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Abstract

Assistive technology is increasingly being used to allow people with disabilities to be
more engaged in personal, social and vocational activities. However, people with
high-level disabilities are still affected by barriers to independence and full inclusion
into broader society. The focus of this thesis is to advance the development of a
wheelchair control system for highly disabled people, providing a means for
satisfying some of the mobility needs of people who are have difficulty or are unable

to achieve mobility through existing assistive technologies.

A control system allowing hands-free wheelchair control is proposed, advancing
from systems previously described in literature. The proposed control system allows
the operation of a powered wheelchair by using an artificial neural network (ANN)
classifier to recognize head gesture commands. The feasibility of this control system
is tested on its ability to correctly recognise command gestures of both able-bodied

and disabled people in real-time.

Techniques for improving the ability of the head gesture classifier to recognise
gestures performed by people with disabilities are investigated. The effectiveness of
these techniques is evaluated for highly disabled people. The effect of empirically
selecting an optimal ANN architecture and training algorithm using training data
from a general population is considered, as is the marginal benefit of additional
training data from such a population. The benefit of adapting the classifier using data
from the specific end user is investigated as a means of further improving

performance.

While demonstrating the feasibility of the proposed control system, the results
presented showed that the performance of the system was lower for people with
disabilities than for able-bodied users. It was found that selection of the ANN
architecture, training algorithm and training set size all had significant effects of
some degree on the ability of the classifier component to recognise command
gestures by people with disabilities in real time. It was also found that data from a

specific end user to train the ANN can significantly improve classifier performance.
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It was found that adapting the classifier ANN using a combination of user specific
and generic data could improve the performance of the classifier for that end user
while minimising or avoiding any reduction in classifier performance for other
people. It was also found that retraining such an ANN with user specific data alone
improves the performance of the classifier for that end user but is detrimental to the

classification performance for other people.
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Notation and terminology

Table 1 Terminology used throughout this thesis

Term Definition
SCI Spinal Cord Injury
ANN Artificial Neural Network
Delta rule A training algorithm for artificial neural networks, also

known as the gradient descent (Hagan 1995) or
backpropagation (Haykin 1999) algorithm.

Tetraplegia Paralysis of all four limbs, also known as quadriplegia

Generic dataset A set containing recorded gestures or input-output pairs

observed from the data provided by a group of people.

Specific dataset A set containing recorded gestures or input-output pairs

observed from the data provided by a single, known person.

PWM Pulse Width Modulation, a modulation scheme where duty

cycle of a square-wave carrier encodes the signal.
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Chapter 1. Introduction

Head movement has been utilised by people with motor impairments in many
applications, including communication and mobility. Assistive technology is
increasingly being used to enhance the ability of people with motor impairments in
these applications and to allow such people to perform tasks that would otherwise be
impossible. Mobility is an important prerequisite for many key activities that
contribute to a person’s quality of life (Routhier et al. 2003). Mobility has been
considered one of the major factors that determines a person’s level of independence
(CG Warren 1990), and in many circumstances, impairment in mobility can restrict
participation in domestic, vocational and recreational activities (Brandt, Iwarsson &

Stahle 2004).

Wheelchairs are one of the most commonly used mobility aids. A manually propelled
or powered wheelchair can be used to provide mobility to people with permanent
conditions, such as spinal cord injury or brain injury, and progressive conditions,
such as multiple sclerosis or muscular dystrophy (Routhier et al. 2003). Manually
propelled wheelchairs are the most prevalent form. By contrast, powered wheelchairs
are generally more expensive to procure and maintain, harder to transport and have
limited range. However, for highly disabled people, the nature of their condition may

preclude the use of a manually propelled wheelchair.

Powered wheelchairs have been used to meet the mobility needs of people with high-
level disabilities for many years. Early appearances of powered wheelchairs in the
literature can be traced back at least as far as the 1930’s, employing electrical
(‘Gangway!: A New Style Vehicle Comes to Warm Springs.' 1932) and oil ('Gasoline
Custer Chair' 1933) power. Polio was one of the most common conditions leading to
the use of these early powered wheelchairs. Due to the high mortality rate for those
people who would otherwise have developed the most severe forms of motor
impairment and the cumbersome medical equipment used to treat those who
survived, few of the population served by these early powered wheelchairs were

affected by complete tetraplegia. These early powered wheelchairs were controlled
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using hand-operated mechanisms and more closely resembled modern motorised

scooters than modern powered wheelchairs.

The proportion of the population affected by high-level motor impairments has
steadily increased since the 1940s, as advances in medical technology and practices
have reduced mortality rates due to injury and illness (Zola 1988). This has been
followed by advances in assistive technology for this group of people, many using
head movement employed mechanical or electrical methods to support or extend a
user’s ability to perform particular tasks. These advances in assistive technology
have been incremental, reflecting both the gradual increase in the size and
composition of the highly disabled population, changes in the target applications and
the development of enabling technologies. For example, head controlled computer
interfaces, such as those proposed by Evans, Drew and Blenkhorn (2000) and
LoPresti and Brienza (2004) have evolved from head controlled typewriter
adaptations proposed in the 1950s (Barg 1959; Ziskind 1959) to provide vocational
tools to people with tetraplegia.

The use of assistive technology has allowed people with high-level disabilities to be
more engaged in personal, social and vocational activities. However, people with
high-level disabilities are still affected by barriers to independence and full inclusion
into broader society (Wattenberg 2004). Apart from the need for assistance in many
domestic activities, people with disabilities are less likely to be in fulltime
employment and, if employed, are likely to earn a lower than average income (Kruse
& Schur 2003; Wattenberg 2004). This can be attributed to several potential reasons
other than employer discrimination (Schur 2003). One of these is that employment
options for people with disability are restricted by the degree of mobility that is

available to the individual, both geographically and vocationally.

The inability of existing powered wheelchair control systems to provide effective
mobility for some disabled people can be attributed to the interaction of several
factors. Some of these factors are related to the capabilities of the technology to

allow a potential user to interact with the control system. Some other reasons arise
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from the socio-technical environment in which the individual lives. This thesis

focuses on the interaction between the user and the control system.

Modern powered wheelchairs primarily use a joystick interface to control speed,
direction and auxiliary features of the chair. Existing, widespread alternatives to a
joystick interface include sip and puff controls, modified joysticks and switch arrays.
However, some people find it difficult or impossible to use these existing interfaces
to achieve sufficient control of a powered wheelchair in a domestic or office

environment (Cooper 1995; Fehr, Langbein & Skaar 2000; Tzafestas 2001).

1.1. Aims and contribution of this thesis

The central aim of the research in this thesis is to develop a power wheelchair control
system for highly disabled people. This wheelchair control system is to provide a
method for the needs of people who are unable to easily operate a power wheelchair

using existing techniques.

The main requirement of interfacing techniques is that they must use the abilities of
the user to allow them to communicate their intentions. Existing alternatives to the
joystick interface utilise the user’s ability to move their head or control their
breathing, such as the chin stick, mouth stick, switch arrays and sip-and-puff
systems. Although existing interfaces are useful for many people, there remain
significant numbers of people who are unable to use them. For such people, the
nature of their impairment renders existing control systems unsuitable for a particular
person due to the physical or cognitive loads necessary to achieve the individual’s
mobility needs, or due to lack of reliability, rate of communication, interference from
the user’s environment, or the inability of the control system to satisfy practical or

cost-benefit requirements.

The control system that is the focus of this thesis is designed to allow people with
high-level spinal cord injuries or motor impairments presenting similar symptoms to
operate a powered wheelchair. People with such conditions represent a portion of
those who are unable to use existing wheelchair control systems to meet their

mobility requirements. By designing for the needs of this group, the findings of this
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research may also provide enhanced mobility options for people with less severe

forms of disability.

The first major objective towards achieving this central aim is to demonstrate the
feasibility of a control system for this target population. The design of a control
system is proposed, advancing from systems previously described in literature. The
proposed control system makes use of an artificial neural network (ANN) to
recognize commands given by head gestures. Assuming that the user is able to
adequately perceive their operating environment and is able to determine commands
necessary to reach their destination, the suitability of the proposed control system is
determined by the ability of the user to perform command gestures and the ability of
the control system to recognise such gestures. The ability of the control system to
recognise command gestures performed by disabled people is used to experimentally

examine the feasibility of the control system.

The second major objective towards achieving this central aim is to show that the
performance of the control system can be improved using data from a group of
people that does not include the end user. The degree of control with which a person
is able to control the course of a power wheelchair using the proposed control system
depends on the accuracy with which command gestures are recognised. This
consequently affects the range of navigation tasks that a user can perform in a safe
and practical manner. To maximise the utility of the control system, it is therefore
important to optimise the components of the system that perform the recognition of
commands. The effect of such optimisation will naturally differ between individual
users due to physiological and behavioural differences, but there is a range of
techniques that can be applied to optimise the performance of the control system in

spite of these differences.

The third major objective towards achieving the central aim of this thesis is to show
that the performance of the control system can be improved by adapting the control
system for the end user. As noted previously, physiological and behavioural
differences between users cause the variations in the performance of the control

system between users. When optimising the performance of the control system
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without using user specific feedback or data, these physiological and behavioural
variations tend to lead to degradation of system performance, relative to the
performance that could be obtained by fully customising the system to the end user.
Instead of pursing the full customisation of the control system to the condition of
each potential user, this thesis investigates the benefit that can be obtained by a

partial customisation.

1.2. Structure of this thesis

Chapter 2 reviews literature relevant to the formation of the research questions
investigated in this thesis. From an examination of the features necessary for a
practical wheelchair control system, this chapter goes on to consider the properties of

existing and proposed wheelchair control methods.

Chapter 2 also states the research questions considered in this thesis in more detail
and summarises the background and methodology of the experiments presented later
chapters. It aims to establish the specific research questions posed in this thesis and

theoretical framework by which these questions can be addressed.

