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Abstract We present a method for lower-limb exoskeleton
control that defines assistance as a desired dynamic response
for the human leg. Wearing the exoskeleton can be seen as
replacing the leg’s natural admittance with the equivalentad-
mittance of the coupled system. The control goal is to make
the leg obey an admittance model defined by target values
of natural frequency, peak magnitude and zero-frequency re-
sponse. No estimation of muscle torques or motion intent is
necessary. Instead, the controller scales up the coupled sys-
tem’s sensitivity transfer function by means of a compen-
sator employing positive feedback. This approach increases
the leg’s mobility and makes the exoskeleton an active de-
vice capable of performing net positive work on the limb.
Although positive feedback is usually considered destabiliz-
ing, here performance and robust stability are successfully
achieved through a constrained optimization that maximizes
the system’s gain margins while ensuring the desired loca-
tion of its dominant poles.

Keywords Exoskeleton· Assistive robotics· Interaction
control· Admittance control

Notation

Our control method is formulated in terms of Laplace-domain
transfer functions. Here we explain the notation employed:

• Transfer functions.
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• Z (s): mechanical impedance.
• Y (s): mechanical admittance.
• X (s): integral of the mechanical admittance (X (s) =

Y (s)/s).
• S (s): sensitivity transfer function. This is a closed-

loop transfer function that evaluates to 1 at all fre-
quencies when the feedback gain is zero.

• T (s): complementary sensitivity transfer function,
given byT (s) = 1− S (s).

• L (s): loop transfer function for root-locus analysis.
• N (s): numerator of a rational transfer function.
• D (s): denominator of a rational transfer function.
• W (s): loop transfer function for robustness analysis

(sec. 4).
• Subscriptsare used to indicate which subsystems are

present in a particular transfer function.
• h: human leg.
• e: exoskeleton mechanism, consisting of the actuator

and arm.
• c: compliant coupling between the human leg and

the exoskeleton mechanism, modeled as a spring and
damper.

• f : feedback compensator for the exoskeleton.

1 Introduction

Exoskeletons are wearable mechanical devices that possess
a kinematic configuration similar to that of the human body
and have the ability to follow the movements of the user’s
extremities. Powered exoskeletons are usually designed to
produce contact forces to assist the user in performing a mo-
tor task. In recent years, a large number of lower-limb exo-
skeleton systems and their associated control methods have
been developed, either as research tools for the study of hu-
man gait (Ferris et al, 2007; Emken et al, 2006), or as reha-
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bilitation tools for patients with stroke and other locomotor
disorders (Dollar and Herr, 2008b). In a parallel develop-
ment, a number of lightweight, autonomous exoskeletons
have been designed with the aim of assisting impaired or
aged users in daily-living situations (Ekso BionicsTM, 2013;
American Honda Motor Co., Inc., 2009). This research aims
to develop a general-purpose exoskeleton control that min-
imizes the need for estimating the user’s intended motion.
Our primary target application is autonomous exoskeletons
for daily living.

1.1 A classification of exoskeleton-based assistive
strategies

Together with the physical exoskeletons, a wide variety of
assistive strategies have been developed and tested with vary-
ing levels of success. Below we present a compact classifi-
cation of strategies for aiding human locomotion, along with
a few examples that are currently available in the literature.

1. Based on what aspect of the body’s movement is sup-
ported by the assistive forces or torques.
(a) Propulsion of the body’s center of mass, especially

during the stance phase of walking (Kazerooni et al,
2005; Blaya and Herr, 2004).

(b) Propulsion of the unconstrained leg, for example dur-
ing the swing phase of walking (Veneman et al, 2005;
Banala et al, 2009).

(c) Gravitational support of the extremities (Banala et al,
2006).

2. By the intended effect on the dynamics or physiology of
human movement.
(a) Reducing the muscle activation required for walk-

ing at a given speed (Kawamoto et al, 2003; Gordon
et al, 2013).

(b) Increasing the comfortable walking speed for a given
level of muscle effort (Norris et al, 2007). This could
be attained either through an increase in mean stride
length (Sawicki and Ferris, 2009) or mean stepping
frequency (Lee and Sankai, 2003).

(c) Reducing the metabolic cost of walking (Sawicki and
Ferris, 2008; Mooney et al, 2014).

(d) Correcting anomalies of the gait trajectory (Banala
et al, 2009; Van Asseldonk et al, 2007).

(e) Balance recovery and dynamic stability during walk-
ing (European Commission (CORDIS), 2013).

It should be noted that the assistive strategies in the second
category occur on different time scales. The effects sought
can range from immediate, as in the case of balance recovery
and dynamic stability, to long-term as in the case of gait
anomaly correction, which normally only becomes apparent
over the course of several training sessions.

1.2 Current exoskeleton control methods

In order to realize the chosen assistive strategy it is necessary
to design an appropriate exoskeleton control. The prevalent
view is that control of the walking task must be shared by
the user and the exoskeleton, with the device allowing for
the user’s intention and voluntary efforts (Hogan et al, 2006;
Vallery et al, 2009b; Bernhardt et al, 2005). Strategies for
shared control include timing the exoskeleton’s response to
the phases of the gait cycle (Blaya and Herr, 2004; Kawamoto
and Sankai, 2005; Malcolm et al, 2013), leading the patient
towards a clinically correct trajectory via soft constraints
(Banala et al, 2009) and modifying the dynamic response
of the lower limbs by means of active admittance (Aguirre-
Ollinger et al, 2011) or generalized elasticities (Valleryet al,
2009a). Also, the view of human gait as a stable limit cy-
cle has led to the emergence of oscillator-based exoskele-
ton control. Relevant methods include adding energy at res-
onance via a phase oscillator (Sugar et al, 2015), and syn-
chronizing exoskeleton torques to the user’s lower-limb tra-
jectory (Ronsse et al, 2011) or to muscle torques (Aguirre-
Ollinger, 2015, 2013) using adaptive frequency oscillators
(AFOs).

One of the simplest strategies for exoskeleton control is
to exploit the uniformity of the human gait cycle when walk-
ing at a constant speed. This approach has been employed on
a number of treadmill-based exoskeletons. For example, the
pneumatically powered exoskeleton described in Lewis and
Ferris (2011) uses a footswitch-generated signal to power
the device’s actuators for a predetermined portion of the gait
cycle. The hip exoskeleton reported in Lenzi et al (2013)
computes the current stride percent by means of an AFO,
and uses it to deliver an assistive torque proportional to the
nominal hip torque profile of human gait. Although these
systems have proven effective, they are limited by definition
to assisting uniform-speed gait. Our research is motivated
by the desire to have a more versatile control, less depen-
dent on gait uniformity, and capable of assisting other lower-
limb movements like gait initiation and reactive stepping.
Our overarching goal is a control that provides assistance
independently of the specific motion attempted.

1.3 Lower-limb assistance as a desired dynamic response

Our approach to exoskeleton control defines assistance in
terms of adesired dynamic responsefor the leg, specifically
a desired mechanical admittance. If we model the leg dy-
namics as the transfer function of a linear time-invariant
(LTI) system, its admittance is a single- or multiple-port
transfer function relating the net muscle torque acting on
each joint to the resulting angular velocities of the joints.
When the exoskeleton is coupled to the leg, the admittance
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of the human leg gets replaced, in a sense, by the equivalent
admittance of the coupled system.

The idea behind our method is to make this admittance
modification work to the user’s advantage. The resulting ad-
mittance of the assisted leg should facilitate the motion of
the lower extremities, for example by reducing the muscle
torque needed to accomplish a certain movement, or by en-
abling quicker point-to-point movements than the user can
accomplish without assistance. The immediate advantage of
this approach is that it does not require predicting the user’s
intended motion or attempting to track a prescribed motion
trajectory.

1.4 Contributions

Our control method, which we will refer to asadmittance
shaping, is formulated in the language of linear control the-
ory. The overall design objective is to make the equivalent
admittance of the assisted leg meet certain specifications of
frequency response. Once this desired admittance has been
defined, the design problem consists of generating a port im-
pedance on the exoskeleton (through state feedback) such
that, when the exoskeleton is attached to the human limb,
the coupled system exhibits the desired admittance charac-
teristics. Thus our problem is properly classified as one of
interaction controller design (Buerger and Hogan, 2007).

This paper presents a formulation of admittance shap-
ing control for single-joint motion which employs linearized
models of the exoskeleton and the human limb. The con-
trol is designed mainly to assist the leg during the swing
phase of walking, where the leg’s pendulum-like dynamics
prevail. Accordingly, we have modeled the leg as a 1-DOF
rotational pendulum, and investigated the way to modify the
dynamic properties of said pendulum, mainly natural fre-
quency and damping, by means of an exoskeleton. The link
between this effect and the dynamics of bipedal walking is
analyzed briefly in a simulation study.

This research is a generalization of exoskeleton controls
we have previously developed around the idea of making the
exoskeleton’s admittance active. Said controls involved em-
ulated inertia compensation (Aguirre-Ollinger et al, 2011,
2012) or negative damping (Aguirre-Ollinger et al, 2007).
Although the notion of modifying the dynamics of the hu-
man limb is somehow implicit in methods like the “subject
comfort” control of the HAL exoskeleton (Kawamoto and
Sankai, 2005) and the generalized elasticities control pro-
posed by Vallery (Vallery et al, 2009a), in those methods the
exoskeleton’s port impedance remains passive, and as such
does not perform net work on the human limb; an additional
layer of active control is required.

