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Abstract

In the actuarial sense, a risk process models a surplus of an insurance company.
The company is allowed to invest money with a constant interest rate. Some gener-
alizations of the constant interest rate models are also considered. Ruin is defined to
have occurred when the risk process reaches some certain level, which is less than the
initial capital. In particular the level is assumed to be zero.

Papers such as Harrison [17], Schmidli [37] and Embrechts & Schmidli [11] con-
sider similar models with constant interest rate and obtain explicit solutions as well
as diffusion approximations for the probability of ruin in infinite time. Our main
approach is to use Martingale techniques in order to obtain exact solutions for prob-
abilities of ruin in the finite time horizon which are further compared with numerical
simulations. Furthermore, we analyse models with more general interest rate and
propose a series of methods which can be used in order to determine the finite time

ruin probabilities.
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Introduction

0.1 Thesis Outline

The subject of this thesis is risky investment modelling for insurance businesses.
In particular, we look at models with deterministic interest rate, both constant and
dependent on time. Further, we define and determine some explicit formulas for ruin
probabilities in infinite and finite time horizon. In case of complex models, when
explicit formulas of ruin probabilities are not given, we propose some approximations
for such probabilities.

We restrict our attention to one specific insurance portfolio. Such portfolio is
characterised by a number of ingredients of both deterministic and stochastic nature.
Classical models, such as the Cramér — Lundberg model introduced in detail in section

2.1.1, take into account the following factors:

e time period,
e starting position — the initial capital,
e premium income, and

e stochastic nature of claims.

Some of the more advanced models in the literature are additionally equipped with

deterministic or stochastic interest rate, inflation or dividends.



The classical model mentioned above is the Cramér — Lundberg model given by

the following formula .
Xt:erct—Zt:&, (0.1.1)

i=1
where the time parameter ¢ > 0, x is the initial capital of the insurance company, ¢
is the premium income which increases with time linearly and vaz‘l &; is the accumu-
lated claims amount up to time t. V; is a Poisson process with parameter A > 0 and
&; are random variables governed by the distribution function F(z). In principal, any
distribution concentrated on the nonnegative half line, can be used as a claim size
distribution F'(x). However, we will make a distinction between well — behaved distri-
butions and dangerous distributions with a heavy tail. Concepts like well - behaved or
heavy — tailed distributions belong to the common vocabulary of actuaries. Roughly
speaking, the class of well — behaved distributions consists of those distributions F'
with an exponentially bounded tail. This means that large claims are not impossible,
but the probability of their occurrence decreases at least exponentially fast to zero
as the threshold x becomes larger and larger. This thesis is mainly concerned with
the well — behaved claim size distributions, in particular, with claim sizes following

exponential distributions.

The most of the attention is devoted to a model with the deterministic interest

rate. This model is given by the following Stochastic Differential Equation (SDE)
dXt - IBtJYtdt + st, (012)

where t > 0, ; is the time dependent deterministic interest rate, in particular
B¢ = B = const. Further, L, is a Lévy process responsible for the randomness in the
model. When L; = ct — Zfi‘l &, the model 0.1.2 is a generalization of the model 0.1.1

to a model with a deterministic interest rate.



0.2 Research Motivation and Objectives

Ruin theory has always been a vital part of actuarial mathematics. Calculations of
and approximation to ruin probabilities have been a constant source of inspiration and
technique developed in actuarial mathematics. The actuary has to make decisions,
for instance, which premium should be charged or which type of reinsurance to take.
These are often determined by the means of minimization of the probability of ruin.

To be more specific, consider the risk reserve X; and define the random variable
7 =inf{t >0: X, <1}.

Hence, the ruin is defined as a first crossing time through a level [ less then the initial
capital = by the process X,;. We stress that 7, is dependent on all the stochastic
elements in the risk reserve process X; as well as on the deterministic value x.