Chapter 3 presents a prototype wheelchair control system designed for users with
high-level motor impairments. The control system presented advances from systems
previously at UTS, such as that described by Joseph and Nguyen (1998). The
prototype control system allows a user to issue commands to the control system by
gestures of the head. The current literature indicates a lack of experimental results for
disabled users for this type of control system, leaving an open question as to whether
head gestures are an appropriate technique for the target population of disabled
people. To resolve this question, experimental results are presented examining the
ability of the prototype to correctly identify the head gestures of able-bodied and
disabled people in real-time. These results seek to demonstrate that the prototype
control system is able to provide a practical interface for some members of the target
population. It also examines the degree to which the performance of the prototype

control system differs between able-bodied and disabled people.
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There are many factors affecting the ability of the prototype to accurately detect and
classify head gestures. Chapter 4 investigates the degree to which the real-time
classification performance of the prototype can be improved by making changes to
several key factors. This chapter focuses on the classifier component of the prototype
control system, seeking to optimise the performance of the classifier for disabled
users. In particular, Chapter 4 examines the degree to which classifier performance
can be improved using methods that do not require user-specific data or feedback
prior to the implementation of the controller. Experiments to determine the effect of

several factors for disabled users are presented.

Results in Chapters 3 and 4 demonstrate the performance of classifiers implemented
without the use of user specific data or feedback. The effect of utilising user specific
data in the implementation of the classifier is not considered in these chapters, nor is
there sufficient evidence in the literature to support or discourage the use of user
specific data in this application. It remains an open question whether the use of data
from a specific user in the implementation of the classifier can be associated with a
change in the classifier performance for that user. Further, if such a difference can be
found to exist, it is also an open question as to whether it is significantly different
from the change can be found to be associated with the other factors. These questions
are addressed in Chapter 5. Experiments are presented showing the effect of the use
of user specific data during the classifier implementation on classifier performance

for two highly disabled users.

Chapter 6 discusses the experimental results presented in the preceding chapters and
summarises the conclusions drawn from these results. It considers the extent to
which the questions addressed in the preceding chapters can be considered to be
answered, summarises the contribution of this thesis and proposes several avenues of

investigation which extend from the results presented in this thesis.

Several appendices are included at the end of this thesis. These appendices deal with
matters that are not central to the research questions considered in this thesis, but are
nonetheless pertinent to the methodology or results contained in the main text. The

first four appendices provide background on specific issues in the classifier
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optimisation and experiment design in Chapters 5 and 6. The fifth appendix relates to
the human research ethics approval under which the experiments in this thesis were
conducted and the following appendices provide specifics of the statistical results

obtained in Chapters 5 and 6.

1.3. Publications

At the time of writing, ten papers have been published on the prototype wheelchair

controller described in Chapter 4 and subsequent advancements.

1.3.1. Fully refereed papers

Taylor, P.B. & Nguyen, H.T. 2003, 'Performance of a head-movement interface for
wheelchair control', Engineering in Medicine and Biology Society, 2003.
Proceedings of the 25th Annual International Conference of the IEEE,
Cancun, Mexico, vol. 2, pp. 1590-1593 Vol.1592.

Nguyen, S., Nguyen, H. & Taylor, P. 2004, 'Hands-free control of power wheelchairs
using Bayesian neural network classification', Cybernetics and Intelligent

Systems, 2004 IEEE Conference on, Singapore, vol. 2, pp. 746-750.

King, L.M., Nguyen, H.T. & Taylor, P.B. 2005, 'Hands-free Head-movement
Gesture Recognition using Artificial Neural Networks and the Magnified
Gradient Function', Engineering in Medicine and Biology Society, 2005.
IEEE-EMBS 2005. 27th Annual International Conference of the, Shanghai,
China, pp. 2063-2066.

Nguyen, S.T., Nguyen, H.T. & Taylor, P.B. 2006, 'Bayesian Neural Network
Classification of Head Movement Direction using Various Advanced
Optimisation  Training  Algorithms',  Biomedical =~ Robotics  and
Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS
International Conference on, Pisa, Italy, pp. 1014-1019.

Nguyen, S.T., Nguyen, H.T. & Taylor, P. 2006, Tmproved Head Direction Command
Classification using an Optimised Bayesian Neural Network', [EEE
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International Conference of the Engineering in Medicine and Biology

Society, New York, USA.

Nguyen, H.T., Nguyen, S.T., Taylor, P.B. & Middleton, J. 2007, 'Head Direction
Command Classification using an Adaptive Optimal Bayesian Neural
Network', International Journal of Factory Automation, Robotics and Soft

Computing, In Press, Paper ID 365.

1.3.2. Other conference papers

Taylor, P.B., Nguyen, H. & Craig, A. 2002, 'Head Movement Recognition for Power
Wheelchair Control', Engineering and Physical Sciences in Medicine,

Rotorua, New Zealand, p. 135.

Nguyen, H.T., Legaspi, S., Knight, G., Ekanayke, R., Taylor, P.B. & Martinez-Coll,
A. 2002, 'A head movement system for environmental control units',
Engineering and Physical Sciences in Medicine, Rotorua, New Zealand, p.

157.

Taylor, P.B. & Nguyen, H. 2003, 'Neural network classification of head-movement
for wheelchair control', World Congress on Medical Physics and Biomedical

Engineering, Sydney, Australia, pp. 3953 (CD-ROM).

Taylor, P.B. & Nguyen, H. 2004, 'Adaptive training of neural network classifiers for
power wheelchair control', Engineering and Physical Sciences in Medicine,

Geelong, Australia, p. 0120SF.

PHILIP TAYLOR



ADVANCED NEURAL NETWORK HEAD MOVEMENT CLASSIFICATION FOR HANDS-FREE CONTROL OF

POWERED WHEELCHAIRS

Chapter 2. Literature review

This chapter reviews literature on the inadequacies of existing powered wheelchair
control strategies. Alternatives to existing control strategies are also reviewed,
identifying the factors preventing the widespread use of these techniques in the
present environment. The use of head movement as a control strategy is given
particular examination, with the objective of identifying literature related to the

research questions that will be addressed in the chapters that follow.

This chapter also states the research questions considered in this thesis in more detail
and summarises the background and methodology of the experiments presented later
chapters. It aims to establish the specific research questions posed in this thesis and

theoretical framework by which these questions can be addressed.

2.1. Wheelchair control strategies for people with high Ilevel

disabilities

The hand-operated joystick interface is widely held to be the standard interface for a
powered wheelchair. The unsuitability of joystick interfaces for a significant number
of potential wheelchair users has been commented on widely in the literature. Lack
of mobility, lack of muscular force and excessive spasticity were listed by Pruski and
Bourhis (1992) as factors that prevent the use of joysticks or other classical
proportional sensors. In addition to these factors, LaCourse and Hludik (1990) noted
that people with severe handicaps are unable to effectively use switches and scanning
devices due to the motor coordination required and slow response times. Miller and
Slack (1994) state that for users who have difficulty using a conventional joystick to
operate a wheelchair, the limited rate of communication between the user and the

wheelchair control system limits the speed at which they can safely travel.

More recently, Cooper et al (2000) state that current powered wheelchair interfaces
do not provide adequate mobility for some people with physical disabilities. Fehr,
Langbein & Skaar (2000) state the conclusion that “no independent mobility options

exist at this time” for a significant number of persons with disabilities, including high
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level spinal cord injury and nervous system disease. In addition to this, Fehr et al
conclude that there is evidence suggesting that people who are able to operate a
wheelchair using existing techniques have difficulty with steering tasks, including

some for whom such tasks are impossible to perform without assistance.

Jonkers et al (2004) state that there are few functional scales available for the use of

powered wheelchairs, and further state

“There appears to be no literature reporting motor requirements to operate a
joystick interface for steering a powered wheelchair.” (Jonkers et al. 2004, p.

930)

The results reported were that fine motor control tasks took significantly longer to
perform and were described by the users as the most difficult to perform. Jonkers et
al used surface electromyography to measure the muscle effort and fatigue occurring
across a set of reference and functional tasks performed by 10 subjects diagnosed
with multiple sclerosis. These measurements identified profiles for the activity of
several muscle groups during the tasks. Although the results presented indicate
muscle groups employed by wheelchair users with multiple sclerosis to operate a
joystick, the results do not directly identify factors that reduce a user’s ability to use
such an interface. Jonkers et al do not set out a scale or criteria regarding the motor

requirements to use a powered wheelchair.

Although the use of joysticks, switch arrays and alternate sites provide viable options
for some people, there remains a significant number who are unable to effectively
use a wheelchair using these interfaces, as noted by Fehr, Langbein & Skaar (2000).
In order to advance from these existing interfaces, a range of interfaces has been
proposed to allow the user to issue commands by gestures. The type of movement
required varies among the proposed interfaces, as do the techniques used to measure
the location of the relevant part of the user’s body and the identification of command

gestures.

In the most general terms, a wheelchair control system must harness some form of

voluntary action of the user to determine the user’s intention. This action or set of
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actions can be used to generate analogue control signals, such as those produced by a
joystick, or discrete control signals, such as those produced by a switch (CG Warren
1990). In a review considering the set of characteristics which have been identified
as important determinants of the quality of an assistive technology, Thorkildsen
(1994) listed 17 features from 29 papers. Eight of these characteristics were flagged
as being most important, based upon the frequency with which they were proposed in
the review, largely coinciding with a list of characteristics identified by Batavia and

Hammer, which was also included in Thorkildsen’s review.

Dependability and durability are characteristics defined by Thorkildsen (1994) as
being due to the technology itself, rather than the user’s interaction with it.
According to Thorkildsen, dependability is used to refer to the extent to which a
device operates with repeatable or predictable accuracy, across the range of
conditions in which it can be expected to operate, and durability is used to refer to
the extent to which a device can be expected to operate for extended periods of time.
In defining dependability, Thorkildsen refers only to the properties of the device and
variations in its operating environment. In the case of wheelchair control, the concept
of dependability can be extended to include short-term variations in the abilities or
behaviour of the user, as is advocated by Dewsbury et al (Dewsbury et al. 2003;
Dewsbury, Taylor & Edge 2001, 2002). Similarly, the concept of durability can be

extended to include long-term variations in the abilities or behaviour of the user.

The extent to which the user can easily operate a system was the most frequently
cited desirable characteristic identified by Thorkildsen (1994). Thorkildsen termed
this characteristic operability, although it is synonymous with several terms, such as
“convenience”, ‘“ergonomics” and “simplicity of use”. Operability is highly
dependent on the particular needs of the set of users for whom a system is designed.
The physical and mental requirements on the user are key in determining the
population who will be capable of using a particular control system to operate a
wheelchair. The physical requirements of many forms of wheelchair control system
make it impossible for some people to produce the necessary control signals, due to

the level of motor skills required. Depending upon the condition of the user,
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particular types of action may be difficult, uncomfortable or impossible to perform

due to lack of strength, coordination or reproducibility, or pain or fatigue.