Our control renders the exoskeleton port impedance ac-
tive by means of positive feedback of the exoskeleton’s kine-

(a) (b)

Fig. 1 (a) Stride Management Assist device: a powered autonomous
exoskeleton for gait assistance (Honda Motor Co., Ltd.). (b) Extended
human leg: sagittal plane view.

matic state. This approach has some similarity with the con-
trol of the BLEEX exoskeleton (Kazerooni et al, 2005), in
which positive feedback makes the device highly responsive
to the user’s movements. However, in that system the actual
assistance comes in the form of gravitational support of an
external load. By contrast, our interaction controller makes
positive feedback the source of the assistive effect.

The design of our interaction controller solves two prob-
lems concurrently: the performance problem, i.e. produc-
ing the desired admittance, and the stabilization of the cou-
pled system. As we shall show, for the exoskeleton’s assis-
tive control the dynamic response objectives embodied by
the desired admittance tend to trade off against the stabil-
ity margins of the coupled system. Equally important is the
fact that our coupled system involves a considerable level
of parameter uncertainty, especially when it comes to the
dynamic parameters of the leg and the parameters of the
coupling between the leg and the exoskeleton. Therefore the
design needs to ensure a sufficient level of stability and per-
formance robustness.

The present study covers the following aspects:

• Formulation of the assistive effect in terms of a target
admittance (and the integral thereof) for the assisted leg
(section 2).

• Design of the exoskeleton’s assistive control proper (sec-
tion 3). A central topic is the use of positive feedback
control and how to ensure the stability of the coupled
system.

• Robust stability analysis of the control (section 4).
• Simulation of assisted bipedal walk and initial tests of

the exoskeleton control on human subjects (section 5).
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Fig. 2 Effects of impedance perturbations on the frequency response (magnitude ratio and phase) of the integral admittance ofthe human leg: (a)
damping perturbations; (b) inertia perturbations; (c) stiffness perturbations. Effects of both negative and positive perturbations are shown. Gray
areas highlight portions where a negative perturbation causes a reduction in magnitude ratio. For a given angle amplitude, these areas represent
“effort reduction”, i.e. a reduction in required muscle torque amplitude with respect to the unperturbed admittance.

2 Admittance shaping: formulation of the assistive
effect in terms of a target leg admittance

In this section we present three basic forms of assistance
modeled as perturbations of the human leg’s inertia, damp-
ing and/or stiffness. Then we give a general-purpose defi-
nition of exoskeleton assistance formulated in terms of the
limb’s sensitivity transfer function. This transfer function
provides a measure of how the leg’s dynamic response is
affected by the perturbations. The definition is formulated
using the Bode sensitivity integral theorem (Middleton and
Braslavsky, 2000). As we will show, this theorem provides a
general avenue for the design of the assistive control, namely
the use of positive feedback of the exoskeleton’s kinematic
state.

In order to develop our mathematical formulation of lower-
limb assistance, we shall use a specific exoskeleton system
as a motivating example. The Stride Management Assist (SMA)
device, shown in Figure 1(a), is an autonomous powered
exoskeleton developed by Honda Motor Co., Ltd. (Japan).
The system features two flat brushless motors concentric
with the axis of the hip joints on the sagittal plane. The mo-
tors exert torque on the user’s legs through a pair of rigid,
lightweight arms coupled to the thighs. This configuration
makes the SMA device especially effective in assisting the
swing phase of the walking cycle as well as other leg move-
ments not involving ground contact.

In the human gait cycle, the swing phase takes advantage
of pendulum dynamics of the leg (Kuo, 2002; Sugar et al,
2015). Therefore, for the present study we shall model the
leg as a linear rotational pendulum. This model is an approx-

imate representation of the extended leg swinging about the
hip joint on the sagittal plane (Figure 1(b)). The impedance
of the leg at the hip joint,Zh(s), is the transfer function re-
lating the net muscle torque acting on that joint,τh(s), to the
resulting angular velocity of the legΩh(s):

Zh(s) =
τh(s)

Ωh(s)
= Ihs+ bh +

kh
s

(1)

whereIh is the moment of inertia of the leg about the hip
joint, andbh andkh are, respectively, the damping and stiff-
ness coefficients of the joint. The coefficientkh includes
both the stiffness the joint’s structure and a linearization of
the action of gravity on the leg. The following are typical
values of the hip joint’s dynamic parameters in adult sub-
jects:

• Moment of inertia of the extended leg about the hip: 2.09
kg·m2 (Royer and Martin, 2005).

• Hip joint damping coefficient: 3.5 Nm s/rad (Tafazzoli
and Lamontagne, 1996).

• Natural pendulum frequency of the extended leg: 0.64
Hz (Ghista, 2008; Doke et al, 2005).

• Stiffness coefficient of the hip joint vertical stance dur-
ing the swing phase of the gait cycle: 38 Nm/rad (Frigo
et al, 1996).

In order to make our treatment general, all transfer func-
tions in this paper are expressed in terms of dimensionless
variables. A unity moment of inertia is equal to the moment
of inertia of the leg about the hip joint; a unity angular fre-
quency equals the natural undamped frequency of the leg.
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Based on the above published data we set the damping ratio
of the hip joint toζh = 0.2. This yields the following values
for the coefficients in (1):Ih = 1, bh = 0.4 andkh = 1.

2.1 Shaping the admittance via impedance perturbations

We model the ideal effect of assisting the human limb as
applying an additive perturbationδZh to the limb’s natural
impedanceZh; the perturbed impedance is simply

Z̃h = Zh + δZh (2)

An equivalent expression can be given in terms of the leg’s
admittance,Yh(s) = Zh(s)

−1. The perturbed admittance,
Ỹh(s), represents a negative feedback system formed byYh

andδZh:

Ỹh =
1

Zh + δZh

=
Yh

1 + YhδZh

(3)

Our task is now to determine what makesδZh assistive, i.e.
what kind of perturbation makes̃Yh an improvement over
the leg’s normal admittanceYh. We note that each of the pa-
rametersIh, bh andkh contributes to the magnitude of the
leg’s impedance (1); therefore we start by studying the ef-
fects of compensating each of the leg’s dynamic properties.
Accordingly we define the following perturbation types:

δZh = δbh (damping perturbation)

δZh = δIhs (inertia perturbation)

δZh = δkh/s (stiffness perturbation) (4)

Compensationmeans that eitherδbh or δIh or δkh has a
negative value. We now analyze the effects the individual
perturbations on the frequency response of the integral ad-
mittanceỸh(s)/s, which relates the net muscle torque to the
angular position of the leg. We use this rather than the admit-
tance in order to consider possible effects on the “DC gain”
(zero-frequency response) as well.

Figure 2 shows the effects of each individual perturba-
tion on the leg’s integral admittance. Although our primary
interest is compensation, we have also plotted the effects of
positive perturbations for comparison. Examination of the
plots reveals several properties of the perturbed frequency
responses that can be considered asassistance:

• Damping compensationincreases the peak magnitude of
the integral admittance. In consequence, for given angu-
lar trajectories near the natural frequency (ω = 1), the
amplitude of the required muscle torque is reduced with
respect to the unperturbed case. We refer to this effect as
“effort reduction”.

(a)

(b)

Fig. 3 (a) Block diagram representing the dynamics of the human leg
in the presence of an impedance perturbationδZh. The perturbed ad-
mittance of the leg is equal to the nominal admittanceYh in series
with a closed-loop system representing the sensitivitySh. (b) Equiva-
lent system formed by the human limb coupled to the exoskeleton. The
perturbationδZh is replaced by the exoskeleton transfer functionZe.
Per the Bode sensitivity integral theorem, to make the coupled system’s
sensitivity larger than the unperturbed case, positive feedback must be
used.

• Inertia compensationcauses an increase in the natural
frequency of the leg with no change in DC gain. In con-
sequence, given a desired amplitude of angular motion,
the minimum muscle torque amplitude occurs now at a
higher frequency. We hypothesize that the shift in natu-
ral frequency has a potential beneficial effects on the gait
cycle. It may enable the user to walk at higher stepping
frequencies without a significant increment in muscle
activation (Doke and Kuo, 2007). A higher natural fre-
quency also implies a quicker transient response, which
may enable the user to take quicker reactive steps when
trying to avoid a fall.

• Stiffness compensationproduces effort reduction at fre-
quencies below the natural frequency.

Each case has also its drawbacks. For example, the effect
of damping compensation vanishes as motion frequency de-
parts from the natural frequency. Inertia compensation causes
effort increase at frequencies immediately below the natural
frequency. However, by applying the principle of superposi-
tion, it is possible to devise a perturbation transfer function
that combines the beneficial aspects of each individual per-
turbation. In other words, the resulting integral admittance
can simultaneously feature increases in natural frequency,
magnitude peak and DC gain with respect to the unassisted
one.

As for perturbations involving positive values ofδbh,
δIh and/orδkh, we refer to these asresistiveto indicate that
they mainly tend to reduce the leg’s mobility.
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Fig. 4 Sensitivity plots for impedance perturbations (ln |Sh(jω)|). (a) Damping perturbation; (b) inertia perturbation; (c)stiffness perturbation.

