PHILIP TAYLOR

This thesis is presented as part of the requirements for the award of the degree of Doctor of Philosophy from the University of Technology Sydney

2007

.

Certificate of Authorship/Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Production Note: Signature removed prior to publication.

Acknowledgements

First, I acknowledge the contribution of my supervisor, Professor Hung T. Nguyen. Undoubtedly, this research would not have reached its current point without his support, direction and knowledge. I also acknowledge the appreciable contribution of my co-supervisor, Professor Ashley Craig.

I acknowledge my colleagues from the UTS Faculty of Engineering and the Centre for Health Technologies, in particular Rob Mitchell, Sean Williams, Van Minh Tri Nguyen, Son Nguyen, Leslie King, Bradley Skinner and Daniel Craig for their camaraderie and assistance.

I acknowledge the input, assistance and cooperation received from Dr James Middleton and the staff and patients of the Moorong Spinal Injuries Unit (Royal Rehabilitation Centre, Sydney).

Finally, yet perhaps most importantly, I acknowledge my parents, Alan and Caralyn, my sister, Kathryn, my extended family and my friends for the assistance, support and encouragement they have provided.

Tables of Contents

Chapter 1.	Introduction	1
1.1. Ain	ns and contribution of this thesis	
1.2. Stra	ucture of this thesis	5
1.3. Put	blications	7
1.3.1.	Fully refereed papers	7
1.3.2.	Other conference papers	8
Chapter 2.	Literature review	9
2.1. Wh	eelchair control strategies for people with high level disabilities	9
2.2. Ha	nds-free powered wheelchair control strategies	13
2.2.1.	Modified joystick interfaces	13
2.2.2.	Bioelectric input signals	15
2.2.3.	Eye movement	22
2.2.4.	Speech recognition	25
2.2.5.	Head position and head movement	
2.3. Dis	cussion	35
2.4. Res	search objectives	37
Chapter 3.	Performance of a head-movement interface for wheelchair cont	rol 43
Chapter 3. 3.1. Pro	Performance of a head-movement interface for wheelchair cont pototype wheelchair control system	rol 43 <i>46</i>
Chapter 3. <i>3.1. Pro</i> 3.1.1.	Performance of a head-movement interface for wheelchair cont stotype wheelchair control system	rol 43 <i>46</i> 46
Chapter 3. <i>3.1. Pro</i> <i>3.1.1.</i> <i>3.1.2.</i>	Performance of a head-movement interface for wheelchair cont <i>ototype wheelchair control system</i> Sensor Pre-processing	rol 43 <i>46</i> 46 48
Chapter 3. <i>3.1.</i> Pro 3.1.1. 3.1.2. 3.1.3.	Performance of a head-movement interface for wheelchair cont ototype wheelchair control system Sensor Pre-processing Classifier	rol 43 46 46 48 49
Chapter 3. <i>3.1. Pro</i> 3.1.1. 3.1.2. 3.1.3. 3.1.4.	Performance of a head-movement interface for wheelchair cont <i>stotype wheelchair control system</i> Sensor Pre-processing Classifier ANN training.	rol 43 46 46 48 49 53
Chapter 3. <i>3.1. Pro</i> <i>3.1.1.</i> <i>3.1.2.</i> <i>3.1.3.</i> <i>3.1.4.</i> <i>3.1.4.</i>	Performance of a head-movement interface for wheelchair cont <i>ototype wheelchair control system</i> Sensor Pre-processing Classifier ANN training 1. Delta-rule gradient descent	rol 43 46 46 48 49 53 54
Chapter 3. <i>3.1. Pro</i> 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4.	Performance of a head-movement interface for wheelchair cont <i>stotype wheelchair control system</i> Sensor Pre-processing Classifier ANN training 1. Delta-rule gradient descent 2. Levenberg Marquardt	rol 43 46 46 48 53 53 54 58
Chapter 3. 3.1. Pro 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4. 3.1.4.	 Performance of a head-movement interface for wheelchair control system Sensor Pre-processing Classifier ANN training Delta-rule gradient descent Levenberg Marquardt Scaled Conjugate Gradient 	rol 43 46 46 48 53 54 58 61
Chapter 3. 3.1. Pro 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.5.	 Performance of a head-movement interface for wheelchair control system	rol 43 46 46 48 53 53 54 58 61
Chapter 3. 3.1. Pro 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.6.	Performance of a head-movement interface for wheelchair control system Sensor Pre-processing Classifier ANN training 1. Delta-rule gradient descent 2. Levenberg Marquardt 3. Scaled Conjugate Gradient ANN Implementation ANN output decoding	rol 43 46 46 48 53 53 54 58 61 66 71
Chapter 3. 3.1. Pro 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.5. 3.1.6. 3.1.7.	Performance of a head-movement interface for wheelchair control system Sensor Pre-processing Classifier ANN training 1. Delta-rule gradient descent 2. Levenberg Marquardt 3. Scaled Conjugate Gradient ANN Implementation ANN Implementation ANN output decoding Control Logic	rol 43 46 46 48 49 53 54 54 61 66 71 72
Chapter 3. 3.1. Pro 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.5. 3.1.6. 3.1.7. 3.2. Ass	Performance of a head-movement interface for wheelchair control system Sensor	rol 43 46 46 48 49 53 54 54 61 66 71 72 74
Chapter 3. 3.1. Pro 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.5. 3.1.6. 3.1.7. 3.2. Ass 3.2.1.	Performance of a head-movement interface for wheelchair control system Sensor Pre-processing Classifier ANN training 1. Delta-rule gradient descent 2. Levenberg Marquardt 3. Scaled Conjugate Gradient ANN Implementation ANN output decoding Control Logic Background	rol 43 46 46 48 53 53 54 58 61 66 71 72 74 75
Chapter 3. 3.1. Pro 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.5. 3.1.6. 3.1.7. 3.2. Ass 3.2.1. 3.2.2.	Performance of a head-movement interface for wheelchair control system Sensor	rol 43 46 46 48 49 53 54 54 61 66 71 72 75 75
Chapter 3. 3.1. Pro 3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.4. 3.1.5. 3.1.6. 3.1.7. 3.2. Ass 3.2.1. 3.2.2. 3.2.3.	Performance of a head-movement interface for wheelchair control system	rol 43 46 46 48 53 53 54 58 61 66 71 72 74 75 78

