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Abstract

Photosynthetic capacity of scleractinian corals relies predominantly on the productivity
of single-celled endosymbiotic dinoflagellates of the genus Symbiodinium, known as
zooxanthellae, residing intracellularly within coral endoderm tissue. The regulation of
photosynthesis of zooxanthellae is in turn dependent on light and temperature. This
thesis explores the genetic basis for variation in photosynthesis capacity of
zooxanthellae by examining the photo-physiology of genetically characterised
Symbiodinium communities at a range of spatial and temporal scales. In situ and
manipulative experiments were conducted to improve our understanding of metabolic
responses of zooxanthellae under climate change scenarios.

Fine scale measurements of irradiance and photosynthesis allowed the
assessment of photo-physiological changes across individual colonies of Pocillopora
damicornis and Acropora valida. Pocillopora damicornis generally contain genetically
homogeneous populations of Symbiodinium, whilst genetically diverse Symbiodinium
communities exist within Acropora valida. Measurements of light absorption in P.
damicornis were conducted using a scalar irradiance microprobe and it was found that
light absorption was greatest in shade-adapted polyp tissue and smallest in sun-adapted
coenosarc tissue. Genetic heterogeneities, found at the scale of individual polyps in A.
valida, correlated with O, concentration at the surface of the colony which was greater
in polyps that harboured the two clades (A + C) than in polyps that only harboured
clade C. In both corals, measurements using an O, microelectrode and a fibre-optic
microprobe yielded dissimilar results when used at moderate to high irradiances.

Seasonal changes in photosynthetic capacity suggested that P. damicornis is
more sensitive to combined effects of relatively higher temperature and irradiance in
summer than A. valida suggesting that the symbiont community of A. valida may not be
physiologically compromised possibly due to phylogenetic changes of Symbiodinium.
Furthermore, thermal tolerances of conspecific corals were examined at narrow and
wide spatial scales across the length of the Great Barrier Reef. Pocillopora damicornis,
which harboured Symbiodinium type C1, thus bleached in correlation with latitude,
whereas Turbinaria reniformis bleached in correlation with the presence and absence of
the known thermo-tolerant Symbiodinium clade D.

The results, integrating over spatial and temporal scales suggest that the

acclimatisation capacity of corals to light and temperature is determined by 1) history of
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light and temperature exposure and in cases where corals associate with multiple

Symbiodinium types ii) the distribution of Symbiodinium.
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