generic distribution function

has been outlined in this thesis. The communication between different

processors can be seen as assignment of data from one processor to

another.

Object-Orientation Another direction is finding a new approach to object-

orientation. With the ability to define functions with different algo

rithms for different types, the pattern calculus is proved to be a new

promising base for object-oriented languages [34]. Adding that with

the result of this thesis should create a uniform system that supports

functional, imperative and object-oriented programming styles.

Database Programming Adding imperative features is an important step

in applying the pattern calculus to database programming [48]. In some

way, databases can be seen as large constructed locations. With the

new expressive power from the pattern calculus, especially the generic

assignment function as an efficient way to deal with large locations, we

might have a new way to act on databases in a generic way.

Bibliography

[1] Andrew W. Appel. A critique of standard ML. Journal of Functional

Programming, 3(4):391-429, 1993.

[2] J. E. Barnes and P. Hut. A hierarchical 0(N log N) force-calculation

algorithm. Nature, 324(6270):446-449, 12 1986.

[3] R. Bird and P. Wadler. Introduction to Functional Programming. Inter

national Series in Computer Science. Prentice Hall, 1988.

[4] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel

Computation. MIT Press and Pitman, 1989.

[5] Murray Cole. List homomorphic parallel algorithms for bracket match

ing. Technical Report 93/29, University of Edinburgh, 1993.

[6] Karl Crary. Sound and complete elimination of singleton kinds. Lecture

Notes in Computer Science, 2071:1-26, 2001.

[7] Jacques Chassin de Kergommeaux, Philip J. Hatcher, and Lawrence

Rauchwerger. Parallel computing for irregular applications. Journal of

Parallel Computing, 26:1681-1684, 2000.

121

BIBLIOGRAPHY 122

[8] A. Dimock, I. Westmacott, R. Muller, F. Turbak, J. Wells, and J. Con-

sidine. Space issues in compiling with intersection and union types. In

ACM SIGPLAN Workshop on Types in Compilation, 2000.

[9] Bruce F. Duba, Robert Harper, and David MacQueen. Typing first-class

continuations in ML. In Conference Record of the Eighteenth Annual

ACM Symposium on Principles of Programming Languages, pages 163

173, Orlando, Florida, 1991.

[10] Dominic Duggan. Sharing in typed module assembly language. Lecture

Notes in Computer Science, 2071:85-116, 2001.

[11] A. J. Field and P. G. Harrison. Functional Programming. Addison-

Wesley, 1988.

[12] Ian Foster. Designing and Building Parallel Programs. Addison-Wesley

Publishing Company, 1995.

[13] Daniel P. Friedman, Christopher T. Haynes, and Mitchell Wand. Essen

tials of programming languages. Massachusetts Institute of Technology,

1992.

[14] David Stoutamire Gilad Bracha, Martin Odersky and Philip Wadler. GJ

specification, ongoing work, 1998.

[15] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.

Cambridge Tracts in Theoretical Computer Science. Cambridge Univer

sity Press, 1989.

BIBLIOGRAPHY 123

[16] James Gosling, Bill Jov, Guy Steele, and Gilad Bracha. The Java Lan

guage Specification Third Edition. Addison-Wesley, Boston, Mass., 2005.

[17] E. Gutirrez, Rafael Asenjo, 0. G. Plata, and Emilio L. Zapata. Auto

matic parallelization of irregular applications. Journal of Parallel Com

puting, 26:1709-1738, 2000.

[18] Mohammad. Hamdan. A Combinational Framework for Parallel Pro

gramming Using Skeletons. PhD thesis, Department of Computing

and Electrical Engeneering, Heriot-Watt University, Edinburgh, Jan

uary 2000.

[19] K. Hammond and G. Michaelson, editors. Research Directions in Par

allel Functional Programming, chapter Shaping Distributions. Springer,

1999.

[20] Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible

dynamic linking of native code. Lecture Notes in Computer Science,

2071:147-176, 2001.

[21] J. Roger Hindley. Basic Simple Type Theory. Cambridge University

Press, 1997.

[22] Ralf Hinze. A new approach to generic functional programming. An

nual ACM SIGPLAN-SIGACT Symposium on Principles of Program

ming Languages, 27, 2000.

BIBLIOGRAPHY 124

[23] Ralf Hinze, Johan Jeuring, and Andres Luh. Type-indexed data types.

Proceedings of the Sixth International Conference on Mathematics of

Program Construction, 6:148-174, 2002.