In the literature we located some explicit results related mainly to the infinite time
ruin probabilities such as Harrison [17], Schmidli [37] and Embrechts & Schmidli [11].
Further, we also found research pertaining to finite time probabilities, however the
results were obtained by the solution of Partial Integro Differential Equations (PIDE)
as in Paulsen & Gjessing [27] or by the Extreme Value Theory (EVT) as in Tang [40]
and those solutions cover just some special cases of the problem. We use a martingale
method as, in many instances, more suitable and more general approach, in contrast
to those methods (chapter 3). Additionally, most of the research is devoted to the
constant interest rate models. There is still a gap to fill in the research concerning
time dependent interest rate models. Motivated by Roberts and Shortland [32] we
analyse a model with an interest rate dependent on time but deterministic.

The main aim of this thesis is to determine finite time ruin probabilities for the



model 0.1.2. As one can expect, ruin probabilities will depend heavily on the claim
size distribution. If the latter is well — behaved the ruin probabilities will turn out
to be typically exponentially bounded as the initial capital becomes large. However,
when the claim size distribution has a heavy tail, then one single large claim may
be responsible for the ultimate ruin of the portfolio. Additionally, it turns out that
models powered by well - behaved distributions can be successfully approximated by
diffusion processes, which are relatively easier to analyze.

The results for ruin probabilities on which we will focus in this thesis can be

characterized by the following features and mathematical tools.

e only in the easiest cases we will succeed in getting explicit formulas for the ruin

probabilities as in section 3.6.1

¢ martingale methods are used in order to obtain Laplace transforms for a stop-
ping time given by 7, = inf{t > 0 : X; < [} as in section 3.4.2 | which may be

further inverted numerically,

e the theory of Piecewise Deterministic Markov Processes (PDMP) is employed

in order to support the martingale solution as in section 3.5,
e diffusion approximation is used for more complex models as in chapter 4,

e Piecewise Linear Approximation (PLA) to more general boundaries is used for

approximation of ruin probabilities in the finite time horizon as in section 4.3,

¢ simulation methods are utilized for both illustration and computation purposes

as in sections 3.6.3 and 4.4.



0.3 Structure of the Thesis

The thesis is organized into the following chapters:

e Chapter I presents some fundamental mathematical definitions and theorems
including martingale basics, the theory of stochastic integration and introduc-
tion to Lévy processes. These topics are dealt with only briefly, just enough

information is provided to make the thesis self — sufficient.

e Chapter Il introduces the classical Cramér — Lundberg model as well as gener-
alizes the model to so called Ornstein — Uhlenbeck processes. Further, it focuses
on the theory of Piecewise Deterministic Markov Processes (PDMP), since the
main model of this thesis as well as some techniques used in this text are based
on this theory. It also divides the general model into three groups with respect

to the interest rate nature.

e Chapter Il is fully devoted to the models with constant interest rate and calcu-
lation of the finite time ruin probabilities using martingale techniques and also
integro — differential equations in the case of exponential distribution of claim
sizes. It also focuses on special cases of the problem and compares the explicit

formulas with results of the Monte Carlo simulations.

e Chapter IV generalizes model analyzed in chapter III for the case of time —
dependent interest rate but deterministic. It incorporates some different ap-
proaches to the problem of ruin such as diffusion approximation and Piecewise
Linear Approximation (PLA) to more general boundaries. It also focuses on a
special case of this problem which can be solved analytically. Numerical results

are also provided.



Chapter 1

Mathematical Preliminaries

This chapter provides introductory material underlining subsequent chapters. It
is not intended as a detailed reference to any of the topics covered as it contains only
definitions and theorems related to the research of this thesis. The literature used
to write this chapter consists of Applebaum [2], Borovkov [3], Cont & Tankov [8],
Fristed & Lawrence [12], Liptser & Shiryaev [19, 20] and Revuz & Yor [31].

Consider a probability space (€2, F,P). The set Q2 of elementary events is equipped
with a o — algebra F. A probability measure on (€2, F) is a positive finite measure
P with total mass 1. A measurable set A € F, called an event, is therefore a set of

events to which a probability P(A) can be assigned. Hence,
P:F—10,1].

Moreover, given two measurable spaces (€2, F) and (F,G), define a random vari-

able X as follows:



Definition 1.0.1 (Random Variable). A random variable X taking values in F is

a measurable function

X: Q- F.

Hence, it is a function such that X ~!(B) € F for every B € G.