Advanced Neural Network head movement classification for Hands-Free control of powered wheelchairs

3.2.5.	Description of results	80
3.2.6. Discussion of results		85
Chapter 4.	Advanced head gesture classification	90
4.1. Bac	kground	91
4.1.1.	Training data	91
4.1.2.	Head gestures in sensor data, classifier window and ANN input.	92
4.1.3.	ANN Architecture	100
4.1.4.	Training algorithm	100
4.2. Mei	thodology	102
4.3. Pro	cedure	106
4.3.1.	Data collection procedures	106
4.3.2.	Initialisation of ANN parameters and allocation of data	108
4.3.3.	Training of artificial neural networks	110
4.3.4.	Measurement of classifier performance	111
4.3.5.	Optimisation of ANN architecture	111
4.3.6.	Evaluation of the difference between ANN training algorithms	112
4.3.7.	Evaluation of the marginal effect of training data	112
4.4. Res	ults	113
4.4.1.	Results from ANN training and testing on generic datasets	115
4.4.1.	1. ANN architecture	116
4.4.1.2	2. Training algorithm	120
4.4.1.3	3. Data set size	124
4.4.2.	Results on subject 8 test set	128
4.4.3.	Results on subject 9 test set	134
4.5. Dis	cussion	139
Chapter 5.	Adaptive training of head gesture classifiers	142
5.1. Hec	ad gestures by people with disabilities	144
5.2. Mei	hodology for assessing the utility of the adaptive algorithm	150
5.2.1.	Algorithm for the Control training procedure	152
5.2.2.	Algorithm for the Combined Adaptive retraining procedure	152
5.2.3.	Algorithm for the Specific Adaptive retraining procedure	154
5.2.4.	Algorithm for Custom training procedure	155
5.3. Pro	cedure for assessment of the adaptive training algorithm	155
5.4. Res	ults	157
5.4.1.	Adaptive retraining using data from Subject 8 (C4)	157
5.4.2.	Adaptive retraining using data from Subject 9 (C6)	162

5.5.	Disc	ussion
Chapter 6	.	Conclusions
6.1.	Fina	lings
6.2.	Con	tributions171
<i>6.3</i> .	Limi	tations
6.4.	Futu	re directions
Reference	es	175
Appendix	хA.	Background on the high-level spinal cord injury 188
Appendix	кB.	Artificial neural network activation functions
Appendix	сC.	On alternative classifier performance metrics
Appendix	хD.	On the selection of sample sizes
Appendix	кE.	UTS Human Research Ethics Committee Approval
Appendix results	: F.	Friedman's 2-way analysis of variance by ranks of experimental 204
Appendix	G.	Pairwise comparison of ranks between treatments

