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Abstract

In the actuarial sense, a risk process models a surplus of an insurance company. 
The company is allowed to invest money with a constant interest rate. Some gener­
alizations of the constant interest rate models are also considered. Ruin is defined to 
have occurred when the risk process reaches some certain level, which is less than the 
initial capital. In particular the level is assumed to be zero.

Papers such as Harrison [17], Schmidli [37] and Embrechts & Schmidli [11] con­
sider similar models with constant interest rate and obtain explicit solutions as well 
as diffusion approximations for the probability of ruin in infinite time. Our main 
approach is to use Martingale techniques in order to obtain exact solutions for prob­
abilities of ruin in the finite time horizon which are further compared with numerical 
simulations. Furthermore, we analyse models with more general interest rate and 
propose a series of methods which can be used in order to determine the finite time 
ruin probabilities.

IX



Introduction

0.1 Thesis Outline

The subject of this thesis is risky investment modelling for insurance businesses. 

In particular, we look at models with deterministic interest rate, both constant and 

dependent on time. Further, we define and determine some explicit formulas for ruin 

probabilities in infinite and finite time horizon. In case of complex models, when 

explicit formulas of ruin probabilities are not given, we propose some approximations 

for such probabilities.

We restrict our attention to one specific insurance portfolio. Such portfolio is 

characterised by a number of ingredients of both deterministic and stochastic nature. 

Classical models, such as the Cramer - Lundberg model introduced in detail in section 

2.1.1, take into account the following factors:

• time period,

• starting position - the initial capital,

• premium income, and

• stochastic nature of claims.

Some of the more advanced models in the literature are additionally equipped with 

deterministic or stochastic interest rate, inflation or dividends.

1
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The classical model mentioned above is the Cramer - Lundberg model given by 

the following formula
Nt

Xt = x + ct-Y,Zi, (0.1.1)
i= 1

where the time parameter t > 0, x is the initial capital of the insurance company, c 

is the premium income which increases with time linearly and 0 is the accumu­

lated claims amount up to time t. Nt is a Poisson process with parameter A > 0 and 

£» are random variables governed by the distribution function F(x). In principal, any 

distribution concentrated on the nonnegative half line, can be used as a claim size 

distribution F(x). However, we will make a distinction between well - behaved distri­

butions and dangerous distributions with a heavy tail. Concepts like well - behaved or 

heavy - tailed distributions belong to the common vocabulary of actuaries. Roughly 

speaking, the class of well - behaved distributions consists of those distributions F 

with an exponentially bounded tail. This means that large claims are not impossible, 

but the probability of their occurrence decreases at least exponentially fast to zero 

as the threshold x becomes larger and larger. This thesis is mainly concerned with 

the well - behaved claim size distributions, in particular, with claim sizes following 

exponential distributions.

The most of the attention is devoted to a model with the deterministic interest 

rate. This model is given by the following Stochastic Differential Equation (SDE)

dXt — fttXtdl + dLt, (0.1.2)

where t > 0, Pt is the time dependent deterministic interest rate, in particular 

Pt = P = const. Further, Lt is a Levy process responsible for the randomness in the 

model. When Lt = ct — Yloh Co the model 0.1.2 is a generalization of the model 0.1.1 

to a model with a deterministic interest rate.
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0.2 Research Motivation and Objectives

Rum theory has always been a vital part of actuarial mathematics. Calculations of 

and approximation to ruin probabilities have been a constant source of inspiration and 

technique developed in actuarial mathematics. The actuary has to make decisions, 

for instance, which premium should be charged or which type of reinsurance to take. 

These are often determined by the means of minimization of the probability of ruin. 

To be more specific, consider the risk reserve Xt and define the random variable

77 = inf{i > 0 : Xt < l}.

Hence, the ruin is defined as a first crossing time through a level l less then the initial 

capital x by the process Xt. We stress that 77 is dependent on all the stochastic 

elements in the risk reserve process Xt as well as on the deterministic value x.

In the literature we located some explicit results related mainly to the infinite time 

ruin probabilities such as Harrison [17], Schmidli [37] and Embrechts & Schmidli [11]. 

Further, we also found research pertaining to finite time probabilities, however the 

results were obtained by the solution of Partial Integra Differential Equations (PIDE) 

as in Paulsen & Gjessing [27] or by the Extreme Value Theory (EVT) as in Tang [40] 

and those solutions cover just some special cases of the problem. We use a martingale 

method as, in many instances, more suitable and more general approach, in contrast 

to those methods (chapter 3). Additionally, most of the research is devoted to the 

constant interest rate models. There is still a gap to fill in the research concerning 

time dependent interest rate models. Motivated by Roberts and Shortland [32] we 

analyse a model with an interest rate dependent on time but deterministic.

The main aim of this thesis is to determine finite time ruin probabilities for the
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model 0.1.2. As one can expect, min probabilities will depend heavily on the claim 

size distribution. If the latter is well - behaved the ruin probabilities will turn out 

to be typically exponentially bounded as the initial capital becomes large. However, 

when the claim size distribution has a heavy tail, then one single large claim may 

be responsible for the ultimate ruin of the portfolio. Additionally, it turns out that 

models powered by well - behaved distributions can be successfully approximated by 

diffusion processes, which are relatively easier to analyze.

The results for ruin probabilities on which we will focus in this thesis can be 

characterized by the following features and mathematical tools.

• only in the easiest cases we will succeed in getting explicit formulas for the ruin 

probabilities as in section 3.6.1

• martingale methods are used in order to obtain Laplace transforms for a stop­

ping time given by 77 - inf{i > 0 : Xt < /} as in section 3.4.2 , which may be 

further inverted numerically,

• the theory of Piecewise Deterministic Markov Processes (PDMP) is employed 

in order to support the martingale solution as in section 3.5,

• diffusion approximation is used for more complex models as in chapter 4,

• Piecewise Linear Approximation (PLA) to more general boundaries is used for 

approximation of ruin probabilities in the finite time horizon as in section 4.3,

• simulation methods are utilized for both illustration and computation purposes 

as in sections 3.6.3 and 4.4.
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0.3 Structure of the Thesis

The thesis is organized into the following chapters:

• Chapter I presents some fundamental mathematical definitions and theorems 

including martingale basics, the theory of stochastic integration and introduc­

tion to Levy processes. These topics are dealt with only briefly, just enough 

information is provided to make the thesis self - sufficient.

• Chapter II introduces the classical Cramer - Lundberg model as well as gener­

alizes the model to so called Ornstein - Uhlenbeck processes. Further, it focuses 

on the theory of Piecewise Deterministic Markov Processes (PDMP), since the 

main model of this thesis as well as some techniques used in this text are based 

on this theory. It also divides the general model into three groups with respect 

to the interest rate nature.

• Chapter III is fully devoted to the models with constant interest rate and calcu­

lation of the finite time ruin probabilities using martingale techniques and also 

integro - differential equations in the case of exponential distribution of claim 

sizes. It also focuses on special cases of the problem and compares the explicit 

formulas with results of the Monte Carlo simulations.

• Chapter IV generalizes model analyzed in chapter III for the case of time - 

dependent interest rate but deterministic. It incorporates some different ap­

proaches to the problem of ruin such as diffusion approximation and Piecewise 

Linear Approximation (PLA) to more general boundaries. It also focuses on a 

special case of this problem which can be solved analytically. Numerical results 

are also provided.



Chapter 1

Mathematical Preliminaries

This chapter provides introductory material underlining subsequent chapters. It 

is not intended as a detailed reference to any of the topics covered as it contains only 

definitions and theorems related to the research of this thesis. The literature used 

to write this chapter consists of Applebaum [2|, Borovkov [3], Cont & Tankov [8], 

Fristed & Lawrence [12], Liptser & Shiryaev [19, 20] and Revuz & Yor [31].

Consider a probability space (fi, J-, P). The set Q of elementary events is equipped 

with a a - algebra F. A probability measure on (Q,.F) is a positive finite measure 

P with total mass 1. A measurable set A £ J7, called an event, is therefore a set of 

events to which a probability P(A) can be assigned. Hence,

P: T [0,1].

Moreover, given two measurable spaces (Q, T) and (E,Q), define a random vari­

able X as follows:

6
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Definition 1.0.1 (Random Variable). A random variable X taking values in E is 

a measurable function

Hence, it is a function such that X 1{B) G T for every B G Q.

1.1 Concepts of Probability Theory

Let (fi, T, P) be a probability space and X = X(uj) a nonnegative random variable.

Definition 1.1.1 (Expectation). Expectation of X denoted by EX is the Lebesque 

integral

Denote by X+ = max(A,0) and X = — min( Ah 0).

Definition 1.1.2 (Integrable Random Variable). The random variable X is said 

to be integrable if E\X \ = EX+ + EX~ < oo.

Definition 1.1.3 (Convergence in Probability). We say that the sequence of 

random variables Xn, n = 1,2,..., converges in probability to a random variable X 

if, for any e > 0, limn_+00 P{\Xn — X\ > e) = 0.

Definition 1.1.4 (Almost Sure Convergence). The sequence of random variables 

Xn,n — 1,2,..., is called convergent to a random variable with probability 1, or 

almost surely, if the set {u : Xn(u) —► X{u)} has P - measure one.

X : Q -> E.

CONVERGENCE OF RANDOM VARIABLES

Note that convergence with probability 1 (P - a.s.) implies convergence in probability.



Definition 1.1.5 (Weak Convergence). The sequence of random variables 

Xn, n = 1,2,..., with E\Xn\ < oo, is called weakly convergent to a random variable

for any bounded function /.

Let Q C T be a sub - o - algebra.

Definition 1.1.6 (Conditional Expectation). The conditional expectation of X 

with respect to Q, denoted E(X\G) is by definition any Q - measurable function 

Y = Y(u>), for which EY is defined, such that for any A e Q

BASIC PROPERTIES OF CONDITIONAL EXPECTATION

1. E{X\G) > 0, if X > 0 (P - a.s.);

2. E{l\Q) = \ (P - a.s.);

3. E(X + Y\Q) = E(X\Q) + E(Y\Q) (P - a.s.) if E{X) and E(Y) exist;

4. E(XY\Q) = XE(Y\Q) if E(XY) exists and X is G - measurable;

5. If & C g2, then (P - a.s.) E{X\Gi) = E[E(X\G2)\Gi}]

is measurable and if G and are independent, then (P - a.s.) E(X\G) = E(X).

X if

lim E(f(Xn)) = E(f(X)),

6. If Ty is the smallest a - algebra with respect to which the random element Y(u>)
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Definition 1.1.7 (Absolutely continuous distribution). A distribution P of a 

random variable £ is said to be absolutely continuous if, for any Borel set B,

P(B) = P(£<=B)= f(x)dx, 
Jb

where f(x) > 0, f(x)dx = 1.
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1.2 Stochastic Processes and Stopping Times

Define a probability space (f^-TyP) with filtration Tt, understood as a nonde­

creasing family of a - algebras from T.

Definition 1.2.1 (Stochastic Process). A stochastic process is a family {Xt)t&D 

of random variables on a probability space (Q,JF, P). The set D is called the index 

set of the process. Formally, a stochastic process is a mapping

X : D x Cl R.

When D is a countable subset of the real line (e.g. = {0,1,2,...}) the stochastic

process Xt is said to be a discrete - time process. If D is an interval of the real line 

(e.g. D £ [0,oo)), the stochastic process is said to be a continuous - time process. If 

D is a set of multidimensional indexes then Xt is called a spatial process or a random 

field. If not stated otherwise we will assume that D = R+, since this thesis deals 

with continuous time stochastic processes. Further, denote by J-t+ = C\s>t^s and 

ft-= *([),«?,)■

In general, we do not require the measurability of X, however if D is a subset of 

R and X is measurable with respect to the product - a - algebra B(D) x T, then we 

say the stochastic process (Xt)teD is measurable.

For each fixed u £ Cl, the function t —► X(t,u) is called a sample path or trajectory, 

however we usually drop the dependence on u> £ Cl. This thesis deals with processes 

having sample paths belonging to one of the following two spaces:

• the space of continuous functions g : R+ —> R denoted by C(R+),

• the space of right - continuous functions g : R+ —>• R with left - hand limits
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denoted by D(R+). We say that a stochastic process with sample paths from 

T>(R+) is cadlag.

Theorem 1.2.1 (Fubini 1, [20], p.21). Let (Xt)t£D be a measurable stochastic 

process. Then:

1. Almost all trajectories of this process are measurable functions of t € D;

2. If EXt exists for all t G D, then mt = EXt is a measurable function of t € D;

3. If S is a measurable set in D = [0, oo) and JsE\Xt\dt < oo, then

\Xt\dt < oo (P — a.s.) (1.2.1)

and

[ EXtdt = E f Xtdt. 
Js Js

(1.2.2)

Theorem 1.2.2 (Fubini 2, [12], p.130). Let ('I',(?,//) and (Q,Tt,u) be two 

a - finite measure spaces, and let ip be an R = [—oo, oo] valued measurable function 

defined on the product measure space ('I',^,/i) x If

<pd(n x v)
^x0

exists, then

<p(x,y)v(dy)
Je

is a n - almost everywhere defined measurable function from ('h,£/) to R, and

tpd(fiXi/)= / ( / <p(x,y)v(dy))fi(dx).
J'i'x© Jv v Je '

Definition 1.2.2 (Adapted Process). We say that a measurable stochastic process 

Xt, t € D is adapted to a family of a - algebras Tt if, for any t G D, Xt are 

Tt measurable.



12

Definition 1.2.3 (Increasing Predictable Process). We say that a stochastic 

process Xt is an increasing predictable process if for each / € I) the random variable 

Xt is - measurable.

Theorem 1.2.3. Let Xt,t E D be a right continuous integrable increasing process, 

T = Et+, t > 0. Then for each t > 0 the variables Xt are Et- ~ measurable.

SOME CLASSES OF STOCHASTIC PROCESSES

Definition 1.2.4 (Stationary Process in a Narrow Sense). The stochastic pro­

cess Xt,t E D is said to be stationary in narrow sense (strictly stationary) if for any 

real 5 the finite - dimensional distributions do not change with the shift on 5:

P{Xtl E A\,..., Xtn E An) = P(Xtl-\s £ Ai,..., Xtn+s £ An),

for f i,..., tn, t\ + 8, ■ ■ ■, t.n + S E D.

Definition 1.2.5 (Stationary Process in a Wide Sense). The stochastic process 

Xt,t E D is called stationary in a wide sense if EXf < oo and EXt = EXt+s, 

E(XsXt) = E(Xs+sXt+s), he. if the first and second moments do not change with 

the shift.

Definition 1.2.6 (Process with Independent Increments). The process Xt, 

t E D is a process with independent increments if, for any tn > tn-\ > ■ ■ ■ > t\ > 0, 

the increments Xt2 — Xtl,... ,Xtn — Xtn_1 yield a system of independent random 

variables.

