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Abstract

In the actuarial sense, a risk process models a surplus of an insurance company.
The company is allowed to invest money with a constant interest rate. Some gener-
alizations of the constant interest rate models are also considered. Ruin is defined to
have occurred when the risk process reaches some certain level, which is less than the
initial capital. In particular the level is assumed to be zero.

Papers such as Harrison [17], Schmidli [37] and Embrechts & Schmidli [11] con-
sider similar models with constant interest rate and obtain explicit solutions as well
as diffusion approximations for the probability of ruin in infinite time. Our main
approach is to use Martingale techniques in order to obtain exact solutions for prob-
abilities of ruin in the finite time horizon which are further compared with numerical
simulations. Furthermore, we analyse models with more general interest rate and
propose a series of methods which can be used in order to determine the finite time

ruin probabilities.
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