1.1 Concepts of Probability Theory

Let (2, F,P) be a probability space and X = X (w) a nonnegative random variable.

Definition 1.1.1 (Expectation). Expectation of X denoted by EX is the Lebesque

integral
EX = /X(w)P(dw) = / XdP.
Q Q
Denote by Xt = max(X,0) and X~ = — min(X,0).

Definition 1.1.2 (Integrable Random Variable). The random variable X is said

to be integrable if E|X|= EX*T + EX™ < o0.
CONVERGENCE OF RANDOM VARIABLES

Definition 1.1.3 (Convergence in Probability). We say that the sequence of
random variables X,,,n = 1,2,..., converges in probability to a random variable X

if, for any € > 0, lim,, o, P(|X,, — X| >¢) = 0.

Definition 1.1.4 (Almost Sure Convergence). The sequence of random variables
Xn,m = 1,2,..., is called convergent to a random variable with probability 1, or

almost surely, if the set {w: X,,(w) — X(w)} has P — measure one.

Note that convergence with probability 1 (P — a.s.) implies convergence in probability.



Definition 1.1.5 (Weak Convergence). The sequence of random variables
Xp,n=1,2,..., with F|X,,| < >, is called weakly convergent to a random variable
X if

lim E(f(Xn)) = E(f(X)),

n—oc

for any bounded function f.
Let G C F be a sub — ¢ — algebra.

Definition 1.1.6 (Conditional Expectation). The conditional expectation of X
with respect to G, denoted E(X|G) is by definition any G — measurable function
Y = Y (w), for which EY is defined, such that for any A € G

[ X@ra) - [ Yera).

A

BASIC PROPERTIES OF CONDITIONAL EXPECTATION
1. E(X|G)>0,if X >0 (P - as.);
2. E(1|1G) =1 (P — a.s.);
3. E(X +Y]|G) = E(X|G) + E(Y|G) (P - a.s.) if E(X) and E(Y) exist;
4. E(XY|G) = XE(Y|G) if E(XY) exists and X is G — measurable;
5. If G € Go, then (P - as.) E(X|G)) = E[E(X|G)|Gul;

6. If 7Y is the smallest o — algebra with respect to which the random element Y (w)

is measurable and if G and F? are independent, then (P - a.s.) E(X|G) = E(X).



Definition 1.1.7 (Absolutely continuous distribution). A distribution P of a

random variable £ is said to be absolutely continuous if, for any Borel set B,

P(B)= P € B)= /Bf(;r)cl;r,

where f(z) >0, [ f(z)dx = 1.
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1.2 Stochastic Processes and Stopping Times

Define a probability space (€2, F,P) with filtration F;, understood as a nonde-

creasing family of ¢ - algebras from F.

Definition 1.2.1 (Stochastic Process). A stochastic process is a family (X;)ep
of random variables on a probability space (2, F,IP). The set D is called the index

set of the process. Formally, a stochastic process is a mapping
X:DxQ—R.

When D is a countable subset of the real line (e.g. D = {0,1,2,...}) the stochastic
process X; is said to be a discrete — time process. If D is an interval of the real line
(e.g. D € [0,00)), the stochastic process is said to be a continuous — time process. If
D is a set of multidimensional indexes then X is called a spatial process or a random
field. If not stated otherwise we will assume that D = R, since this thesis deals
with continuous time stochastic processes. Further, denote by 7, = (1., Fs and
Fio = o(User 7).

In general, we do not require the measurability of X, however if D is a subset of
R and X is measurable with respect to the product — o — algebra B(D) x F, then we
say the stochastic process (X;)iep is measurable.

For each fixed w € €, the function t — X(t,w) is called a sample path or trajectory,
however we usually drop the dependence on w € ). This thesis deals with processes

having sample paths belonging to one of the following two spaces:
e the space of continuous functions ¢ : Ry — R denoted by C(R),

e the space of right — continuous functions ¢ : Ry — R with left — hand limits
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denoted by D(R;). We say that a stochastic process with sample paths from
D(R,) is cddldg.