Definition 1.2.7 (Homogeneous process). A process with independent incre­

ments is called homogeneous if the distribution of the probabilities of the increments 

Xt — AC depends only on the differences t — s.
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Definition 1.2.8 (Martingales). The adapted stochastic process Xt,t G D is called 

a martingale with respect to Xt if < oo and

E(Xt\XS) = XS (P — a.s.), t>s. (1.2.3)

Denote by M(Xt,P) a class of martingales with respect to (lFt,P).

STOPPING TIME AND THE OPTIONAL STOPPING THEOREM

Definition 1.2.9 (Stopping time). A random moment r is said to be a stopping 

time or, Markov time with respect to Tt if the process

I(r < t) is Xt — adapted,

i.e. for all t, G D, {uj : r(u) <t}£ Xt.

Proposition 1.2.4. If mt G M(Xt, P) then

E(mt) = E(m0).

Theorem 1.2.5 (Optional Stopping Theorem, [31], p.67). If mt G M(Xt, P), 

t > 0, then for any stopping time t

Xt := inmin(T)t) G M(J-(,P)

and hence for any fixed t > 0

E (n7min(r ,f,)) E (171(f).
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1.3 Gaussian Processes

All stochastic processes in this section are examples of so - called Gaussian pro­

cesses. The definition of a Gaussian process is presented below.

Definition 1.3.1 (Gaussian process). A stochastic process Xt, t G D, is called a 

Gaussian process if any random vector X = (X(ti),... ,X(tn))T is Gaussian.

Proposition 1.3.1. If Xt, t € D, is a Gaussian process then to determine any joint 

distribution of a Gaussian process

Fx(tj),...,x(tn)(xu.. ., xn) = P{X(tl) < Xi,.. •, X(tn) < xn}

is sufficient to know only two functions:

m(t) = E(X(t)), R(t, s) = cov(X(t),X(s)).

GAUSSIAN WHITE NOISE AND GAUSSIAN RANDOM WALK

Two well known examples of Gaussian processes are a discrete time Gaussian 

white noise and a Gaussian random walk.

Definition 1.3.2 (Gaussian White Noise). A stochastic process X(t), t E D,

D = {0, A, 2A,... }, A > 0 is said to be a Gaussian white noise, if X(t) are indepen­

dent Gaussian random variables X(t) ~ N(m,a2) with

{a2, t = s;

0, s.

Definition 1.3.3 (Gaussian Random Walk). Let X(t), t G D = {0, A, 2A,... }, 

A > 0 be a Gaussian white noise and
n

St := X(A) + ■ • • + X(t) = Y, X(kA), {t = kA, So = 0)
k=l
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The process St. is a Gaussian process called a Gaussian random walk with t = nA. 

St ~ N(tm/A,to2/A).

Figure l.T. Trajectory of a Gaussian White Noise, A = l,m = 0 and a = 1.

1000

Figure 1.2: Trajectory of a Gaussian Random Walk, A = l,m — 0 and a — 1.

Trajectories of the Gaussian white noise and the Gaussian random walk are pre­

sented in Figures 1.1 and 1.2 respectively. Both, the Gaussian random walk and the 

Gaussian white noise are simulated with A = 1, m = 0 and a = 1. Mathematica codes 

used to obtain these graphs are included in appendices A.0.1 and A.0.2, respectively.
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WIENER PROCESSES

Probably, the most important and widely used Gaussian process is described in 

this section. It is called a Wiener process or Brownian Motion. Below, the definition 

of this process is presented as well as its main properties.

Definition 1.3.4 (Wiener Process, Brownian Motion). A stochastic process 

W(t), t G [0,oo) is said to be a Wiener process (or Brownian Motion), if W(t) is a 

Gaussian process with

EW(t) = mt, R(t, s) = a2 min(t, s).

When m = 0 and a = 1 the process W (t) is called Standard Brownian Motion.

PROPERTIES OF WIENER PROCESS

Proposition 1.3.2 (Independence of Increments). Denote increments of a Brow­

nian motion W(t) as £(£, h) = W(t + h) — W(t), h > 0. Then

E(£(t, h)) = mh, Var(£(t, h)) = a2h

and

cov(f(t, h),£(s, h))
a2h, t = s;

0, | t — s |> h.

Proposition 1.3.3. Brownian motion has almost surely continuous but almost surely 

nondifferentiable trajectories.

Trajectories of a Wiener process in case of m = 0 and <7=1 (Standard Brownian 

Motion) can be simulated taking

B(t + A) = B(t) + AB{t),
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where AB(t) — \fKZ. Moreover, Z ~ A(0,1) and t € [0, oo). This simulation is 

based on the independence of increments property 1.3.2.

Generally, the Wiener process may be simulated using the following representation

AW(t) = crAB(t) + toA, £e[0, oo).

Trajectories of Standard Brownian Motion and a Wiener process with m = 10 

and a = 5 are illustrated in Figures 1.3 and 1.4, respectively. Mathematica code used 

for this simulation is included in the appendix A.0.3.

Figure 1.3: Trajectories of Standard Brownian Motion.

Figure 1.4: Trajectories of a Wiener Process, m = 0.5 and a — 2.
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Eventually, the following theorem states the weak convergence of the sequence of 

Gaussian random walks 5|_ntj to the Wiener process Xt.

Theorem 1.3.4 (Donsker, [12], p.374). If a2 = Var(Xi) < oo, then for t > 0

x(n) = S[ntJ_- E(S\nt\) ~ ^

n

in distribution. Furthermore, X^ —► X where X is a Brownian motion with diffusion 

coefficient a.

Theorem 1.3.5 ([12], p.386). Let Bt be a standard Brownian motion and consider

oa — inf{i > 0 : Bt > a} 

where a > 0. Then the density of aa is

Pa
V‘2n.<

a , a, n
exp{ —— ), s > 0.2s‘
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1.4 The Poisson Process and the Compound Pois­

son Process

A Poisson process is defined as a counting process. It counts the number of random 

times Tn, which occur between 0 and t, where (Tn — T„_i)n>i is an i.i.d. sequence of 

exponential variables.

Definition 1.4.1 (Poisson process). Let (rj)j>i be a sequence of independent ex­

ponential random variables with parameter A and Tn = T%- A process (Nt)t>o

defined by

Nt = ^2l(t>Tn)
ii> I

is called the Poisson process with intensity A.

Proposition 1.4.1. Let (Nt)t>0 be a F’oisson process.

1. For any t > 0, Nt. is almost surely finite.

2. For any to, the sample path t. —>■ Nt(u) is piecewise constant and increases by 

jumps of size 1.

3. The sample paths t —> Nt are right continuous with left limit (cadlag), i.e. 

belong to the class V(R+).

4■ For any t > 0, Nt- = Nt with probability 1.

5. Nt is continuous in probability:

Vf > 0, Ns Nt in probability, when s t.
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6. For any t > 0, Nt follows a Poisson distribution with parameter At:

1. The characteristic function of Nt is given by

E[eiuNt} = exp{\t{elu - 1)}, Vu G R.

Definition 1.4.2 (Compound Poisson Process). A compound Poisson process 

with intensity A > 0 and jump size distribution / is a stochastic process Xt defined 

as

where jumps sizes T, are i.i.d. with distribution / and Nt is a Poisson process with 

intensity A, independent from (Vj)i>i.

Proposition 1.4.2 (Characteristic Function of the Compound Poisson Pro­

cess, [8], proposition 3.4). Let Xt be a compound Poisson process. Its character­

istic function has the following representation:

ALGORITHM 1.4.1 (Simulation of compound Poisson process). The steps 

for simulation of the compound Poisson process are as follows:

1. Simulate a random variable N from Poisson distribution with parameter XT.

—oo

where A denotes the jump intensity and F the jump size distribution.

SIMULATION ALGORITHM

N gives the total number of jumps on the interval [0, T].
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2. Simulate N independent r.v., Ui, uniformly distributed on the interval [0, T]. 

These variables correspond to the jump times.

3. Simulate jump sizes: N independent r.v. bj with identical distribution /. The 

trajectory is given bv
‘ “ N

Mt) = E I (Ui < t)Yi.
i= 1

The Poisson process itself can be obtained as a compound Poisson process on R 

such that Yi = 1.

Trajectories of the Poisson process as well as the Compound Poisson process are 

obtained with the use of Algorithm 1.4.1 and are illustrated in Figures 1.5 and 1.6, 

respectively. Mathematica codes used in order to obtain these results are included in 

appendices A.0.4 and A.0.5, respectively.

Figure 1.5: Trajectories of a Poisson Process, A = 1.
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12.5

Figure 1.6: Trajectories of a Compound Poisson Process, A = 1 and iV(0.5, 2) distri­
bution of jumps.
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1.5 Stochastic Integrals with respect to Brownian 

Motion and Ito’s Formula

Let (Q, T, P, Tf) be a probability space equipped with filtration Tt C T.

Denote by Bt a standard Brownian motion adapted to Tt. Let ft be an adapted 

process. Then, consider a uniform partition f*. = k^, k = 0,1,..., n,... and denote
m

Zm — 'y ] (Btk — Btk_i), tn = 1,2,..., n.
k= 1

It may be shown that under the assumption

p{ f f2sds < oo} = 1
Jo

there exists lim^oo Zn (in probability). This limit is called a stochastic integral 

of ft with respect to Bt and is denoted as

lim Zn = [ fsdBs.
n—>°° Jo

The following theorem is a special case of the Dambis, Dubins - Schwarz theorem [31],

p.170.

Theorem 1.5.1. Let ft be an adapted random function such that P(fg ffds < oo) = 1 

for any 0 < t < oo, Xt = fsdBs and

fsds oo a.s.

Set

Then

Tt, = inf{t > 0 : ds > b}, b > 0.

Xn~N(0,b)
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the process B(b) = XTb is a standard Brownian Motion with respect to filtration 

Tt, — cr{XTa, s < b} such that f* fbds is a stopping time with respect to Tb and

Xt = B( t fgds).
Jo

Definition 1.5.1 (Ito Process). The continuous stochastic process Xt,0 < t <T, 

is called an Ito process if there exists two adapted processes at and bt, 0 < t < T, 

such that
P{ [ \at\dt < oo} = 1,

P{ f b^dt < oo} = 1 
Jo

and with probability 1 for 0 < t < T,

Xt = X0 + a(s,uj)dx+ b(s,u)dWs 
Jo Jo

or

dXt = a(t,u)dt + b(t,uj)dWt.

Theorem 1.5.2 (Ito’s Lemma, [12], p.669). Let Xt be give by

dXt = atdt + btdWt

and let f(t,x) be twice continuously differentiable. Set Yt = f(t,Xt). Then 

f) f f)f i Pp f
dYt = -+(t,Xt)dt + -±{fXt)dXt + --^L(t,Xt)(dXt)2, 

where (dXt)2 = (dXt) ■ (dXt) is computed according to the rules

dt ■ dt = dt ■ dWt = dWt ■ dt = 0

and

dWt • dWt = dt.
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1.6 Stochastic Integrals with respect to Square In­

tegrate Martingales and their Properties

A right continuous martingale Mt,t £ D is a square integrable martingale when

E sup M2 < oo.
t> o

Denote by Ai a class of square integrable martingales.

Theorem 1.6.1 ([20], p.161). For each X € A4 there exists a unique predictable 

increasing process At = {X)t, t < T, such that for allt, 0 < t < T,

X2 = mt + {X)t (P — a.s.)

where mt € M (Xt, P).

The process (X)t is called a predictable quadratic characteristic of the stochastic 

process Xt.

Denote by Tj a class of Tt - adapted functions and by $2 a class of predictable 

functions. Further let At = (M)t and be a class of functions from Tj satisfying

the condition
nOO

E f2(s,u))dAs < oo.
Jo

Definition 1.6.1 (Simple Function). The function / € L2A(<&2) is called a simple 

function if there exists a finite decomposition 0 = to < • • • < tn < oo, such that

n— 1
f(t,u) = J^/(ric, u)I{tkttk+l}(t).

k=0

The class of simple functions is denoted by S.
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Let Xt G M and At = {X)t, t > 0. We shall define the stochastic integral 1(f), 

denoted by /0°° f(s,u>)dXs, over a simple function / = f(t,u), as follows
n— 1

fc=0

PROPERTIES OF THE STOCHASTIC INTEGRAL

This stochastic integral has the following properties (/, /i, f2 are simple functions):

1. It(afi+bf2) = alt(fi)+ blt(f2) (P - a.s.), a,b = const., t > 0;

2. f(s,uj)dX3 = f* f(s,u)dXs + J*f(s,u)dX3 (P — a.s.);

3. /t(/) is a right continuous function over t > 0 (P — a.s);

4. E

5. E

fif(u,u)dX% f0s f(u,u)dXu (P — a.s.);

2. E

Jo f\(u,u))dXu f0 f2(u,uj)dXu = Ef0 fi(u, u>)f2(u,uj)dAu;

In particular from 4 and 5 it follows:

1. Efif(u,u)dXu = 0;

f0l f(u, u)dXu\2 = Ef* p(u, to)dAu.

Lemma 1.6.2 ([20], p.186). Let Xt G M, and let At = (X)t, t > 0, be the 

predictable increasing process corresponding to the martingale X. Then the space S 

of simple functions is dense in L2A(^2)-

The above lemma enable us to define the stochastic integrals 1(f) over the martingale 

Xt G Ad for / G La(&2) as the limit in the mean square of the integrals /(/n), where 

the fn are simple functions approximating / in terms of

E |f(t,u) - fn(t,uj)\'2dAt —>• 0, n -> oo.
JO
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Further, we have the following useful properties valid almost surely:

Proposition 1.6.3 ([19], pp. 96 — 97). Let M G A4 and f G L^(<F2). Then for 

Xt JofsdMs
(X),= f ffd(M).

Jo
and X G M..

Additionally, denote by = lim^oo Xt and by {X —>} the set on which X<*, 

exists and it is a finite random variable.

Theorem 1.6.4 ([19], p. 136). Let X G Xi, Xq = 0. Then

{(A’)00 < oo} C {X —>}.



28

1.7 Levy Processes

The Levy process is a continuous time process with independent and stationary 

increments. These processes provide the ingredients for building continuous time 

stochastic models in insurance and finance.

Definition 1.7.1 (Levy Process). A cddldg stochastic process (Xt)t>o on a prob­

ability space (Q,JA,P) with values in R such that X0 = 0 is called a Levy process if 

it possesses the following properties:

1. Independent increments: for every increasing sequence of times to,... ,tn, the 

random variables Xto,Xtl — Xto,..., Xtn — Xtn , are independent.

2. Stationary increments: the law of Xt+h — Xt does not depend on t.

It is useful to notice that a Levy process can be obtained as a limit of a sequence 

of random walks as in Cont & Tankov [8|. The next theorem states this fact.

Theorem 1.7.1. Define a sequence of random walks as

Xj-n) _ gbb —► Xt in distribution, as n —► oo.

Then, X^ -► X in distribution where X is a Levy process.

