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Abstract

Small conductive particles show a resonant behaviour at wavelengths where bulk 

or thin film samples have no features. This resonance is caused by the collective 

oscillation of the free electrons in the particle and is called localised surface plasmon 

resonance. It is influenced by the shape of the particle, the surrounding medium 

and particle interaction.

I studied shape, matrix and interaction effects of metallic and metal-like particles 

in various systems with the aim to rationally tune the resonance to specific wave­

lengths for different applications.

Dilute samples of small LaB6 particles were studied with regard to their NIR blocking 

performance. My analysis showed that they are more efficient than the alternative 

materials ITO and ATO. This is mainly due to the position of the LaBg particle res­

onance, which lies precisely in the spectral region which needs to be blocked (around 

1 /mi). I was able to model the optical properties of the window samples, using a 

dilute quasi-static approach for anisotropic particles.

Different embedding matrices and particle interaction have also an influence on 

the localised surface plasmon resonance. An example for a combination of matrix 

and interaction effects is a self-assembled gold particle him with organic linkers. 

Structural effects were especially important in these films, as was verified by elec­

tron microscopy. The optical properties were successfully modeled, using a two level 

effective medium approximation.

A different way to tune the resonance is to change the shell thickness to core 

size ratio in metallic nanoshells. The resulting spectral shift, though, is limited by
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ABSTRACT

experimental realities for the metal coating and the onset of scattering for larger 

particles. The shell has two resonances, of which the low energy one can be tuned 

by the ratio mentioned above. This resonance also shows a different electric field 

profile to the normal dipole (and high energy shell) resonance. The field pattern 

also highlights a strong field gradient across the external shell interface and along 

the incident polarisation direction. The properties were calculated using Mie theory 

and the quasi-static approximation.

Finally, the far and near-field optical properties of thin silver films with randomly 

distributed holes were studied. They showed an enhanced absorption, due to cou­

pling of the incident light into surface plasmon polaritons by the holes. Whereas the 

films did not show the enhanced transmission, which occurs in regular hole arrays, 

they still might provide some insight in the processes involved by helping to exclude 

some possible explanations.
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