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Abstract

Association mining consists of two important problems, namely frequent patterns
discovery and rule construction. The former task is considered to be a more challenging
problem to solve. Because of its importance and application in a number of data mining
tasks, it has become the focus of many studies. A substantial amount of research has
gone into the development of efficient algorithms for mining patterns from large
structured or relational data. Compared with the fruitful achievements in mining
structured data, mining in the semi-structured world still remains at a preliminary stage.
The most popular representative of the semi-structured data is XML. Mining frequent
patterns from XML poses more challenges in comparison to mining frequent patterns
from relational data because XML is a tree-structured data and has an ordered data
context. Moreover, XML data in general is larger in data size due to richer contents and
more meta-data. Dealing with XML, thus involves greater unprecedented complexity in
comparison to mining relational data. Mining frequent patterns from XML can be recast
as mining frequent tree structures from a database of XML documents. The increase of
XML data and the need for mining semi-structured data has sparked a lot of interest in

finding frequent rooted trees in forests.

In this thesis, we aim to develop a framework to mine frequent patterns from XML
documents. The framework utilizes a structure-guided enumeration approach, Tree
Model Guided (TMG), for efficient enumeration of tree structure and it makes use of
novel structures for fast enumeration and frequency counting. By utilizing a novel
array-based structure, an embedded list (EL), the framework offers a simple sequence-
like tree enumeration technique. The effectiveness and extendibility of the framework is
demonstrated in that it can be utilized not only for enumerating ordered subtrees but
also for enumerating unordered subtrees and subsequences. Furthermore, the framework
tackles the unprecedented complexity in mining frequent tree-structured patterns by
generating only valid candidates with non-zero frequency count and employing a
constraint-driven approach. Our experimental studies comparing the proposed
framework with the state-of-the-art algorithms demonstrate the effectiveness and the
efficiency of the proposed framework.
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