Further, to every cddldg process (Xt)t>0 on R one can associate a random measure 

on [0, oo[xR describing the jumps of X: for any measurable set B C [0, oo[xR

where AXt = Xt — Xt- are jump sizes of the process Xt. Therefore, for every 

measurable set A C M, Nx{[ti,t2\ x A) counts the number of jump times of X 

between t\ and t2 such that their jump sizes are in A.
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Definition 1.7.2 (Levy Measure). Let {Xt)t>o be a Levy process on E. The 

measure u on E defined by:

1S(A) = E[${t £ [0,1] : AXt 4 0, AXt e A}], A £ B(R)

is called the Levy measure of X : v(A) is the expected number, per unit time, of 

jumps whose size belongs to A.

Definition 1.7.3 (Poisson Random Measure). Given a random measure M on 

a measurable space (S, A) we say that we have a Poisson random measure N(t, A) if 

each M(A), A £ A has a Poisson distribution whenever M(A) < oo.

Definition 1.7.4 (Compensated Poisson Random Measure). For each t > 0 

and A bounded below, we define the compensated Poisson random measure by

Nit, A) = N{t,A)-t.v(A).

Theorem 1.7.2 (Levy — Khintchine, [8], theorem 3.1). Let (Xt)t>o be a Levy 

process on E with characteristic triplet (a2, p, u(dx)) such that 

f min(x2, l)do(x) < oo. Then

E\eizXt] = emz\ z> 0,

with
tp(z) = ipz — \:cf2z2 + f (elzx — 1 — izxl(\x\ < 1 )\u(dx).

£ J _ oo ^ '

Theorem 1.7.3 (Levy - Ito Decomposition, [8], proposition 3.7). If X is a

Levy process, then there exists b £ E, a Brownian motion Bt and an independent 

Poisson random measure N such that, for each t> 0,

I xN(t,dx)+ xN(t,dx).
|x|<l «/|rr|>l

X(t) = bt + Bt +
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In the Levy - Ito decomposition the process Yt = Bt + f^^xNftjdx) is a mar­

tingale, while the process Zt = xN(t, dx) is a compound Poisson process.

Proposition 1.7.4 ([8], lemma 15.1). Let f : [0,T] —► K be left - continuous and 

Zt be a Levy process. Then

EieXP(iJ0 f^dZt)} = exp| J ip(f(t))dtj,

where if(u) is the characteristic exponent of Z.



Chapter 2

Stochastic Modelling in Insurance

This chapter is devoted to the topic of stochastic modelling in insurance. Its main 

concern is to introduce an Ornstein - Uhlenbeck (OU) process that is further analysed 

in chapters 3 and 4. The OU - process is classified with respect to the interest rate into 

three insurance model groups. Moreover, the definition and analysis of the OU model 

is placed in the context of the Piecewise Deterministic Markov Processes (PDMP) 

theory, which is utilized in the analysis of so - called ’Ruin Problem’.

2.1 Risk Processes

By risk process Xt we refer to an insurance model with the risk being associated 

with the incoming stochastic claims from insurance clients. The first risk process de­

scribed in this section originates from the classical risk theory and it has significantly 

contributed to the development of the modern risk models, which take into account 

the possibility of investment. Specifically, the Cramer - Lundberg process is a special 

case of the OU process assuming that the interest rate is equal to zero.

31
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2.1.1 Cramer - Lundberg Model

We consider the classical continuous time claim process in insurance risk theory 

with the following structure:

• claims occur at times {Tn;n £ N} of a Poisson process with rate A and corre­

sponding counting process {N(t);t > 0} where N(t) = > Tfc);

• the inter - arrival times

are i.i.d. exponentially distributed with finite mean EY\ = y.

• the claim sizes {Uk,k G N} are independent, identically distributed random 

variables, having common distribution function F with F(x) = 0 when x < 0 

and finite mean

• N and Uk are assumed to be independent;

• Ui represents the accumulated claims up to time t.

In the Cramer-Lundberg model the free reserves process X is defined by

where u is the initial capital and c > 0 is the premium income per unit time.

The total claim amount process {S(t)]t > 0} of the underling portfolio is given

Nt
u + ct — Ui,

i= 1

by
N(t) > 0; 
N(t) = 0.
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Further, the total claim amount distribution is represented by

where Fn*(u) = P(Y^=l Ui < u) is the //-fold convolution of F. 

Therefore, the Cramer Lundberg model can be also written as

Xt = u + ct - S{t).

The models we consider will typically have the property that there exists a constant 

p such that

and defines the relative amount by which the premium rate c exceeds p.

We will assume that p > 0 and p — \p. Figure 2.1 shows the trajectory of the 

process Xt for the initial value of X0 equal to 100, premium rate c equal to 3 and the 

rate of the Poisson process A equal to 1.

This thesis does not focus on the analysis of the risk process described in this

i=l

The interpretation of p is as the average amount of claim per unit time.

Definition 2.1.1. The relative safety loading p is defined by

V
c - P 

P

section, however the results for this model can be obtained from the analysis of the 

OU process since the Cramer - Lundberg model can be obtained from the OU model 

by setting the interest rate to zero.
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Figure 2.1: Trajectory of a Cramer Lundberg model with A = 1, c = 3 and Xo = 100.

2.1.2 The Ruin Problem

Analysis of risk processes with respect to boundary crossing probabilities are re­

ferred by the Ruin Problem in actuarial mathematics. Ruin probability can be defined 

as a first boundary crossing probability by the risk process Xt. Formally, we define a 

stopping time n as

n = inf{t > 0 : Xt < /},

where l is a ruin level less than the initial value of the process Xt. Further, we define 

the finite and infinite ruin probabilities.
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Definition 2.1.2 (Ruin Probability). The ruin probability in finite time (or with 

finite horizon) is defined by

ip(T,x) = P(ti < T), 0 < T < oo, x > 0.

The ruin probability in infinite time (or with infinite horizon) is defined by

ip{x) — ijj(x, oo), x > 0.

2.1.3 Ornstein — Uhlenbeck (OU) Process

This section will define the OU process and therefore it is one of the most im­

portant points of this chapter. The insurance interpretation of this process in not 

included at this point however we will return to our discussion of the insurance model 

in order to fully describe its purpose in connection to the theory of risk.

GAUSSIAN ORNSTEIN - UHLENBECK PROCESS

Definition 2.1.3 (Gaussian Ornstein — Uhlenbeck Process). We say that a 

stochastic process Xt is a Gaussian Ornstein - Uhlenbeck process if X, lias the fol­

lowing representation in terms of a stochastic differential equation (SDE)

dXt = pXtdt + dWt, (2.1.1)

where Wt is a Wiener process defined by 1.3.4. Moreover, if f3 < 0 we say that this 

process is stable. Otherwise, in the case (3 > 0, this process is called unstable.

The following proposition provides a solution to the SDE 2.1.1. This new represen­

tation for Xt is further utilized in the later chapters of this thesis.
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Proposition 2.1.1. Let

dXt = pXtdt + dWt,

where Wt is a Brownian motion for all t > 0. The solution of this stochastic differ­

ential equation is given by

Xt = Xoe* + ept f e~f3sdWs. (2.1.2)
Jo

Proof:

In order to proof this proposition we use the Ito Lemma given by theorem 1.5.2 setting 

g(t,Xt) to Xte-13*. Hence,

d(Xte~m) = -f3Xte~mdt + e-ptdXt + 0

= ~/3Xte-^dt + e-^ipXtdt + dWt)

= -pxte~ptdt + pX:te~mdt + e~l%dWt

= e~mdWt.

Therefore, we obtain

d{Xte~m) = e-^dWt,

when written as an integral

Xte-?t = X0+ fe-^dWs 
Jo

Xt = e&Xo + e'3*
■t

e~f3sdWs.

and eventually
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GENERALIZED ORNSTEIN - UHLENBECK PROCESS

Definition 2.1.4 (Generalized Ornstein — Uhlenbeck process). We say that 

a stochastic process Xt is a generalized Ornstein - Uhlenbeck process if Xt has the 

following representation in terms of a stochastic differential equation

where Yt is a Levy process introduced by definition 1.7.1. Moreover, if (5 < 0 we 

say that this process is stable. Otherwise, in the case (3 > 0, this process is called 

unstable.

Proposition 2.1.2. Let

■where Yt is a Levy process for all t > 0. The solution of this stochastic differential 

equation is given by

This result is a simple implication of the proposition 2.1.1.

■

2.1.4 Ornstein — Uhlenbeck Process generated by a Com­

pound Poisson Process

Consider the Ornstein - Uhlenbeck process generated by a compound Poisson

Nx(t)

dXt = j3Xtdt + dYt, (2.1.3)

dX, = 0X,dt + dYt,

Proof:

k=i

process
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where (£k)k> 1 are i.i.d. random variables, represented by:

NxW

dXt = (pXt — m)dt + d( 5Z &)•
k= 1

Moreover, the pulses (£k)k>i appear at arrival times (Tk)k> 1 of a Poisson process 

N\(t), t > 0, with the intensity parameter A > 0.

Proposition 2.1.3. The explicit solution for an OU process in case of a Compound 

Poisson process with a drift is represented by the following equation:

N\(t)
X* = J+ (X° - j)e0t + £ l(Tk < t).

k= 1

Proof:

In order to prove this proposition we use the result of the calculation in section 2.1.3, 

namely the proposition 2.1.2. Hence,

Xt = X0ept + [ e~psdYs,
Jo

Nx (t)
Yt = ^ Cfc - rnt.

k= 1

where
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Therefore,

Ah = ATe^Te^

X0em + e0t

Nx(t)
fe 08d( X] & - ms)

J° k=1
Nx(t)

Zb) m e Psds
Jo ■

Xoe^-je^fl-e-^+e^ I e 

m (,, m

Nx(t)

Zb)

k= 1
rt . Wa(0,3 + X-j)eJ“ + lem‘~‘ Zb)

k= 1

^ + (x0 - ae/3('”Tfc)I(Tfc < t).
P P k= 1

Y30

SIMULATION OF THE OU - PROCESS GENERATED BY A COMPOUND

POISSON PROCESS

To simulate the OU process generated by a Compound Poisson process we use its 

explicit representation quoted in the proposition 2.1.3. Two trajectories are simulated 

using the following representation of the OU process:

dXt = pxtdt + dYt.

Figure 2.2 illustrates a trajectory of an OU process assuming Yt = Ylk=i^ & ~

£k ~ X(30,2), P = —1, A = 10, m = 30 and Xo = 10. Figure 2.3, however, illustrates 

a trajectory of an unstable OU process with parameters ~ X(30,2), (d — 0.002, 

A = 10, m = 30, X0 = 10 and Yt = — Yhk= sfc + mC
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Figure 2.2: Trajectory of a Stable OU Process generated by a Compound Poisson 
Process with A = 10. The parameters of the OU process are: P — —1 and m = 30.

-100

-200

-300

Figure 2.3: Trajectory of an Unstable OU Process generated by a Compound Poisson 
Process with A = 10. The parameters of the OU process are: p = 0.002 and m = 30.
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2.2 Continuous Time Markov Processes

This section is devoted to the theory of continuous time Markov processes. In 

particular, it focuses on one subfamily of this class of stochastic processes called 

Piecewise Deterministic Markov Processes (PDMP). The purpose of this section is 

to place the Ornstein - Uhlenbeck process in context of the PDMP theory. Such 

classification of the OU process allows to use the PDMP theory as a tool to obtain 

the first time boundary crossing probabilities in both finite and infinite time for the 

risk process Xt. This section is based on Rolski et al. [34].

We assume that the stochastic processes Xt considered in this section are cadlag,

i.e. their sample paths belong to the set Z>(R+) of right - continuous functions 

g : R+ —> E with left hand limits, where E denotes the state space. For our purposes 

we only consider the one dimensional case E = R. Further, denote by Ad(R) the 

family of all real - valued measurable functions on R.

2.2.1 Transition Kernels and Definition of a Markov Process

Denote by £?(R) the a - algebra of Borel sets in R. Let, then 1P(R) be the set of 

all probability measures on B(R). A function

P : R+ x R x B(R) —»■ [0,1]

is said to be a transition kernel if the following four conditions are fulfilled for all 

h, hi, /i2 > 0, x G R, B G £>(R):

P(h, x, •) G V(R)

P(0, x, {x}) = 1

e Af(R+ x R)
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P(/?i + h2,x,B) = JRP{h2,y, B)P(hi,x,dy).

Definition 2.2.1 (Markov process). AM- valued stochastic process Xt, t > 0 

is called a (homogeneous) Markov process if there exists a transition kernel P and a 

probability measure a G 'P(M) such that

P(X(0) G B0,X(ti) e Bu...,X{tn) G Bn) =

Bo Sbi ' ‘ ‘ SBn In— 1 > 1 > dXn) . . . P(ti, Xq, dX\)0.iydXo),

for all n = 0,1,..., Bq, B\,..., Bn G B(R), to = 0 < t\ < t2 < ■ ■ ■ < tn.

The probability measure a is called and initial distribution and we interpret 

P(h,x,B) as the probability that, in time h, the stochastic process Xt moves from 

state x to a state in B.

2.2.2 Piecewise Deterministic Markov Processes (PDMP)

in general, PDMP can be described as Markov processes Xt whose trajectories 

have countably many jump epochs. The jump epochs and also the jump sizes are 

random in general. But, between the jumps epochs, the trajectories are governed by 

a deterministic rule.

Further, denote by I an arbitrary, finite non - empty set, {du, u G 1} a family of 

natural numbers, Cv an open subset of Rdl/ for each v G I and E = {(v, z) : v G I, 2 G 

Cu}. With this notation I is the set of possible different external states of the process. 

For example, I = {” healthy”sick”deacT}. Cv is the state space of the process 

if the external state is u. This allows to consider different state spaces in different 

external states. Further we denote Xt (Jt,Zt), where Jt describes the external 

states of Xt and Zt indicates the evolution of the external component.
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BEHAVIOR BETWEEN JUMPS

Between jumps, the process Xt follows a deterministic path, while the external 

component ,Jt is fixed, Jt = v. Starting at some point z G Cu, the development of 

the deterministic path is completely specified by its velocities at all points of Cv, i.e. 

through an appropriate function cv ~ (ci,..., Cdv) : Cv —► Edl/, called a vector field. 

If a sufficiently smooth vector field is given, then for every z £ Cv there exists a path 

ipu(t,z), called an integral curve, such that

Definition 2.2.2 (Vector Field Operator X). A vector field operator X is given

<A/(0, z) = z

and

—yv{t.,z) = Cv{ipv{t,z)).

by

acting on differentiable functions g.

Furthermore, if g is continuously differentiable then the integral curve 

{(pu(t,z),t < t*(iz,z)}, where

t*(u, z) = sup{f > 0 : 3<pv(t, z) G Cj,},

is solution to the differential equation

with

¥U(0 ,z) = z.
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THE ACTIVE BOUNDARY OF E 

Denote by dCu the boundary of Cv and let

d*Cv — {z G dCv : z = <Pv(t, z) for some (t, z) G R+ x Cfj. 

Additionally, let

r = {(u)Z) e dE : V el,z e d*Cv}.

We will assume that (p„(t*(v, z), z) G T if t*(y,z) < oo. The set V is called the active 

boundary of E. We may interpret F as a set of those boundary points of E, that can be 

reached from E via integral curves within finite time and t*{v,z) is the time needed 

to reach the boundary from the point (o,z). The condition g>v{t*(v,z),z) G T ensures 

that the integral curves cannot '’disappear” inside E.