Table of Figures

Figure 1 Electrode placement for electro-oculography (Barea et al. 2000)25
Figure 2 Anatomical reference axes – (a) anteroposterior axis; (b) mediolateral axis;(c) longitudinal axis. (Hamill & Knutzen 2003; Tordoff & Mayol 2001)27
 Figure 3 Anatomical descriptors of head movements – (a) flexion; (b) extension; (c) hyperextension; (d) lateral flexion; (e) rotation (Hamill & Knutzen 2003; Tordoff & Mayol 2001)
Figure 4 System architecture of prototype control system
Figure 5 Non-linear adaptive filter model of an artificial neuron (Widrow & Lamego 2002)
Figure 6 An example of a feedforward ANN architecture with two hidden layers (Widrow & Lamego 2002)52
Figure 7 Implementation of sliding window data structure
Figure 8 Finite state machine translating classifier output to the control logic parameters
Figure 9 Example backward-nod gesture, performed by Subject 1
Figure 10 Example forward-nod gesture, performed by Subject 3
Figure 11 Example left-nod gesture, performed by Subject 2
Figure 12 Example right-nod gesture, performed by Subject 4
Figure 13 Example shake gesture, performed by Subject 5
Figure 14 Selected 2s classifier input window corresponding to forward-nod gesture in Figure 10 (Subject 3)
Figure 15 Selected 2s classifier input window corresponding to backward-nod gesture in Figure 9 (Subject 1)
Figure 16 Selected 2s classifier input window corresponding to left-nod gesture in Figure 11 (Subject 2)
Figure 17 Selected 2s classifier input window corresponding to right-nod gesture in Figure 12 (Subject 4)
Figure 18 Selected 2s classifier input window corresponding to head-shake gesture in Figure 13 (Subject 5)
Figure 19 Real-time classification error rate measured on validation set as the network architecture increases in size
Figure 20 Rank of real-time classification error rate measured on validation set as the network architecture increases in size
Figure 21 Time elapsed during training as the network architecture increases in size
Figure 22 Rank of time elapsed during training as the network architecture increases in size
Figure 23 Training set mean squared error at termination of training as the network architecture increases in size

Figure 24 Validation set mean squared error at termination of training as the network architecture increases in size
Figure 25 Real-time classification error rate on validation set for classifiers trained using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg- Marquardt ANN training algorithms
Figure 26 Rank of real-time classification error rate on validation set for classifiers trained using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg-Marquardt ANN training algorithms
Figure 27 Time elapsed during training of each classifier using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg- Marquardt ANN training algorithms
Figure 28 Rank of time elapsed during training of each classifier using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg- Marquardt ANN training algorithms
Figure 29 Training set mean squared error at termination of training for classifiers trained using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg-Marquardt ANN training algorithms
Figure 30 Validation set mean squared error at termination of training for classifiers trained using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg-Marquardt ANN training algorithms
Figure 31 Real-time classification error rate on validation set as size of training set is increased
Figure 32 Rank of real-time classification error rate on validation set as size of training set is increased
Figure 33 Time elapsed during training of each classifier as size of training set is increased
Figure 34 Rank of time elapsed during training of each classifier as size of training set is increased
Figure 35 Training set mean squared error at termination of training as size of training set is increased
Figure 36 Validation set mean squared error at termination of training as size of training set is increased
Figure 37 Real-time classification error rates for Subject 8 as the network architecture increases in size
Figure 38 Rank of the real-time classification error rates for Subject 8 as the network architecture increases in size
Figure 39 Real-time classification error rate on Subject 8 test set for classifiers trained using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg-Marquardt ANN training algorithms
Figure 40 Rank of real-time classification error rate on Subject 8 test set for classifiers trained using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg- Marquardt ANN training algorithms