The physical requirements of a control system set a limit on the rate at which a user
can issue commands or adjust the value of a continuous control signal, thereby
affecting the degree of control that the user is able to achieve. The mental
requirements placed on the user arise from the need for a user to communicate their
intention to the control system. Many types of control system use a communication
protocol involving a series of control signals in order to allow a greater number of
selectable commands or to allow differentiation between actions by the user that are
intended to be control signals and those that are not. The degree to which the actions
performed by the user to communicate with the control system are a natural
extension of communication methods, the provision of proprioceptive or external
feedback, the precision with which control signals must be timed and the rate at
which signals must be produced in order to maintain control of the wheelchair are

also factors that determine the mental load on the user.

Affordability, being the extent to which the user is able to incur the initial or going
costs of a device without financial difficulty or hardship, was also a frequently cited
characteristic identified by Thorkildsen (1994). In the context of wheelchair control
systems, the cost of the wheelchair itself is generally quite significant. Warren (1990)
noted the sensitivity of third parties to the price of wheelchair systems, relating this
to the tendency for systems to be less effective for some users than was expected and

the resulting reduction in the benefits of the expenditure on the system.

Ease of maintenance, relating to the actions necessary by a user of attendant to keep
a device safe and operable, is included by Thorkildsen (1994). Although linked with
durability, the ease of maintenance differs in that it is related to the actions required
by or on behalf of the user, rather than the variation in performance over an extended

period.

The compatibility of a wheelchair control system with devices that a disabled user

may use and the degree of flexibility available for the selection of optional features
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for a device are also identified by Thorkildsen (1994) as important features. A
wheelchair control system using discrete commands or continuous control signals
could conceivably be generalised to a wide range of applications. Computer
interfacing and environmental control are two commonly cited related applications.
Consequently, in the context of this review, these characteristics are outside the
scope of the issues to be considered as many aspects of compatibility and flexibility

are specific to particular implementations of a technology.

2.2. Hands-free powered wheelchair control strategies

In order to review the wheelchair control interfaces proposed in the literature, the
systems proposed will be categorised by the method employed to allow the user to

issue signals to the control system.

Some authors have proposed the combination of several methods in order to allow a
greater rate of information transfer between the user and the control system, such as
Coyle (1995), or to create redundancy, such as Simpson and Levine (1997). For the
purposes of this review of interface methods, each method will be considered

separately.

2.2.1. Modified joystick interfaces

Modifications to the construction or processing of signals have been proposed in
order to improve the operability of the conventional joystick interface. Common to
each of these interfaces is a requirement that the user has some degree of voluntary
movement, although the techniques vary in the reproducibility, range and type of

movement required.

Alternative sites for joystick and switch array input devices have been identified by
several authors and are common in conventional existing interfaces. In these
alternative sites, the input device is modified to allow the user to operate the
wheelchair by moving a different part of the body, such as the chin, mouth, shoulder
or foot. Several authors have identified disadvantages relating to the use of a joystick

or switch array in an alternative site. Coyle (1995) stated that physically activated
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devices positioned around the users face or head intrude upon the user, creating
problems with the operability of the interface. Further, Coyle (1995) and Chen
(2001) noted that orally activated devices have sanitation risks, requiring that the
parts in contact with the user must be regularly cleaned or replaced. Despite the
problems related to the use of these sites, these sites are employed in existing control
systems for many users, as is indicated by Warren (1996), due largely to the need for

some degree of mobility and the lack of existing alternatives available in the market.

Isometric joysticks have been proposed and tested by several authors as an
alternative type of joystick that may benefit some users. This type of joystick
produces an output related to the force applied to the joystick rather than the
conventional output related to the position of the joystick, hence requiring a smaller
range of movement to operate. Rao, Seliktar and Rahman (1999) found that
positional joysticks provide significantly superior control relative to isometric
joysticks when tested on cursor pointing tasks. In discussing their findings, it was
suggested that the isometric joystick increased tremor related artefacts in the signal,
while the friction and momentum of the users arm and hand reduced these artefacts

for the positional joystick.

Cooper et al (2000) reported that an isometric joystick was used to achieve superior
performance for some driving tasks, both for able-bodied and disabled users. The
task for which the superior performance was reported for isometric joysticks were
those involving driving in a straight line and turning in a full circle. Despite this,
superior performances were reported for positional joysticks during other tasks. In a
separate paper Cooper et al (2000) used a different methodology and reported results
that a significant difference existed only for movements involving driving forwards
along a curving path. Since the subjects in these papers were able to use either
positional or isometric joysticks in a handheld configuration, it is difficult to
meaningfully extrapolate to potential subjects for whom handheld joysticks are not a
viable control interface. Guo et al (2002) reported that isometric joysticks can be
used in a chin-operated configuration, but did not present results measuring the

performance of such interfaces, nor compare this interface with others.
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In order to allow people with tremor to operate a wheelchair via a joystick, a number
of signal processing techniques have been proposed. Corbett and Martinez (1998)
state that a common technique to deal with mild tremor is to apply a time-delay
mechanism or low-pass filter to the input from the user. This method was noted to
slow the wheelchair down and adversely affect the ability of the user to perform
some navigation tasks. Corbett and Martinez also state that, for joystick interfaces,
more severe tremors are primarily dealt with by mechanically restricting the range of
directions in which the user can move the joystick, which has the disadvantage of

making it difficult to navigate the wheelchair smoothly or consistently.

Fuzzy logic based filtering techniques have been reported to improve performance
for users with light or moderate tremors, but are not useful for severe tremors
(Corbett & Martinez 1998; van der Zwaag, Corbett & Jain 1999). Corbett and
Martinez suggest an extension of the technique they propose would be to combine an
artificial neural network with fuzzy logic to create a neuro-fuzzy controller, with the
purpose of allowing the fuzzy membership set to adapt to a particular user. Ding,
Cooper and Spaeth (2004) also presented results that fuzzy logic can be used to filter
out tremor signals, and also indicated that there is a need to adjust the parameters of

such filters.

Joystick interfaces have many benefits, including a low cost, durable construction
and a low requirement for maintenance in most sites. Provided that the user is
capable of meeting the physical requirements of operating a joystick, the control
action can be intuitive and accurate. The primary factor preventing or limiting the
use of joysticks for potential users is that the physical requirements of such an
interface are too high, as the condition of many highly disabled individuals prevents
the range of movement necessary to effectively operate the wheelchair, as was noted

earlier with regard to existing wheelchair control systems.

2.2.2. Bioelectric input signals

Several types of bioelectric signals have been considered as a means of issuing

command signals to a wheelchair control system. Electroencephalography (EEG) has
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been explored as a means to achieve a brain-computer interface (BCI) in many
applications, including wheelchair control. Electromyography (EMG) and surface
electromyography (SEMG) have been also been investigated for the purpose of

wheelchair control.

Electroencephalography (EEG) has been speculatively considered as a potential
mechanism for communication and control for many years. Research on EEG-based
BCI has grown rapidly since 1995, although the topic has been actively investigated
for communication and control since at least the 1970°’s (Wolpaw et al. 2000).
Wolpaw et al cite the work of Vidal (1977) as an example of this early research,
which highlighted the importance of being able to distinguish between EEG signals,
which are typically measured on the scalp in the range of 0 to 200 puV, from EMG

signals arising from scalp or facial muscles.

Most literature on BCI focuses either on the development of a generic
communication tool, equivalent to one or more binary switches, or on applications
such as text entry and environmental control. The same techniques can be
generalized to use in a wheelchair application in a manner similar to the use of a
switch array, such as the system proposed by Tanaka, Matsunaga and Wang (2005).
In comparing BCI communication tools, Wolpaw suggests the use of bit rate as a
measure of performance, as this reflects both the speed and the accuracy of the
interface, as well as the number of control actions available to the user. Several
functional BCI have been proposed in the literature, although Wolpaw notes these as
having a relatively low bandwidth, in the order of 5 to 25 bits per minute. One
method for the implementation of a BCI is to train users to control their brain waves,
for example, by performing particular mental tasks or by using biofeedback. An
alternative to this is to use the response of the brain to external stimuli, such as the

use of evoked potentials or event related potentials.

Anderson, Devulapalli and Stolz (1995) propose a BCI allowing the user to control a
binary selection by performing two mental tasks: a relaxed baseline and performing
mental multiplication. Anderson, Devulapalli & Stolz justified the use of this method

by noting that contemporary systems using event related potentials were unsuitable
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due to the device creating the external stimuli being excessively slow. The interface
proposed by Anderson, Devulapalli and Stolz was not customized for particular
users, using an ANN trained on all subjects to classify EEG data. The results
reported by Anderson, Devulapalli and Stolz showed that the performance of the
ANN depended heavily on the pre-processing of the EEG data, with some
representations of the input patterns resulting in error rates of up to 49%, close to the
50% error rate attributable to chance alone. The best results obtained were from a
frequency-based representation, which was reported to have achieved an error rate of
26%. This BCI was later refined (Anderson, Stolz & Shamsunder 1998), where it
was noted that the optimal classification method was not the same for all users. The
BCI tested by Anderson, Stolz and Shamsunder used the same mental tasks as the
Anderson, Devulapalli and Stolz, and was reported as capable of an error rate of less
than 10%, which was described as being marginally acceptable for use in a real-time

system.