To fully define a PDMP on (E, B(E)), we need more than a family of vector fields 

{ty, v G I}. We also require a, jump intensity, i.e. a measurable function A : E —*■ R+, 

a transition kernel Q : (CnF)x B{E) —► [0,1], i.e. Q(x, •) is a probability measure for 

all x G E U T and Q(-, B) is measurable for all B G B(E). In actuarial terminology, 

the jump intensity A can be interpreted as a ’’force of transition”, whereas Q(x,-) is 

the ’’after jump” distribution of a jump from state x (if x G E) or from the boundary 

point x (if x G T).

THE GENERATOR OF A PDMP 

Consider a multivalued linear operator A. This is simply a set

A C {(g,g) : g,g G A4(K)}

such that, if (g%,gi) G A for i G {1,2} then also (agi + bg2,agi + 6^2) G A for all 

a,b G M. The set V(A) = {g G Ad(M) : {g,g) G A for some g G Ad(K)} is called 

the domain of the operator A.
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Definition 2.2.3 (Full Generator of a Markov Process). The multivalued op­

erator A that consists of all pairs (g,g) G Af(R) x V\d(R) for which

{g(Xt) - g(XQ) - f ~g{Xv)dV)t> 0}
Jo

becomes an Tff - martingale, is called the full generator of the Markov process Xt.

According to the definition of the full generator of a Markov process, in order 

to find martingales associated with a PDMP Xt, we have to find a function in the 

domain X>(A) of the generator A of Xt. This problem is generally hard to solve, 

however solutions are possible if we restrict ourselfs to a subset of V(A), amply 

sufficient for the insurance setup.

The following theorem defines a generator of a PDMP used for actuarial purposes.

Theorem 2.2.1. Let Xt be PDMP and let g* : E fi T —► R be a measurable function 

satisfying the following conditions:

(a) for each (u, z) G E, the function t —>■ g*(v,ip(t,z)) is absolutely continuous on

(0,t*(v,z)),

(b) for each x on the boundary F

g*(x)= f g*(y)Q(x, dy),
Je

(c) for each t > 0,

E(£ ISf*(.YT,)-9*(.Vj.(-)l<oo).
i:Ti<t

Then g G V(A), where g denotes the representation of g* to E, and (g,Ag) G A, 

where Ag is given by

(Ag)(x) = (X<?)(.r) + A(x) / (g(y) - g(x))Q{x,dij).
JE

(2.2.1)
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2.3 The Ornstein — Uhlenbeck Model revisited

In this section we reconsider the Ornstein - Uhlenbeck model of section 2.1.3 and 

demonstrate how to obtain the generator of this process. Let Xt be the risk reserve 

process described by the following SDE

Nx (0
dXt = (pxt + c)dt - d( &)• (2.3.1)

k= 1

It is easy to see that Xt is a PDMP with state space E = R. The set I of external 

states consists of only one element and is therefore omitted. The characteristic of the 

PDMP Xt are given by
(X^)(x) = (/3x + c)||(x)

and the hazard along the integral curves is X(x) = A and the Markov transition 

measure governing the stochastic evolution of the process equals Q(x, dy) = dF{x—y). 

Hence, the generator of the OU - process 2.3.1 is represented by

pOC
Mg(x)\ = (Px + c)g'(x) + A \g{.v - y) - g{x)]dF(y), (2.3.2)

Jo

where F(x) is a distribution function of the jumps £*..
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2.4 Classification of the Ornstein — Uhlenbeck Mod­

els with respect to the Interest Rate

We classify the OU models into two groups: models with a constant interest rate 

and models with the interest rate dependent on time. Further, we divide the interest 

rate dependent on time models into models with a deterministic interest rate and a 

stochastic interest rate. As a result of this classification we obtain the following three 

models.

OU MODEL WITH A CONSTANT INTEREST RATE

This model has been previously mentioned and it is represented by the unstable 

generalized OU process of the form:

dXt = f3Xtdt + dLt, t > 0 (2.4.1)

where f3 > 0 models the interest rate, and Lt is a Levy process, in particular a 

compound Poisson process with a drift given by

NxW
Lt = ct — £*;•

fc=i

This model is analysed in chapter 3 of this thesis with respect to the ruin probabilities.

OU MODEL WITH A DETERMINISTIC INTEREST RATE DEPENDENT ON

TIME

This model is analysed in chapter 4 of this thesis. It is also defined by the SDE 

2.4.1, however the interest rate is a deterministic function of time. Hence, we write

dXf — (3tXtdt + dLt,
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where t > 0, fit models the interest rate, and Lt is a Levy process, in particular a 

compound Poisson process with a drift given by
Nx(t)

Lt = ct- ^2 Cfc-
k= 1

Further, the interest rate might be given by the following equation, Roberts & Short- 

land [32],

fit — fi + de t,

where fi,a = const. This form of the interest rate can be derived by taking the 

expected value of the risk - free interest rate, It, under a Vasicek model satisfying

dlt = (fi — It)dt + adBt,

with Iq = fi + a and <7=1. One may refer to Roberts & Shortland [32] for more 

details on this fact.

OU MODEL WITH A STOCHASTIC INTEREST RATE

The analysis of this model are beyond the scope of this thesis, however we mention 

it for the sake of completeness. The risk process Xt is defined by

dXt = fitXtdt + dLt,

where t > 0, fit models the interest rate, and Lt is a Levy process, in particular a

compound Poisson process with drift given by
N\(t)

Lt ct ^ ] Cfc-

k= 1

Moreover, the interest rate fit can be given by the Vasicek model:

dfit = (fi — afifidt + adBt,

where Bt is a standard Brownian motion and fi,a,a are constant parameters, addi­

tionally a > 0.
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Name Tail F or density / Parameters
Exponential F = e~Xx A > 0
Gamma f(x) - r(a)x° le/3x a,P > 0
Weibull F(x) = e~c%T c > 0, T > 1
Truncated normal f(x) = yjie~x2/2

-

Table 2.1: Claim size distribution functions: ’’small claims”. All distribution func­
tions have support (0,oo).

2.5 Claim Sizes Distributions

In actuarial modelling it is very common that the claim sizes distributions are 

classified into two groups: light tailed distributions and heavy tailed distributions. 

This classification stems from the fact that there are two types of claims in insurance 

’’small claims” and ’’large claims”, which can be described by light - tailed and heavy 

- tailed distributions, respectively.

This section contains a brief presentation of the most popular classes of distri­

butions F which have been used to model the claims Si, S2, ■ ■ ■ ■ These distributions 

are classified into two groups, light - tailed distributions and heavy - tailed distribu­

tions. The following two definitions are given by Asmussen [2].

Definition 2.5.1 (Light — tailed distributions). Light -- tailed distributions 

means that the tail F(x) = 1 — F(x) satisfies F = 0(e~5x) for some s > 0. Equiva­

lently, the moment generating function F[s] is finite for some s > 0.

Definition 2.5.2 (Heavy — tailed distributions). F is heavy - tailed distribution 

if F[s] = 00 for all s > 0. In actuarial practice it is also assumed that F is heavy - 

tailed if 20% of the claims account for more than 80% of the total claims, i.e. if

1 f°°
— xF(dx) > 0.8,
AF i/o.2
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Name Tail F or density / Parameters
Lognormal fix) — 1 g-Onz-Mh/(2<r'J)^ ^ ' 'J72f(7X fj, G R, a > 0
Pareto o*> = (*)“ a, k, > 0

Burr FW=U)“ a, k, t > 0
Benktander - type - I F(x) = (1 + 2{p/a) lnx)

g—/3(lnx)2 —(a+1) In a:
a,P > 0

Benktander - type - II F(x) = ea//1/3 x_C-/h e~axt>^ a > 0, 0 < /? < 1
Weilbull F(x) — e~cxT c>0,0<r<l
Loggamma f(x) = ^{inxf-'x-*-1 a,P > 0
Truncated a - stable F(x) = P(| X |> x) 

where X is an a - stable rv
1 < a < 2

Table 2.2: Claim size distribution functions: ’’large claims”. All distribution functions 
have support (0, oo) except for the Benktander cases and the loggamma with (1, oo).

where F(/o.2) - 0.2 and //f is the mean of F.

Tables 2.1 and 2.2 present the most common distributions used for modelling of 

small and large claims, respectively.



Chapter 3

Infinite and Finite Ruin 

Probabilities for the Model with 

Constant Interest Rate

We consider generalisation of the classical Cramer - Lundberg model introduced 

in the section 2.1.1. It is assumed that the cumulative income of a firm is given by a 

process L. This process has stationary independent increments and can be represented 

as

Lt = (Ci + ■ • ■ + £Nx(t)) — ct, t > 0. (3.0.1)

Therefore, Lt is a compound Poisson process with drift c. It is often assumed that 

Lt is a more general process satisfying the stationary and independent increment 

property (definitions 1.2.5 and 1.2.6), together with a mild sample path regularity 

condition. Such processes are called Levy processes. Formal definition of this class of 

processes is included in the section 1.7. Moreover, we call Lt the income process.

51
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In this context, one interprets c as the rate at which premium payments are 

received form policyholders, N\(t) as a cumulative number of claims incurred up to 

time t, and ^ as the size of the kth claim. Suppose now that the risk reserve of 

the company is invested in a savings account, continuously earning interest at rate f3. 

This leads to the definition of the assets process X.

Xt = e&x - f e^-s)dLs, t > 0, (3.0.2)
Jo

where x is the level of initial assets of the company. Additionally, combining equations 

3.0.1 and 3.0.2 and denoting by T\,T2,... the times at which claims occur we may 

define process Xt as

rt NxW
Xt = eptx + e^-^ds - V e^{t~Tk)ik.

k= 1

This representation of Xt also solves the following SDE

dXt = pXtdt — dLt, Xo = x. (3.0.3)

For proof of this fact one can refer to the proposition 2.1.2.

The primary objective of this chapter is to determine infinite and finite ruin prob­

abilities for the model described above. The infinite horizon ruin probabilities were 

previously considered by Harrison [17]. We devote one section of this chapter to his 

results since the method used in order to determine the finite horizon ruin probabil­

ities is, to some extent, based on Harrison’s results. The main part of this chapter 

describes the martingale method and its application for our problem. The Laplace 

transform of the stopping time

77 = inf{t > 0 : Xt < /}, l < x (3.0.4)
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is derived and a few special cases are considered. Finally, the martingale solution is 

compared with the PIDE solution for the case of exponential jumps. The results are 

also confirmed by Monte Carlo simulation.
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3.1 Infinite Time Ruin Probabilities

This section is devoted to infinite time ruin probabilities and it is based on the 

paper by Harrison [17]. We slightly change the notation to suite our purposes and 

also formulate new propositions, which were not considered as separate theorems by 

Harrison. This change is implied by the easier generalization of such presented facts.

Let the process Xt satisfy the equation 3.0.3. We assume that the process Lt is a 

Levy process and j3 > 0 is a constant interest rate. It can be shown that the solution 

of 3.0.3 is unique and it has the following representation

We define a stopping time r; = inf{7 > 0 : Xt < /}, l < x, which can be of 

interest for insurance companies. It might be interpreted as an alarm time when the 

value of the capital becomes too low. This is also some form of generalisation of 

Harrison’s results, since he considers just the case of / = 0. Our aim is to present 

Harrison’s method and the final representation for P(ti < oo).

Before we formulate the necessary propositions we need to introduce some nota­

tion. Denote by

(3.1.1)

(3.1.2)

Furthermore, denote by Z a random variable independent of Lt such that 

Z = Z(j3,L) by distribution. We also assume that

£Hog(l T |Lt|) < oo. (3.1.3)

Linder this condition the random variable Z{f3, L) is finite with probability one and it 

has an absolute continuous distribution (definition 1.1.7). These facts are presented by



Harrison [17] in proposition 2.2 under the assumption of finiteness of second moment 

of Lt. We present this result and the proof below with more general assumption 3.1.3.

Lemma 3.1.1. Let E\og(l + |Lt|) < oo. Then the random variable Z(fi,L) is finite 

with probability one:

P(Z({3, L) < oo) = 1.

Additionally, the random variable Z(ft,L) has an absolutely continuous distribution.

Proof:

To prove this lemma we use the Levy - Ito decomposition 1.7.3. We represent the 

Levy process Lt as follows

Lt = ct + Mt + Zt,

where c is a constant, Mt is a square integrable martingale with stationary indepen­

dent increments and Zt is a Compound Poisson process. Additionally, Mt and Zt are 

independent.

Denote AYt = Yt — Yt- as jumps of process Yt. Then we may assume that 

|AM,| < 1 and |AZt| > 1. Hence, using the Levy - Ito decomposition, we obtain

[ e-P’dLs = ^(1 -e~m) + f e~PsdMs+ [ e~^sdZs.
J 0 P Jo Jo

Further, denote by (N)t the predictable square characteristic, defined by the the­

orem 1.6.1, of a martingale Nt = e~/3sdMs. Prom the properties of the stochastic 

integrals with respect to square integrable martingales we know that Nt is a square 

integrable martingale (refer to proposition 1.6.3).

We need to now show that Nt has bounded jumps and finite and predictable 

square characteristic (N)t- Then using the theorem 1.6.4 we prove the finiteness of

55
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/Vqo = J0°°e l3sdMs. Hence, by representation 1.6.3 we obtain the following

(N)t = f e~Wsd(M)s = E(M?) f e~Wsds -► E(M*)/2/3 < 00,
Jo Jo

since Mt is a square integrable martingale with stationary independent increments 

and {M)t = tE(M'f). Additionally, AT4 has jumps bounded by 1. Therefore, by 

theorem 1.6.4, we get the finiteness of /0°° e~/3sdMs with probability 1.

To show a convergence of e~/3sdZs to the limit (in probability) we use the fact 

that a compound Poisson process has the representation Zt — Ylk=i^ ^ where N\(t) 

is a Poisson process with rate A and are i.i.d. random variables. It is convenient 

to consider positive and negative jumps of Zt separately. Therefore, we split Zt into 

Zp and Zf as follows
Nx(t) Nx(t)

z,+ = E«t' z<"=£c-
k=l k=l

By direct calculations, using propositions 1.7.4 and 1.4.2, we get for u > 0

—?/,^4 e.log E1 exp (—it [ e ^dZj1) = A f E(e 
Jo Jo

1 )dy.

Further, integrating by parts

A E(e-^~0y - l)dy = J- 
Jo P

00 \ / —xixeA(e ~(3t - e ux)P(£,k > x)

which tends to
I r A(1 - e-»)P(£ > x)
P Jo x

X

dx,

dx,

when t —> co. The last integral is finite under condition

E\og(l +£) < 00,

which is equivalent to the condition

E log(l + Lf) < co.
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Concluding, both processes e l3ydZy converge in distribution to a compound Pois­

son distribution with the absolute continuous Levy - Khinchin measure

Therefore, the distribution of J0°° e ^ydZy are absolute continuous and infinite -

they converge with probability one to their limits. It implies that with probability 

one

where the limit random variable has an absolute continuous and infinite - divisible 

distribution.