Figure 41 Real-time classification error rate on Subject 8 test set as size of training set is increased
Figure 42 Rank of real-time classification error rate on Subject 8 test set as size of training set is increased
Figure 43 Real-time classification error rates for Subject 9 as the network architecture increases in size
Figure 44 Rank of real-time classification error rates for Subject 9 as the network architecture increases in size
Figure 45 Real-time classification error rate on Subject 9 test set for classifiers trained using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg-Marquardt ANN training algorithms
Figure 46 Rank of real-time classification error rate on Subject 9 test set for classifiers trained using delta rule (DR), scaled conjugate gradient (SCG) and Levenberg- Marquardt ANN training algorithms
Figure 47 Real-time classification error rate on Subject 9 test set as size of training set is increased
Figure 48 Rank of real-time classification error rate on Subject 9 test set as size of training set is increased
Figure 49 Example backward nod gesture, performed by Subject 8 (C4)145
Figure 50 Example forward nod gesture, performed by Subject 8 146
Figure 51 Example left nod gesture, performed by Subject 8
Figure 52 Example right nod gesture, performed by Subject 8
Figure 53 Example shake gesture, performed by Subject 8
Figure 54 Example backward nod gesture, performed by Subject 9 (C6)
Figure 55 Example foreward nod gesture, performed by Subject 9
Figure 56 Example left nod gesture, performed by Subject 9
Figure 57 Example right nod gesture, performed by Subject 9
Figure 58 Example shake gesture, performed by Subject 9
Figure 59 Real-time classification error rate on validation set for classifiers adapted using data from Subject 8 and control treatments
Figure 60 Rank of real-time classification error rate on validation set for classifiers adapted using data from Subject 8 and control treatments
Figure 61 Real-time classification error rate on Subject 8 test set for classifiers adapted using data from Subject 8 and control treatments
Figure 62 Rank of real-time classification error rate on Subject 8 test set for classifiers adapted using data from Subject 8 and control treatments
Figure 63 Real-time classification error rate on Subject 9 test set for classifiers adapted using data from Subject 8 and control treatments
Figure 64 Rank of real-time classification error rate on Subject 9 test set for classifiers adapted using data from Subject 8 and control treatments
Figure 65 Real-time classification error rate on validation set for classifiers adapted using data from Subject 9 and control treatments

Advanced Neural Network head movement classification for Hands-Free control of Powered Wheelchairs

Figure 66 Rank of real-time classification error rate on validation set for classifiers adapted using data from Subject 9 and control treatments
Figure 67 Real-time classification error rate on Subject 8 test set for classifiers adapted using data from Subject 9 and control treatments
Figure 68 Rank of real-time classification error rate on Subject 8 test set for classifiers adapted using data from Subject 9 and control treatments
Figure 69 Real-time classification error rate on Subject 9 test set for classifiers adapted using data from Subject 9 and control treatments
Figure 70 Rank of real-time classification error rate on Subject 9 test set for classifiers adapted using data from Subject 9 and control treatments
Figure 71 Approximate mapping of level of injury to remaining function (Spinal Cord Injury: Facts and Figures at a Glance. 2004)
Figure 72 Variance and Standard Error caused by sampling, where a) $p = 0.85$, b) $p = 0.9$, c) $p = 0.95$, as estimated by Equation 51
Figure 73 Difference detectable for given sample size (number of classifier pairs), estimated by Equation 54, where $\alpha = 0.05$, $\beta = 0.05$ and a) $\sigma^2 = 0.01$, b) $\sigma^2 = 0.05$, c) $\sigma^2 = 0.1$, d) $\sigma^2 = 0.2$
Figure 74 Difference detectable for given sample size (number of classifier pairs), estimated by Equation 54, where $\alpha = 0.05$, $\beta = 0.10$ and a) $\sigma^2 = 0.01$, b) $\sigma^2 = 0.05$, c) $\sigma^2 = 0.1$, d) $\sigma^2 = 0.2$
Figure 75 Difference detectable for given sample size (number of classifier pairs), estimated by Equation 54, where $\alpha = 0.10$, $\beta = 0.50$ and a) $\sigma^2 = 0.01$, b) $\sigma^2 = 0.05$, c) $\sigma^2 = 0.1$, d) $\sigma^2 = 0.2$
Figure 76 Estimates of the number of classifier pairs required for the testing of means for $\alpha = 0.05$, $\beta = 0.05$, $\sigma^2 = 0.1$ and mean accuracy a) 0.9, b) 0.925, c) 0.95, d) 0.975, e) 1.0, estimated by Equation 54
Figure 77 Estimates of the number of classifier pairs required for the testing of means for $\alpha = 0.05$, $\beta = 0.10$, $\sigma^2 = 0.1$ and mean accuracy a) 0.9, b) 0.925, c) 0.95, d) 0.975, e) 1.0, estimated by Equation 54
Figure 78 Estimates of the number of classifier pairs required for the testing of means for $\alpha = 0.10$, $\beta = 0.50$, $\sigma^2 = 0.1$ and mean accuracy a) 0.9, b) 0.925, c) 0.95, d) 0.975, e) 1.0, estimated by Equation 54