[24] Gerard Huet. The zipper. Journal of Functional Programming, 7:549—

554, 1997.

[25] R.J.M. Hughes, L. Pareto, and A. Aiken. Proving the correctness of

reactive systems using sized types. In Symposium on Principles of Pro

gramming Languages. ACM Press, 1996.

[26] Patrik Jansson. Functional Polytypic Programming. PhD thesis, Com

puting Science, Chalmers University of Technology and Gteborg Uni

versity, Sweden, May 2000.

[27] C. Barry Jay. bondi web-site, www-staff.socs.uts.edu.au/~cbj/

bondi/.

[28] C. Barry Jay. FISh web-site, www-staff.socs.uts.edu.au/~cbj/

FISh/.

[29] C. Barry Jay. Shape analysis for parallel computing. In J. Darlington,

editor, Proceedings of the fourth international parallel computing work

shop: Imperial College London, 25-26 September, 1995, pages 287-298.

Imperial College/Fujitsu Parallel Computing Research Centre, 1995.

[30] C. Barry Jay. Separating shape from data. In E. Moggi and G. Rosolini,

editors, Category theory and computer science: 7th international con

ference, CTCS’97, Santa Margherita Ligure, Italy, September 1997 Pro

BIBLIOGRAPHY 125

ceedings, volume 1290 of Lecture Notes in Computer Science, pages 47

48. Springer Verlag, 1997.

[31] C. Barry Jay. The FISh language definition, www-staf f . socs .uts.

edu.au/~cbj/Publications/fishdef.ps.gz, 1998.

[32] C. Barry Jay. Costing parallel programs as a function of shapes. Science

of Computer Programming, pages 207-224, 2000.

[33] C. Barry Jay. Distinguishing data structures and functions: the con

structor calculus and functorial types. In S. Abramsky, editor, Typed

Lambda Calculi and Applications: 5th International Conference TLCA

2001, Krako w, Poland, May 2001 Proceedings, volume 2044 of Lecture

Notes in Computer Science, pages 217-239. Springer, 2001.

[34] C. Barry Jay. Methods as pattern-matching functions. In Foundations

of Object-Oriented Languages, 2004: informal proceedings, page 16 pp,

2004. http://www.doc.ic.ac.uk/~scd/F00Lll/patterns.pdf.

[35] C. Barry Jay. The pattern calculus. ACM Transactions on Programming

Languages and Systems, 26(6):911-937, 2004.

[36] C. Barry Jay, Gianna Belle, and Eugenio Moggi. Functorial ML. Journal

of Functional Programming, 8(6):573-619, 1998.

[37] C. Barry Jay H.Y. Lu, and Q.T. Nguyen. The polymorphic impera

tive: a generic approach to in-place update. In Mike Atkinson, edi

tor, Computing: The Australasian Theory Symposium 2004, volume 91

BIBLIOGRAPHY 126

of Electronic Notes in Computer Science, pages 192-206. Science Direct,

2004.

[38] S.L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge

University Press, Cambridge, UK, 2003.

[39] Gabriele Keller and Manuel M. T. Chakravarty. Flattening trees. In

Proceedings of the fth International Euro-Par Conference (EuroPar98),

Lecture Notes in Computer Science, pages 709-719. Springer Verlag,

1998.

[40] Gabriele Keller and M. Simons. A calculational approach to flatten

ing nested data parallelism in functional languages. In J. Jaffar and

R. H. C. Yap, editors, Concurrency and Parallelism, Programming, Net

working, and Security: Second Asian Computing Science Conference,

ASIAN’96, volume 1179 of Lecture Notes in Computer Science, pages

234-243. Springer Verlag, 1996.

[41] Xavier Leroy and Pierre Weis. Polymorphic type inference and assign

ment. In Conference Record of the Eighteenth Annual ACM Symposium

on Principles of Programming Languages, Orlando, Florida, pages 291—

302. ACM Press, 1991.

[42] M. Leucker, T. Noll, P. Stevens, and M. Weber. Functional programming

languages for verification tools: Experiences with ml and haskell. In Pro

ceedings of the Scottish Functional Programming Workshop (SFPW’01),

2001.

BIBLIOGRAPHY 127

[43] Ted G. Lewis and Hesham R1 Rewini. An Introduction to Parallel Com

puting. Prentice-Hall, 1992.

[44] Robin Milner. A theory of type polymorphism in programming. Journal

of Computer and System Sciences, 17, 1978.

