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Abstract

Photosynthetic capacity of scleractinian corals relies predominantly on the productivity 

of single-celled endosymbiotic dinoflagellates of the genus Symbiodinium, known as 

zooxanthellae, residing intracellularly within coral endoderm tissue. The regulation of 

photosynthesis of zooxanthellae is in turn dependent on light and temperature. This 

thesis explores the genetic basis for variation in photosynthesis capacity of 

zooxanthellae by examining the photo-physiology of genetically characterised 

Symbiodinium communities at a range of spatial and temporal scales. In situ and 

manipulative experiments were conducted to improve our understanding of metabolic 

responses of zooxanthellae under climate change scenarios.

Fine scale measurements of irradiance and photosynthesis allowed the 

assessment of photo-physiological changes across individual colonies of Pocillopora 

damicornis and Acropora valida. Pocillopora damicornis generally contain genetically 

homogeneous populations of Symbiodinium, whilst genetically diverse Symbiodinium 

communities exist within Acropora valida. Measurements of light absorption in P. 

damicornis were conducted using a scalar irradiance microprobe and it was found that 

light absorption was greatest in shade-adapted polyp tissue and smallest in sun-adapted 

coenosarc tissue. Genetic heterogeneities, found at the scale of individual polyps in A. 

valida, correlated with CB concentration at the surface of the colony which was greater 

in polyps that harboured the two clades (A + C) than in polyps that only harboured 

clade C. In both corals, measurements using an CB microelectrode and a fibre-optic 

microprobe yielded dissimilar results when used at moderate to high irradiances.

Seasonal changes in photosynthetic capacity suggested that P. damicornis is 

more sensitive to combined effects of relatively higher temperature and irradiance in 

summer than A. valida suggesting that the symbiont community of A. valida may not be 

physiologically compromised possibly due to phylogenetic changes of Symbiodinium. 

Furthermore, thermal tolerances of conspecific corals were examined at narrow and 

wide spatial scales across the length of the Great Barrier Reef. Pocillopora damicornis, 

which harboured Symbiodinium type Cl, thus bleached in correlation with latitude, 

whereas Turbinaria reniformis bleached in correlation with the presence and absence of 

the known thermo-tolerant Symbiodinium clade D.

The results, integrating over spatial and temporal scales suggest that the 

acclimatisation capacity of corals to light and temperature is determined by i) history of
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light and temperature exposure and in cases where corals associate with multiple 

Symbiodinium types ii) the distribution of Symbiodinium.
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