Table of Tables

Table 1 Terminology used throughout this thesis 16
Table 2 General form of a contingency table for a binary classifier
Table 3 General form of a multi-class contingency table. 78
Table 4 Confusion matrix for real-time classification of gestures performed by able- bodied subjects, with graphical feedback
Table 5 Confusion matrix for real-time classification of gestures performed by able- bodied subjects, without graphical feedback
Table 6 Confusion matrix for real-time classification of gestures performed by disabled subjects, with graphical feedback
Table 7 Confusion matrix for real-time classification of gestures performed by disabled subjects, without graphical feedback83
Table 8 Confusion matrix for real-time classification of all gestures performed by able-bodied subjects 83
Table 9 Confusion matrix for real-time classification of all gestures performed by disabled subjects 84
Table 10 Sensitivity, specificity and error rate of the artificial neural network,averaged for the 4 possible classifications.84
Table 11 Mean (Standard deviation) of the delay (ms) between movement and classification
Table 12 Summary of subjects providing gesture data 107
Table 13 Composition of training, validation and test sets for experiments in Chapter 4
Table 14 Rank of validation set classifier error rate using best performing treatments
Table 15 Size of datasets for control and adaptive retraining procedures. 156
Table 16 Rank of adapted classifier error rates on user specific test sets 157
Table 17 Friedman's 2-way analysis of variance by ranks of the validation set real-time classification error rate as network architecture increases in size204
Table 18 Friedman's 2-way analysis of variance by ranks on the training time as network architecture increases in size
Table 19 Friedman's 2-way analysis of variance by ranks of the validation set real-time classification error rate for ANN trained with different algorithms205
Table 20 Friedman's 2-way analysis of variance by ranks of the training time ofANN classifiers trained with different algorithms205
Table 21 Friedman's 2-way analysis of variance by ranks of the validation set real-time classification error rate as training set increases in size205
Table 22 Friedman's 2-way analysis of variance by ranks on the training time ofANN classifiers as training set increases in size206
Table 23 Friedman's 2-way analysis of variance by ranks of the Subject 8 test set real-time classification error rate as network architecture increases in size 206

Table 24 Friedman's 2-way analysis of variance by ranks of the Subject 8 test set real-time classification error rate for ANN trained with different algorithms. 206 Table 25 Friedman's 2-way analysis of variance by ranks of the Subject 8 test set Table 26 Friedman's 2-way analysis of variance by ranks of the Subject 9 test set real-time classification error rate as network architecture increases in size 207 Table 27 Friedman's 2-way analysis of variance by ranks of the Subject 9 test set real-time classification error rate for ANN trained with different algorithms. 207 Table 28 Friedman's 2-way analysis of variance by ranks of the Subject 9 test set Table 29 Friedman's 2-way analysis of variance by ranks of the validation set realtime classification error rate for classifiers retrained with user specific data from Table 30 Friedman's 2-way analysis of variance by ranks of the Subject 8 test set real-time classification error rate for classifiers retrained with user specific data Table 31 Friedman's 2-way analysis of variance by ranks of the Subject 8 test set real-time classification error rate for classifiers retrained with user specific data Table 32 Friedman's 2-way analysis of variance by ranks of the retraining time for Table 33 Friedman's 2-way analysis of variance by ranks of the validation set realtime classification error rate for classifiers retrained with user specific data from Table 34 Friedman's 2-way analysis of variance by ranks of the Subject 8 test set real-time classification error rate for classifiers retrained with user specific data Table 35 Friedman's 2-way analysis of variance by ranks of the Subject 9 test set real-time classification error rate for classifiers retrained with user specific data Table 36 Friedman's 2-way analysis of variance by ranks of the retraining time for Table 37 Pairs of treatments with different ANN architectures having statistically significant differences in validation set real-time classification error rate211 Table 38 Pairs of treatments trained using different algorithms having statistically significant differences in validation set real-time classification error rate 212 Table 39 Pairs of treatments trained with different training set size having statistically significant differences in validation set real-time classification error Table 40 Pairs of treatments with different ANN architectures having statistically Table 41 Pairs of treatments trained using different algorithms having statistically