2.2 Effect of impedance perturbations: the Bode sensitivity
integral

The central problem covered in this study is how to de-
sign an exoskeleton controller capable of generating a vir-
tual leg admittance with arbitrary properties of natural fre-
quency, magnitude peak and DC gain. Our approach is to
make the exoskeleton emulate the negative variations ofδbh,
δIh and/orδkh described above. We now derive a general
principle for the design of exoskeleton control: namely, when
the leg is coupled to the exoskeleton, the leg’s sensitivity
to muscle torques should increase. We define the sensitivity
transfer functionSh(s) of the leg as

Sh(s) =
1

1 + Yh(s)δZh(s)
=

1 + 1

Ih

(
bh
s
+ kh

s2

)

1 + 1

Ih

(
bh
s
+ kh

s2
+ δZh

s

)

(5)

If we consider muscle torque as the system’s input and an-
gular velocity as the output,Sh provides a measure of how
the system’s input/output relationship is influenced by a per-
turbationδZh to its dynamic parameters. In the absence of
perturbationsSh(jω) evaluates to 1 at all frequencies. Given
an impedance perturbationδZh, Sh(jω) can be seen as a
weighting function that describes how the applied perturba-
tion changes the shape of the leg’s frequency response; the
perturbed admittance is simply

Ỹh = ShYh (6)

The perturbed admittance is shown in block diagram form
in Figure 3(a). Here we restrict our analysis to perturbations
whose effect vanishes at high frequencies, i.e.|Sh| → 1 as
ω → ∞. From (5) we see that this is the case for all but the
inertia perturbation (4). However, the vanishing condition
can easily be enforced by redefining the inertia perturbation
as

δZh = δIh
ωos

s+ ωo

(7)

Choosingωo ≫ 1 (i.e. making it larger than the natural fre-
quency of the leg) ensures that the perturbation maintains its
desired behavior in the typical frequency range of leg mo-
tion.

A property of sensitivity transfer functions, known as
the Bode sensitivity integral, will allow us to derive a gen-
eral principle for the design of our exoskeleton control. The
Bode sensitivity integral theorem (Middleton and Braslavsky,
2000) is stated as follows:

LetL(s) be a proper, rational transfer function of rela-
tive degreeNr. (The relative degree of a transfer function is
the difference between the order of the denominator and the
order of the numerator.) Define the closed-loop sensitivity
functionS(s) = (1+L(s))−1 and assume that neitherL(s)
nor S(s) have poles or zeros in the closed right half plane.
Then,

∫ ∞

0

ln |S(jω)| dω =




0 if Nr > 1

−
π

2
lim
s→∞

sL(s) if Nr = 1
(8)

We now use the theorem to analyze the leg’s sensitiv-
ity to perturbations by defining the loop transfer function
Lh(s) = Yh(s)δZh(s). Evaluating the Bode sensitivity in-
tegral for the perturbations previously defined yields

∫ ∞

0

ln |Sh(jω)| dω = −
π

2
lim
s→∞

sYh(s) δZh(s)

=





−
πδbh
2Ih

for δZh = δbh

−
πδIhωo

2Ih
for δZh = δIh

ωos

s+ ωo

0 for δZh =
δkh
s

(9)

In this way we arrive at a compact result: with the ex-
ception of stiffness,negative-valuedperturbations cause the
area underln |Sh(jω)| to bepositiveand vice versa. In other
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words, assistive perturbations cause a net increase in sensi-
tivity, whereas resistive perturbations cause a net decrease1.
To illustrate these points, Figure 4 shows plots ofln |Sh(jω)|

vs.ω for the different types of perturbation.

2.3 Generating assistive impedance perturbations with an
exoskeleton: considerations for control

In (3) the perturbed admittance is represented as the cou-
pling of two dynamical systems: the leg’s original admit-
tanceYh, and the impedance perturbationδZh. Given that
we want to design a controller for the coupled system formed
by the leg and the exoskeleton, (3) suggests a simple design
strategy: substituteδZh with the exoskeleton’s port impe-
dance,Ze(s). The task is to design a control to makeZe(s)

emulate the behavior ofδZh as closely as possible.
The sensitivity transfer function of the coupled system

formed by the leg and the exoskeleton is

She(s) =
1

1 + Yh(s)Ze(s)
(10)

and its loop transfer function isLhe(s) = Yh(s)Ze(s). For
the coupled system to emulate assistive (i.e. negative) per-
turbations of inertia or damping, the Bode sensitivity inte-
gral of She(s) must be positive. From (8) the only way to
accomplish this is by making the gain ofZe(s) negative. In
other words, the exoskeleton has to form apositive feedback
loop with the human leg, as shown in Figure 3(b).

An important consequence of the gain being negative is
that the exoskeleton displaysactivebehavior, i.e. acts as an
energy source, which in turn raises the issue of coupled sta-
bility. Colgate and Hogan (1988) have shown that a manip-
ulator is guaranteed remain stable, when coupled to an ar-
bitrary passive environment, if the manipulator itself is pas-
sive. However, passive behavior can seriously limit perfor-
mance (Hogan and Buerger, 2006). In the case of an exoske-
leton, passive behavior would render it incapable of provid-
ing true assistance, at least per the criteria we have outlined
in Section 2.1.

But then, our requirement is not to ensure stable interac-
tion with every possible passive environment, but only with
a certain class of environments, namely those possessing the
typical dynamic properties of the human leg. Limiting the
set of passive environments with which the exoskeleton is
intended to interact allows us, in turn, to use a less restrictive
stability criterion. For example, stability can be guaranteed
by the Bode criterion for positive feedback:

| − Yh(jω)Ze(jω)| < 1

where ∠ (−Yh(jω)Ze(jω)) = −180◦
(11)

1 For stiffness perturbations the area underln |Sh(jω)| remains con-
stant, meaning that if the sensitivity increases in one frequency range,
it will be attenuated in the same proportion elsewhere.

In the next section we present the formulation of a stable
assistive controller capable of generating a virtual leg admit-
tance with arbitrary values of natural frequency, magnitude
peak and, for the integral admittance, DC gain.

3 Lower-limb assistance by admittance shaping: control
design

3.1 Specifying a target frequency response for the leg

We shall base our control design specifications on the human
limb’s integral admittance,Xh(s) ≡ Yh(s)/s, expressed in
terms of dynamic response parameters:

Xh(s) =
1

Ih(s2 + 2ζhωnhs+ ω2

nh)
(12)

whereωnh is the natural frequency of the leg andζh its
damping ratio. Our design objective is to make the assisted
leg behave in accordance with atarget integral admittance
modelXd

h(s), defined as

Xd
h(s) =

1

Idh(s
2 + 2ζdhω

d
nhs+ ωd 2

nh )
(13)

whereIdh , ωd
nh andζdh are, respectively, the desired values of

inertia moment, natural frequency and damping ratio. The
design specifications are formulated in terms of the follow-
ing parameter ratios:

Rω ≡
ωd
nh

ωnh

(natural frequencies ratio) (14)

RM ≡
Md

h

Mh

(resonant peaks ratio) (15)

RDC ≡
Xd

h(0)

Xh(0)
(DC gains ratio) (16)

In (15)Mh andMd
h are, respectively, the magnitude peaks at

resonance forXh(jω) andXd
h(jω). Thus our design spec-

ifications consist of desired values forRω, RM andRDC .
These specifications are converted into desired values for the
dynamic parametersIdh , ωd

nh, ζdh by using the following for-
mulas, which are derived in Appendix A:

Idh =
Ih

RDCR2
ω

(17)

ωd
nh = Rωωnh (18)

ζdh =

√
1−

√
1− 4ρ2

2
(19)
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Fig. 6 Linear model of the system formed by the human leg, coupling
and exoskeleton mechanism.

where

ρ =
RDC

RM

ζh

√
1− ζ2h (20)

By way of example, Figure 5 shows a comparison be-
tween the frequency responses of the unassisted leg’s in-
tegral admittanceXh(jω) and a target integral admittance
Xd

h(jω) with specific values ofRω, RM andRDC . This
particular target response combines all the possible assis-
tive effects on the leg: increase in natural frequency, effort
reduction at resonance, and gravitational support at low fre-
quencies.

Our task is now to design an exoskeleton control capable
of making the leg’s dynamic response emulate the targetXd

h.

3.2 Modeling the coupled human-exoskeleton system

To design the exoskeleton control we shall use the linearized
model shown in Figure 6, which represents the human leg
coupled to the exoskeleton’s arm-actuator assembly (Figure
1(a)). The inertias of the leg and the exoskeleton are coupled
by a spring and damper (kc, bc) representing the compliance
of the leg muscle tissue combined with the compliance of the

exoskeleton’s thigh brace. In the diagram, ground represents
the exoskeleton’s hip brace and is assumed to be rigid.

The first design goal is to make the device’s mecha-
nism “transparent” when the assistive function is inactive. In
other words, the user should feel the effects the mechanism’s
dynamics (inertia, friction, gravitational effects) as little as
possible (Vallery et al, 2009a). This normally requires im-
plementing an inner-loop control, such as an admittance or
impedance control, to compensate the reflected inertia, fric-
tion and damping of the mechanism, as well as the gravita-
tional torques (Nef et al, 2007). The maximum achievable
reduction in reflected inertia is limited by stability bound-
aries (Colgate and Hogan, 1989a); therefore it is advisable
to employ a mechanism design that uses low-inertia compo-
nents. In the present formulation we will assume that such
an inner-loop control is already in place, thereby allowingus
to represent the exoskeleton arm as a pure rotational inertia:
Ze(s) = Ies.