■

Further, we use the Levy - Khintchine representation 1.7.2 for the characteristic 

function of the Levy process Lt. This theorem allows to represent the characteristic 

function of Lt in the following form

where the function tp(u) has a unique representation dependent on so called character­

istic triplet v), where a2 and y are determined by ELt = yt and VarLt = a2t.

Additionally, — OQ<y<oo,0<a2<oo and v is a Levy measure defined by 1.7.2. 

Using those facts we may prove the next lemma.

Lemma 3.1.2.

divisible. Note that the both processes J0* e @ydZ± are monotone increasing and so

EeiuLt —

(by distribution) (3.1.4)
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Proof:

We will show that the LHS and RHS have the same characteristic function. Let

log (EetuLt) = tp(u).

Then, using representation 1.7.4 and introducing a new variable z = ue /3y, we get 

the following

log (E exp (iuiu 'I e-^dLy))
-fit

i’(z)
0z

dz, t > s > 0.

Similarly,

log(i?exp(me 131Z)) = log(E exp(iue i3t e dLy))
-pt

P{z)
(3z dz.

Hence,

\og(E(exp(iue~^t Z) + iu [ e~l3ydLy)) = [ ^dz f H ^-dz
Js Jo J ue~l3t

-0s
'ipO dz = log Eetue~0sz = log Eeiue^sz{l3’L\

which proves 3.1.4.

Recall that M(Ft, P) is a class of all martingales with respect to a natural filtration 

E, and a probability measure P. Refer also to definition of a martingale 1.2.8 and the 

optional stopping theorem 1.2.5.

Further denote

H(x) = E1(Z(0,L) > x) = P(Z((3, L) > x).
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Proposition 3.1.3. Let £dog(l + \Lt\) < oo. Then

H(Xt) G M{Tt,W).

Proof:

To check the martingale property we need to show that for any t > s

E(H(Xt) | Ta) = H(XS)

and that the expectation E(H(Xt)) is finite.

To show finiteness of E(H(Xt)) we need to just note that the function 

H(x) — P(Z(f3,L) > x) is bounded, which is of course true as H(x) is a tail distri­

bution function of the random variable Z(p,L).

Now we need to show that for any I > s

E(H(Xt) | Ta) H(Xa).

Let random variable Z = Z(0, L) in distribution and let Z be independent of Lt. 

According to the Fubini theorem 1.2.2

E(H(Xt) | Ts) - E(I(Z - Xt > 0) | Ta).

Further,

E(I{Z - Xt > 0) | Ts) = E(l(Z - e/\Xse-ps - e~pydLy) > 0) | Ts) =
J S

= E{l{e~mZ + / e-^dLy - Xse~0s > 0) | Ts).

According to the equation 3.1.4 the above coincides with

E(l(e~psZ-Xae~ps > 0) | Es) = E(I(Z-XS > 0) | Fa) = E1(Z-XS > 0) = H(XS),

which proves that H(Xt) is a martingale.

This result leads to the following form of the infinite time probability of ruin.
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Proposition 3.1.4.
p, , H(x)

(T,<00) E\H(Xt,) I <r(T,)]’

where is a sigma - algebra generated by values of the random variable ti.

Proof:

By the optional stopping theorem 1.2.5,

EH(Xt) = H(x),

where x is the value of the initial assets and r = min(p,f). This implies that

El{ri > t)H{Xt) + E1(ti < t)H{Xri) = H(x)

Consider this equation for t —»• oo. Note that on the set (p > t) we have the bound 

P(Z — Xt > 0) < P(Z — l > 0). Due to independency of n and Z and the fact that 

E\Z\ < oo we have

EI(n > t)H(Xt) < P(n > t)P(Z - l > 0) ^ 0.

Further, applying a monotone convergence theorem we obtain the following

EI(ri < oo)H(Xn) = H(x),

which implies

P(n < oo)
H(x)

where <7(77) is a sigma - algebra generated by values of the random variable 77.
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3.2 Examples

3.2.1 Wiener Process

This section will deal with the case when the Levy process is a Wiener process. 

Hence,

Lt = Wt = ct + crBt,

where Bt is a standard Brownian motion.

The moment generating function of such defined Levy process is equal to

EeuWt _ et(cu-^~ u2)

Further, by proposition 1.7.4 we obtain the following

i .-I vz r °z ~ ^z2, °u ^2«2 
log EeuZ = -----^—dz =

I o j3z P 4P
2 -Hence, the distribution of the random variable Z is Further, as Wt is a

continuous process P(ti < oo) = This implies

P(n < oo) =
P(Z > x) Xf e~~~^~wdz

P(Z>1) jcoe-i^2Pdz

3.2.2 Compound Poisson Process with Exponential Jumps

This example is concerned with the case of exponential jumps. Namely the Levy 

process Lt is given by the compound Poisson process of the form

Lt — (£i + • • • + £,Nx(t)) — ct, t > 0,

where are i.i.d. random variables with exponential distribution with parameter 

p. This choice of the distribution of jumps allows to represent the possible overshoot
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through level l by a random variable A;, which turns out to have the same exponential 

distribution with parameter p due to the memoryless property of the exponential 

distribution.

Proposition 3.2.1. Let Z be a random variable independent of Lt and having the 

common distribution with Z((3,L), which is defined by 3.1.2. Then

Z + c
P

(3.2.1)

and

Z + A,^ r<^ + 1

Proof:

We consider exponential jumps and a Levy process of the following form

Nt(X)

Zt 'y ^
k=l

where £* ~ Exp(fT). Then the characteristic function cumulant (proposition 1.4.2) is

V'(u) AE(eultk -l)-icu = x(----- -
VI — %iu/pi

Xiu
icu =----------- icu.

H — vu

Further we use 1.7.4 in order to determine the characteristic function of Z(p,L). 

Hence,
logEexp(iuZ(P,L)) = j ^^-dz = ^ f —%—dz-~ =

Jo Pz P Jo n-iz P
icu X icu A. .. ...

—w ~ ~p °s M _ ^ °= —W ~ P °s 1 - lu ** '

Therefore,
ICU A

Eexp(iuZ(P, L)) = exp(——)(1 — iu/n)~0,
y
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which means that the random variable Z((3, L) + ~ Gamma(/j,, ^), with the density

function

M = tie-'tvW*-1/n\/l3)t y> 0.

Because ~ Exp(p) which is T(/x, 1) we also get

We may now use proposition 3.2.1 and rewrite the probability of ruin in infinite 

time as follows

P(ti < oo) P(Z > x) 
P{Z + Ai > l)

X°°_ e ldz+x

AtA//?+1 ft°_,, e~^zzx/<3dz

Us + !)/r+.,/«e m(pz)x,a 'dz

f* Sr^-Hxm '

And eventually,

P(ti < oo)
gr(|,(s +j);*)

r(| + !,(/ + |)/r)
(3.2.2)
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3.3 Finite Time Ruin Probabilities

This section includes generalisation of Harrison’s results presented in the previous 

section. We propose a family of martingales, which leads to an explicit representation 

for the Laplace transform of the stopping time 77. This Laplace transform can be 

eventually inverted numerically and the finite time ruin probability P{ji < T) can 

be determined. We also consider a special case when the Laplace transform can be 

inverted analytically. Further, we compare these analytical solutions with results 

obtained by Monte Carlo simulation.

Denote ;r+t' = I(ar > 0).D' for any v where 1(H) is an indicator function of the set 

A. Then set

G+(x,v) = E(Z([3,v)-x)+v.

Note that when v = 0

C, (•'••<)) - //(.r).

Now we may formulate the following proposition.

Proposition 3.3.1. Let v > 0 and assume that E\Lt\v < 00. Then

G+(Xt,v)e~l3vi G M(Et, P).

Proof:

To check the martingale property 1.2.3 we need to show that for any t > s

E(G+(Xt, v)e-0vt | Ts) = G+(Xs, v)e^vs

and that the expectation EG+(Xt,v) is finite.

In order to show finiteness of EG+(Xt, v) we need to apply the following inequality

da| + i6ir <a(iar + i&n.
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According to this inequality

0 < EG+(Xt,v) = E(Z - Xt)+V < CV{E\Z\V + E\Xt\v) < oo,

were Cv is a constant and the RHS is finite because the condition E\Lt\v < co implies 

finiteness of both E\Z\V and E\Xt\v.

Now we need to show that for any t > s

E(G+(Xt,v)e^vt | Ts) = G+{Xs,v)e~pvs.

Let random variable Z = Z(p,L) in distribution and let Z be independent of Lt. 

According to the Fubini theorem 1.2.2

E(G+(Xt,v) | Fa) = E((Z-Xt)+v | Xs).

Further,

E{GV{Xuv)e~0vt | Ta) = E((Z - Xt)+V \ Ts)e~0vt =

Ts)e-pvt =

E{(e'mZ + J er^ydLy - Xae~f}s)+V \ Ta).

By lemma 3.1.4, the above coincides with

E((e~0sZ - Xae~08)+V | Ta) = E((Z - Xs)+V \ Es)e-0VS.

Again by Fubini theorem we get G+(XS, v)e~l3vs, which proves that G+(XS, v)e~l3vs is 

a martingale.

E((Z - e0t{Xse~Ps - e-^dLy))+v

The next proposition uses the optional stopping theorem and leads to a formula

for the Laplace transform of 77.
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Proposition 3.3.2.

EI(n < oo)e~l3vTl G+(x, v)
E[G+(XTl,v)\a(rl)Y 

where a{r{) is a sigma. - algebra generated by values of the random variable ti

(3.3.1)

Proof:

By the optional stopping theorem,

EG+(.XT,v)e~PVT = G+(x,v)

for any bounded stopping time r and so for r = min(r;,t). It implies that

EI(n > t)G+(Xt,v)e-0vt + EI(n < t)G+(XTl,v)e-?VTl = G+(x,v).

Consider this equation for t —> oo. Note that on the set (q > t) we have the bound 

(Z — Xt)+V < (Z — l)+v. Due to independency of q and Z and the fact that E\Z\ < oo 

we have

EI(n > t)G+(Xt,v)eXl3vt < P(ti > t)E(Z - /)+ve-^‘ _► 0 

Applying the monotone convergence theorem we get

El(n < oo)G+(XTnv)e-^VTl = G+(x,v).

This implies that

El{n < oo)e-pvn G-(x, v)
E[G+(XTnv)\a(rl)Y

where <r(p) is a sigma - algebra generated by values of the random variable q.
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3.4 Examples

3.4.1 Wiener Process

Similarly, as in the section 3.2.2 we consider Lt = Wt, where Wt is a Wiener 

process. However, this time we are concerned with the finite time ruin probabilities 

of ruin P(n < T). As stated before, we derive the Laplace transform of n and in this 

example, as we do not observe jumps down of the risk process Xt) we have XTl = l 

on the set {ti < oo} and therefore we have the explicit formula

El{n < oo)e-f}vn = G+(x,v) 
G+(l, v)’

where G+(x,v) = E(Z(/3,L) — x)+v = /x°°(o — x)vf(z)dz. Hence, for the Gaussian
^ 2case the distribution of Z is normal with parameters and Therefore,

EI(n < oo)e~fivTl
f™(z - xYe

(z-c/py
2l3dz

. {z-c/(3)2 ,
j^iz — x)ve ' 2/3dz

which coincides with the results of the section 3.2.2 for v = 0.

3.4.2 Compound Poisson Process with Exponential Jumps

Consider an example of exponential jumps which was previously described in sec­

tion 3.2.2. Having the proposition 3.2.1 it is easy to determine the Laplace transform 

3.3.1 for the exponential distribution of jumps. Note that 3.3.1 can be rewritten as 

follows

EI{n < oo)e~l3vTl E(Z - x)+v 
E(Z + A; - l)+v

E(Z - x)+v = E(Z + ^-(^+ x))+v =

Moreover
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E{l(Z + — (— + x) > 0)(Z + — — (— + x))v).

Using 3.2.1 the above becomes the following

(z-(- + x))vdF(z),
J j+x y

where F(z) is the distribution function of the random variable Z + ■|. It follows from 

the proposition 3.2.1 that the above is equivalent to

X//3 r oo

ni)
_ X + Xjydz

Repeating the above calculations we get

'0

E(Z + Ai-l) 

which leads to the final formula

. A//3+1 roo
+* = JL------ - e-^z^iz -{-3 + l))vdz,

r(| + ! )Jf+i 1 73 ;; '

EI(n < oo)e-^VTl
\ fT+xe ^zzx/lS l(z - (| + x))vdz

pH JT+l e-vzzx/P(z - (| + l))vdz ’

then after a slight change of variables we get

X fc°+x e~tlzzx/^~1(z - (| + x))a/l3dz
El{n < oo)e'aTl

Jc°+i e fZZzX//>3(z — (| + l))a/Pdz
(3.4.1)

Notice when a = 0, equation 3.4.1 becomes a probability of ruin in infinite time, 

which coincides with 3.2.2.
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3.5 PIDE Solution

The aim of this section is to confirm the results of this chapter. We find an ex­

plicit representation for the Laplace transform of the stopping time p in the integral 

form for the case of exponential jumps. We use the Theory of Piecewise Determin­

istic Markov Processes (PDMP) and the Ito formula in order to find the integro - 

differential equation for the first passage time under a given level l. Then we find a 

bounded solution of this integro - differential equation expressed by a special func­

tion. Furthermore, we change this form of the solution using integral representation 

and properties of this special function in order to match the solution 3.4.1.

3.5.1 The Dynkin’s Formula

Recall the formula for the generator of the OU - process given by 2.3.2:

where F(x) is the distribution of the jumps £. Moreover, g(x) is a continuously 

differentiable and bounded function.

Theorem 3.5.1 (Dynkin’s Formula, [27]). Let ri be a stopping time and assume 

that qa{x) is bounded and twice continuously differentiable on x > l with a bounded 

first derivative there, ■where we at y = l mean the right - hand derivative. If qa(x) 

solves

L[qa(x)\ - aqa(x) = 0 for x> l (3.5.2)

together with the boundary conditions

qa(x) = 1 for x < l
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and

litii — £)) — 1, where P(£ > 0) = 1,

lim qQ{x) = 0.

Then

qa(x) = E(e~aTt).

3.5.2 Exponentially Distributed Pulses

In this section we assume that f is exponentially distributed random variable with 

a positive parameter p and the parameter c = 0 in 3.0.1.

Proposition 3.5.2. With a natural hypothesis that qa(x) is twice differentiable for 

x > l, equation 3.5.2 is equivalent to

(dxq'ffx) -f (ppx + P - A - Q‘)q'a(x) - anqa(x) = 0 (3.5.3)

Proof:

Let <$; have the exponential distribution with parameter p, > 0. Then 

dF(u) — pe~^adu. u > 0, and 3.5.2 becomes

Pxq'a(x) + A
pOQ

qa(x — u)pe~tiudu — qa{x)
Jo

aqa(x) = 0, (3.5.4)

setting c — 0.

Observe that

/
•oo

Integrating by parts

L •oo
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From 3.5.4

-A* yj Qa(x- u)fj.e ^'du - qa(x)J = j{fixq'a{x) - aqa(x)). 