Advanced neural network head movement classification for hands-free control of powered wheelchairs

Table 42 Pairs of treatments trained with different training set size having statistically significant differences in training time
Table 43 Pairs of treatments with different ANN architectures having statistically significant differences in Subject 8 test set real-time classification error rate. 220
Table 44 Pairs of treatments trained using different algorithms having statistically significant differences in Subject 8 test set real-time classification error rate. 221
Table 45 Pairs of treatments trained with different training set size having statistically significant differences in Subject 8 test set real-time classification error rate
Table 46 Pairs of treatments with different ANN architectures having statistically significant differences in Subject 9 test set real-time classification error rate. 221
Table 47 Pairs of treatments trained using different algorithms having statistically significant differences in Subject 9 test set real-time classification error rate. 222
Table 48 Pairs of treatments trained with different training set size having statistically significant differences in Subject 9 test set real-time classification error rate 223
Table 49 Pairs of treatments with different retraining procedure, adapted for Subject8, having statistically significant differences in validation set real-timeclassification error rate223
Table 50 Pairs of treatments with different retraining procedure, adapted for Subject8, having statistically significant differences in Subject 8 test set real-timeclassification error rate223
Table 51 Pairs of treatments with different retraining procedure, adapted for Subject8, having statistically significant differences in Subject 9 test set real-timeclassification error rate224
Table 52 Pairs of treatments with different retraining procedure, adapted for Subject8, having statistically significant differences in retraining time224
Table 53 Pairs of treatments with different retraining procedure, adapted for Subject9, having statistically significant differences in validation set real-timeclassification error rate225
Table 54 Pairs of treatments with different retraining procedure, adapted for Subject9, having statistically significant differences in Subject 8 test set real-timeclassification error rate225
Table 55 Pairs of treatments with different retraining procedure, adapted for Subject9, having statistically significant differences in Subject 9 test set real-timeclassification error rate225
Table 56 Pairs of treatments with different retraining procedure, adapted for Subject9, having statistically significant differences in retraining time226

Abstract

Assistive technology is increasingly being used to allow people with disabilities to be more engaged in personal, social and vocational activities. However, people with high-level disabilities are still affected by barriers to independence and full inclusion into broader society. The focus of this thesis is to advance the development of a wheelchair control system for highly disabled people, providing a means for satisfying some of the mobility needs of people who are have difficulty or are unable to achieve mobility through existing assistive technologies.

A control system allowing hands-free wheelchair control is proposed, advancing from systems previously described in literature. The proposed control system allows the operation of a powered wheelchair by using an artificial neural network (ANN) classifier to recognize head gesture commands. The feasibility of this control system is tested on its ability to correctly recognise command gestures of both able-bodied and disabled people in real-time.

Techniques for improving the ability of the head gesture classifier to recognise gestures performed by people with disabilities are investigated. The effectiveness of these techniques is evaluated for highly disabled people. The effect of empirically selecting an optimal ANN architecture and training algorithm using training data from a general population is considered, as is the marginal benefit of additional training data from such a population. The benefit of adapting the classifier using data from the specific end user is investigated as a means of further improving performance.

While demonstrating the feasibility of the proposed control system, the results presented showed that the performance of the system was lower for people with disabilities than for able-bodied users. It was found that selection of the ANN architecture, training algorithm and training set size all had significant effects of some degree on the ability of the classifier component to recognise command gestures by people with disabilities in real time. It was also found that data from a specific end user to train the ANN can significantly improve classifier performance.

It was found that adapting the classifier ANN using a combination of user specific and generic data could improve the performance of the classifier for that end user while minimising or avoiding any reduction in classifier performance for other people. It was also found that retraining such an ANN with user specific data alone improves the performance of the classifier for that end user but is detrimental to the classification performance for other people.

Notation and terminology

Table 1 Terminology used throughout this thesis

Term	Definition
SCI	Spinal Cord Injury
ANN	Artificial Neural Network
Delta rule	A training algorithm for artificial neural networks, also known as the gradient descent (Hagan 1995) or backpropagation (Haykin 1999) algorithm.
Tetraplegia	Paralysis of all four limbs, also known as quadriplegia
Generic dataset	A set containing recorded gestures or input-output pairs observed from the data provided by a group of people.
Specific dataset	A set containing recorded gestures or input-output pairs observed from the data provided by a single, known person.
PWM	Pulse Width Modulation, a modulation scheme where duty cycle of a square-wave carrier encodes the signal.