MICROFILTRATION
HYBRID SYSTEMS IN
WASTEWATER
TREATMENT FOR REUSE

Wenshan Guo

Submitted in fulfillment for the degree of

Doctor of Philosophy

D

U'T|IS

University of Technology, Sydney

Faculty of Engineering
Australia

2005



CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor
has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my
research work and the preparation of the thesis itself has been acknowledged. In
addition, T certify that all information sources and literature used are indicated in the

thesis.

Signature of Candidate

Production Note:
Signature removed prior to publication.




I dedicate this work to my parents
(Deyi Fu and Liren Guo)
&
Youhao Wu



ACKNOWLEDGEMENTS

I would like express my profound gratitude and appreciation to my principal supervisor,
Professor Saravanamuthu Vigneswaran, for his valuable suggestions, ideas, supports,
comments and continuous guidance throughout my study. I am very sincerely grateful
to my other supervisor, Dr. Huu-Hao Ngo. It is very kind of him to give me so much
supports, creative ideas, invaluable advices, enlightenment and encouragement. This

work would not have been done without them.

The experimental work of this study was made possible through the funding of
Australian Research Council (ARC) Discovery Grant (no. DP0211955, 2002-2003) and
through the MOU of the University of Technology, Sydney (UTS) and University of
Tokyo. Special thanks to Prof. S. Takizawa and Mitsubishi Rayon in providing the

membrane module.

Special thanks must go to Professor Roger Ben Aim for his invaluable suggestions. I
also would like to thank Dr. W. G. Shim for his assistance in mathematical modelling

work and Mr. D. Hooper for his help in constructing the experimental unit.

This thesis would never have been completed without the great support from my

beloved parents and friends.

Many thanks to the staffs and my office colleagues in Faculty of Engineering (UTS),
Prof. H. Nguyen, Mr. L. Weber, Dr. P. Hagare, Ms R. Hamilton, Dr. T. Ramesh, Dr. D.
S. Chaudhary, Van, Cuong, Vinh, Rong, Loan, Shingo, Paul, Shon, Nathaporn and
Hugh.

Thank you very much to all of you!



TABLE OF CONTENTS

Acknowledgement |
Table of contents 1
Nomenclature IX
List of tables XI
List of figures XV
Abstract XX1V
Chapter 1 Introduction 1-1
1.1 General 1-0
1.1.1 Wastewater reuse 1-2

1.1.2 Water reuse technologies 1-2

1.2 Objectives of the study 1-4
1.2.1 Crossflow microfiltration hybrid system 1-4

1.2.2 Submerged membrane adsorption hybrid system (SMAHS) 1-5

1.3 Scope of the study 1-5
1.3.1 Adsorption experiments 1-5

1.3.2 Flocculation experiments 1-6

1.3.3 Study on microfiltration hybrid system 1-6

1.3.4 Critical flux experiments 1-6

1.3.5 Study on submerged hollow fiber membrane-adsorption 1-7

hybrid system (SMAHS)

1.3.6 Mathematical modelling of SMAHS 1-7

1.4 Organization of the report 1-7
Chapter 2 Literature Review 2-1
2.1 Introduction 2-2

2.2 The world’s worsening water crisis 2-2

2.3 Wastewater reclamation and water reuse 2-2

II



2.4
2.5

2.6

2.7

2.8

2.9

Water reuse in Australia
Adsorption technology
2.5.1 General
2.5.2 Application of adsorption
2.5.3 Basic types of adsorbents
2.5.4 Activated carbon
2.3.4.1 General
2.3.4.2 Category and application of activated carbon
2.5.5 Powdered activated carbon (PAC)
2.5.6 Adsorption equilibria

2.5.6.1 Definition of adsorption Equilibria in liquid-phase

2.5.6.2 Langmuir adsorption isotherm
2.5.6.3 Freundlich adsorption isotherm
2.5.6.4 Langmuir-Freundlich (Sips) adsorption isotherm
2.5.6.5 Talu adsorption isotherm
2.5.7 Adsorption kinetics
2.5.7.1 General
2.5.7.2 Homogeneous surface diffusion model (HSDM)
Coagulation and flocculation technology
2.6.1 General
2.6.2 Flocculant chemicals
2.6.3 Ferric chloride
2.6.4 Flocculation-membrane system in water reuse
Membrane technology
2.7.1 General
2.7.2 Membrane processes and applications
Microfiltration
2.8.1 General
2.8.2 Microfiltration process
2.8.3 Membranes for microfiltration
2.8.4 Applications of microfiltration
Membrane fouling and critical flux
2.9.1 Membrane Fouling