We note that the exoskeleton and the compliant coupling
can be represented as second-order impedance given by

Zec(s) = Ies+ bc +
kc
s

(21)

or, equivalently,

Zec(s) = Ie

(
s+ 2ζecωn,ec +

ω2

n,ec

s

)
(22)

whereωn,ec is the natural frequency of the impedance and
ζec its damping ratio. The value ofωn,ec depends on a num-
ber of factors like the material of the exoskeleton’s thigh
coupling and the properties of the subject’s thigh tissue. From
our system identification studies, values ofωn,ec in the range
of 25 to 50 times the natural frequency of the leg (ωnh) are
typical for the SMA device. In order to reduce the dimen-
sionality of the analysis somewhat, we assume the impe-
dance (22) to be critically damped, i.e.ζec = 1. This as-
sumption is warranted because our tests with the SMA have
shownZec(s) to be actually overdamped, so the critically-
damped assumption is conservative as far as stability is con-
cerned. Keeping our analysis in terms of dimensionless fre-
quencies and damping ratios, we define the following impe-
dance transfer functions:

Zh(s) = Y −1

h (s) =
s2 + ζhs+ 1

s
(23)

Zc(s) = Y −1

c (s) = 2Ieωn,ec

(
s+

ωn,ec

2

s

)
(24)

Ze(s) = Y −1

e (s) = Ies (25)

We use these impedances to formulate the dynamics equa-
tions of the coupled human-exoskeleton system of Figure 6
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(a)

(b)

(c)

Fig. 7 Block diagrams of the system formed by the human leg, cou-
pling, exoskeleton mechanism and interaction controller.(a) Block dia-
gram derived from equations (26) to (29). (b) Equivalent block diagram
for control design. The transfer functionYhecf (s) = Ωe(s)/τh(s)
represents the admittance of the human leg assisted by the exoskele-
ton. (c) Equivalent block diagram for stability robustnessanalysis.

in the Laplace domain (the derivation is omitted due to space
limitations):

Ωh = Yh (τh − τc) (26)

τc = Zc (Ωh −Ωe) (27)

Ωe = Ye (τc − τe) (28)

whereτc is the interaction torque between the leg and the
exoskeleton (exerted through the coupling) andτe is the torque
generated by a feedback compensatorZf (s):

τe = Zf Ωe (29)

Zf (s) embodies the exoskeleton’s assistive action.It should
be noted that, although the compensator takes in angular ve-
locity feedback,Zf (s) may contain derivative or integral
terms. Therefore the physical control implementation may
involve feedback of angular acceleration or angular position.
Another observation is that, although the torque generated
by the control isτe, the actual torque exerted on the leg by
the exoskeleton isτc.

3.3 Design of the assistive control

Using equations (26), (27), (28) and (29), we represent the
coupled leg-exoskeleton system as the block diagram of Fig-
ure 7(a). The aim of the assistive control is to make the
dynamic response of this system such that it matches the
frequency response of the target integral admittanceXd

h(s).
Our control design method is a two-step procedure:

• Design of an angle feedback compensator to achieve the
target DC gain (stiffness and gravity compensation).

• Design of an angular acceleration feedback compensator
to achieve the target natural frequency and target reso-
nant peak. This second compensator is designed using a
pole placement technique and has to ensure the stability
of the coupled system.

Decoupling the DC gain problem from the other two is
valid because, as can be seen on Figure 2, the DC gain is
only affected by a stiffness perturbation, which is easily im-
plemented via angle feedback. The same figure suggests that
the natural frequency target could be achieved by either an-
gle feedback (stiffness perturbation) or angular acceleration
feedback (inertia perturbation). By choosing angular accel-
eration feedback we avoid creating a conflict with the DC
gain objective, which depends exclusively on angle feed-
back. Furthermore, we will show that employing an angular
acceleration feedback compensator with sufficient degrees
of freedom allows us to achieve the natural frequency and
resonant peak targets simultaneously.

3.3.1 Feedback compensator for target DC gain

The design of the compensator for target DC gain is a simple
application of the dynamics of the coupled system in the
static (zero frequency) case. From Figure 6, torque balance
on the human leg’s inertiaIh yields

khθh = τh − τc (30)

Torque balance on the exoskeleton’s inertiaIe yields

τc − τe = 0 (31)

Because the objective is to compensate for the stiffness and
gravitational torque acting on the leg, the assistive torque is
provided by a virtual spring:

τe = kDCθe (32)

Assuming the coupling to have sufficient stiffness so that
θe ≃ θh, from (30) the net muscle torque becomes

τh = khθh − kDCθe ≃ (kh − kDC)θh (33)
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To determine the virtual spring stiffnesskDC we refer to
Appendix A. Equation (79) defines an intermediate target
integral admittanceXh,DC(s) embodying the DC gain spec-
ification. Maintaining the assumptionθe ≃ θh we note that
Xh,DC(s) can be implemented by adding the virtual spring
to the human leg’s impedance. Thus an alternative definition
is

X̂h,DC(s) =
1

Ihs2 + 2Ihζhωnhs+ Ihω2

nh + kDC

(34)

MakingX̂h,DC(0) = Xh,DC(0) yields

Ihω
2

nh + kDC = Ihω
2

nh,DC (35)

But from (81) we haveω2

nh,DC = R−1

DCω
2

nh. Thus we obtain
the stiffness and gravity compensation gain as:

kDC = Ihω
2

nh(R
−1

DC − 1) (36)

The angular position feedback (32) with the computed value
of kDC generates the following closed-loop exoskeleton ad-
mittance:

Ye,DC =
Ye

1 +
kDC

s
Ye

(37)

Clearly, for a DC gain specification ofRDC > 1 we have
kDC < 0, i.e. positive feedback of the angular position. In
consequence, the closed-loop exoskeleton admittance has a
pole ats = +

√
kDC I−1

e , which makes the isolated exoske-
leton unstable. However, the coupled system formed by the
leg and the exoskeleton will be stable as long as the virtual
stiffness coefficient of the assisted leg remains positive.A
detailed analysis of the stability of the coupled system with
DC gain compensator is given in the next section.

3.3.2 Loop transfer function of the coupled human limb
and exoskeleton

With the compensator for the target DC gain already in place,
the forthcoming analysis will focus on thetarget admittance
for the assisted leg, given byY d

h (s) = sXd
h(s). The objec-

tive is now to design a compensator capable of increasing
the natural frequency of the leg as well as the magnitude
peak of its admittance. This is also the more involved part of
our control design, since we need to design for both perfor-
mance and stability. Although, strictly speaking, we want to
control the relationship between the human muscle torque
τh and the leg’s angular velocityΩh as to matchY d

h (s), our
design will focus on the transfer function relatingτh to the
exoskeletonangular velocityΩe, the reason being that we

only have a practical way of measuringΩe. This is accept-
able under the assumption that the coupling is sufficiently
rigid and thereforeΩe ≃ Ωh.

We begin by substitutingYe(s) with Ye,DC(s) in Fig-
ure 7(a) and converting the block diagram to a form suitable
for analysis using the system’s loop transfer function. Figure
7(b) shows the equivalent block diagram (derivation omitted
for brevity), which contains the following transfer functions:

Yhec(s) =
Zh + Zc

ZhZe,DC + ZcZe,DC + ZcZh

≡
Nhec(s)

Dhec(s)

(38)

whereZe,DC = Y −1

e,DC , and

Hhc(s) =
Zc

Zh + Zc

=
Zc

Nhec(s)
(39)

From Figure 7(b) we derive the transfer function relating the
human torque to the encoder angular velocity:

Yhecf (s) =
Ωe(s)

τh(s)
=

Zc

Dhec + ZfNhec

(40)

Yhecf (s) is very important in our analysis because it repre-
sents the admittance of the human leg assisted by the exo-
skeleton. From linear feedback control theory, the dynamic
response properties ofYhecf (s) are determined mainly by
its characteristic polynomial. Therefore we shall formulate
the design of the compensatorZf (s) as a pole placement
problem: namely, to make thedominant polesof Yhecf (s)

match the poles of the target admittanceY d
h (s). Our design

will use the standard tools of root locus and Bode stability
applied to the loop transfer function ofYhecf (s).

From Figure 7(b), we define the loop transfer function,
Lhecf(s), as a ratio of monic polynomials obeying

KLLhecf(s) = Zf(s)Yhec(s) (41)

whereKL is the loop gain. Success in the design of the feed-
back compensatorZf (s) requires ensuring that the feed-
back loop formed byZf (s) andYhec(s) is stable. Given that
Yhec(s) already contains a positive feedback loop of the an-
gular position (throughZe,DC ), we want to analyze its sta-
bility properties before designingZf (s). For the forthcom-
ing analysis we shall use the dimensionless moment of in-
ertia of the SMA arm and actuator assembly,Ie = 0.00702.
We begin by writing the impedances in (38) in terms of poly-
nomial ratios and gains:
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Fig. 8 Contour plot showing the real part of the dominant poles of
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Zh(s) =
s2 + ζhs+ 1

s
≡

Nh(s)

s

Zc(s) = 2Ieωn,ec

(
s+

ωn,ec

2

s

)
≡ zco

Nc(s)

s

Ze,DC(s) = Ie

(
s2 + kDC

Ie

s

)
≡ Ie

Ne(s)

s
(42)

This, in turn, allows us to writeYhec(s) as the following
ratio of polynomials:

Yhec(s) =
s(Nh + zcoNc)

IeNeNh + zcoNeNc + zcoNh

(43)

From inspection of (42) and (43) we find thatYhec(s) has
four poles and three zeros, including one zero at the origin.

Figure 8 shows contour plots of the real part of the dom-
inant poles ofYhec(s) as a function of the DC gains ratio
RDC and the natural frequency of the couplingωn,ec. These
poles are located near the poles of the human leg’s admit-
tance,−0.2± 0.980j. We can observe that, for most values
of RDC andωn,ec, the dominant poles’ real part is constant
and equal to−0.2, i.e. the dominant poles are stable. Only
for combinations of very low natural frequency of the cou-
pling and high DC gain ratios do the dominant poles cross
over to the right-hand side of the complex plane (RHP). For
now we will maintain the assumption that theRDC spec-
ification is such that does not violate the stability ofYhec.
Ensuring thatYhec has no RHP or imaginary poles guaran-
tees the existence of a range of negative loop gainsKL for
which the closed-loop transfer functionYhecf (s) is stable as
well.