Differentiating 3.5.4 with respect to x and using the fact that

, qa(x - u)n-e *udu | = j(fixq'a(x) - aqa(x)),

we get

fixq'a(x) + infix + fi - X — a)qa{x) — a.fj,qa{x) = 0.

GENERAL SOLUTION TO THE INTEGRO - DIFFERENTIAL EQUATION 3.5.3

It is known that the solution of 3.5.3 is expressed in terms of second kind confluent 

hypergeometric function T(a,6,;r). known also as Rummer function, and generalized 

Laguerre polynomials L(a,b, x).

Moreover, the general solution of 3.5.3 is a linear combination

where

qa(x) = C’i T i (x) + C2L1(x),

t / \ °+A -r„ T (ex 3~ fi a + X + fi
T1(x) = x^e ;T(——,--------------- ,xqi\,

r / \ Q, + >. _r / —OL — fi Ct + A
Li(x) = x 0 e 0| —-—, —q— ,xn |.

are independent solutions of 3.5.3 and constants C\, (Q are defined from some addi­

tional conditions.
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BOUNDARY CONDITIONS

In order to find the explicit solution we use the following two boundary conditions:

1. lim^oo qa(x) = 0,

2. Dynkin’s formula 3.5.2 together with limxp Ex(qa(x — £)) = 1, where

p K > o) = i.

The first boundary condition is limiting the solution to the following

, , „ r ( ck T 0 q. + A + 0
qa(x) = Cx e -------—-,xn

0 0

which also limits the number of constants we need to find. In order to find C we use 

the following representation of the second boundary condition.

Proposition 3.5.3. The Dynkin’s formula, 3.5.2 together with

limEx(qa(x — £)) = 1, where P(f > 0) = 1.
x[l

is equivalent to

PWaXO — (A U Q')7a(0 + A — 0.

Proof:

We know that the generator of the process Xt has the following form in case m — 0

roc
L[qa{x)} = 0xq'Q(x) + A [qa(x - u) - qa(x)]dF(u).

Jo

Therefore, the Dynkin’s formula 3.5.2 takes the form

(3xq'a(x) + A - u) - qa(x))dF(u) - aqQ{x) = 0.
Jo
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This can be written as

f3xq'a(x) + AEx(qa(x - £)) ~ Ma{x) - aqQ(x) = 0. 

Passing to the limit when x —>■ l we get

Plqa{l) — (At a)qQ(l) T A — 0.

Proposition 3.5.4. The second boundary condition

P^QaP) — (At a)qQ(l) T A — 0.

is satisfied for

qa{x)
A

x Ve^Tj fj,

p > p

and it has the following integral representation:

A /i°° e~^tz{z — x)a^ zx^6~1dzqa(x) = pH /;°° e~»z {z - ly/PzWdz

Proof:

The second boundary condition

Plq'ai0 - (AT a)qa{l) T A = 0

(3.5.5)

takes the following form

eT _ Cpl^p. ( T ( ^±la + (3 + XJ.p
P P

-g'fgL+fl^ + ft+A^i} =0,
p p
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for
/ \ s~i a+A -ru T / Q 4" P a + A + /i \ 

qa(x) = Cx e e ^(—j~,---- p—~,xnj.

This immediately leads to the formula for the constant C and qa{x) as in 3.5.5. This 

is due to the fact that for the second kind confluent hypergeometric function T(a, b, x) 

the following property holds:

T(a,6,x) — T'(a,6, x) = T(a,6 + l,x).

The integral representation is obtained by using the following representation:

fOO
T(a,6,x) = —- e-xt{t-lf-H b~a~ldt.

r(o) J i
(3.5.6)

Using 3.5.6 we obtain

—xu >Ti I a U /? q:TA + /3 x fi e XMT| ——,-------—I =
P ’ P

i \ r°°
= * x^~e~x^ e~XiXt{t - 1 )a/Hx/0-xdt

J1
1 r°°= Jx e~Xflt('xt - x)a//3(xt)x/l3^xdt.

Introducing a new variable z -- xt we get the following

1 f°°
---- X3- e7>"(z-xT!f,2XII3-'dz.T(^) l K 1

Similar calculation is valid for

The above becomes

r( 2±P\ e-^{z-l)a/pzx/pdz.
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Eventually,

qa{x)
X Jx°°e ^(z — x)a^zx^ ldz

fin e^txz(z — l)al^zxl^dz ’ 

which coincides with 3.4.1 when c = 0 and confirms the result obtained by the mar­

tingale method.
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3.6 Special Case and Numerical Results

This section is devoted to the numerical confirmation of the results of this chapter. 

As it was shown above we cannot always find an explicit formula for the finite time 

ruin probability P(n < T). However, the distribution of the stopping time 77 can be 

expressed as a Laplace transform of 77. Further, the Laplace transform can be inverted 

numerically in order to obtain the probability of ruin in the finite time P(ti < T).

This section, however, identifies a special case when the solution can be obtained 

analytically. We derive the explicit formula through inversion of the Laplace transform 

and confirm the result with the Monte Carlo simulation.

3.6.1 Explicit Solution for the Case A = (5 and ~ Exp(l)

Consider solution 3.4.1 with A = (5 and ~ Exp( 1). Then

JZxe-z(z- (f + x))a/<3dz
EI{n < oo)e —ari

IT+le~zz{z - (f + l))a/<3dz'
(3.6.1)

Introducing new variables u = 2 — + x) and v = z — (| + /)we get the following

./o°°
El(n < oo)e~QTi

/0°° e v + | + tyya/Pdv

Further, this can be expressed by a gamma function r(z) = f^° tz 1e tdt. It follows 

that

E\{ti < oo)e-an _
e-(f+a;)r(a + 1)

-(#+0e"v^‘y(r(| + 2) + (f+ /)r(f+ 1)

We may now utilize the fact that T(a+1) = aT(a) and simplify the Laplace transform 

to the following
J — X

M(t7 < oo)e~QT' =
a + i + c.i- r Tr
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Moreover, assuming that a = 0 we get the probability of ruin in infinite horizon for

this particular case.

This further implies that

P{ti < oo)
— X

1 + | +

1 + % + l
E{e~QTl \n<oo)= p

§+l+f+f

as EI(ti < oo)e QT| = E(e aTl | n < oo)P(tj < oo). Furthermore,

E{e~aTl | n < oo + f + 0
a + P(1 T ^ T 0

(3.6.2)

We may use now the property of an exponential random variable. Namely, its form 

of the Laplace transform. It is known that if £ ~ Exp(A), then E(e~a^) = 

Therefore, expression 3.6.2 implies that the conditional distribution of p given 77 < 00 

is exponential with parameter /3(1 + | + l). Hence,

Pin < T) =. P{Tl < 06)Pin < T \ n < 00) = (1 - e-^n+'+f)).
1 + ^ +1

3.6.2 Monte — Carlo Method

Monte - Carlo method is widely applied to problems, which are too complex 

to solve analytically. This numerical method solves a problem by generating suitable 

random numbers and observing that fraction of the numbers obeying some property or 

properties. In our simulation we observe the trajectories of the Ornstein - Uhlenbeck 

process, which models the surplus of the insurance company. Further, we approximate 

the probability of ruin by the fraction of trajectories which cross the predefined ruin 

level. This method is based on the frequency approach to the definition of probability,

as

P(A) lim
n—>00 n
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or, for n large enough

P(A) n(A)
n

where A is an event, n(A) is a number of times the event A occurs and n is a total 

number of experiments. The fraction AAl js called relative frequency of the event A.

To speed up the Monte - Carlo simulation of 77 and X(ri), in particular l = 0, we 

use the following approach. Note that the paths of the process Xt are determined by 

the jump values located at (Tk)k>i. The corresponding values of the process Xt at 

these moments of time are then defined by the following recursion:

X(T0) = X(0) = x,

xm = -j + (*(n_.) + k = 1,2,....

Further, let X be an exponentially distributed random variable with parameter A. 

Then

ePx~ij-t3/\ U~Unif( 0,1).

In particular, when A = [3 = 1, ef3X ~ l/Unif(0,1).

Using the above representation we conclude that the values of the process Xt at 

the jump times can be computed using the following recursion:

X(T0) = X(0) = x,

X(Tk) =~j+ (Xin.,) + j) U-?/x -£k, k= 1,2,..., 

where!/ ~Unif( 0,1).

3.6.3 Numerical Results

In order to confirm our analytical solutions we use Monte - Carlo simulation 

introduced in section 3.6.2. We consider the special case discussed in section 3.6.1.
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Time Explicit Solution Monte - Carlo simulation
10 0.099053 0.09909870 (0.00008964)
20 0.164136 0.16411287 (0.00011111)
30 0.206898 0.20686806 (0.00012152)
40 0.234995 0.23505948 (0.00012721)
50 0.253456 0.25349827 (0.00013050)
60 0.265585 0.26566926 (0.00013251)
70 0.273555 0.27353233 (0.00013373)
80 0.278792 0.27877550 (0.00013452)
90 0.282232 0.28225939 (0.00013503)
100 0.284493 0.28450591 (0.00013535)

Table 3.1: Comparison of the numerical results and the explicit solution for A = (3 = 
0.02, c = 0.002, x = 1.5, l = 1.0 and ~ Exp( 1).

Namely, we confirm that for A = f3 and ~ Exp{\) the solution for the finite time 

probability can be expressed as follows

Pin < T)
J — x

{'0+l
(! _ g-iW+i+f)).

We perform the computation for A = (3 — 0.02, c = 0.002, x = 1.5, / = 1.0 and 

~ Exp(l). The comparison of the numerical results and the explicit solution is 

included in Table 3.1 and also illustrated graphically in Figure 3.1.

To conclude, we can clearly see that Monte - Carlo simulation confirms the analyt­

ical results. The fit of the explicit solution to the results of Monte - Carlo simulation 

is very good, which can be seen in Figure 3.1.
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Figure 3.1: Comparison of the numerical results and the explicit solution for A = (5 = 
0.02, c = 0.002, x = 1.5, l = 1.0 and ~ Exp( 1).



Chapter 4

Diffusion Approximation for the 

Model with Time Dependent 

Interest Rate

Consider a surplus model of an insurance company defined by the following 

Stochastic Differential Equation (SDE):

Xq — x, dXt = PtXtdt + dLt, t > 0, (4.0.1)

where (3t is a time dependent interest rate. Process Lt is a Levy process, which models 

the income of the insurance company. In particular, Lt is a Compound Poisson process 

of the form
Nt( A)

Lt = mt- ^ &,
1=1

where Nt(X) is a Poisson process with a positive parameter A, while ^ are i.i.d. random 

variables such that P(£i > 0) = 1. Parameter m is a positive drift parameter, which 

can be associated with incoming premiums.

81
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We also define a stopping time

tl = inf {t > 0 : Xt < L},

which is a first crossing time through the general boundary L < x by Xt.

The aim of this chapter is to find the distribution of the stopping time tl, namely 

P(tl < T), 0 < T < oo. This is achieved by a diffusion approximation of the model 

4.0.1. Further, the first crossing time problem for the diffusion process is transformed 

into an equivalent first passage time problem for a standard Brownian motion through 

a moving boundary. Finally, the moving boundary is again approximated by a piece­

wise linear function and the distribution of the first crossing time through this barrier 

is found. Additionally, we focus on a special case of the problem. Namely, we con­

sider the model 4.0.1 with the drift parameter m = ~ Exp(a) and the barrier

L — 0. It turns out that there exists an easy analytical formula for P{tl < T) in this 

particular case. This and other results of this chapter are confirmed by Monte Carlo 

simulation.

4.1 Diffusion Approximation

The idea behind diffusion approximation is simply to approximate the risk process 

by a Brownian motion (or a more general diffusion) by fitting the first and second 

moments, and use the fact that first passage probabilities are more readily calculated 

for diffusions than for the risk process itself.
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Definition 4.1.1 (Diffusion Process, [33]). By the SDE

dX(t) = a(t, X{t))dt + a(t, X(t))dW(t) (4-1-1)

we mean the equation

X(t) = X(0) + <r(v,X(v))dW(v), t> 0,

and a stochastic process X(t) fulfilling 4.1.1 is its solution. If the solution is unique, 

then the process X(t) is called a diffusion process with infinitesimal drift function 

a(t,x) and infinitesimal variance a2(t,x) at (t,x), provided that a2(t,x) > 0 for all 

t > 0. We also say that X(t) is an (a(t,x),a2(t,x)) - diffusion.

Theorem 4.1.1 (Existence of a Unique Solution, [33]). Assume that 

E(X2(0)) < oo and that for any x > 0 there exists a constant cx G (0, oo) such that 

for all y,

a(t, z) - a(t, y) \ + | a(f, z) - a(t, y) |< cx V

and

a2(t,y) + a2(t, y) < cx( 1 + y2)

whenever 0 < t < x. Then there exists a unique solution X(t) to 4.1.1.
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The following proposition is a simple implication of theorem 4.1.1 and definition 

4.1.1 as well as the Ito formula 1.5.2.

Proposition 4.1.2. A stochastic process Xt described by the following SDE 

d.Xt — (0tXt + m)dt + adBt, where Bt is a standard Brownian motion (4.1.2) 

has a unique solution expressed by

Xt = etiM3)d3(X0 + m [ e-KPW’du + a I e~ ^s)dsdBu), (4.1.3)
Jo Jo

where Bt is a standard Brownian motion. Therefore, Xt is a well defined diffusion 

process.

Recall the definition of the weak convergence for stochastic processes.

Definition 4.1.2 (Weak Convergence, [37]). A sequence (Ahn) : n £ N) of 

stochastic processes is said to converge weakly to a stochastic process X if for every 

bounded continuous functional / it follows that

lim E\f(X(-n))] = E[f(X)}.71—► OO

In this case we write => X.

Proposition 4.1.3. A sequence of stochastic processes defined through the SDE 

dX{n){t) = p^X^dt + dL(tn), X[0n) = L0, 

converges weakly to the diffusion process Z satisfying the SDE

dZt = fJtZtdt + d.Wt, Z0 = B0. (4.1.4)



Proof:

We may use the fact that => W implies X^ =>• Z, Schmidli [37]. Therefore, 

it is sufficient to prove that Z/n) => W. This fact is an implication of two theorems, 

the Donsker’s theorem for random walks 1.3.4 and theorem 1.7.1. We have a Levy 

process
NtW

Lt = mt - &•
i=l

Using the above mentioned theorems we get

L(tn) E(L[n))
N(0, a2t).

Hence, the Levy process Lt converges weakly to a Wiener process Wt such that 

a2 = Var(Wt) = Var(Lt) and p = E(Wt) = E(Lt). In our case Var(Lt) = AtE(£2) 

and E(Lt) = —AtE(£) + mt.

Define the ruin times rn = inf {t > 0 : < 0} and r = inf {t > 0 : Zt < 0}.

We are interested in the convergence of the ruin probability P[rn < t] to the corre­

sponding ruin probability of the diffusion.