2.9.2 Minimizing membrane fouling

I

%5

2-8

2-8
2-10
2-10
2-11
2-11
2-13
2-14
2-16
2-16
2-17
2-18
2-19
2-20
%9
2-21
2-23
2-24
2-24
2-27
328
2-30
2-31
2-31
2-31
2-35
2-35
2-36
2-38
2-38
2-40
2-40
2-42



2.9.3 Critical flux
2.9.3.1 General
2.9.3.2 Critical flux in crossflow microfiltration
2.10 Submerged Membrane Bioreactor Hybrid System
2.10.1 Organic pollutants in water and wastewater
2.10.1.1 General
2.10.1.2 The effects of organic pollutants
2.10.1.3 Organic pollutants removal
2.10.2 Biological wastewater treatment
2.10.2.1 Biological processes
2.10.2.2 Aecrobic biological systems in wastewater treatment

2.10.2.3 Opportunities for membrane in biological
wastewater treatment

2.10.3 Membrane bioreactor
2.10.3.1 General
2.10.3.2 Membrane separation in bioreactors
2.10.3.3 Membrane bioreactor as solids/liquid separation

2.10.4 Submerged membrane adsorption hybrid system

Chapter 3 Experimental investigation

3.1 Introduction
3.2 Wastewaters used in the experiments and their characteristics
3.2.1 Diluted synthetic wastewater
3.2.2 Synthetic secondary sewage effluent
3.2.3 Biological treated wastewater (sewage) effluent in Homebush
3.2.4 Biological treated wastewater (sewage) effluent in Gwangju
3.3 Adsorption equilibrium experiments
3.3.1 Methodology
3.3.2 Experimental conditions
3.4 Adsorption kinetics experiments
3.4.1 Methodology

3.4.2 Experimental conditions

IV

2-44
2-44
2-46
2-47
2-48
2-48
2-50
2-52
2-53
2-53
2-55
2-56

2-59
2-59
2-60
2-62
2-65



3.5 Semi-pilot-scale on-site experiments
3.5.1 Methodology
3.5.2 Experimental conditions

3.6 Laboratory-scale critical flux experiments
3.6.1 Methodology
3.6.2 Experimental conditions

3.7 Experimental conditions optimization and modeling of submerged
membrane adsorption hybrid system (SMAHS)

3.7.1 Methodology
3.7.2 Experimental conditions
3.8 Flocculation as pretreatment to SMAHS
3.8.1 Methodology
3.8.2 Experimental conditions

3.9 SMAHS experiment using Homebush biologically treated effluent
and MWSD

3.10 Longterm SMAHS experiments
3.10.1 Methodology
3.10.2 Experimental conditions

3.11 Measurement of molecular weight size distribution
3.10.1 Methodology

3.10.2 Determination of molecular weight size distribution

Chapter 4 Importance of pretreatment of crossflow
microfiltration in tertiary wastewater
treatment for reuse

4.1 Introduction

4.2 Characterization of Homebush wastewater

4.3 Filtration quality

4.4 Effect of adsorption as pretreatment on the CFMF
4.4.1 Effect of PAC dose
4.4.2 Effect of initial filtration flux
4.4.3 Effect of backwash frequency

4.5 Effect of FMF as pretreatment on the CFMF

\Y%

3-8

3-8
3-11
3-13
3-13
3-14
3-15

3-17
3-20
3-20
3-20
3-22
3-23

3-23
3-23
3-24
3-25
3-25
3-25

4-1

4-2
4-4
4-8
4-9
4-9

4-10

4-13

4-14



4.6 Flocculation and adsorption as pretreatment

4.7 Conclusions

Chapter 5 Improving critical flux of CFMF
through pretreatment

5.1 Introduction
5.2 Critical flux experiments with synthetic wastewater

5.2.1 Performance of different pretreatments in terms of
Total organic carbon (TOC) removal and modification
on MW size distribution or organic matter