3.3.3 Feedback compensator for target values of natural
frequency and resonant peak: design by pole placement

In order to explain the derivation of the feedback compen-
satorZf (s) for natural frequency and resonant peak targets,
we will use a specific design example involving the Honda
SMA device. We set forth the following design specifica-
tions:Rω = 1.2,RM = 1.3 andRDC = 1.1, which in turn
yield the following parameter values for the target integral
admittance (13):Idh = 0.631,ωd

nh = 1.2 andζdh = 0.1673.
Given these values, the desired locations of the dominant
poles are

pdh = −σd
h + jωd

dh = −0.201+ 1.183j

pdh = −σd
h − jωd

dh = −0.201− 1.183j

where

σd
h = ζdhω

d
nh

ωd
dh = ωd

nh

√
1− ζd 2

h (44)

The gain of the feedback compensator for target DC gain
is computed with (36), yieldingkDC = −0.0909.

In Section 2.1 we showed that, in the ideal case, an in-
crease in natural frequency can be accomplished by com-
pensating the second-order system’s inertia. This suggests
that our compensator should include positive acceleration
feedback in some form. Although pure acceleration feed-
back will not satisfy our design requirements, it is nonethe-
less instructive to examine its behavior. Thus we define the
provisional compensator

Ẑf(s) ≡ −Ics (45)

We shall refer toIc as the inertia compensation gain. Then
we write

Ẑf(s)Yhec(s) = −
Ic
Ie

sLhec (46)

whereLhec(s) is a ratio of monic polynomials possessing
the same poles and zeros asYhec(s). From (46) the loop
gain for pure acceleration feedback as

K̂L = −
Ic
Ie

(47)

Figure 9(a) shows the root loci ofsLhec(s) for both pos-
itive and negative feedback. Because all the coefficients of
sLhec(s) are fixed, the shape of the root loci is constant and
the only variable parameter we have is the loop gainK̂L.
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Therefore, it will be only by exception that the positive-
feedback root locus passes through the target location for
the dominant pole,pdh.

However, the most serious limitation of the compensator
is its stability range. For positive feedback, the coupled sys-
tem’s stability is determined by the stability margins of−sLhec(s).
Because−sLhec(s) has four poles and four zeros, ats =

+j∞we have|−sLhec(s)| = 1 and∠(−sLhec(s)) = 180◦.
In other words, closing a feedback loop with−sLhec(s) puts
the system is at its instability threshold. This condition is
patent in the Nyquist diagram of Figure 9(b). Noting that in
the Nyquist diagram−sLhec(s) implies a loop gainK̂L =-
1, from (47) the limiting value for the inertia compensation
gain is

Ic = Ie (48)

Thus we see that, for pure positive acceleration feedback, the
best that the exoskeleton can do before causing instabilityis
to cancel its own inertia, but none of human leg’s inertia.

In order to overcome the limitations of pure positive ac-
celeration feedback, we add a pair of complex conjugate
poles−σf±jωd,f to the compensator. To this end we define
the second-order filter

Hf (s) ≡
σ2

f + ω2

d,f

s2 + 2σfs+ σ2

f + ω2

d,f

(49)

Our proposed feedback compensator model is then

Zf (s) ≡ −Ic sHf(s) (50)

whereσf andωd,f are parameters to be determined. With
Zf(s) thus defined, and recalling (41), the loop transfer func-
tion now becomes

Lhecf(s) =
sLhec(s)

s2 + 2σfs+ σ2

f + ω2

d,f

(51)

Thus given a loop gainKL < 0 that meets the design re-
quirements, the inertia compensation gain is obtained as

Ic = −
KL Ie

σ2

f + ω2

d,f

(52)

The rationale behind our compensator model is thatσf and
ωd,f provide two degrees of freedom with which to shape
the positive-feedbackroot locus ofLhecf (s). Shaping the
root locus pursues two different objectives:

• Making the root locus pass through the target locations
of the dominant poles,pdh and pdh or as close to them
as possible. This ensures that, with an appropriate gain
Ic, the system’s closed-loop transfer functionYhecf (s)
(Figure 7(b)) will have poles at or nearpdh andpdh.

• Maximizing the stability margins ofYhecf (s) as to en-
sure that the design solution provided byσf , ωd,f and
Ic is stable. It must be noted that, with positive feed-
back, the root locus is guaranteed to enter the RHP as
KL → −∞. Therefore it is in general possible that,
while two of the closed-loop poles ofYhecf (s) satisfy
s = pdh, any of the remaining poles may be in the RHP.
By maximizing the stability margins we seek to avoid
this risk.

The inclusion of two poles in (51) also ensures that the
frequency response ofLhecf (s) rolls off at high frequen-
cies, thereby making the system less sensitive to feedback
of high-frequency noise.

Our compensator design requires solving a pole place-
ment problem, namely finding values ofσf , ωd,f and Ic
such thatYhecf (s) has poles atpdh andpdh. We refer to{σf ,
ωd,f , Ic} as a candidate solution. Only when this solution
guarantees the stability of the coupled system can it be con-
sidered a valid compensator design. Solutions for the pole
placement problem can be found by applying the properties
of the positive-feedback root locus as described below.

• Phase property: fors = pdh the phaseΦ of Lhecf (s) must
be equal to zero. We express this condition as

Φ = Φ(σf , ωd,f , p
d
h) = ∠Lhecf(p

d
h) = 0 (53)

which yields a range of solutions forσf andωd,f .
• Gain property: fors = pdh the loop gainKL satisfies

KL = KL(σf , ωd,f , p
d
h) =

−1

|Lhecf (pdh)|
(54)
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Fig. 10 Phase property and gain margins of the coupled system formedby the human limb, the exoskeleton and the compensator with positive
feedback. The target dominant pole of the system’s responseis pd

h
= -0.201± 1.183j. Each graph represents a different value of the coupling

stiffness, given byωn,ec. Contour plots represent the ratio of inertia compensationgainsRIc (58) as a functionσf andωd,f . Gray regions
correspond to the case whereRIc ≤ 1, i.e. where the coupled system is unstable; white regions represent the stable caseRIc > 1. Thick curves
labeled “Φ = 0,RIc > 1 ” represent stable solutions to the pole placement problem, i.e. combinations{σf , ωd,f , Ic} that generate a closed-loop
pole ats = pd
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by satisfying the phase conditionΦ(σf , ωd,f , p

d
h
) = 0, and also meet the stability conditionRIc > 1. For every such curve there

is an optimal solution, marked by an asterisk (∗), that corresponds to a maximum forRIc , i.e. a maximal gain margin. Said solution is found by
solving the optimization problem (59). (Note: the lowest compliance case,ωn,ec = 10, yielded no stable solutions.)

The formulas for computingΦ andKL are given in Ap-
pendix B. Given a solution pair{σf , ωd,f} and the value of
KL resulting from (54), the inertia compensation gainIc is
computed using (52).

Now, it must be kept in mind that the positive-feedback
root locus properties by themselves do not guarantee the sta-
bility of the coupled system.Lhecf (s) has six poles in total;
conditions (53) and (54) guarantee that two of the closed-
loop poles are stable sincepdh andpdh lie in the left-hand half
of the complex plane, but they say nothing about the stabil-
ity of the remaining four poles. The stability of the candidate
solution{σf , ωd,f , Ic} depends on the value ofIc. If we
defineIc,M as the inertia compensation gain that puts the
closed-loop system at the threshold of instability for given
values ofσf andωd,f , the stability condition is

RIc ≡
Ic,M
Ic

> 1 (55)

In order to computeRIc , the loop gain at the instability
threshold is obtained as

KL,M =
−1

|Lhecf(jωM )|
(56)

where

ωM = ω | ∠(−Lhecf(jω)) = −180◦ (57)

From (52) the ratio of inertia compensation gains can be
computed simply as

RIc =
Ic,M
Ic

=
KL,M

KL

(58)

RIc constitutes a stability margin; to be precise, again mar-
gin. Therefore it will play an important role in the design of
the compensator.
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At this point we need to consider that the values of the
system’s parameters involve considerable uncertainty, espe-
cially in the case of the human leg and the coupling. Aside
from its implications on performance, parameter uncertainty
poses the risk of instability. Thus the physical coupled sys-
tem could be unstable even though the compensator is theo-
retically stabilizing. To minimize that risk, we propose for-
mulating the design of the compensator as a constrained
optimization problem: given the target dominant poles =

pdh, to find a combination{σf , ωd,f , Ic} that maximizes the
inertia compensation gains ratioRIc while preserving the
phase condition (53).

To test the feasibility of this approach, we computed the
values ofΦ(σf , ωd,f , p

d
h) andRIc for a matrix of values

of σf andωd,f and with different values of coupling stiff-
nessωn,ec as a parameter. The results are shown in Figure
10. Contour plots represent constant values ofRIc ; values
of RIc greater than unity (indicated by white regions in the
plot) represent a stable coupled system. The thicker curves
labeled “Φ = 0, RIc > 1 ” are loci of stablesolutions
{σf , ωd,f , Ic} to the pole placement problem, i.e. solutions
that simultaneously satisfy the phase conditionΦ(σf , ωd,f , p

d
h) =

0 and the stability conditionRIc > 1. As to why the com-
pensator is capable of generating stable solutions, the gen-
eral principle is given in Section 3.4 with the aid of an ex-
ample.