Theorem 1.2.1 (Fubini 1, [20], p.21). Let (Xi)iep be a measurable stochastic

process. Then:

1. Almost all tragectories of this process are measurable functions of t € D;
2. If EX; exists for allt € D, then my = EX; is a measurable function of t € D;
8. If S is a measurable set in D = [0,00) and [, E|X;|dt < oo, then

/S|Xt|dt <oo (P—a.s.) (1.2.1)

and

/ELﬁAE/Xm. (1.2.2)
S S

Theorem 1.2.2 (Fubini 2, [12], p.130). Let (V,G, ) and (O, H,v) be two
o - finite measure spaces, and let ¢ be an R = [—00, 00| valued measurable function

defined on the product measure space (V,G, ) x (©,H,v). If

‘/ pd(p X v)
¥x O

exists, then
o= [ oyl

is a u - almost everywhere defined measurable function from (¥,G) to R, and

[Dxe pd(p X v) = /\P (/ego(x,y)u(dy))u(dx)'

Definition 1.2.2 (Adapted Process). We say that a measurable stochastic process
X¢,t € D is adapted to a family of ¢ — algebras F; if, for any t € D, X; are

JF: — measurable.



Definition 1.2.3 (Increasing Predictable Process). We say that a stochastic
process X; is an increasing predictable process if for each ¢t € D the random variable

X is F;_ — measurable.

Theorem 1.2.3. Let X;,t € D be a right continuous integrable increasing process,

F =Fiy, t > 0. Then for each t > 0 the variables X; are F;_ — measurable.

SOME CLASSES OF STOCHASTIC PROCESSES

Definition 1.2.4 (Stationary Process in a Narrow Sense). The stochastic pro-
cess Xy, t € D is said to be stationary in narrow sense (strictly stationary) if for any

real ¢ the finite -~ dimensional distributions do not change with the shift on ¢:
P(th € Al}... ,th € An) — P(Xt1+5 € Al,. .. ,th+5 € An),

for t1, ... tn,t1 +6,....tn +0 € D.

Definition 1.2.5 (Stationary Process in a Wide Sense). The stochastic process
Xt € D is called stationary in a wide sense if EX? < oo and EX, = EX,ys,
E(X:X:) = F(Xs15Xi46), i.e. if the first and second moments do not change with
the shift.

Definition 1.2.6 (Process with Independent Increments). The process X,
t € D is a process with independent increments if, for any ¢, > t,—1 > --- > t; > 0,
the increments X, — Xy,,..., Xy, — X;,_, yield a system of independent random

variables.

Definition 1.2.7 (Homogeneous process). A process with independent incre-
ments is called homogeneous if the distribution of the probabilities of the increments

X: — X, depends only on the differences t — s.
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Definition 1.2.8 (Martingales). The adapted stochastic process X;,t € D is called
a martingale with respect to F; if F|.X,| < oo and
E(X{|Fs) =X, (P—a.s.), t>s. (1.2.3)
Denote by M (F;,P) a class of martingales with respect to (F;, P).

STOPPING TIME AND THE OPTIONAL STOPPING THEOREM

Definition 1.2.9 (Stopping time). A random moment 7 is said to be a stopping

time or, Markov time with respect to F; if the process
I(r <t)is Fy — adapted,
ie forallt € D {w:7(w) <t} € F,.
Proposition 1.2.4. If m, € M(F;,P) then
E(my) = E(mg).

Theorem 1.2.5 (Optional Stopping Theorem, [31], p.67). If m; € M (F;,P),

t > 0, then for any stopping time T
Xt = 7nmin(77t) € M(.;rt, ]p))
and hence for any fizred t > 0

E(m'min(r,t)) — E(mO)
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1.3 Gaussian Processes

All stochastic processes in this section are examples of so — called Gaussian pro-

cesses. The definition of a Gaussian process is presented below.

Definition 1.3.1 (Gaussian process). A stochastic process Xy, t € D, is called a

Gaussian process if any random vector X = (X(t1),..., X(t,))T is Gaussian.

Proposition 1.3.1. If X;, t € D, is a Gaussian process then to determine any joint

distribution of a Gaussian process
Fxgny o xw) (@1, ... xn) = P{X(t1) < x1,..., X(tn) < 20}
s sufficient to know only two functions:
m(t) = E(X(t)), R(t,s)= cov(X(t),X(s)).
GAUSSIAN WHITE NOISE AND GAUSSIAN RANDOM WALK

Two well known examples of Gaussian processes are a discrete time Gaussian

white noise and a Gaussian random walk.