Mclsaac et al (2002) proposed a BCI using a single control action, the closure of the
eyes, in an environmental control system (ECS). The system described by Mclsaac et
al allowed the user to select and control devices using a scanning protocol, having
evolved from a system designed for activating or deactivating a single device. This
system was tested with both able-bodied and highly disabled subjects. It was reported
that both able-bodied and disabled subjects were able to operate the ECS in
performing a set of tasks. The error-rate of the interface was reported to be 1.8 per 5
trials for disabled subjects, although it was noted that this was reduced by almost half
as subjects become more experienced with the system. Time taken to perform an
environmental control task was reported to be approximately 30s, much of which
was due to the time required for the scanning protocol to display the necessary
option. Mclsaac et al indicated that more efficient noise suppression and signal
processing would improve the BCI. It was also indicated that the effect of drugs,
fatigue and variation in environmental conditions warranted further investigation, a

comment that could be applied generally to BCI systems.
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Customisation of a BCI to a particular user has been proposed in order to deal with
the variations in physiology and psychology between individuals (del R. Milan et al.
1998). Unlike the systems proposed by Mclsaac et al and Anderson, Devulapalli and
Stolz , which used signal processing and classification techniques designed to cater
for the general population of users, the system proposed by del R Milan et al used a
hierarchical structure of ANN, trained entirely on data specific to the user. The
function of this hierarchical structure was to improve the specificity of the BCI. Del
R Milan et al commented that an overall error rate of 20% to 30% would be
acceptable if the false positive rate were negligibly small, thus resulting in a
specificity close to 1. The overall results of the BCI proposed by del R Milan et al
were not reported, although it was shown that the method described were able to
achieve an error rate of 25% with a false positive rate of 1.6% for at least one of the
three mental tasks. Del R Milan et al remarked on the potential to apply these
methods to the control of a wheelchair, using the three mental tasks to generate
discrete commands for forward, left and right, although no details nor results were

presented.

In presenting a prototype wheelchair controller, Tanaka, Matsunaga and Wang
(2005) commented that there were no reports of wheelchair control solely using EEG
in the literature. The system proposed by Tanaka, Matsunaga and Wang used two
mental actions, corresponding to left and right, to control the wheelchair. EEG
signals were classified using a recursive training algorithm with error rates ranging
from 9% to 53% on individual patterns, with an average error rate of 21%. An
experiment on the ability to control a wheelchair using this BCI was also reported.
This experiment was conducted in highly structured conditions, being to test the
ability of the subject to navigate a wheelchair to one of two nearby goals in an
otherwise empty room. The results reported for this experiment were the subjects
were able to successfully perform this task in approximately 80% of trials, although

there was significant variation between subjects.

Serby, Yom-Tov and Inbar (2005) propose a BCI using event related potentials in a

text entry application. A computer screen was used as the source of external
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stimulus, comprising a grid of 36 symbols. The rows and columns of this matrix
were intensified in a random sequence. To select a symbol, the user was required to
mentally count the number of times that the symbol was intensified, with the BCI
classifying EEG signals to recognise the resulting event-related potentials and
correlate these with the intensification of the symbols in the matrix. In an experiment
involving 6 able-bodied subjects, it was reported that the BCI was able to recognise
the correct symbol with an error rate of 9% in offline experiments and 20% in online
experiments, with approximately 4.5 symbols per minute in both cases. The bit rate
reported for the online experiment was 15 bits per minute. Serby, Yom-Tov and
Inbar used event related potentials as a means to reduce the degree of training
required to allow users to operate the BCI while still allowing sufficient performance
for the application. Although aiming to remove the need for the user to be trained to
use the system, the results presented indicated that the error rate and bit rate of the

BCI varied with the number of repetitions performed by the user.

The physical load placed on the user by an EEG based wheelchair control system is
the lowest of all approaches to wheelchair control reviewed in this chapter. For this
reason, EEG has been proposed as a control mechanism for severely disabled
individuals, such as those with high-level spinal cord injuries or amyotrophic lateral
sclerosis. However, this low physical load does not make EEG interfaces suitable for
all potential users. The difficulty of compensation for EMG and EOG artefacts in
analysing EEG signals prevents the use of such interfaces by individuals whose
condition results in an excessive degree of involuntary action of facial muscles.
Further, the condition of some individuals, such as stroke victims, results in changes

to the physiology of the brain, thus affecting their EEG patterns.

The operability of EEG based control systems depends heavily on the bit rate that the
interface is able to achieve and the mental load placed on the user. The response time
of EEG systems reported in the literature is slower than other interface techniques,
and is generally too slow to be used in a real-time wheelchair control system without
some form of navigational assistance in order to operate in all but the most tightly

structured operating environments. The mental load placed on the user is most
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significant in systems requiring users to exercise control of their brain waves, as
doing so requires several stages of action. Since it is difficult to classify the EEG
signals resulting from mental actions that intuitively correspond to particular
commands, the user is required to memorise the mental actions used to encode these
commands. This adds a layer of complexity to the operation of a wheelchair using

this form of interface.

The dependability of EEG based wheelchair control systems is affected by changes
in the physiological and psychological state of the user. As was observed by several
of the above authors, the performance of the interface can change as the user adapts
to the system, as well as changes in the user’s condition or operating environment.
Wolpaw et al (2000) and Tanaka, Matsunaga and Wang (2005) state that adaptation
of the interface during its operation can allow the performance of the system to be
maintained, although long term adaptive protocols were not proposed. Despite being
recognised as a problem as far back as 1977 (Vidal), interference from EMG, EOG,
EEG signals other than command actions and external sources is still a significant
issue. Although sophisticated filtering and signal processing techniques have been
proposed to eliminate or mitigate the effects of these sources of interference, these
techniques are not completely effective. Anderson, Stolz and Shamsunder (1998)
noted that these artefacts do not necessarily degrade the performance of the interface,
and in fact may be helpful if they are correlated with the signals being recognised,
although no indication was given as to how often this was the case. Tanaka,
Matsunaga and Wang (2005), taking a pragmatic but limited approach to this
problem, requested that users minimise all forms of voluntary movement while

operating the wheelchair interface.

The durability, cost and ease of maintenance of EEG based wheelchair control
systems are not discussed in the literature, due to the lack of systems that are

sufficiently developed to be considered close to being a practical implementation.

Electromyography (EMG) has also been proposed as a bioelectric input signal for
wheelchair control systems, although it has received considerably less attention than

EEG. EMG measures the electric potential generated by the contraction of muscle
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cells, and can be measured by implanted, transcutaneous or surface electrodes. The
magnitude of surface EMG (sEMG) signals from muscle in the forearm was used as
a continuous control signal in a computer pointer application by Rosenberg (1998),
using an ANN to translate the signals to motion of the pointer. Rosenberg noted that
the performance of this interface was markedly lower than other pointing devices,
but did not discuss the appropriateness of the device for people with disabilities.
Since the response time and bit rate of EMG-based systems is generally superior to

those based on EEG, the need for assisted navigation would be reduced.

Muscles in the face and neck have been more popular in research on aids for people
with disables, as voluntary control over these muscle groups is more likely to be
available to highly disabled individuals. SEMG from the sternocleidomastoid
muscles have been used in research on wheelchair control by Martinez-Coll,
Papacosta & Nguyen (2003a; 2003b) and Han et al (2003), while Williams and

Kirsch (2004) used facial muscles in a generic neural prosthesis interface.

The use of EMG as a control input requires relatively low levels of physical ability
on the part of the user. While it is necessary that the user is capable of voluntary,
controlled contraction of the relevant muscle groups, this does not require the user to
be capable of controlled movement using that muscle group. Han et al (2003) noted
that fatigue can affect the level of control an individual is able to achieve using
EMG, particularly when using control protocols requiring that muscles be contracted

for extended periods.

Selection of muscle groups that are used in conventional gestures or pointing
movements allows EMG to be used with control actions that are more intuitive than
other bioelectric interfaces (Han et al. 2003). Muscle groups can also be selected to
avoid or minimize interference between the use of the control interface and other
actions by the user, although the scope for this is diminished for highly disabled
users (Williams & Kirsch 2004). A limiting factor in the use of EMG as a control
interface is in the translation of EMG signals into controller outputs. Although the
relationship between the magnitude of EMG signals and the force exerted or level of

contraction of the muscle has been noted to be static (Han et al. 2003) or even

PHILIP TAYLOR

21



ADVANCED NEURAL NETWORK HEAD MOVEMENT CLASSIFICATION FOR HANDS-FREE CONTROL OF

POWERED WHEELCHAIRS

“obvious” (Rosenberg 1998), the processing of EMG signals to accurately determine
the appropriate control output remains a problematic issue, affecting the

dependability of such interfaces.

Several sources are noted to interfere with the measurement and classification of
EMG signals, including the use of nearby muscle groups (Williams & Kirsch 2004),
fatigue (Han et al. 2003) and electrocardiograph (ECG) potentials (Ragupathy et al.
2004). Some authors have used ANN classifiers or filters to remove these artifacts, as
with interference on EEG signals, but the effects of interference are still noted to
affect the performance of EMG classifiers in control applications. Rosenberg (1998)
and Han et al (2003) both state that it is practical to develop low cost control systems
using EMG. The instrumentation required to measure and process EMG signals is
cheaper and less complicated when compared with EEG, but more costly than

systems measuring physical movements.

2.2.3. Eye movement

Eye movement has been used as a source of both discrete commands and
continuously varying control signals. Several different methods to determine the
position of the eye have been reported in the literature. Electro-oculography (EOG) is
the most common method, estimating eye position by measuring the electric
potential created on the skin by the orientation of the eye, typically ranging from
0.05 to 3.5 mV. Other methods of measuring eye position are infrared oculography
(IROG) and video-oculography (VOG). Although no complete control systems are
presented in the literature using IROG and VOG, these methods are proposed in

principle as alternative sources of control input.

LaCourse and Hludik (1990) proposed a control system using EOG to monitor the
position of the user’s eyes. This system allowed the user to select discrete
commands by moving their eyes towards nine specific target locations on a template.
The results presented by LaCourse and Hludik were obtained from a single subject
(that subject being Hludik), and showed that for the target locations used, error rates

varied between 0 and 60%. LaCourse and Hludik suggested that the high error rate
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reported for some targets was due to movement of the subject’s head, which changed
the angle to which the subject’s eye would move in order to look at the target and
therefore changed the EOG potential. Bahi, LaCourse and Hludik (1991) explored
this issue, proposing a modified control system and an experimental method to test
the effect of a tremor on the ability of the system to identify the target that the subject
was looking at. The results presented by Bahi, LaCourse and Hludik showed, under a

particular selection of parameters, the error rate was reduced to below 30%.

EOG was later investigated by Barea et al (2002; 2000) to develop a system designed
to allow highly disabled users to directly select navigational commands. Two models
for the generation of discrete commands were discussed in detail, being the direct
selection of commands from a fixed display, and the selection of commands from a
scanning display. Recognising that the rate at which a user would be capable of
issuing commands would be too low to safely allow direct control over the
movement of the wheelchair, the proposed system included navigational aids, such as
infrared and ultrasonic sensors for collision avoidance. Mazo et al (Mazo 2001;
Mazo et al. 2002) presented an extension of this system, incorporating more
advanced navigational assistance, providing higher level command signals, such as

the selection of a destination.