Inspection of the contour plots forRIc shows that for
each stable solution curve it is possible to find a maximum
for RIc . We also notice that the solution curves tend to con-
tract and finally disappear asωn,ec decreases, which shows
thatωn,ec has an important influence on the stability robust-
ness of the assistive control.

Thus we formulate the feedback compensator design prob-
lem as follows: given a target dominant polepdh, find

max
{σf , ωd,f}

R2

Ic
(σf , ωd,f , p

d
h)

subject to Φ(σf , ωd,f , p
d
h) = 0 (59)

The complete design procedure of the assistive control
for admittance shaping is summarized thus:

1. Formulate the design specificationsRω, RM andRDC .
2. With the DC gain specificationRDC , compute the angu-

lar position feedback gainkDC using (36).
3. Compute the target admittance parametersωd

nh andζdh
using (18) and (19).

4. Obtain the dominant pole of the target admittance as
pdh = −σd

h + jωd
dh using (44).

5. Obtain the parameters{σf , ωd,f} of the feedback com-
pensatorZf (s) (49),(50) by performing the constrained
optimization (59).

6. With {σf , ωd,f} obtain the the loop gainKL using (93)
and the inertia compensation gainIc using (52).
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3.4 Assistive control for admittance shaping: design
examples

3.4.1 Feedback compensator designs

We performed the above procedure for the design specifica-
tions given at the beginning of Section 3.3.3. Compensator
designs were generated for different values of coupling stiff-

ness. The constrained optimization (59) was performed us-
ing thefminconfunction in Matlab (The Mathworks, Natick,
MA, USA) with the trust-region reflective algorithm (More
and Sorensen, 1983). The initial conditions employed were
σf = 4.0 andωd,f = 2.0 and the termination tolerance for
the variables was set to 10−8. The algorithm was able to find
stable solutions for the pole placement problem; the result-
ing values for the feedback compensator parameters and the
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Table 1 Feedback compensator parameters and associated inertia
compensation gains ratio

Parameter ωn,ec = 100 ωn,ec = 50 ωn,ec = 25

σf 7.4877 3.8427 0.8622
ωd,f 3.98×10-5 3.7292 2.3513
Ic 0.3662 0.3627 0.3148

RIc 1.950 2.038 2.281

correspondingRIc values are shown in Table 1. The solu-
tions are also shown graphically in Figure 10; each asterisk
(∗) represents the optimal values ofσf , ωd,f andRIc for a
particular stiffness valueωn,ec.

Figure 11 shows the positive-feedback root locus ofLhecf (s)

for the coupling withωn,ec = 25. This figure illustrates the
fact that it is possible to find compensator solutions that
achieve the pole placement objective, despite the fact that
positive feedback tends to destabilize the coupled system,
as indicated by the incursions of the root locus into the RHP
asKL → −∞.

3.4.2 Stability of the coupled system

The stabilizing effect of the second-order filter (49) can be
understood by comparing once more against pure positive
acceleration feedback. Taking the caseωn,ec = 25 in Table
1, it is clear that, if we attempt pure positive acceleration
feedback using the prescribed gainIc, the coupled system
will be unstable. Figure 12(a) shows the Nyquist diagram of
the corresponding open-loop transfer function,Ic s Yhec(s).
This is the same diagram as Figure 9(b) but scaled in mag-
nitude; the plot encircles the critical point -1 as a result.
The Bode plot ofIc s Yhec(s) in Figure 12(b) shows that
the magnitude tends to a maximum≫ 1 asω → +∞. How-
ever, this effect is counteracted by the frequency rolloff char-
acteristic of the filterHf (s). Adding the filter results in an
open-loop transfer functionIc s Yhec(s)Hf (s) of which the
magnitude rolls off as well. As a consequence, the magni-
tude never exceeds a value of 1, thereby avoiding any encir-
clement of -1.

Figure 12(c) shows the Nyquist diagram for the coupled
system with the second-order filter in place. It can be seen
that the solution is robust to both phase variations and gain
variations. The only limitation is that the gain margin is fi-
nite, whereas the phase margin is infinite. Thus in principle
it is possible for the coupled system to maintain stability in
spite of discrepancies between the system’s model and the
actual properties of the physical leg and exoskeleton.

3.4.3 Performance of the coupled system: frequency
response

Our design goal was to make the dynamic response of the
exoskeleton-assisted leg match the integral admittance model
Xd

h(s) (13) as closely as possible. Figure 13 shows a com-
parison between the frequency response of the coupled sys-
tem’s integral admittanceXhecf (s) and the response of the
modelXd

h(s). The frequency response of the unassisted leg
(modeled byXh(s)) is shown as well for reference. It can
readily be seen that the response of the coupled system closely
matches that of the model despite the differences of order
among the transfer functions (Xd

h(s) only has two poles,
whereasXhecf (s) has six poles and four zeros.)

In the next section we examine the stability robustness
of the exoskeleton’s control to variations in the parameters
of the coupled system.

4 Stability robustness of the exoskeleton control

4.1 Robustness to stiffness parameters

The present analysis assumes the exoskeleton modelZe to
be accurate and focuses on two system parameters that are
particularly difficult to identify, the stiffness of the human
leg’s joint and the stiffness of the coupling. The passive stiff-
ness of the hip joint can be estimated with reasonable ac-
curacy under highly controlled conditions (Fee and Miller,
2004). However, hip impedance also has reflexive compo-
nents due to muscle activation (Schouten et al, 2008). The
stiffness of the coupling between the leg and the exoskele-
ton, on its part, depends not only on the thigh brace but also
on the compliance of the thigh tissue, which is a highly un-
certain quantity.

We begin by converting the system’s block diagram in
Figure 7(a) to the equivalent form of Figure 7(c). In this di-
agram, the parameters of the human limb and the coupling
are bundled together in the transfer functionZhc, defined as

Zhc(s) = Y −1

hc (s) = (Yh + Yc)
−1 (60)

We shall use the transfer function thus defined to analyze the
effects of uncertainties in the stiffness of the human leg’s
joint and the stiffness of the coupling. The other transfer
function in the feedback loop,Yef , combines the parame-
ters of the exoskeleton and the feedback compensator, and
is defined as

Yef (s) = Z−1

ef (s) = (Ze + Zf)
−1 (61)

We shall consider the exoskeleton-compensator system
Yef (s) to provide robust stability if it guarantees the sta-
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bility of the closed-loop system of Figure 7(c) for a reason-
ably large range of variations in the uncertain parameters.To
this end we define the system’s nominal closed-loop transfer
function,Thecf (s) as

Thecf (s) =
ZhcYef

1 + ZhcYef

=
1

1 + YhcZef

(62)

The perturbed closed-loop transfer functionT̃hecf (s) is de-
fined by substitutingYhc in (62) with a transfer function

Ỹhc = Ỹh + Ỹc (63)

containing the parameter uncertainties. This in turn leadsto
the following expression:

T̃hecf (s) =

(
Yhc

Ỹhc

)
Thecf

1 +

(
Yhc

Ỹhc

− 1

)
Thecf

(64)

Thus the perturbed system will be stable if the characteristic
equation of (64) has no roots in the RHP.

We defineδkh as the uncertainty in the hip joint stiff-
ness value andδkc as the uncertainty in the coupling stiff-
ness value. In order to study the dependency of the system’s
stability onδkh andδkc, we will use the following interme-
diate expressions:

Yh =
s

Dh

, Ỹh =
s

D̃h

, Yc =
s

Dc

, Ỹc =
s

D̃c

(65)

where

Dh = Ihs
2 + bhs+ kh, D̃h = Dh + δkh

Dc = bcs+ kc, D̃c = Dc + δkc (66)

and

Yhc

Ỹhc

=
D̃hD̃c(Dh +Dc)

DhDc(D̃h + D̃c)
(67)

Substituting (67) in (64), we arrive at the following equiva-
lent expressions for the characteristic equation of (64):

1 + δkhWh(s) = 0 for δkh 6= 0, δkc = 0

1 + δkcWc(s) = 0 for δkh = 0, δkc 6= 0 (68)

where

Wh(s) =
Dh +DcThecf

Dh(Dh +Dc)

Wc(s) =
Dc +DhThecf

Dc(Dh +Dc)
(69)
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Fig. 14 Nyquist plots for the analysis of the stability robustness of
the human-exoskeleton system. (a) Nyquist plots for extremal cases of
hip joint stiffness variationδkh. Two sets of design specifications are
shown: (I)Rω = 1.2,RM = 1.3 andRDC = 1.1 (continuous graphs)
and (II) Rω = 1.1, RM = 1.2 andRDC = 1.05 (dotted graphs).
Nominal joint stiffnessωn,ec = 50 in both cases. (b) Nyquist plot for
extremal negative joint stiffness variationδkc with design specification
I. (c) Nyquist plot for extremal negative exoskeleton damping variation
δbe with design specification I.

4.1.1 Hip joint stiffness

The system’s stability robustness to variations in hip joint
stiffness can be determined by applying the Bode stability
criterion to the open-loop transfer functionδkh Wh(s). If
we define the stable range forδkh as [δkh,min, δkh,max],
thenδkh,min and δkh,max are the extremal values ofδkh
that satisfy

|δkhWh(jωM )| < 1
where ωM = ω | ∠δkhWh(jω) = −180◦

(70)

Figure 14(a) shows Nyquist plots for the extremal varia-
tions ofδkh. In general the lowest variation margin forδkh
corresponds to the extremal negative values. This indicates
that, for the purposes of control design, it is safer to under-
estimate the nominal value of joint stiffnesskh so that the
real value involves a positive variation.