[45] Robin Milner and Mads Tofte. Commentary on standard ML. MIT

Press, 1991.

[46] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan

dard ML. MIT Press, 1990.

[47] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The

Definition of Standard ML (Revised). MIT Press, 1997.

[48] Clara Murdaca and C. Barry Jay. A relational account of object, ongoing

work, 2005.

[49] Nesl home-page. URL: www-2.cs.cmu.edu/~scandal/nesl.html.

[50] Susumu Nishimura and Atsushi Ohori. Parallel functional program

ming via data-parallel recursion. Journal of Functional Programming,

9(4) :427—463, 1999.

[51] Objective Caml home page, pauillac.inria.fr/ocaml.

[52] M. Odersky and P. Wadler. Pizza into Java: Translating theory into

practice. In Proceedings of the 2fth ACM Symposium on Principles

of Programming Languages (POPL’97), Paris, France, pages 146-159.

ACM Press, New York (NY), USA, 1997.

BIBLIOGRAPHY 128

[53] Alvaro J. Rebon Portillo, Kevin Hammond, Hans-Wolfgang Loidl, and

Pedro B. Vasconcelos. Cost analysis using automatic size and time in

ference. In Lecture Notes in Computer Science 2670, pages 232-247.

Springer, 2003.

[54] Sven-Bodo Scholz. Single Assignment C - functional programming using

imperative style. In Functional Languages Implementation Workshop,

Norwich, UK, 1994, 1994.

[55] Robert W. Sebesta. Concepts of programming languages. Addison-

Wesley, 1996.

[56] Ravi Sethi. Programming languages concepts and constructs. Addison-

Wesley Publishing Company, 1996.

[57] David B. Skillicorn. Foundations of Parallel Programming. Number 6 in

Cambridge Series in Parallel Computation. Cambridge University Press,

1994.

[58] David B. Skillicorn. Parallel implementation of tree skeletons. Journal

of Parallel and Distributed Computing, 39:115-125, 1996.

[59] David B. Skillicorn. Questions and answers about BSP. Technical Re

port 96/25, Oxford University Computing Laboratory, 1996.

[60] David B. Skillicorn and Domenico Talia. Models and languages for

parallel computation. ACM Computing Surveys (CSUR), 30(2):123-

169, 1998.

BIBLIOGRAPHY 129

[61] Marc Snir, Steve W. Otto, David W. Walker, Jack Dongarra, and Steven

Huss-Lederrnan. MPI: The Complete Reference. MIT Press, Cambridge,

MA, USA, 1995.

[62] Jeffrey M. Squyres. Definitions and fundamentals - the message pass

ing interface (MPI). ClusterWorld Magazine, MPI Mechanic Column,

l(l):26-29, December 2003.

[63] Standard ML of New Jersey home page, cm.bell-labs.com/cm/cs/

what/smlnj/.

[64] H. Stockinger, K. Stockinger, E. Schikuta, and I. Willers. Towards a

cost model for distributed and replicated data stores. In 9th Euromicro

Workshop on Parallel and Distributed Processing, pages 461-467. IEEE

CS Press, 2001.

[65] R.D. Tennent. Semantics of Programming Languages. Prentice Hall,

1991.

[66] Mads Tofte. Type inference for polymorphic references. Information

and Computation, 89(1), November 1990.

[67] Philip Wadler. Monads for functional programming. In Advanced Func

tional Programming, pages 24-52, 1995.

[68] K. Wansbrough and S. Jones. Simple usage polymorphism. In ACM

SIGPLAN Workshop on Types in Compilation, 2000.

[69] Andrew K. Wright. Polymorphism for imperative languages without

imperative types. Technical Report TR93-200, Rice University, 1993.

BIBLIOGRAPHY 130

[70] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic

Computation, 8(4):343-355, 1995.

[71] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type

soundness. Information and Computation, 115(1):38—94, 1994.

[72] H. Xi and F. Pfenning. Eliminating array bound checking through de

pendent types. In Proceedings of Programming Language Design and

Implementation(PLDI ’98), Montreal, June 1998., pages 214-227, 1998.

	Title Page
	Acknowledgment
	Contents
	List of Figures
	Abstract
	Chapter 1 Introduction
	Chapter 2 Review of the Pattern Calculus
	Chapter 3 Restricting Polymorphism to Functions
	Chapter 4 Location Types
	Chapter 5 Mutable Data
	Chapter 6 Generic Data Distribution for Parallel Programming
	Chapter 7 Conclusions
	Bibliography