5.2.2 Short term critical flux experiments with different
pretreatment methods

5.2.3 Long term critical flux experiments with different
pretreatment methods

5.3 Effect of different crossflow velocities on critical flux of
synthetic wastewater with and without pretreatment

5.3.1 Effect of crossflow velocity on critical flux of
synthetic wastewater

5.3.2 Effect of crossflow velocity on critical flux for
preflocculated synthetic wastewater

5.3.3 Effect of crossflow velocity on critical flux of
synthetic wastewater after adsorption pretreatment

5.3.4 Effect of crossflow velocity on critical flux of
synthetic wastewater after pretreatment of
flocculation and adsorption

5.4 Critical flux experiments with biologically treated effluent
in Homebush, Sydney

5.4.1 Performance of different pretreatments in terms of
Total organic carbon (TOC) removal and modification
on MW size distribution or organic matter

5.4.2 Short term critical flux experiments with different
pretreatment methods

5.5 Critical flux experiments with biologically treated wastewater
in Gwangju, South Korea

5.5.1 Critical flux experiments with different pretreatment methods

5.5.2 Effect of different pretreatments on organic matter removal
and on MW size distribution

VI

4-16
4-18

5-1

5-2

5-5

5-5

5-7

5-10

5-13

5-14

5-16

5-18

5-20

5-23

5-23

5-24

5-29

5-29
5-33



5.6

5.5.3 SEM investigation

Conclusions

Chapter 6 Submerged membrane adsorption hybrid system:

6.1
6.2
6.3
6.4
6.5

6.6
6.7

6.8

short term experiments and mathematical modelling

Introduction

Mathematical modeling of membrane adsorption hybrid system
Adsorption equilibrium

Adsorption kinetics

Experimental conditions optimization and modeling of
submerged membrane adsorption hybrid system (SMAHS)

6.5.1 Effect of preadsorption duration
6.5.2 Effect of aeration rate

6.5.3 Effect of backwash frequency
6.5.4 Effect of PAC dose

6.5.5 Effect of filtration flux
Flocculation as pretreatment to SMAHS

SMAHS experiment using Homebush biologically treated effluent
and MWSD

Conclusions

Chapter 7 Experimental investigation of submerged membrane

7.1
T2
7.3
7.4
7.5

7.6

adsorption hybrid system: long term experiments

Introduction

Long term SMAHS experiments with diluted synthetic wastewater
The effect of PAC replacement of POPs removal in SMAHS

Long term Batch experiment on dry mass growth on PAC

Long term SMAHS experiments with synthetic
secondary sewage effluent

7.5.1 Filtration flux of 24 L/m*.h
7.5.2 Filtration flux of 12 L/m*.h
Conclusions

VII

5-37
5-40

6-1

6-2
6-5
6-10
6-10
6-11

6-11
6-14
6-17
6-19
6-20
6-22
6-27

6-30

7-1

7.3
7-4
7.7
7-9

7-11

7-11
7-15
7-18



Chapter 8 Conclusions and recommendations 8-1

8.1 Conclusions 8-2
8.1.1 Crossflow microfiltration hybrid system 8-2

8.1.2 Submerged membrane adsorption hybrid system (SMAHS) 8-4

8.1.2.1 Short term experiments 8-5

8.1.2.2 Long term experiments 8-6

8.2 Recommendations 8-7
References R-1
Appendices A-1
Appendix A The critical flux of each (single) component in the A-2

synthetic wastewater
Appendix B The stirred cell experiments A-3
Appendix C Publications A-6

VIII



NOMENCLATURE

Am the surface area of the membrane (m?)

b adsorption affinity, a constant related to the heat of adsorption

c concentration of the adsorbate in the solution (bulk phase concentration, mg/L)
Ch the organic concentration in the bulk phase in the reactor (mg/L)
Ll equilibrium concentration of the solute (mg/L)

Ce effluent concentration

Ci influent concentration

o the organic concentration in the feeding tank (mg/L)

C Q@ concentration in the bulk phase

Cr equilibrium concentration of Qf in the bulk phase

Cs the concentration of the external surface of PAC particles (mg/L)
De the free liquid diffusivity of the solute