Robustness to physical variations in hip joint stiffness
due to muscle activation requires special attention. Our as-
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Fig. 15 Top: poses of the human leg in different phases of a walking
stride. Bottom: Hip moment-angle graph for a representative human
walk. Dynamic stiffness of the hip during the flexion stage (maximum
extension to toe-off) is defined as the slopeKf of the best linear fits to
the portiond− e of the curve. (Reproduced from Shamaei et al (2013)
under the terms of the Creative Commons Attribution License.)

sistive control is optimized for the swing phase of the gait
cycle; hence its parameters are based on typical hip joint
stiffness values for the swing phase (Frigo et al, 1996), which
are consistent with the extended leg behaving as a pendu-
lum (Ghista, 2008; Doke et al, 2005). However, during the
stance phase, the hip joint undergoes a period of loading and
unloading. During this period, the hip joint’s quasi-stiffness
(i.e. the slopeKf of the joint’s moment-angle relationship
in Figure 15) can be, on average, 9 times larger than the pas-
sive stiffness (Shamaei et al, 2013). It is thus possible that
hip joint stiffness at toe-off (pointe in Figure 15) and early
in the swing phase (portione − f ) may exceed the nominal
swing-phase stiffness by a significant amount.

A large hip stiffness early in the swing phase might com-
promise stability and therefore limit the achievable design
specifications. Figure 14(a) shows that, for the specifica-
tions of section 3.3.3, hip stiffness can only increase up to
2.6 times the nominal value before instability. By contrast,
the more conservative set of design specifications in Figure
14(a) (specification II) allows for an increase 7.4 times the
nominal value, which is much closer to the theoretical joint
stiffness during the flexion stage of the stance phase.

We shall now consider the influence of the muscles’ feed-
back system on the stability of the coupled system. The neu-
romusculoskeletal model described in Schuurmans et al (2011)
considers the muscle’s intrinsic impedance as well its reflex-

ive feedback properties. The muscle’s reflexive impedance is
composed of angular velocity and angular position feedback
in series with a neural time delayτd:

Zh,refl(s) = kp
(αvs+ 1)

s
e−τds ≡ kpLh,refl(s) (71)

Zh,refl forms a feedback loop in series with the muscle ac-
tivation dynamics, given by the first-order model

Hh,act(s) =
1

τacts+ 1
(72)

In the preceding formulas,kp represents the muscle’s reflex-
ive stiffness andkpαv the reflexive damping;τact is the mus-
cle activation time constant. To analyze coupled stability, we
define a new perturbed closed-loop transfer function

T̃hecf(s) =
1

1 + (Ỹh + Yc)Zef

(73)

In this caseỸh represents the leg’s musculoskeletal system
with muscle activation feedback, and is given by

Ỹh(s) =
Yh

1 + kpHh,fbYh

(74)

whereHh,fb = Lh,reflHh,act. After substitutingỸh in (73)
and performing some algebraic manipulation, we arrive at
the following expression

T̃hecf(s) =
Thecf (1 + kpHh,fbYh)

1 + kpHh,fbUhecf

(75)

whereUhecf = Yh(1 − YhZefThecf). From (75), the ro-
bustness to reflexive stiffness is determined by the gain mar-
gin of Hh,fbUhecf . We chose a value of 0.0475 s for the
activation time constant and 0.015 s for neural delay (Schu-
urmans et al, 2011); these constants were nondimensional-
ized to obtainτact andτd. For the design specification used
throughout this study (specification I in Figure 14(a)), the
computed gain margin is 2.95. In other words, the reflexive
stiffness could be up to 2.95 times the nominal stiffness of
the hip joint, or about 110 Nm/rad. Studies on balance con-
trol in humans have determined the hip reflexive stiffness to
be about 95 Nm/rad (Boonstra et al, 2013). Therefore, the
coupled system can in theory absorb the expected stiffening
of the hip joint without loss of stability. On the other hand,
for more conservative design specifications the gain margin
will be even larger (for example, 8.38 for specification II.)

4.1.2 Coupling stiffness

Robustness to variations in coupling stiffness is determined
by applying the Bode stability criterion to the open-loop
transfer functionδkcWc(s). For positive values ofδkc, the
phase of the Nyquist plot never reaches 180◦ and therefore
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the variation margin forδkc is infinite, whereas for nega-
tive δkc there is the margin is finite (Figure 14(b)). This is
consistent with what we see in Figure 10: overall, to lower
values of coupling stiffnessωn,ec correspond lower stability
margins. Therefore, like in the case of hip joint stiffness,for
design purposes it is safer to underestimate the stiffness of
the coupling.

4.2 Robustness to exoskeleton damping

Ideally, the inner-loop control should make the exoskele-
ton arm behave as a pure inertia (section 3.2). However, we
want to consider the case in which that behavior is not pro-
duced with complete accuracy. A specific question is, if the
inner-loop control generates a certain amount of negative
damping instead of dead-on zero damping, will that destabi-
lize the coupled human-exoskeleton system? For one thing,
we know that, when assistance is on (Ic > 0), there is al-
ready negative damping present, as the exoskeleton’s port
impedance has a negative real part. Yet the coupled system
remains theoretically stable. The question is then whether
unintended negative damping from the inner-loop control
might, in a sense, push the system over the limit and make it
unstable.

To answer that question, we generate another perturbed
version ofThecf by substitutingZef in (62) with Z̃ef =

Zef+δbe, whereδbe is the variation from the ideal zero exo-
skeleton damping. It can be shown that the resulting transfer
functionT̃hecf has a characteristic equation

1 + δbeWe(s) = 0 (76)

where

We(s) =
1− Thecf

Zef

(77)

Figure 14(c) shows the Nyquist plot ofδbeWe(s) for the
extremal negative variationδbe,min. Clearly, there is a con-
siderable stability margin for negative exoskeleton damping;
the magnitude ofδbe could in theory be about 70% the hu-
man dampingbh without loss of stability. On the other hand,
there is an infinite stability margin for positive values ofδbe.
In other words, positive exoskeleton damping would only in-
crease the stability of the coupled system, albeit at the cost
of reduced performance due to additional energy dissipation.

4.3 Robustness to time delay in the exoskeleton control and
other nonlinearities

Time delays in the exoskeleton control, such as are intro-
duced by sensing and estimation, can be additional sources

Fig. 16 Dynamic walker (DW) model. The DW’s gait undergoes two
phases: (a) leg swing with knee joint passively flexing and (2) leg swing
with knee joint locked.

of instability. This, in turn, may require verifying the con-
trol’s phase margins. For example, in the SMA device (Fig-
ure 1(a)), the angular position of the motor’s output shaft is
measured by an array of Hall effect sensors with a resolu-
tion (gearing considered) of 600 counts per revolution. In
order to eliminate quantization noise, angular velocity and
acceleration of the shaft are estimated using a model-free
Kalman filter (Belanger et al, 1998). For a 1.0 Hz sinusoidal
motion, the delay in the acceleration estimate is between 4
and 5 time steps, or about 16◦ phase.

Figure 12(c) shows that, for the feedback compensator
example in section 3.4.2, the phase margin is infinite; in
other words, a pure phase delay cannot cause instability.
However, for a more demanding design specification this
may not be the case. In such a situation, a possible strat-
egy can be to include a linearized model of the acceleration
estimator in the feedback compensator model (50), i.e. make
the estimator part of the control design.

On the other hand, nonlinearities such as backlash or ac-
tuator could give rise to limit cycles. In the SMA itself, mo-
tor torque is delivered through a custom-designed harmonic
drive with a gearing ratio of 10:1. The drive as such is vir-
tually backlash-free and therefore less likely to cause limit
cycling than a conventional gear transmission. However, if
limit cycles do arise they can be counteracted by the inner-
loop control (section 3.2), for example through the use of a
lead compensator.

5 Assisting human gait: bipedal walk simulations and
initial trials with the exoskeleton

The use of our assistive control for actual walking will be the
object of a separate study. Here we offer a few initial consid-
erations on assisting bipedal gait. We simulated the assistive
control on a previously published dynamical bipedal walk-
ing model (Aguirre-Ollinger, 2014). The dynamic walker
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during walking.

(DW), shown in Figure 16, features masses concentrated at
the hip and the knees as well as articulated knee joints. In

lieu of hip joint muscles, the DW propels itself forward by
means of bell-shaped torque profiles acting on the hips. The
knee joints feature torsional springs and dampers, and bend
passively during the gait cycle, thereby allowing the feet to
clear the ground. The model attempts to track a given stride
amplitudeβeq by stiffening the hip joint after knee-lock. Ap-
pendix C provides details on the walker’s kinematic and dy-
namic parameters as well as its mode of propulsion.

We simulated the effect of attaching a hip exoskeleton
with the mass and inertia properties of the SMA device to
the DW. The modeled device runs under the assistive control
derived in section 3.4.1. The objective was twofold: firstly,
to verify whether the model can walk stably under the ac-
tion of the exoskeleton’s control and, secondly, whether the
effect on the gait kinematics is consistent with the predicted
frequency response of the swing leg (Figure 13). This partic-
ular simulation involves no adaptation of the hip “muscle”
torques to exoskeleton’s action. Thus the model is expected
to behave as if the exoskeleton was supplementing, rather
than substituting, the hip muscles’ effort.

Figure 17 shows the results of the DW simulated gaits,
first unassisted, then aided by the exoskeleton. In the as-
sisted case, the steady-state stepping frequency was 17.2%
higher than in the unassisted case. This is consistent with
the target natural frequency increase of 20% (section 3.3.3).
From the stance length angle trajectory (Figure 17(b)), vari-
ation in stride amplitudeΘ between the two cases is min-
imal; this is expected because the model attempts to track
a fixed stride amplitude. Finally, the forward speed of the
model was 22.5% higher; clearly the main contribution to
this increase was the change in stepping frequency.