The control protocols presented using oculography as a control interface require low
levels of physical ability to allow a user to achieve control of a wheelchair. However,
as reported by Barea et al (2002), fatigue depended on the rate at which eye
movements must be made to achieve control of the wheelchair, thus affecting the
operability of the control system. Further to this physical load, they noted that the
concentration required also influenced the development of fatigue, depending heavily
on the ability of the users to control their ocular actions and the control protocol

used.

Operability of controls systems based on oculography is also affected by what is
termed by Barea et al (2002) as the Midas Touch problem: that the user’s eye is
always active and so long as it is open, it is always looking somewhere. In the case of

EOG based systems, the user’s eye has a position even when it is closed. However,
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not all ocular actions are intended by the user to control the wheelchair, and it is
necessary to have some degree of free eye movement to allow the user to navigate or
perform other activities. Neither Barea et al (2002) nor the articles by Mazo et al
(Mazo 2001; Mazo et al. 2002) on the same project propose a solution to this
problem other than to implement emergency stop and collision avoidance features,
and by only conducting experiments on oculographic control under supervision in

structured environments.

Mazo (2001, p. 49) noted that the EOG signal is “seldom deterministic, even for the
same person in different experiments”, therefore complicating the recognition of
command actions. The high error rates reported by La Course and Hludik (1990) and
Bahi, LaCourse and Hludik (1991) were obtained from classifying oculographic
signals using a threshold crossing method. The systems presented by Barea et al
(2002) and Mazo et al (Mazo 2001; Mazo et al. 2002) used more sophisticated
signals processing, including an ANN to estimate gaze angle, and reported that
moderately disabled subjects were able to achieve sufficient control of the
wheelchair to perform a set of tasks. However, no details were given on the accuracy

or reliability of these control systems.

It was noted in these articles that there are several signals that interfere with the
processing of electro-oculographic potentials. The direction of a user’s gaze is
affected by both the position of the eyes and the position of the head. Since EOG
signals only reflect the position of the eyes, it is necessary to compensate for
movement of the user’s head to use fixed targets for the selection of commands or
path tracking relative to overall gaze direction. Electromyographic signals from the
movement of the head, face and eyelids and the effect of electrode placement are also
sources of interference. VOG is mentioned by Barea et al (2002) potentially as being
able to resolve these issues. However, as with other camera-based techniques,
interference from lighting conditions, camera occlusion and the processing load are

introduced.

The authors above proposing the use of EOG do not discuss the long-term effects of

the placement of electrodes on the skin. This issue is significant due to the extended
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periods during which a user could be expected to use such a control system and the
absence of alternative sites for electrodes for EOG. The typical sites used to measure
EOG potentials, shown in Figure 1, create problems for the preparation of the skin
using either electrolyte gel or abrasion of the outer layer of skin (Griss et al. 2001).

The authors proposing the use of EOG did not propose solutions for these issues.

Figure 1 Electrode placement for electro-oculography (Barea et al. 2000)

EOG is described as a low-cost control interface (Barea et al. 2000), although this
does not include the cost of the assistive navigation technology several authors
(Barea et al. 2002; Mazo 2001; Mazo et al. 2002) associate with the use of EOG for
wheelchair control. Barea et al (2002) suggests that VOG using relatively low-cost
cameras may further reduce the cost, although this was not investigated through to a

comparable system.

2.2.4. Speech recognition

Voice control and speech recognition have been investigated as a source of discrete
commands requiring a low physical capability. The difficulty of processing voice
signals in a robust manner and problems regarding operability and dependability
have been noted by many authors, such as Newell and Barr (1971), Chauhan et al

(2000). and Komiya et al. (2000).
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Although speech recognition has been used successfully in systems that are not
safety critical, such as computer interfacing, its successful use in wheelchair control
has been largely restricted to laboratory conditions. Noyes and Starr (1996) presented
a case study of the use of speech recognition in an environmental control system. The
results reported came from a six-week study involving subjects with a range of high-
level disabilities, and showed that the reliability of the system was too low, limiting
its operability and dependability for many users. The recognition rate was reported to
be as low as 50%, a problem which led to feedback processes whereby a user’s voice
patterns would become altered as they became irritated or fatigued, further degrading

the performance of the classification.

Shortly after this paper, Rockland and Reisman (1998) presented a design for a
wheelchair control system using a small vocabulary speech recognition kit. Although
it was stated by Rockland and Reisman that an individual for whom the speech
classifier was customised could theoretically achieve accuracies in excess of 95%,

there was a lack of detailed experimental data supporting this claim.

2.2.5. Head position and head movement

The position of the head has been used to generate both discrete commands and
continuously varying control signals. In addition to the use of head position, gestures
formed by changes in head position have been used as discrete commands. Some
degree of voluntary control of head position is available to many disabled individuals
who are unable to control the movement of other body parts. In addition to the
wheelchair application, head position and head movement interfaces have also been
proposed for other applications, including environmental control and computer

interfaces.

Each of the three degrees of freedom of the head has been used, either individually or
in combination with the others. Although the terminology used varies, the control
actions performed by the user in all systems based on head position are comprised of
the same basic movements. For consistency, the anatomical terms used by Hamill

and Knutzen (2003) will be used in this section, as illustrated in Figure 2 and Figure
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3. Flexion of the head refers to an anterior rotation about the mediolateral axis, that
is, bringing the face forwards, towards the chest. Extension refers to the opposite
movement, returning to the anatomical starting position. Hyperextension is used to
describe the posterior rotation about the mediolateral axis from the anatomical
starting position. Lateral flexion describes rotation about the anteroposterior axis,
either to the left or to the right. This type of movement is sometimes referred to in
the engineering literature as a head tilt, although this usage is not uniform. Rotation

describes a rotation about the longitudinal axis.

(c)

Figure 2 Anatomical reference axes — (a) anteroposterior axis; (b) mediolateral
axis; (c) longitudinal axis. (Hamill & Knutzen 2003; Tordoff & Mayol 2001)
(

d
)y~ _\(c)

Figure 3 Anatomical descriptors of head movements — (a) flexion; (b) extension;
(c) hyperextension; (d) lateral flexion; (e) rotation (Hamill & Knutzen 2003;
Tordoff & Mayol 2001)
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The position of the head without examination of any temporal features in the signal
is the simplest method of using the head as a control input. Coyle (1995) used head
position to provide a variable input signal to a wheelchair. In this system, head
positions within a dead band region were ignored. Outside the thresholds creating
this region, the speed and direction of wheelchair movement was determined as a
function of the position of the user’s head, although no details were given as to what
form this function took nor which movements were used. Salagnicoff (1995) used
head position, in conjunction with the position of the torso, to control a robot arm
with 6 degrees of freedom. The torso is capable of the same three types of movement
as described for the head, although it was not stated whether all types were
necessary, nor how much movement was necessary to achieve control using this
method. The position and attitude of the end effector of the robot followed the
position of the user’s head, amplifying the user’s movements. Force-feedback was
provided to the user via a robotic arm connected to the user’s head, reflecting the

force sensed at the robot’s end effector.

The results presented by Salagnicoff et al (1995) showed that several able-bodied
users were able to perform a set of precision control tasks using this control system.
It was noted that one of the subjects was only able to perform one of the tasks if
force feedback was supplied, which was concluded to suggest that the proprioceptive
and tactile feedback allowed the users to achieve greater precision in operating the

arm than using visual feedback alone. No results for disabled users were presented.

Head position has also been used to implement a computer interface. Takami et al
(1996) proposed the use of flexion, extension and rotation to control the position of
the cursor on a computer monitor. The method used to translate head position to
cursor position was that the velocity of the cursor was proportional to the degree of
flexion or rotation of the user’s head. The system was tested with three highly
disabled subjects, although clinical information regarding the subjects’ disabilities
was not presented. Although results regarding the performance of interface were not
reported in detail, it was stated that all three subjects were able to satisfactorily

operate the system.
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Min et al (2002) proposed the use of head position for wheelchair control using
multiple thresholds to reduce the precision with which the user was required to have
over voluntary head movements. Flexion, hyperextension and lateral flexion were
used as control actions, with the command being recognised after the user had moved
past a preset threshold. A second, lower threshold was to recognise the conclusion of
the command. The aim of this hysteresis was to prevent jitter in the case that the user
moved to the threshold but was unable to move sufficiently past that point that
interference did not cause the head position signal to repeatedly cross the threshold.
Results reported were that of six disabled subjects, five were able to use the
wheelchair with a median recognition accuracy of 75%. Min et al indicated that this
accuracy is lower than would be necessary to provide sufficient control without
assisted navigation, and attributed at least part of the inaccuracy to the difficulty
experienced by users when making movements close to the limits of their range of

motion, particularly for lateral flexion.

The use of current head position as a control input in the systems described above
provides an intuitive interface, minimising the mental load placed on the user by
utilising familiar movements as control actions. Both Salagnicoff et al (1995) and
Takami et al (1996) note that very little or no training was required for subjects in the
tests performed. A drawback to the use of head position in this manner is that the
condition of many disabled individuals prevents them from exercising precise
voluntary control over the position of their head. As a result, the number of control
actions is limited, therefore limiting the transfer of information between the user and
the system. Most systems using head position as the control input use thresholds to
determine the user’s intention. Where a user lacks sufficient control of their head
movement, this leads to a reduction in the specificity of the control system, thus
degrading the operability and dependability of the system. The durability, cost and
maintenance requirements of these systems depend largely on the technique used to

measure the position of the head.

Temporal information has been used widely to assist in the interpretation of head

position data. Morimoto, Yacoob and Davis (1996) proposed the use of Hidden
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Markov Models (HMMs) for the classification of head movement gestures for use in
a human-computer interface. The classifier proposed identified four movements from
a stream of data measuring the position of the user’s head in each of the three axes of
movement. Morimoto, Yacoob and Davis note that since the gestures used were
relatively simple and there were only four gestures, it would have been feasible to
develop a classifier using less sophisticated methods but dismissed this approach on
the grounds that the vocabulary of the interface could be expanded more easily with

the use of a HMM classifier.