Lemma 4.1.4. Let (Vn : n G N) be a sequence of real random variables, and V be a 

random variable such that Vn => V and Var(V) < oo. If

lim sup Var(Vn) < oo
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Proposition 4.1.5 (Convergence of Finite Time Ruin Probabilities, [37]).

Let X^ be a sequence of stochastic processes with sample paths in D, X^ => 

X, where X is a diffusion process, and define r“ = inf {t > 0 : X^ < a}, r° = 

inf {t > 0 : Xt < a] for a constant a € R. Then r“ ==^ ra, in particular

lim P[r“ < t] = P[ra < t].
n—>oo

Proof:

To prove this theorem we use the definition 4.1.2 of weak convergence and the lemma 

4.1.4. We may interchange the limit and expectation since limsup^^. Var(r%) < oo. 

As a result of that we get the weak convergence r“ =>■ ra and in particular

lim P[r“ < t\ = P{ra < t}.
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4.2 First Passage Time Problem for a Gaussian 

OU - Process

As described in the previous section, any OU - process driven by a Levy process Lt 

can be approximated by a Gaussian OU - process Zt. Furthermore, solving the first 

passage time problem for the diffusion process Zt we get a proper approximation for 

the ruin probabilities of the general OU - process. Hence, we consider the following 

model

Z0 — x, dZt = (PtZt + c)dt + aBt, t > 0 (4.2.1)

where c = m — AE(£) and a = \JAWe study the first passage time of the 

process Zt under the level L < x. Therefore, the stopping time is defined as

tl = inf {t > 0 : Zt = L}.

4.2.1 General Solution

Consider the model 4.2.1 with its explicit solution

Zt = e4o ^ds(Z0 + c f e~ f° p{s)dsdv + a f e~ P{s)dsdBv).
Jo Jo

We are interested in a distribution of the stopping time tx, hence we can express the 

non - ruin probability as follows:

P(tl >T) = P(Zt >L,t<T) =

= P(eJ° 0(s)ds{Zo + c [ e~fo ^dsdv + a f e~fo p{s)dsdBv) > L, t<T) =
Jo Jo

nt rt
= P(Z0 + c e~f° ^s)dsdv + a e~fo ^dsdBv > Le~ti0{s)ds, t <T) =

Jo Jo



= P( [ e~^mdsdBv > -e-io^ds _ _ JL f e~j0vPW’dv, t < T).
Jo cr a a J0

At this point we perform a change of time for the Brownian motion. According to 

the theorem 1.5.1, /J e~ So f3^dsdBv has the same distribution as B(f* e~2So d^dsdv), 

where B is another standard Brownian motion, hence the problem is being reduced 

to the following

P(B( f e~2^mdsdv) > -e~til3is)ds - — - - f e~tip{s)dsdu, t < T),
Jo cr a a J0

where B is a new standard Brownian motion. This is of course equivalent to

P(B{ [ e-2%mdsdv) < — - -e~^mds + - [ e~^mdsdv, t < T).
Jo a a a J0
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Let now

u= f e~2fo ^dsdv
JO

If we denote the solution of Joe~2^0 ^dsdv as F(t) we may write that t = F_1(u). 

Hence, we now consider the following problem
ry r __ j rF ^{yJ) pT

P(B(u) < — - —e~J°F (u)^ds + - e-/o u< e~2f° 0{s)dsdv).
cr CT a Jo J0

For a simplicity denote

ft e 2 So P(s)dsdv

and

g(u) Zo _ ^-/0r‘w«# + £ F-^u)
e-/o ^dsdv.

a a a jQ

Therefore, the initial problem was transformed to the equivalent non - ruin probability

P{B{u) < g(u), u < kt),

which implies

P(rL >T) = P{ag(u) > kt)
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for

cr9(u) = inf {u > 0 : B(u) = g(u)}.

Concluding, we have shown that it is possible to reduce a first crossing time problem 

for a Gaussian OU process 4.2.1 under the level L < x to a first crossing time problem 

for a standard Brownian motion over a moving boundary g(u). In the next section 

of this chapter we discuss an existing method, which provides an approximation of 

the distribution of crg(u)- However, before we move to this discussion consider the 

following two special cases of the problem.

4.2.2 Special Cases of the Problem

1) c = 0 and L = 0

Let c = 0 and consider a stochastic process described by the following SDE

dZ( —; fit Zfdt I (j Ifi .

Let also L = 0 and consider the stopping time

To = inf{£ > 0 : Zt = 0).

The above SDE has a unique solution expressed by

Hence, the non - ruin probability can be expresses as follows:
rt

P{tq >T} = P{Zt > 0, t<T} = P{e^^ds(Z0 + a e~ % ^dsdBv) > 0 ,t< T}.

We may now divide by eJo^s)ds^ agguming that fi(t) is a positive function and as a 

result of that we get the following

o
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According to the theorem 1.5.1 we may substitute f*e io ^dsdBv for a standard 

Brownian motion of the form B( /]j e~2^ l-{sidsdv). Hence, we have

P{B{ f e~2fo ft*)d*dv) > - —, t < T}.
Jo a

Furthermore, introducing a new variable u = /J e~2^ we get

P{B(u) > u < [ e-2!°0is)dsdv} = P{B(u) < —, u < f e~2S° 0{s)dsdv},
° Jo ° Jo

from the properties of a Browinan motion. Denoting kt = e~2f° ^dsdv and

defining a new stopping time

= inf{u > 0 :B = —},
^ a

we obtain the following:

P(t0 > T) = P(a_z_o > kt)-
a

Therefore, according to the theorem 1.3.5 the density function of azo, which is equal
a

to the density function of To can be expressed by:

pazn W = v4^3exp{~^T}- where s = Jo e~2^P(s)dsdv.

2) Constant interest rate

Let pt = P = const. In this case the problem is simplified to the following

-20T

Pa V a Pa -

which is illustrated in Figure 4.1.

Hence, it is a first crossing problem over the square root boundary by the standard 

Brownian motion. Square root boundaries were previously considered by Breiman [5], 

Sheep [38], Novikov [21] and Sato [35]. Mellin transforms for density functions of the
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Figure 4.1: Boundary Crossing Problem for the Brownian motion.

stopping times t\ = inf{f > 0 : Bt > a + b\Jt + c}, c > 0 and a + b\fc > 0 as well as 

7"2 = inf> 0 : \Bt\ > by/t + o}, c. > 0 where found by Novikov [21] and Shepp [38], 

respectively. Unfortunately, these results cannot be utilized in our case. Hence, the 

following Piecewise Linear Approximation (PLA), which can be used to any general 

boundary.
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4.3 Piecewise Linear Approximation (PLA)

In general we are interested in the calculation of probabilities of the form

where Bs is a standard Brownian motion.

In this section we consider approximation of Pt(g) by Pt(gn) where, in particu­

lar, the boundary gn is a piecewise linear function. The probability Pt{gn) can be 

calculated as an n - fold integral.

Consider g(s) as piecewise linear functions with nodes C, t0 = 0 < t\ < ■ ■ ■ < tn = 

t. Denote

boundary on the interval i], which matches our needs and can be expressed as

follows:

The following theorem, Novikov et al. [22], gives the representation for Pt(g) as an 

n-fold integral of p(i,g \ x,y).

Theorem 4.3.1.

Pt(g) '■= P{BS < g(s), 0 <s<t}

p(i,9 I X,y) := P{BS < g(s),U < s < ti+1 | Bti = x,Bti+1 = y}.

This conditional probability has a known explicit formula for the case of g a linear

p{i,g I :r.;. .r, i I) = I{g(ti) > Xi,g(ti+i) > xHi) 1-exp 2(g(U) - Xj)(g{ti+1) - xi+1) 
1 ti

n— 1
Pt{g) = E[\[p(i,g\Bu,Bu„)

i=0

Hence, by theorem 4.3.1:

— CO

‘g(tn)=g(KT)

p( o, g\Bt0 = x0, Btl =xi) x ...

xp(n - 1, <? | Btn_1 = xn—\, Btn = xn)dxidx2 ■ ■ ■ dx,
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4.4 Numerical Results

This section focuses on numerical computations. Firstly, it compares the explicit 

solution given in section 4.2.2 with the Monte Carlo simulation. Further, it shows how 

this solution can be used in order to approximate some finite - time probabilities of 

ruin for the general model with the deterministic, time dependent interest rate 4.0.1. 

Secondly, it compares the result of Monte Carlo simulation with the PLA approach 

described in this chapter. PLA is applied in order to approximate the probability of 

crossing the general boundary

by a standard Brownian motion Bv for 0 < u < Kq-. This probability approximates 

the probability of crossing a constant boundary by a Gaussian OU - process. Refer 

also to Appendix B for further description of C++ programs used in this section. 

Consider the following numerical results:

COMPARISON OF THE EXPLICIT SOLUTION WITH MONTE CARLO

SIMULATION

where fi,a = const. Such interest rate has been previously considered by Roberts and 

Shortland [32] and it is the expected value of the risk - free interest rate, It, under a 

Vasicek model satisfying

The explicit formula obtained in section 4.2.2 is compared with Monte Carlo simula­

tion. Assume that the interest rate is a function given as follows:

fit — ft + ae 1

dlt = (ft - Ifidt + adBt,
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Time Explicit Solution Diffusion MC
10 0.00221 0.00220(0.00044)
20 0.02947 0.02913(0.00160)
30 0.07466 0.07195(0.00245)
40 0.12196 0.11944(0.00308)
50 0.16592 0.16233(0.00350)
100 0.32434 0.32105(0.00443)
200 0.48130 0.47985(0.00471)
300 0.56140 0.55699(0.00471)
400 0.61150 0.60923(0.00463)
500 0.64640 0.64498(0.00454)

Table 4.1: Comparison of the explicit solution 4.4.1 with the Monte Carlo simulation 
for the Gaussian model. Non - constant interest rate pt — 0.0002 + 0.1e-<.

with io = (3 + a and <7=1.

We set p = 0.0002 and a = 0.1 in the interest rate pt, t > 0. Further, the 

probability of ruin in the finite - time horizon is given by

r°° 1 x2
P{a0<T) = 2 -7= exp —}dx, (4.4.1)

JIsl V27T 2as/t

where t -= exp{—2 p(s)ds}dv. Table 4.1 compares results obtained by this 

formula with the Monte Carlo simulation for Zq — 5 and a = 0.565685424. This is 

also illustrated in Figure 4.2.

It shows a slight difference between the explicit solution and the Monte Carlo sim­

ulation with stems from the fact that in order to perform the Monte Carlo simulation 

it is necessary to change the time parameter from continuous to discrete. Therefore, 

the probabilities obtained by the Monte Carlo simulation are slightly lower then the 

explicit probabilities. In spite of this differences the explicit solution seems to be 

useful.
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0.3

Figure 4.2: Comparison of the explicit solution 4.2.2 with the Monte Carlo simulation 
for the Gaussian model. Non - constant interest rate f3t = 0.0002 + 0.1e_L

Additionally. Table 4.2 shows a similar comparison, however the interest rate is 

assumed to he constant p — 0.0002. This is also illustrated in Figure 4.3.

APPROXIMATION OF THE INFINITE - TIME PROBABILITY OF RUIN FOR

THE GENERAL MODEL 4.0.1

Results of this chapter, in particular the explicit solution introduced in section 4.2.2, 

can be used as a good approximation of the finite time ruin probabilities for the 

general model 4.0.1. This result, however can be just applied for the drift parameter 

m equal to ^ and jumps £* ~ Exp(a). The interest rate, nevertheless, can be any 

deterministic, bounded function of time. For the purpose of this illustration it is 

assumed that the interest rate is equal to

pt = 0.0002 + 0.1e“L
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Time Explicit Solution MC simulation
10 0.0051439 0.004991(0.0002114)
20 0.0476611 0.045453(0.0006249)
30 0.1055360 0.102405(0.0009095)
40 0.1605760 0.156796(0.0010908)
50 0.2090230 0.204257(0.0012095)
100 0.3719980 0.366295(0.0014454)
200 0.5237730 0.518531 (0.0014990)
300 0.5991010 0.594370(0.0014730)
400 0.6457080 0.641031(0.0014391)
500 0.6779920 0.673463(0.0014068)

Table 4.2: Comparison of the explicit solution 4.2.2 with the Monte Carlo simulation 
for the Gaussian model. Constant interest rate p = 0.0002.

Figure 4.3: Comparison of the explicit solution 4.2.2 with the Monte Carlo simulation 
for the Gaussian model. Constant interest rate p = 0.0002.
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Time Explicit Solution General Model MC
10 0.00221 0.01168(0.00032)
20 0.02947 0.04994(0.00065)
30 0.07466 0.09513(0.00088)
40 0.12196 0.13985(0.00104)
50 0.16592 0.18010(0.00115)
100 0.32434 0.32683(0.00141)
200 0.48130 0.47862(0.00150)
300 0.56140 0.55645(0.00149)
400 0.61150 0.60607(0.00147)
500 0.64640 0.64086(0.00144)

Table 4.3: Comparison of the explicit solution 4.2.2 with the Monte Carlo simulation 
for the general model. Non - constant interest rate (3t = 0.0002 + 0.1e-t.

Further, A = 1 and a = 2.5, hence m = 0.4. The initial value of the process is equal 

to 5 and the parameter a for the explicit solution is equal to = 0.565685424. 

Table 4.3 shows the comparison of the explicit solution with Monte Carlo simulation 

for the general model 4.0.1, which is also illustrated in Figure 4.4.

This approximation seems to be not sufficiently accurate for small probabilities, 

however the accuracy increases with the increase of the probability of ruin.

PIECEWISE APPROXIMATION

Table 4.4 summarises results of three Monte Carlo simulations. The General Model 

is the model 4.0.1 with exponential jumps with parameter a = 5.0. We also assume 

that A = 1.2, X0 = 30, j3t = 0.0002 + 0.0001e-t and (drift term) m — 0. Diffusion 

Approximation must be performed for the same f3t = 0.0002 + 0.0001e-i and Z0 = 30 

but c is assumed to be equal to —^ = —0.24 and a = = \/0.096 = 0.309839.

Piecewise Linear Approximation is valid for the same parameters as the Diffusion 

Approximation. Number of trials for General Model is 106, whereas it is 105 for both



98

Figure 4.4: Comparison of the explicit solution 4.2.2 with the Monte Carlo simulation 
for the general model. Non - constant interest rate (3t = 0.0002 + 0.1e~h

Diffusion Approximation and Piecewise Linear Approximation.

Similarly, Table 4.5 summarizes results of another three Monte Carlo simulations. 

The General Model is the model 4.0.1 with exponential jumps with parameter a = 5. 

We also assume that A = 1.2, Xo = 30, (3 = 0.002 and m = 0. Diffusion Approx­

imation must be performed for the same (3 = 0.002 and Zq = 30 but c is assumed 

to be equal to — ^ = —0.24 and a = = \/0.096 = 0.309839. Piecewise Linear

Approximation is valid for the same parameters as the Diffusion Approximation.