Definition 1.3.2 (Gaussian White Noise). A stochastic process X(t), t € D,
D ={0,A,2A,...}, A >0 is said to be a Gaussian white noise, if X(t) are indepen-
dent Gaussian random variables X (t) ~ N(m, 0?) with

0% t=s;

R(t,s) =
0, t#s.

Definition 1.3.3 (Gaussian Random Walk). Let X(t),t € D = {0,A,2A,...},

A > 0 be a Gaussian white noise and

Spi= X(A) + -+ X(t) = Zn:X(ka), (t = kA, Sy = 0)

k=1



15

The process S; is a Gaussian process called a Gaussian random walk with t = nA.

Sy ~ N(tm/A, to?/A).

| ‘ MM’) | H'!. l“ml i i i }lll‘h,q“;u.l I} lul M
AP

Figure 1.1: Trajectory of a Gaussian White Noise, A=1,m =0 and o = 1.

Y Y | 104, |
W 200 400 \W\6oo 800 MOO
_lO,

Figure 1.2: Trajectory of a Gaussian Random Walk, A = 1,m = 0 and ¢ = 1.

Trajectories of the Gaussian white noise and the Gaussian random walk are pre-
sented in Figures 1.1 and 1.2 respectively. Both, the Gaussian random walk and the
Gaussian white noise are simulated with A = 1,m = 0 and ¢ = 1. Mathematica codes

used to obtain these graphs are included in appendices A.0.1 and A.0.2, respectively.
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WIENER PROCESSES

Probably, the most important and widely used Gaussian process is described in
this section. It is called a Wiener process or Brownian Motion. Below, the definition

of this process is presented as well as its main properties.

Definition 1.3.4 (Wiener Process, Brownian Motion). A stochastic process
W(t), t € [0,00) is said to be a Wiener process (or Brownian Motion), if W(t) is a

Gaussian process with
EW(t) =mt, R(t,s) = c°min(t,s).
When m = 0 and o = 1 the process W (t) is called Standard Brownian Motion.

PROPERTIES OF WIENER PROCESS

Proposition 1.3.2 (Independence of Increments). Denote increments of a Brow-

nian motion W(t) as £(t,h) = W(t + h) — W(t),h > 0. Then
E(&(t,h)) = mh, Var(&(t,h)) = o*h

and
o?h, t=s;
cov({(t, h),&(s, b)) =
0, |t —s|> h.
Proposition 1.3.3. Brownian motion has almost surely continuous but almost surely

nondifferentiable trajectories.

Trajectories of a Wiener process in case of m = 0 and ¢ = 1 (Standard Brownian

Motion) can be simulated taking

B(t + A) = B(t) + AB(1),
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where AB(t) = VAZ. Moreover, Z ~ N(0,1) and t € [0,00). This simulation is
based on the independence of increments property 1.3.2.

Generally, the Wiener process may be simulated using the following representation
AW (t) = cAB(t) + mA, t € [0,00).

Trajectories of Standard Brownian Motion and a Wiener process with m = 10
and o = 5 are illustrated in Figures 1.3 and 1.4, respectively. Mathematica code used

for this simulation is included in the appendix A.0.3.

Figure 1.3: Trajectories of Standard Brownian Motion.

N B O © O

Wy ! 6 8 10

Figure 1.4: Trajectories of a Wiener Process, m = 0.5 and o0 = 2.
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Eventually. the following theorem states the weak convergence of the sequence of

Gaussian random walks S|,¢) to the Wiener process X;.

Theorem 1.3.4 (Donsker, [12], p.374). If 02 = Var(X,) < oo, then fort >0

Sty = B(Spn
X = 2 \/_( 1), x, ~ N0, 0%)
n

in distribution. Furthermore, X™ — X where X is a Brownian motion with diffusion

coefficient o.
Theorem 1.3.5 ([12], p.386). Let B, be a standard Brownian motion and consider
0, =1inf{t >0: B, > a}

where a > 0. Then the density of o, is

a

2ms3

a?
Do, — GXD{—g}, s> 0.
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1.4 The Poisson Process and the Compound Pois-
son Process

A Poisson process is defined as a counting process. It counts the number of random
times 7,,, which occur between 0 and t, where (T}, — T),_;),>; is an i.i.d. sequence of

exponential variables.