Fuzzy logic and heuristic methods were employed by Adachi et al (1998) in a
wheelchair control application. The system proposed by Adachi et al used head
position as the input source, using thresholds to create a dead band region similar to
that proposed by Coyle (1995). In a variation from the system proposed by Coyle, a
fuzzy rule set was then used to filter out fast movements. This approach was based
on several assumptions about the user’s intention and communication method and the
nature of signals and user actions that would be considered interference. Anecdotal
results were presented, showing that the proposed system could be used to guide a
wheelchair around a large room. No details were given on the nature of the subject or

subjects, nor were quantitative results presented.

Joseph and Nguyen (1998) proposed a wheelchair control system using head gestures
as directional commands. An ANN classifier was used to recognise eight commands,
being nodding movements involving flexion, hyperextension and lateral flexion, or a
combination of these. A ninth gesture, head shaking, was used as an interrupt or
emergency stop signal, but was recognised using a heuristic method. Joseph and
Nguyen noted that the performance of the control system is highly dependant on the
quality of the classifier used to recognise commands. The results reported were that
the ANN was able to correctly classify almost 92% of gestures performed by an able
bodied subject.

Bergassa et al (2000; 1999) also classified gestures as commands, with gestures
comprising flexion, hyperextension and rotation. Instead of using an ANN, Bergassa

et al used a fuzzy logic classifier. Inputs to the classifier were the position and
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velocity of the user’s head in the directions parallel to the mediolateral and
longitudinal axes. Bergasa et al (2000) mention an experiment involving 5 disabled
subjects in a laboratory and corridor, but present no quantitative results and give little
detail on the experimental procedure. Bergassa et al also used facial gestures as
command actions, one of which was noted to adversely affect the performance of the

control system, as the specificity of the classifier for this component was inadequate.

Y-L Chen et al (2003; 2002) proposed the use of thresholds as a means of
recognising gestures in head position data. Although the classification of gestures
was based solely on head position, the system proposed by Chen et al differed in that
the movement of the wheelchair was governed by a finite state machine such that the
wheelchairs speed could be changed by subsequent commands, thus making use of
addition temporal information. As with Coyle (1995), Adachi et al (1998) and Min et
al (2002), a dead band region was created using thresholds. Discrete commands were
generated by flexion, hyperextension and lateral flexion. In a clinical evaluation,
seven disabled subjects performed a series of driving tasks, comparing the difference
in time taken to complete the tasks between a joystick interface and the head
movement controller. The results presented showed no significant difference
between the two controllers, which was interpreted as showing the head movement

controller to be a suitable alternative interface.

By including temporal information in addition to head position, head gesture based
control systems provide a greater number of possible control actions for a given
physical ability. In addition to allowing command actions to be given using a larger
number of combinations of the basic types of movement, processing head position
with temporal information allows more sophisticated classification techniques, such
as the ANN classifier used by Joseph and Nguyen (1998) and the HMM proposed by
Morimoto et al (1996). As with head position, several authors noted that head
gestures are a natural, intuitive methods of communication and thus create a low
mental load for many potential users. The physical requirements are greater than
bioelectric control systems, as it is necessary for the user to be able to exercise a

reliably reproducible gesture. However, the increase in flexibility of the form of the
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control actions facilitated by the use of signal processing techniques can provide a
mechanism for the removal of interfering signals, such as those due to tremor or
other problems with control over voluntary head movement, therefore making the

system operable by more highly disabled individuals.

The ability to identify command actions in the presence of interference and noise
determines the dependability of head gesture control systems. The use of thresholds
and similar heuristic based approaches is appropriate only when the user is capable
of maintaining precise control of the spatial and temporal aspects of their head
movement. From the results presented in the literature discussed above, techniques
such as ANN, fuzzy logic and HMM classifiers provide reliable performance to a

greater number of potential users.

As with head position control systems, the method used to measure head position is a
key factor in the durability, cost and maintenance requirements of head gesture
control systems. Three general methods appear in the literature for measuring head
movement: image processing, ultrasonic proximity sensors and sensors placed in
connection to the user’s head. Capacitive and Hall effect methods have also been
used in commercially available control systems, such as the discontinued Peachtree
proportional head control system (ABLEDATA 2003) and ASL Proximity Head
Array Package (Adaptive Switch Laboratories Inc 2004). The ASL system is claimed
have been used successfully with developmental disabilities as it is able to measure
head position without the application of mechanical pressure, a feature shared with
all of the above methods. Capacitive and Hall effect based methods are not common
in recent engineering literature, and are thus not discussed in further detail in this

review.

The system developed by Bergasa et al (2000; 1999) is one of the more notable
image processing approaches. Bergassa et al propose a “vision-based command
generation system”, which allows a user to issue commands to a wheelchair by a set
of facial and head movements. Commands are identified by the interface by
processing images of the users head. Bergasa et al (1999) describe the global system

architecture, methodology and some experimental results for the proposed system. A
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colour CCD camera is placed about 80 cm in front of the user, acquiring images of
their face that are digitised by a frame grabber. The head is located in the image
using a skin colour segmentation algorithm and, using this location, face tracking is
used to govern a state machine whose outputs set the linear and angular velocities of
the wheelchair. Facial features, such as the eyes and mouth, are distinguished as
hollows in the face by being a different colour, allowing the system to recognise
movements of the user’s head, eyewinks and hiding of the user’s lips as command
actions. It was reported to work well indoors where suitable illumination is available.
However, the performance was reported to worsen in poorer light conditions,

particularly in outdoor settings where light conditions are not uniform.

Morimoto, Yacoob and Davis (1996), Adachi et al (1998) and Matsumoto, Ino and
Ogsawara (2001) used similar video based techniques. By using processing of colour
images, the number of command actions was increased by being able to detect facial
gestures using the same processing instrumentation. Matsumoto, Ino and Ogsawara
also noted difficulty in outdoor settings. Although the system proposed by
Matsumoto, Ino and Ogsawara was successfully used by many subjects, in particular
conditions, the saturation of the camera image by sunlight prevented the use of any

signal processing, rendering the wheelchair inoperable.

The demands of computation and instrumentation have been identified as significant
drawbacks to the use of image processing. An alternative method to using algorithms
such as that described by Bergassa et al (1999) is proposed by Takami et al (1996)
for a computer based environmental control unit, which could conceivably be
adapted for wheelchair control. This system simplifies the task of locating the
position and orientation of the user’s head by mounting 3 infrared LEDs on a glasses
frame worn by the user in a triangular configuration. Two LEDs were mounted close
to the user’s face at the edge of the glasses frame, while the third was mounted
several centimetres in front of the frame, between the user’s eyes. The image-
processing algorithm proposed by Takami et al was reduced to finding the relative
locations of the 3 LEDs. A heuristic estimate of the orientation of the user’s head

was determined from the deviation of the centre LED from the midpoint of the two
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distal LEDs. Tests of the precision of the head position measurement reported by
Takami et al showed that the absolute error was less than 4 degrees across a 60

degree range, reproducible within 0.5 degrees.

Coyle (1995) proposed a system using several interface techniques, including head
movement measured by ultrasonic transducers mounted in a headrest the behind the
user. Head position was measured using the time taken for sound to be reflected back
to each transducer. Lo Presti and Brienza (2004) also used ultrasonic instrumentation
in a computer interface. This system involved placing a transducer on the user’s
head, with the receiver mounted in a fixed position on the monitor. Ultrasonic
measurement tends to be cheaper than video processing, but has several drawbacks.
It cannot be used in noisy environments due to interference with the signals.
Similarly, performance of ultrasonic instruments is degraded in outdoor

environments.

Electromechanical sensors are the most common instruments used to directly
measure head movement, although several other types of angle sensor have also been

used.

Joseph and Nguyen (1998), Knight (1999), Y-L Chen et al (2003) and S-H Chen et al
(2003) used microelectronic accelerometers to measure the angle of the user’s head.
The method involves fixing a multi-axial accelerometer to the user’s head such that
one axis was parallel with the mediolateral axis and the other with the anteroposterior
axis. In a position where the user’s head is level, the force of gravity is orthogonal
with these axes, and no acceleration is measured. When the user performs flexion,
hyperextension or lateral movements, the force of gravity is projected onto one or
both of these axes, which is detected as an intransient acceleration in that direction.
This enables the angle of the user’s head to be determined, although rotation could
not be detected apart from small transient signals related to the movement of the

head rather than its position.

Although Joseph and Nguyen (1998) used a tri-axial accelerometer, Knight (1999)

presented similar results using a dual-axis accelerometer. This measurement
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technique provides acceptable accuracy across a wider range than ultrasonic sensors
and is largely free from external sources of interference that affect image processing
and ultrasonic techniques (1999a). The cost of instrumentation and processing is
considerably lower than image processing and ultrasonic techniques. The main
disadvantage of using microelectronic accelerometers is the requirement that a sensor
be mounted on the user’s head, which can cause problems with fitting, comfort,
obstruction and aesthetics. These problems can be mitigated by using telemetry and

concealing the sensor, thus improving the aesthetic qualities.

2.3. Discussion

From the literature reviewed above, no particular method presented can be
considered superior in all characteristics for development of a wheelchair control
system. The overall suitability of each method is determined by a trade off between
the desirable characteristics identified earlier, and it is clear that this depends heavily
on assumptions made about the population of potential users. Although each of the
characteristics identified by Thorkildsen (1994) can be a limiting factor on the
suitability, particular attention is paid to operability, dependability and cost in the
literature proposing wheelchair control systems. Durability and maintenance are
rarely discussed, possibly as these are properties that are considered more relevant to

commercial systems rather than laboratory based research.

In terms of operability, bioelectric and eye movement based systems have the lowest
physical requirements, making them accessible to that largest number of potential
users. However, the high mental load, low bit rate and interference between control
actions and a user’s other activities make bioelectric control systems less operable
than alternative systems for all but the most highly disabled potential users. Further,
assisted navigation is required to make a bioelectric control system sufficiently

dependable, the cost of such systems becomes much higher than the alternatives.

Despite being useful in applications that are not safety critical, the low dependability
of speech recognition control systems is a significant barrier to their use in

wheelchair applications. Chauhan et al. (2000) noted that although speech
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recognition systems have been developed with very high accuracy in laboratory
conditions or in other quiet settings, these systems have been found to lack sufficient
robustness to use in practical environments for wheelchair control. As with
bioelectric control systems, using assistive navigation to improve the overall system

dependability increases the cost of the system.