Dy the surface diffusion coefficient (the rate of diffusion of the target

compound along the surface of the carbon, m?/s)

H adsorption constant (Henry’s Law)

k the first order reaction coefficient

Kk, coefficient for adsorption onto PAC

km coefficient for attachment to the membrane

kg coefficient for the bacterial decay, and

ks coefficient for inactivation due to the desorption of Qg from PAC
K constants characteristic of the system

Ky the external mass transfer coefficient (m/s)

ks the solid mass transfer coefficient

M the weight of PAC used (g)

MCC  the membrane correlation coefficient

IX



n parameter in the Sips equation

1/n constants characteristic of the system

q measured amount of organic matter adsorbed onto a unit amount of
adsorbent (mg/g)

q’ maximum adsorbed phase concentration (mg/g)

e saturation amount of organic adsorbed (mg/g)

Qm amount of solute adsorbed per unit weight of adsorbent required for

monolayer capacity (mg/g)

qt the rate of change of surface concentration with time (t) at any radial
distance (r) from the center of the activated carbon particle during
adsorption (mg/g)

Q the flow rate (m’/s)

R radius of carbon particle, L

T temperature

\Y the volume of the bulk solution in the reactor (m”)

\%Y the volume of membrane (m°)

W PAC dose

[(M/V)«(dg/dt)]  represents the adsorption of the organics onto PAC in suspension

[(AM/VMm)'MCC-Cp]  describes the adsorption onto the PAC layer deposited onto
membrane surface

Greek letters

¢ parameter (=¥ (1+ K¥))

1/ organic concentration spreading parameter

S the thickness of the diffusional sublayer

Pp apparent density of the activated carbon (kg/m?)
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ABSTRACT

Generally, the conventional wastewater treatment cannot remove all the effluent organic
matter (EfOM) such as synthetic organic chemicals and natural organic matter etc. As a
result, the biologically treated effluent from sewage treatment plant needs to undergo
further advanced treatment processes. To obtain water of recyclable quality, initially
physico-chemical processes such as flocculation, sedimentation, filtration and
adsorption were normally used. However, with advanced technologies and ever
increasing stringent water quality criteria, membrane processes are becoming more

attractive in water reuse.

Among different membrane processes, although microfiltration (MF) can be operated
economically, it alone cannot remove organic matter. If MF is combined with an
enhanced flocculation or/and adsorption, it will be able to reduce superior level of
organic contaminants. The aims of this study are: (i) improving the dissolved organic
removal and reduce membrane fouling of two membrane hybrid systems (crossflow
microfiltration (CFMF) and submerged membrane adsorption hybrid system (SMAHS))
using different pretreatment methods (flocculation, adsorption and flocculation-
adsorption); (ii) investigating the critical flux of a laboratory-scale CFMF with and

without different pretreatments.

The incorporation of powdered activated carbon (PAC) as pretreatment to CFMF
resulted in high TOC removal efficiency (more than 80%) when the PAC-CFMF system
was operated at a relatively high filtration flux of 250 L/m*h. The incorporation of
flocculation and PAC as pretreatments to CFMF process resulted in a very high TOC
removal efficiency (99.7%) and a stable filtration flux during S-hour filter run (less than
12% flux decline), when the hybrid system was operated at a higher filtration flux (270
L/m*.h).

Application of membrane processes requires lower investment and operating costs. One
of the ways is to operate system at a constant filtration flux below the critical flux. With
both flocculation and adsorption as pretreatment to CFMF, the critical flux of

biologically treated effluent increased dramatically (5-7 times increase).
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The preadsorption, PAC dose, aeration rate and filtration flux had effects both on
organic matter removal efficiency and TMP development. The preadsorption of 1 hour
prior to the membrane operation was important in mitigating the membrane fouling. The
suitable aeration rate, filtration flux and initial PAC dosing were 16 L/min, < 24 L/m*.h
and 5 g/L respectively for the wastewater used in this study. The long term SMAHS
experiments conducted with regular PAC replacement indicated that the PAC
replacement in PAC-MF reactor could stimulate both biological activity and adsorption,

as well as optimize the operation of the hybrid system.
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