Definition 1.4.1 (Poisson process). Let (7;);>1 be a sequence of independent ex-
ponential random variables with parameter A\ and T,, = > | 7. A process (N;)e>o0
defined by

Ny= ) It >T)

n>1

is called the Poisson process with intensity A.

Proposition 1.4.1. Let (N¢)i>0 be a Poisson process.

1. For any t > 0, Ny is almost surely finite.
2. For any w, the sample path t — Ny (w) is piecewise constant and increases by

Jumps of size 1.

3. The sample paths t — N; are right continuous with left limit (cddldg), i.e.
belong to the class D(R,).

4. For anyt > 0, N._ = N; with probability 1.

. N 1s continuous in probability:

Iy

Vt >0, Ny — Ny in probability, when s — t.
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6. For any t > 0, N; follows a Poisson distribution with parameter At:

Vn € N, P(N; = n) = e”M(—/—%)—.

7. The characteristic function of Ny is given by

Ele™Nt] = exp{At(e™ — 1)}, Yu € R.

Definition 1.4.2 (Compound Poisson Process). A compound Poisson process
with intensity A > 0 and jump size distribution f is a stochastic process X; defined

as
Nt
X, =Y,
1=1
where jumps sizes Y; are i.i.d. with distribution f and N, is a Poisson process with

intensity A, independent from (Y;);>,.

Proposition 1.4.2 (Characteristic Function of the Compound Poisson Pro-
cess, [8], proposition 3.4). Let X; be a compound Poisson process. Its character-

istic function has the following representation:
BlexplinX] = exp {01 [ (e~ )F@n}, vuek,
where A denotes the jump intensity and F' the jump size distribution.

SIMULATION ALGORITHM

ALGORITHM 1.4.1 (Simulation of compound Poisson process). The steps

for simulation of the compound Poisson process are as follows:

1. Simulate a random variable N from Poisson distribution with parameter \T.

N gives the total number of jumps on the interval [0,7].
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2. Simulate N independent r.v., U;, uniformly distributed on the interval [0,7T].

These variables correspond to the jump times.

3. Simulate jump sizes: N independent r.v. Y; with identical distribution f. The
trajectory is given by
N

X(t) = Ui < )Y
i—1
The Poisson process itself can be obtained as a compound Poisson process on R
such that Y; = 1.
Trajectories of the Poisson process as well as the Compound Poisson process are
obtained with the use of Algorithm 1.4.1 and are illustrated in Figures 1.5 and 1.6,

respectively. Mathematica codes used in order to obtain these results are included in

appendices A.0.4 and A.0.5, respectively.
307
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Figure 1.5: Trajectories of a Poisson Process, A = 1.
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15¢ L
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Figure 1.6: Trajectories of a Compound Poisson Process, A = 1 and N(0.5,2) distri-
bution of jumps.
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1.5 Stochastic Integrals with respect to Brownian
Motion and Itoé’s Formula

Let (Q, F,P, F;) be a probability space equipped with filtration F; C F.
Denote by B; a standard Brownian motion adapted to F;. Let f; be an adapted
process. Then, consider a uniform partition ¢, = lc;';-, k=0,1,...,n,... and denote

Zm=3_ fo(Bo, —By_), m=12...,n.
k=1

It may be shown that under the assumption

P{/Otffds<oo}:1

there exists lim,_,« Z, (in probability). This limit is called a stochastic integral

of f; with respect to By and is denoted as

t
lim Z, :/ fsdBs.
0

n—0oo

The following theorem is a special case of the Dambis, Dubins — Schwarz theorem [31],

p.170.