Head position and head movement based control systems have the highest physical
requirements of the systems reviewed above. The requirement for some degree of
reproducible voluntary head movement excludes individuals with the highest levels
of spinal cord injury from the target population. For many disabled people who use a
powered wheelchair and have sufficient control of their head movement, the joystick
is an acceptable control interface. These set the limits for the population for who
head movement control systems will be appropriate. Despite these limits on the
population of potential users, the size of this population is still sufficiently large to
justify the development of control systems, as noted by O’Conner (2001; 2003a;
2003b; 2004) and Cripps (2003; 2004). The dependability and operability of the
systems based on head position and head movement have been shown to be sufficient
to achieve wheelchair control in laboratory and production settings in a number of
systems. Although systems using head movement rather than head position are offset
by a marginal increase in cost, the improvement in operability and dependability of

systems incorporating both spatial and temporal data justifies this expense.

Based on the greater operability and dependability of head movement systems when
compared to bioelectric, eye movement and speech recognition based system, head
movement was selected as the most appropriate interface method for further
investigation in this thesis. The measurement of head movement also involves a trade
off, between image processing, ultrasonic and contact based sensors. For systems of
similar price, electromechanical sensors of the type used by Joseph and Nguyen
(1998) and Knight (1999) have a greater accuracy and require less power when

compared with video and ultrasonic measurement.

The system architecture proposed by Joseph and Nguyen (1998) has been selected

for the control system developed in this thesis.
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2.4. Research objectives

This section outlines the specific objectives of the research presented in Chapters
Chapter 3, Chapter 4 and Chapter 5. It aims to establish the key research questions
posed in this thesis and theoretical framework by which these questions can be

addressed.

The control system proposed in Section 3.1 advances from head movement control
systems previously proposed in the literature, particularly the architecture proposed
by Joseph and Nguyen (1998). The ability to reliably classify data from a head
position sensor to identify commands is the most significant problem outstanding in
the use of head movement measured by electromechanical sensors for wheelchair
control. Although Joseph and Nguyen (1998) reported a classification accuracy of
almost 92%, this performance was observed for a single able-bodied subject using a
relatively small set of test movements and did not measure the performance on the

real-time gesture classification task.

Several different pattern recognition techniques are used in the literature directly
relating to wheelchair control, including ANN, HMM, fuzzy logic and heuristic
techniques, and many techniques exist in other areas of literature. There are several
advantages to the use of ANN classifiers for head gesture classification for
wheelchair control. Artificial neural networks with at least one hidden layer are noted
to be capable of representing input-output mappings with arbitrary accuracy,
provided that certain constraints are met (Irie & Miyake 1988). This property of
ANN allows complicated decision boundaries to be implemented, providing the

potential for several forms of optimisation of the classifier for highly disabled users.

Results from the optimisation of simple classifiers, such as the threshold based EMG
gesture classifier described by Moon et al. (2003), are not directly comparable to
ANN classifiers because in these simple classifiers, the parameter being optimised
has a direct, linear relationship with the decision boundary of the classifier. In
optimising the ANN classifier, the parameters being optimised for the ANN head

gesture classifier are not directly related to the decision boundary of the classifier,
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but rather influence the way in which the decision boundary is derived from

exemplar data.

More complex gesture -classification systems have been proposed in other
applications, such as ANN classification of EMG (Han et al. 2003; Hiraiwa,
Shimohara & Tokunaga 1989; Matsumura et al. 2002; Reischl, Groll & Mikut 2004;
Thompson, Picton & Jones 1996) and EEG (D Coyle, Prasad & McGinnity 2005;
Garrett et al. 2003; Gope, Kehtarnavaz & Nair 2005; Maiorescu, Serban & Lazar
2003). Although such applications have some similarities with head movement
classification as considered in this thesis, there are substantial differences that exist
between the applications in the nature of the source signals and the objectives of
classification. Consequentially, the results presented on such applications cannot be

appropriately extended to head gesture classification.

The experiment presented in Chapter 3 determines the accuracy and classification
delay that can be expected from an ANN head gesture classifier for disabled users.
The primary objective of this investigation is to establish whether it is feasible to
train an ANN classifier for a head movement wheelchair system that is able to
provide sufficient generalisation for dependable performance of the system. The
ability of ANN training to generalise classification rules directly from data is a
particularly useful feature of ANN classifiers for this application. However, there is
insufficient existing evidence to expect a priori that a classifier trained on data from
one individual or group will generalise appropriately to any particular user, given the
difference in the levels of physical and mental ability between users. This is
particularly the case when considering the variation between able-bodied and
disabled subjects. Many studies reviewed in the literature used able-bodied users to
both train and test the performance of wheelchair control systems. In order to test the
validity of this method, a classifier trained to classify gestures performed by able

bodied subjects is tested on both able bodied and disabled subjects.

By relying on the level of similarity between the gestures performed by different
individual members of the target user population, it is possible to create classifiers

without reference to data from the specific end user. The term ‘generic classifier’ is
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used to describe such a classifier in this thesis, to differentiate from classifiers
created using user specific data. The results presented in Chapter 3 relate to the

performance of one generic classifier.

A range of techniques can be used for the optimisation of generic classifiers. Several
of these techniques are investigated in Chapter 4. The aim of this investigation is to
improve the ability of the control system to recognise head gestures performed by
members of the target user population, thereby improving the utility of the control
system. The techniques investigated focus on the performance of the ANN used in
the classifier. The effect of the classifier structure and training algorithm on classifier
performance and training time is examined, as is the marginal effect of additional
training data. These effects are investigated using recorded gestures from several
able bodied and disabled people to train ANN classifiers, which are then tested on
separate, more highly disabled users to determine whether the classifier generalises

appropriately.

The optimisation carried out in Chapter 4 is important for several reasons. Its
primary contribution is to further advance the head gesture classifier described in
Chapter 3. In addition to developing a classifier with superior accuracy, the results in
this chapter provide insight into the distribution of results that can be attributed to
several factors in the ANN training process, thus indicating ways in which the

classifier may be further optimised.

The level of generalisation, that is, the ability of a classifier to correctly classify input
patterns which were not contained in that classifier’s training set, can be expected to
vary between users and over time for a particular user. This variation is a
consequence of the characteristics of command gestures performed by an individual
being affected by short-term factors, such as fatigue and emotional state, and long-
term factors, such as physiological condition and behaviour of the user. As noted by
Lin and Lee (1996), there is no practical, universal procedure or rule that can be used
to guarantee that a particular set of training data will result in arbitrary levels of

generalised performance.
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Variations between the characteristics of gestures performed by an individual in
particular conditions to the general characteristics of gestures performed by members
of the target user population can be expected to tend to have a negative effect on the
performance of the classifier component of the control system. The performance of
ANN classifiers can be unreliable when the inputs being classified are substantially
separated from those used to train the classifier (D Chakraborty & Pal 2003).
Although generic classifiers can be optimised by methods including, but not limited
to, those investigated in Chapter 4, the differences between the characteristics of
gestures by an individual in particular conditions to the general characteristics of
gestures performed by members of the target user population lead to a theoretical, if

unknown, bound on the performance of the classifier.

A procedure is proposed in Chapter 5 to improve the performance of a classifier
trained using generic data by adapting it for a specific user. By using user specific
data to adapt a classifier, the characteristics of that user’s gestures are represented in
the ANN training set. Therefore, it is less likely that inputs to the classifier while
operating will be substantially separated from those in the training set. The
methodology and results of experiments testing the effectiveness of the adaptive
training for the wheelchair application are presented in Chapter 5. Classifiers trained
solely on generic data are used for comparison, to allow the effect of the use of user

specific data to be considered.

In each of the experiments detailed in this thesis, classifier performance is measured
on the real-time classification of gestures performed by disabled users. The
measurement of classifier performance for disabled people in this thesis differ from
the results from those presented by Joseph and Nguyen (1998), Nguyen, Knight and
Ekanayke (2003) and Nguyen et al (2002), which present results obtained from a
group of able bodied subjects. The experiment in Chapter 3 expands on these results
to demonstrate the effect of using an ANN trained on data from able-bodied people
to classify gestures performed by disabled users. This difference is significant to the
conclusions that can be drawn from the experiments, as the use of results from able-

bodied subjects in these papers relies on the assumption that results from disabled
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subjects will be similar, without having empirical evidence to support this

assumption.

The examination of the ability of the ANN to classify head gestures in real-time,
using a sliding window input, is a difference between the results in this thesis and the
results presented by Nguyen, King and Knight (2004) and Nguyen, Knight and
Ekanayke (2003). In these papers, classifier performance was measured solely on the

ability to classify a single input pattern without considering real-time effects.

King, Nguyen and Taylor (2005), Nguyen et al (2007) and Nguyen, Nguyen and
Taylor (2004; 2006; 2006) present results on the effect of training of ANN head
gesture classifiers using different algorithms. These results are comparable in some
aspects to the results in this thesis, but differ in several regards. The focus of Nguyen
et al and King, Nguyen and Taylor was on the effect of training classifiers using
sophisticated ANN training algorithms that are relatively novel in this type of
application, and are not strictly based on gradient descent. Methodology described by
King, Nguyen and Taylor used a magnified gradient training procedure, while
Nguyen et al and Nguyen, Nguyen and Taylor employed Bayesian techniques.
Although the results presented in Nguyen et al, Nguyen, Nguyen and Taylor and
King et al include performance for disabled users, these papers differ significantly
from those in this thesis in that the real-time aspect of the classification task is not

considered.

Results presented in Taylor, Nguyen and Craig (2002) compare two gradient descent
algorithms, delta rule and recursive least squares, but are separate from the results in
this thesis. The key differences between these results and the results presented in this
thesis are in the use of able-bodied subjects in assessing the test set performance and
in the absence of results on real-time classification performance. The results

presented in 2002 are consistent with those presented in Chapter 4.