The probabilities obtained for both examples indicate that Piecewise Linear Ap­

proximation seems to be very closely related to the diffusion model. It confirms our 

calculations indicating that the PLA’s ruin probabilities are greater then the ruin 

probabilities obtained for the diffusion model. We may notice, however that the 

diffusion approximation to the more general model is less accurate.
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Time General Model 
a — 5.0, A = 1.2

X0 = 30.0, to = 0.0

Diffusion Model 
c = -0.24, n = 0.309839 

Z0 = 30.0

Piecewise Approximation 
c = -0.24, a = 0.309839 

Zq = 30.0
90 0.00303(0.00016) 0.00176(0.00040) 0.00184(0.00012)
100 0.02554(0.00047) 0.02380(0.00145) 0.02387(0.00044)
110 0.11531(0.00096) 0.12363(0.00312) 0.12382(0.00096)
120 0.31494(0.00139) 0.33693(0.00448) 0.34299(0.00139)
130 0.58032(0.00148) 0.60694(0.00463) 0.61249(0.00143)
140 0.80576(0.00119) 0.82170( 0.00363) 0.82225(0.00143)
150 0.93299(0.00075) 0.93341(0.00237) 0.93520(0.00072)
160 0.98274(0.00039) 0.98065(0.00131) 0.98140(0.00039)
170 0.99650(0.00018) 0.99550( 0.00063) 0.99541(0.00019)
180 0.99949(0.00007) 0.99905 (0.00029) 0.99906(0.00009)
190 0.99995(0.00002) 0.99980 (0.00013) 0.99982(0.00004)

Table 4.4: Comparison of three methods used for calculation of ruin probabilities 
in a finite time horizon when the ’ruin level’ is 0. Furthermore, the interest rate is 
dependent on time and equal to (3t = 0.0002 + 0.0001e~P

Time General Model 
a = 5.0, A= 1.2

X0 = 30.0, to = 0.0

Diffusion Model 
c — -0.24, a = 0.309839 

Z0 = 30.0

Piecewise Approximation 
c = -0.24, a = 0.309839 

ZQ = 30.0
100
110
120
130
140
150
160
170
180
190
200

0.003206(0.000169)
0.019697(0.000417)
0.077475(0.000802)
0.206143(0.001213)
0.404312(0.001472)
0.621796(0.001455)
0.800693(0.001198)
0.911935(0.000850)
0.967986(0.000528)
0.990154(0.000296)
0.997342(0.000154)

0.00220(0.00044)
0.01787(0.00126)
0.07951(0.00257)
0.21953(0.00393)
0.43079(0.00470)
0.65073(0.00452)
0.81304(0.00370)
0.91465(0.00265)
0.96573(0.00173)
0.98778(0.00104)
0.99647(0.00056)

0.00214(0.00043)
0.01804(0.00124)
0.07962(0.00253)
0.22374(0.00391)
0.43335(0.00465)
0.65083(0.00447)
0.81437(0.00365)
0.91539(0.00261)
0.96701(0.00167)
0.98753(0.00103)
0.99614(0.00058)

Table 4.5: Comparison of three methods used for calculation of ruin probabilities 
in a finite time horizon when the ’ruin level’ is 0. Furthermore, the interest rate is 
constant and (3 = 0.002.



Appendix A

Simulation of Stochastic Processes

This chapter lists all the Mathematica codes used in simulation of trajectories of 

stochastic processes included in this thesis for illustration purposes.

A.0.1 Gaussian White Noise

<<Statistics'Master'

nd := Random[NormalDistribution [0, 1]];

T=500;

wn := Table[nd, {i, 0, T}];

ListPlot[wn,PlotJoined -> True,AspectRatio -> 1/3]

100
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A.0.2 Gaussian Random Walk

<< Statistics'Master'

nd := Random[NormalDistribution[0, 1]];

wn=Table[nd, {i, 1, 1000}];

Y[0] = 0; Y[k_] := Y[k] = Y[k - 1] + wn[[k]];

rwalk[n_] := Table [Y[k], {k, 0, n}] ;

w = rwalk[1000] ;

ListPlot[w, PlotJoined -> True, AspectRatio -> 1/3]

A.0.3 Wiener Process

<< Statlstics'Master'

T = 10;

delta = 1/50;

m = 0.5;
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sigma = 2;

del [0] = 0;

del [k_] := Sum[delta, {i, 1, k}] ;

nd := Random[NormalDistribution[0, 1]];

wn = Table[nd, {i, 1, 1000}];

W[0] = 0;

W[k_] := W[k] = W[k - 1] + sigma Sqrt [delta] wn[[k]] + delta;

sbm = Table [{del [k] , W[k]}, {k, 0, T (1/delta)}];

ListPlot[sbm, PlotJoined -> True, AspectRatio -> 1/3]

A.0.4 Poisson Process

<< Statistics‘DiscreteDistributions1

<<Statistics‘ContinuousDistributions'

1ambda = 1;
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T = 100;

poss = RandomArray[PoissonDistribution[lambda T], 1];

unif = Table[Random[Real, {0, T}], {i, 1, poss[[l]]}];

cond[i_, t_] := If[unif[[i]] < t, 1, 0];

X[t_] := Sum[cond[i, t] , {i, 1, poss[[l]]}];

Plot[X [t], {t, 0,20}];

A.0.5 Compound Poisson Process

<< Statistics‘DiscreteDistributions'

<<Statistics'ContinuousDistributions'

lambda = 1;

T = 100;

poss = RandomArray[PoissonDistribution[lambda T], 1];
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unif = Table[Random[Real, {0, T}] , {i, 1, poss[[l]]}];

norm = RandomArray[NormalDistribution[0.5, 2], poss[[l]]];

cond[i_, t_] := If[unif[[i]] < t, norm[[i]], 0];

X[t_] := Sum[cond[i, t] , {i, 1, poss[[l]]}];

Plot[X[t], {t, 0, 20}];

A.0.6 Ornstein - Uhlenbeck Process

<< Statistics‘DiscreteDistributions'

<< Statistics'ContinuousDistributions'

lambda = 10;

T = 100;

bet = 0.002;

m = 30;

x = 10;
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poss = RandomArray[PoissonDistribution[lambda T] , 1];

expon = RandomArray[ExponentialDistribution[1], poss[[l]]];

sumexpon[k_] := Sum[expon[[i]], {i, 1, k}];

suexponent = Table[sumexpon[j], {j, 1, poss[[1]]}];

norm = RandomArray[NormalDistribution[30, 2], poss[[l]]];

cond[i_, t_] := If[suexponent [[i]] < t, norm[[i]], 0];

X[tJ := “(m/bet) + (x + (m/bet)) Exp [bet t] -

Sum[Exp[bet (t - suexponent[[i]])] cond[i, t], {i, 1, poss[[l]]}]

Plot [X [t] , {t, 0, T}];



Appendix B

Documentation of CH—|- Programs 

used in the Thesis

B.l General Model — Ruin Probabilities

B.1.1 Description of the Program

The program entitled ’General Ornstein - Uhlenbeck process - crossing proba­

bilities’ is written in the C++ programming language. Its aim is to compute level 

crossing probabilities for a General Ornstein - Uhlenbeck process. The OU - process 

is defined by the following stochastic differential equation:

dXt = /3Xtdt + dLt, t > 0,

where
Nx(t)

Lt = mt - ^2 £fc.
k=1

106
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Here (£k)k>i are i.i.cl. sequence of random variables appearing at arrival times {Tk)k> 1 

of a Poisson process N\(t), t > 0, with the intensity parameter A > 0. Then

Nx(t)

x, = --7j+ (Vo + < t). (B.1.1)
^ k= 1

We write (3 but the program is easily adapted to the case when 0 depends on time

0t-

Input

Prom the formula (B.1.1) we can see that we need to input a few parameters in order 

to get the probability of crossing level L. The values we need for the calculation are 

as follows:

• interest rate (3 > 0;

• intensity parameter of the Poisson process A;

• drift parameter m > 0;

• distribution of jumps

• initial value (W) of the process Xt;

• value of the level L < W0;

• time interval.

Output

The program results in the calculation of the probability of crossing level L < X0 by 

the process Xt in the finite time horizon.
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B.1.2 Method - Monte Carlo Simulation

The method used in order to obtain the ruin probabilities is Monte Carlo simula­

tion. This simulation is based on the fact that the probability can be approximated 

by the proportion of events which resulted with a success. The success in our circum­

stances can be defined as a ruin. Hence, the proportion of simulations which result 

with the ruin is the Monte Carlo estimate of the ruin probabilities.

To speed up the Monte-Carlo simulation of tl and X (tl) (in particular L ~ 0) we 

use the following approach. Observe from BAA that the paths of the process Xt are 

determined by the jump values located at (A)fc>i- Hence, the values of the process 

Xt at those specific points of time are defined by the following recursion:

X(T0) = -V (()} = .r.

X(Tk) = -f + (aTA--,) + _ £fcj = 1,2,----

Proposition B.1.1. Let X be an exponentially distributed random variable with pa­

rameter X. Then

eJ3X^U-'3/\ U~ Unif (0,1).

In particular, when X = [3 = 1, e^x ~ l/Unif(0,1).

This propositions is illustrated graphically. Figures BA and B.2 present his­

tograms of two random variables Ept\ and Upt\ respectively.

E0,\ = exp {-0E},

Up, A = U~V\

where E ~ Exp(X) and
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1.15 1.1751.0751.05

Figure B.l: Histogram of the random variable Epy\.

1.061.04 1.06

Figure B.2: Histogram of the random variable Upt
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where U ~ Unif(0,1).

Using the above proposition we conclude that the values of the process Xt at the 

jump times can be computed using the following recursion:

X(T0) = X(0) = x,

X(Tk) = -f + (^X(Tk_i) + ^)u-0/x - k = 1,2,...,

where U ~ Unif (0,1).

B.1.3 Simulation Algorithm

In order to simulate the finite time, first crossing time probability under some 

known level we use the following algorithm:

1. Set RUIN = 0 and RUIN_COUNT = 0

2. BEGIN LOOP 1:

FOR (k = 0; k < NUMBER__0F_TRIALS; k++)

3. Set ARRIVAL_TIME = 0.0

4. BEGIN LOOP 2:

FOR (i = 0; ARRIVAL__TIME < FINAL_TIME; i++)

5. IF (i == 0) Set OU—PROCESS = INITIAL_VALUE

ELSE set OU_PROCESS = - (1/BETA) + (OU__PROCESS + 1/BETA)* 

EXP (BETA * EXPONENTIAL-LAMBDA) - DISTRIBUTION__OF_JUMPS

6. IF (OU-PROCESS < LEVEL) set RUIN = 1 and BREAK 

ELSE set RUIN = 0
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7. Set U to Unif[0,1]

8. Set EXPONENTIAL-LAMBDA = - (1/LAMBDA) * LOG(l - U)

9. Set ARRIVAL-TIME = ARRIVAL-TIME + EXPONENTIAL—LAMBDA

10. END LOOP 2

11. Set RUIN_COUNT = RUIN-COUNT + RUIN

12. END LOOP 1

13. Set RUIN-PROBABILITY = RUIN-COUNT / NUMBER__0F__TRIALS
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B.2 Diffusion Approximation — Ruin Probabilities

B.2.1 Description of the Program

The program entitled ’Diffusion Approximation - Ruin Probabilities’ is very sim­

ilar to the above program, the only difference lies in the risk process used. This time 

we consider a Gaussian Ornstein - Uhlenbeck process of the form:

dZt = pztdt + dWt,

where Wt is a Wiener process. We approximate this process by its discrete represen­

tation

A Zt = pZtA + A Wt 

and use the following recursion formula

Zq = x,

Zt+i = Zt + PZtA + AfVt,

where

AWt = Ap. + y/naZ.

Z here is a standard normal random variable.

Input

As in the previous section we need to input the following parameters:

• interest rate P > 0;

• parameters of the normal distribution n and a;
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• initial value (Vo) of the process Xt;

• value of the level L < X0;

• time interval.

Output

The program results in the calculation of the probability of crossing level L < X0 by 

the gaussian process Xt in the finite time horizon.

B.2.2 Simulation Algorithm

In order to simulate the finite time, first crossing time probability under some 

known level we use the following algorithm:

1. Set RUIN = 0, RUIN_COUNT = 0 and N = TIME / DELTA

2. BEGIN LOOP 1:

FOR (k = 0; k < NUMBER__OF—TRIALS; k++)

3. Set OIL-PROCESS = INITIAL-VALUE

4. BEGIN LOOP 2:

FOR (i = 1; i < (round down) N; i++)

5. Set OU-PROCESS = OU-PROCESS * (1 + BETA * DELTA) + SIGMA * 

SQRT(DELTA) * NORMAL(0,1) + MU * DELTA

6. IF (OU-PROCESS < LEVEL) set RUIN = 1 and BREAK 

ELSE set RUIN = 0
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7. END LOOP 2

8. Set RUIN_COUNT = RUIN__COUNT + RUIN

9. END LOOP 1

10. Set RUIN__PROBABILITY = RUIN__COUNT / NUMBER__OF_TRIALS
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B.3 Piecewise Linear Approximation - Ruin Prob­

abilities

B.3.1 Description of the Program

The program entitled ’Piecewise Linear Approximation’ is based on the results de­

scribed in chapter 4 of this thesis. Namely, it simulates the following expectation

re—1

i=0

One can refer to section 4.3 for more details.

Input

• interest rate (3 > 0;

• parameters of the normal distribution /.i and a;

• initial value (X0) of the process Xt\

• value of the level L < Xo;

• time interval.

Output

The program results in the calculation of the probability of crossing level L < Xo by 

the gaussian process Xt in the finite time horizon.
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B.3.2 Simulation Algorithm

In order to simulate the finite time, first crossing time probability under some known 

level we use the following algorithm:

1. Set COUNT = 0.0

2. Set KAPPA__T = ff e~20sds

3. Set DELTA = KAPPA_T / NUMBER—OF—STEPS

4. BEGIN LOOP 1:

FOR(k = 0; k < NUMBER—OF—EXPERIMENTS; k++)

5. Set BROWNIAN-MOTION = 0.0

6. Set P = 1.0

7. BEGIN LOOP 2:

FOR(k = 0; k < NUMBER_OF__STEPS; k++)

8. Set NORMAL-RANDOM = NORMAL(0,1)

9. IF((G(k * DELTA) > BROWNIAN__MOTION) AND (G((k+1) * DELTA) > 

BROWNIAN-MOTION + NORMAL-RANDOM + SQRT(DELTA)))

10. Set FIRST—B = BROWNIAN—MOTION

11. Set SECOND—B = BROWNIAN__MOTION + NORMAL-RANDOM + SQRT(DELT

12. Set P = P * (1 - EXP(- 2 * (G(k * DELTA) - FIRST__B)(G((k+l) * DELTA)

- SECOND-B) / DELTA) )
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13. END IF

14. BEGIN ELSE

15. Set P = 0.0 and BREAK

16. END ELSE

17. Set BROWNIAN_MOTION = SECOND__B

18. END LOOP 2

19. Set COUNT = COUNT + P

20. END LOOP 1

21. Set PROBABILITY_OF_RUIN = 1 - COUNT / NUMBER__OF__EXPERIMENTS
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