Theorem 1.5.1. Let f; be an adapted random function such that P(fot f2ds < 0) =1

forany 0 <t < oo, X; = fot fsdB, and

/ f2ds = 0o a.s.
0

Set
t
Tb:inf{tZO:/ffdszb}, b>0.
0

Then
X5, ~ N(0,b),



the process B(b) = X5, 18 a standard Brownian Motion with respect to filtration

Fo=0{Xs,, s<b} such that [, f2ds is a stopping time with respect to Fy and

X, = B(/Ot fids).

Definition 1.5.1 (Itd Process). The continuous stochastic process X;,0 <t < T,
is called an Ito process if there exists two adapted processes a; and b, 0 < t < T,

such that

T
P{/ la:|dt < o0} =1,
0

T
P{/ bidt < oo} =1
0
and with probability 1 for 0 <t < T,
t t
X: = Xo +/ a(s,w)dx+/ b(s,w)dW,
0 0

or
dXt = a(t,w)dt + b(t, Ld)th
Theorem 1.5.2 (Itd’s Lemma, [12], p.669). Let X, be give by

dXt = (ltdt + btth

and let f(t,x) be twice continuously differentiable. Set Yy = f(t, X;). Then

af of 19°f 2
dy, — 8—t(t7Xt)dt + 8x(t’Xt)dXt t 553 (t, Xe)(dXy)7,

where (dX;)? = (dX;) - (dX;) is computed according to the rules

and

th i th — dt



25

1.6 Stochastic Integrals with respect to Square In-
tegrable Martingales and their Properties
A right continuous martingale M;,t € D is a square integrable martingale when

Esup M? < co.
>0

Denote by M a class of square integrable martingales.

Theorem 1.6.1 ([20], p.161). For each X € M there exists a unique predictable

increasing process Ay = (X ), t < T, such that for all t,0 <t < T,
X =my + (X)) (P—as.)
where my € M (Fy, P).

The process (X), is called a predictable quadratic characteristic of the stochastic
process X;.

Denote by ®; a class of F; - adapted functions and by ®; a class of predictable
functions. Further let A, = (M), and Li(@) be a class of functions from ®; satisfying
the condition

E/ f2(s,w)dA, < co.
0

Definition 1.6.1 (Simple Function). The function f € L%(®,) is called a simple

function if there exists a finite decomposition 0 =ty < --- < t,, < 00, such that

f(t,w) - Z f(tk’ W)H(tkytkﬂl(t)'
k=0

The class of simple functions is denoted by £.
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Let Xy € M and A; = (X)), t > 0. We shall define the stochastic integral I(f),

denoted by [° f(s,w)dX, over a simple function f = f(t,w), as follows
I(f) = nz—lf(tk,w)(XtHl — Xi,)-
k=0
PROPERTIES OF THE STOCHASTIC INTEGRAL

This stochastic integral has the following properties (f, fi, f2 are simple functions):

1. Ii(afi +bfs) = ali(f1) + bli(f2) (P —a.s.), a,b=const., t>0;

2. 3 f(s,w)dXs = [ f(s,0)d X, + [L f(s,0)dX, (P~ a.s.);

3. I,(f) is a right continuous function over t > 0 (P — a.s);

4. E[fo f(u,w)d

] f5 fw,w)dX, (P—a.s.);

5. E[}ot fi(u,w)dX., |, fz(u.,w)qu] = B [y fi(w,w) fo(u,w)dAy;

In particular from 4 and 5 it follows:

1. & fo w, w)dX, = 0;

2 B[ i fww)dX.]” = E [ [2(w,w)dA..

Lemma 1.6.2 ([20], p.186). Let X; € M, and let A, = (X);, t > 0, be the
predictable increasing process corresponding to the martingale X. Then the space €

of simple functions is dense in L (®,).

The above lemma enable us to define the stochastic integrals I(f) over the martingale
X € M for f € L%4(®,) as the limit in the mean square of the integrals I(f,), where

the f, are simple functions approximating f in terms of

E/ F(Lw) = falt.0)2dA: — 0, n— 0.
0
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Further, we have the following useful properties valid almost surely:

Proposition 1.6.3 ([19], pp. 96 — 97). Let M € M and f € L3,;,(®;). Then for
Xy = [y fod M,
-t
(= [ .
0

and X € M.