Several papers examine particular issues relating to the implementation of assistive
technology devices using head gesture interfaces (King, Nguyen & Taylor 2005;
H.T. Nguyen, King & Knight 2004; H. T. Nguyen, Knight & Ekanayke 2003; H. T.
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Nguyen et al. 2002). These papers, however, do not focus on the optimisation of the

ANN classifier, as is the case in this thesis.
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Chapter 3. Performance of a head-movement interface for

wheelchair control

This chapter presents the design and testing of a wheelchair control system to
demonstrate the feasibility of a control system for the target user population. The
control system proposed advances from systems previously described in the
literature. It further develops the control system described by Nguyen, Knight and
Ekanayke (2003). The suitability of the control system depends directly on the ability
of the system being able to accurately recognise command gestures performed by the
user. The feasibility of the control system is tested by experimentally measuring the
real-time classification accuracy and delay of the control system. The experiment
described in this chapter assesses the performance of the classifier component of the
prototype and examines the differences observed between able bodied and disabled
users. The chapter concludes with a discussion of the significance of these results

and inferences that can be made from them.

Head movement and head position were used to allow the user to communicate with
the prototype control system. Head gestures were used as commands, governing the
transitions of a finite state machine. The outputs of the state machine set the speed
and rate of turn of the wheelchair. The state machine gave the control system five
speed settings: backwards at low speed, stationary, forwards at low speed, forwards
at medium speed and forwards at full speed. Forward and backward nodding gestures
were used to select between these states. A forward nod was defined as comprising
flexion from a neutral starting position followed by extension back to the original
position, while a backward nod was defined as being hyperextension from a neutral

starting position and a return to the original position.

Lateral nodding or tilting gestures were used to turn the wheelchair. These gestures
were defined as a lateral flexion from a neutral starting position. Lateral gestures
could be held in a laterally flexed position for an extended period before returning to
the neutral position to allow the user to control the duration of turns. The degree of

lateral flexion sustained during a lateral gesture was used to control the rate of turn.
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Head shaking was used as a command gesture to immediately stop the wheelchair.
This command reset the finite state machine governing the speed and direction of the
wheelchair to its initial state. Although rotational movements can be detected by the
linear portion of such movements parallel with the axes of the sensor, the sensor is
more sensitive to the projection of gravity onto these axes during flexion,
hyperextension and lateral flexion. To make use of this sensitivity, head shaking
gestures were defined as rapid, repeated laterally flexing movements, alternating
from side to side. Details of the state machine and control logic are described in more

detail in Section 3.1.7.

The prototype control system is an extension of the system described by Nguyen,
Knight and Ekanayke (2003). The system of Nguyen, Knight and Ekanayke was
based on an architecture proposed by Joseph and Nguyen (1998), and several
features of this earlier control system are retained. A block diagram of this

architecture is shown in

Figure 4 below. Central to the prototype is a notebook computer, which implements
the signal processing, control calculation, software calibration and graphical

feedback to the user.

Dual axis accelerometer

v

Filtering and preprocessing

A\ 4

Gesture classification

\ A 4

Control logic

A 4

Joystick emulation electronics
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Figure 4 System architecture of prototype control system

The head position sensor used for the prototype control system was implemented
using the Analog Devices ADXL202 dual axis accelerometer. The ADXL202 is
chosen due to its having sufficient range and precision on two orthogonal axes, low
cost and relatively simple interface electronics. The same instrument was used by
Nguyen et al (2003) and later by Nguyen, Knight and Ekanayke (2003) and Nguyen,
King and Knight (2004). The acquisition of data from the sensor was performed
using the ADXIL202EB-232A interface board and method proposed in
documentation provided by the manufacturer (Analog Devices 1999b) and further

detailed in Section 3.1.1.

Filtering and pre-processing, gesture classification, control logic and graphical
display were implemented on a notebook computer using LabView software. The
filtering and pre-processing processes applied to the acquired sensor data are

described in Section 3.1.2.

An ANN classifier was used to detect command gestures in the data collected from
the head position sensor and to determine which of the command gestures had been
observed. The architecture and weights of the ANN used in this classifier applied
those described by Nguyen, Knight and Ekanayke (2003). The classifier component

is discussed further in Section 3.1.3.

The control logic of the prototype control system is an extension to that proposed by
Nguyen, Knight & Ekanayke (2003). Nguyen, Knight & Ekanayke used a finite state
machine to control the speed and direction of the wheelchair, where state transitions
are governed by the outputs of the ANN classifier. The prototype presented in this
chapter combines the use of instantaneous head position with a finite state machine
to provide greater flexibility in the control of the wheelchair. Details of the control

logic are provided in Section 3.1.7.
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Many aspects of the prototype control system can be modified at the implementation
stage to suit the needs of a particular user, such as altering the location of the head
position sensor or the maximum speeds associated with each state of the control
logic. The classifier component of the control system as proposed by Nguyen, Knight
and Ekanayke (2003) cannot be readily modified in this way and therefore becomes a
critical component in order for the system to provide a feasible wheelchair control
system for people with high level disabilities. An experimental investigation of the

performance of the classifier component is presented in Section 3.2.

3.1. Prototype wheelchair control system

3.1.1. Sensor

The prototype control system uses a dual-axis accelerometer to measure the position
of the user’s head. The device chosen for this task is the ADXL202, produced by
Analog Devices. The ADXL202 is a low-cost, low-power, accelerometer, measuring
linear acceleration on two orthogonal axes, both of which are parallel to the plane of
the integrated circuit package. The ADXL202 has a full-scale range of +2 g, and can
measure static acceleration forces, such as the force of gravity (Analog Devices

1999b, 2000).

The angle between an axis of the accelerometer and the vertical is determined by
measuring the projection of gravitational force onto that axis. The output for each
axis of the accelerometer is a duty cycle modulated square-wave signal. The ratio T,
/ T, is proportional to the measured acceleration, where T; is the length of time that
the signal is high during a period and T, is the length of the total cycle. At an
acceleration of Og, the duty cycle is nominally 50%, and changes by 12.5% per g. If
the axis were parallel to the vertical, gravitational force would therefore cause a
12.5% change in duty cycle. The angle can be found from the durations T; and T,

using Equation 1.
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T/os

Equation 1 Calculation of the angle between an accelerometer axis and the

= arcsin(4————

vertical

The accelerometer was connected to the computer implementing the processing,
classification and control logic components using an ADXL202EB-232A and
communication between the devices conducted using an RS-232 protocol provided in
(Analog Devices 1999b). The protocol for communication between the computer and
the ADXL202EB-232A is for the computer to send a single byte, an ASCII ‘G’
(0x47), to request that the data is transmitted, following which the ADXL202EB-
232A returns a 4-byte packet. This packet contains 2 unsigned numbers, each
comprised of a most-significant-byte (MSB) and a least-significant-byte (LSB), for
the X and Y channel data.

Although the data sheet indicates that each byte can carry a value from 0 to 255,
since the signal is a duty cycle, it is impossible for the value to be greater than 100%.
Further, since the range of the accelerometer is approximately +2g and the change in
duty cycle per g is 12.5%, the duty cycle on each channel has a range of 25% to 75%.
The resolution of the sensor is therefore approximately 12.3 bits, rather than the 16
bits of data transmitted. The resulting quantization noise is 74.0 dB smaller than the

signal from the sensor.

The ADXL202EB-232A derives its power supply from the RS232 serial port to
which the device is connected. Many common RS232 serial ports are able to supply
the 6-12V required by the device through the RTS signal line. However, as noted in
the device data sheet (Analog Devices 1999b), some RS232 ports are unable to
source sufficient current. As a consequence, this can cause unreliability with some
serial port designs as the current drawn by the sensor may place an excessive load on
the port, causing the voltage supplied to drop below the minimum supply voltage of

the sensor. This unreliability was resolved in this control system by the use of a
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USB-serial adaptor, making use to the ability of a USB host controller to supply
100mA (Compagq et al. 1998).

The sensor hardware is mounted in the crown of a hat worn by the user. This places
the sensor close to the longitudinal axis of the user’s head, minimising interference
resulting from the user performing rotational movements. To achieve maximum
sensitivity to flexion, hyperextension and lateral flexion, the accelerometer is
mounted so that the axes of the sensor are parallel with the mediolateral and

anteroposterior axes of the user when in a neutral position.

Some noise is observed between individual packets of sensor data and some
variations are also observed in the sample rate, due to the operating system under
which the control software runs. To mitigate these effects, the sensor is oversampled,
a moving average filter is applied and downsampled. The length of the moving
average filter is adjustable at run time. It has been found that in practice a filter

length of 5 samples provides sufficient noise suppression.

3.1.2. Pre-processing

To reduce the complexity of the classification task, several operations are performed
to pre-process the data. The major pre-processing operations are to adjust the offset
and scale the magnitude of the acquired data, compensate for the misalignment of the
sensor axes with the user’s mediolateral and anteroposterior axes and to apply a
dead-band to the data. Parameters for the offsetting and scaling operations are
determined during the calibration process by having the user maintain a neutral head
position, and by having the user move their head through their full range of flexion,

lateral flexion and hyperextension.

The offset adjustment removes the steady state signal present due to the tilt of the
sensor when the user’s head is in a level position. This offset arises from the
mounting of the sensor within the crown of a hat, due to difference between the angle
of the crown of the hat and the user’s transverse plane and the need for the sensor to
be mounted such that it causes minimal interference with the comfort of the user.

Since the user is able to choose the angle at which the hat sits on the head, there can
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be a significant offset on each axis between the angle of the user’s head and the axes
of the accelerometer. A baseline value is obtained by averaging data over 10s while
the user maintains a neutral position and the offset adjustment is performed by

subtracting this from all subsequent samples.

Scaling is performed to adjust the data to allow for the range of movement available
to the user. The maximum sensor readings in each axis recorded while the user
performs full range flexion, lateral flexion and hyperextension movements are used
to convert the offset adjusted pulse-width modulated (PWM) values to a normalised

value corresponding to the proportion of maximum head tilt, in the range of 1.

Dead-banding effectively reduces the resolution of the sensor when the user’s head is
close to the neutral position, so that small, spurious signals are removed. Using the
method proposed by Knight (1999), all values of normalised head tilt below a
threshold value of 0.03 are reduced to 0.

3.1.3. Classifier

The classifier component of the prototype control system uses an ANN to detect and
determine the type of command gestures. As each new sample of head position is
obtained from the sensor, the data from each channel enters a tapped delay line. The
contents of the delay line are used as the inputs to a multilayer feed-forward ANN,
the output of which indicates the recognition or otherwise of each type command
gesture. The classifier operates in the manner <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>