Additionally, denote by X, = lim; ., X; and by {X —} the set on which X,

exists and it is a finite random variable.

Theorem 1.6.4 ([19], p. 136). Let X € M, Xo =0. Then

{(X)eo <00} € {X =}
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1.7 Lévy Processes

The Lévy process is a continuous time process with independent and stationary
increments. These processes provide the ingredients for building continuous time

stochastic models in insurance and finance.

Definition 1.7.1 (Lévy Process). A cddldg stochastic process (X¢)¢>o on a prob-
ability space (€2, F,P) with values in R such that Xy, = 0 is called a Lévy process if

it possesses the following properties:

1. Independent increments: for every increasing sequence of times to, ..., t,, the

random variables Xy, Xy, — Xy,,..., Xs, — X¢,_, are independent.
2. Stationary increments: the law of X;,, — X; does not depend on t.

It is useful to notice that a Lévy process can be obtained as a limit of a sequence

of random walks as in Cont & Tankov [8]. The next theorem states this fact.
Theorem 1.7.1. Define a sequence of random walks as

Xt(n) = szgJ — X, in distribution, as n — oc.

Then, X™ — X in distribution where X is a Lévy process.

Further, to every cddldg process (X;);>o on R one can associate a random measure

on [0, 00[xR describing the jumps of X: for any measurable set B C [0, co[xR
Nx(B) = t{(t,AX:) € B},

where AX; = X; — X;_ are jump sizes of the process X;. Therefore, for every
measurable set A C R, Nx([t;,t2] X A) counts the number of jump times of X

between t; and t, such that their jump sizes are in A.



Definition 1.7.2 (Lévy Measure). Let (X;)i>0 be a Lévy process on R. The

measure v on R defined by:
v(A) = E[f{t €[0,1] : AX, #0,AX, € A}], A e B(R)

is called the Lévy measure of X : v(A) is the expected number, per unit time, of

jumps whose size belongs to A.

Definition 1.7.3 (Poisson Random Measure). Given a random measure M on
a measurable space (.S, .A) we say that we have a Poisson random measure N(t, A) if

each M(A), A € A has a Poisson distribution whenever M(A) < co.

Definition 1.7.4 (Compensated Poisson Random Measure). For each t > 0

and A bounded below, we define the compensated Poisson random measure by
N(t, A) = N(t, A) — tv(A).

Theorem 1.7.2 (Lévy — Khintchine, [8], theorem 3.1). Let (X¢)i>0 be a Lévy
process on R with characteristic triplet (o2, i, v(dx)) such that

[ min(z? 1)dv(z) < co. Then
Ele*X] = 9 2 >0,

with

P(z) = tpz — 50222 + /_Z (ei” — 1 —izzl(|z] < 1))1/(d:c).

Theorem 1.7.3 (Lévy — It6 Decomposition, [8], proposition 3.7). If X is a
Lévy process, then there exists b € R, a Brownian motion By and an independent

Poisson random measure N such that, for each t > 0,

X(t) =bt+ B + / xN(t,dzx) + / xN(t,dx).
lz|>1

lz]<1
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In the Lévy — Ito decomposition the process Y; = B, + flr N(t,dzx) is a mar-

<1t

tingale, while the process Z; = f|x'>1 xN(t,dx) is a compound Poisson process.

Proposition 1.7.4 ([8], lemma 15.1). Let f : [0,T] — R be left — continuous and

Z be a Lévy process. Then

E{exp (z' /0 ! f(t)dZt>} — exp { /0 T¢( f(t))dt},

where 1 (u) is the characteristic exponent of Z.



Chapter 2

Stochastic Modelling in Insurance

This chapter is devoted to the topic of stochastic modelling in insurance. Its main
concern is to introduce an Ornstein — Uhlenbeck (OU) process that is further analysed
in chapters 3 and 4. The OU - process is classified with respect to the interest rate into
threc insurance model groups. Moreover, the definition and analysis of the OU model
is placed in the context of the Piecewise Deterministic Markov Processes (PDMP)

theory, which is utilized in the analysis of so - called "Ruin Problem’.

2.1 Risk Processes

By risk process X; we refer to an insurance model with the risk being associated
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