In previous studies, human subjects performed lower-
limb swing exercises with the leg’s shank coupled to a sta-
tionary 1-DOF exoskeleton (Aguirre-Ollinger, 2009; Aguirre-
Ollinger et al, 2012). The assistive control of that device
was conceptually equivalent to the admittance shaping con-
trol presented here, save for the design optimization. In the
baseline state, the significant inertia of the device causeda
reduction in swing frequency. With the assistive function ac-
tive, the inertia compensation effect enabled the subjectsto
recover their normal frequency and increase their selected
angular velocity. The assistive action of the exoskeleton was
evidenced by moderate reductions in EMG activity as well
as catch trials during the experiments.

As part of the present study, we conducted a short ex-
perimental trial involving human participants using Honda’s
SMA device with the admitttance shaping control. Three
male adult subjects walked 14 m on a straight-line trajec-
tory at a uniform speed, first with the exoskeleton inactive
and then with the assistive control in operation. In order to
make adaptation to the SMA easy we chose conservative
design specifications for the feedback compensator:Rω =

1.05,RM = 1.05 andRDC = 1.05. Figure 18 shows the
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experimental data for one of the participants. Subjects re-
ported no difficulty walking with the assistive control. The
main observable difference between conditions was an in-
crease in motion amplitude, which translates into a larger
stride length. This is likely a direct effect of the resonant
peaks ratioRM ; the net muscle torque is supplemented by
the exoskeleton torque, resulting in increased amplitude of
movement.

The purpose of this experiment was only to verify the
participants’ ability to walk stably in the exoskeleton. Exper-
imental validation of the kinematic and physiological effects
of the assistive control on human gait requires a more elab-
orate experiment involving a larger number of participants
walking with and without the exoskeleton for extended pe-
riods (Ferris et al, 2007).

6 Discussion

We have presented a method for exoskeleton assistance based
on producing a virtual modification of the dynamic prop-
erties of the lower limbs. Our control formulation defines
assistanceas an improvement in the performance character-
istics of an LTI system representing the human leg, with the
desired performance defined by a sensitivity transfer func-
tion modulating the natural admittance of the leg (equation
(6)).

One of the most significant aspects of our control me-
thod is that it breaks away from a performance boundary
that appears often in control design literature. This bound-
ary is stated in terms of the Bode sensitivity integral theorem
by saying that, in most stable feedback control systems, the
logarithmic integral of sensitivity evaluates to zero (Astrom
and Murray, 2008; Stein, 2003). This property, sometimes
referred to as the “waterbed effect”, is seen mainly as a con-
servation law that puts limits to what can be achieved via
feedback control. For example, servo control typically aims
to reduce a system’s sensitivity to disturbances. For that case
the waterbed effect dictates that a reduction in sensitivity
at certain frequencies is necessarily accompanied by an in-
crease in sensitivity at other frequencies. Thus the latteris
seen as an unavoidable loss of performance.

In our case the desired performance is the exact oppo-
site: we seek to increase the system’s sensitivity. In fact,the
main contention of this study is that, for genuine assistance
to occur, the exoskeleton control has to be capable of pro-
ducing anet increasein sensitivity, i.e. we need to avoid the
waterbed effect altogether. This is the case when we want
to emulate effects like reduction in the inertia or the damp-
ing of the leg2. Our challenge was to accomplish this with
an interaction controller (as opposed to a servo controller).

2 Stiffness reduction (equivalently, increase in DC gain) stands apart
because it obeys the zero sensitivity integral property.

Interestingly enough, it was a lesser-known part of the same
integral theorem (the case forNr = 1 in (8)) that suggested
a route for increasing sensitivity; namely, the use of positive
feedback.

The relationship between positive feedback and assis-
tance can also be understood in terms of work performed
by the exoskeleton. The real part of the exoskeleton’s port
impedance is negative for frequencies in the typical range
of human motion. The physical interpretation of this behav-
ior is that the exoskeleton’s port impedance possesses neg-
ative damping, causing the exoskeleton to act as an energy
source rather than a dissipator. This enables the exoskele-
ton to perform net positive work on the leg at every stride.
Thus our proposed control departs from a well-known ap-
proach to the design of robotic systems for interaction with
humans; namely, that in order to guarantee the stability the
robot should display passive port impedance (Colgate and
Hogan, 1989b).

Although passivity is a sound principle from the point
of view of safety, it is of limited usefulness for exoskeletons
because a passive exoskeleton can at best provide temporary
energy storage. For example, the gravity-balancing leg exo-
skeleton developed by Agrawal et al (2007) uses springs to
make the assisted leg’s potential energy invariant. However,
its effect appears to be limited to increasing the leg’s range
of motion on impaired subjects. A passive exoskeleton could
in theory reduce metabolic energy consumption during the
negative work phases of muscle activation (lengthening con-
tractions). But since muscular efficiencies are considerably
lower for positive muscle work (25%, versus 120% for neg-
ative work (Ferris et al, 2007)), a much larger economy of
metabolic consumption should be expected from assisting
the positive work phases instead. The MIT quasi-passive
exoskeleton (Walsh et al, 2006) attempted this by storing
energy during the negative-work phases of the gait cycle
via springs and releasing it during the positive-work phases.
However, metabolic studies showed that the device actually
caused a 10% increase in metabolic cost of transport, prob-
ably as a result of the mass added by the device.

Certainly our feedback compensators achieve active be-
havior at the cost of some reduction in stability margins. But,
as stated before, our control does not need to ensure stable
interaction with every possible environment like passivity
controllers do. Here stability only needs to be guaranteed
for a subset of environments with impedance characteristics
equal or similar to those of the human leg. For such environ-
ments we were able to find solution regions that simultane-
ously satisfied our performance and stability requirements
(Figure 10). This led to formulating the control design as
a constrained optimization problem: maximizing the gain
margins of the coupled leg-exoskeleton system while en-
forcing the desired location of the system’s dominant poles.
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A key point in our formulation is that positive feedback
alone does not produce the desired performance. With pure
positive feedback of the angular acceleration no region of
simultaneous performance and stability exists; the system
can at most cancel the exoskeleton’s inertia before becom-
ing unstable (section 3.3.3). The second-order filter in the
feedback compensatorZf (s) (50) is absolutely necessary
to generate regions of simultaneous performance and stabil-
ity, i.e. regions where the dominant poles of the closed-loop
system are at their target locations and the system is sta-
ble (Figure 10). The purpose of the second-order filter can
be readily understood in terms of the root locus: the com-
pensator poles−σf ± jωd,f shape the system’s root locus
in such a way that it passes through the location of the tar-
get dominant poles (pdh in Figure 11). Thus the right way to
think about the second-order filter in this application is as
a pole placement device rather than a device for blocking
frequency content.

An interesting observation is that the feedback compen-
sator fulfills its role despite the fact that the objectives of per-
formance and stability conflict with each other. The conflict
is illustrated by Figure 11. If the inertia compensation gain
Ic is raised gradually, as one pair of poles moves towards
the target locations, another pair of poles moves towards the
RHP. But with proper design the target location is reached
first.

A point to consider is how to validate experimentally
that the assistive control achieves the target frequency re-
sponse for the leg (Figure 13). The main technical chal-
lenge in this regard is how to estimate the net muscle torque,
i.e. the input toYhecf . One possibility is to employ an ex-
perimental setup similar to the one used in Doke and Kuo
(2007); in that device, muscle torque is estimated from ground
reaction force measurements.

The present study dealt mostly with two control aspects:
performance defined by a target frequency-response model,
and stability robustness. In future work we will analyze the
control’s effect on transient response as well, as it may have
bearing on the subject’s ability to execute quick, point-to-
point leg movements. We will expand the robustness anal-
ysis to include performance as well. Specifically, we want
to determine how the choice of a performance target affects
the controller’s ability to achieve simultaneous performance
and stability.

For our control formulation we modeled the human limb
as a linear pendulum. Despite its simplicity, this model has
proven effective in capturing the energetic properties of leg
swing (Doke and Kuo, 2007). Accordingly, the scope of ap-
plication of the control is assisting movements that involve
muscle activation mainly at the hip joint, and no ground con-
tact with the foot. Examples of these include the swing phase
of the gait cycle, gait initiation and reactive stepping. Infu-
ture studies we will conduct experiments with with human

participants using an exoskeleton with the admittance shap-
ing control. The goal of those studies will be to determine
which of the possible assistive effects in our classification
(section 1.1) can be achieved to a significant level by the
control. The main effects we expect to see are reduction
in the activation levels of the hip joint muscle groups for
a given speed of walking, and subjects being able to walk
comfortably at higher than normal speeds, mainly through
an increase in mean stepping frequency.

Another future development is to expand our control for-
mulation to a more realistic, multibody formulation suitable
for a leg and exoskeleton with multiple degrees of freedom.
Although a number of existing devices besides the SMA as-
sist only a single joint (Dollar and Herr, 2008a; Sawicki and
Ferris, 2009), the effects on adjacent joints need to be con-
sidered as well. In the case of the SMA featuring our ad-
mittance shaping control, higher control gains might induce
an oscillatory mode on the knee joint. Addressing this pos-
sibility requires, at a minimum, using a two-inertia linear
model of the limb to design the control. Eventually, the ad-
mittance shaping control will have to be formulated with a
proper nonlinear multibody model. Assistance in that case
can be formulated as a reduction of the port impedance of
the leg-exoskeleton system at the human hip joint, expressed
for example as a contraction of the inertia ellipsoid.

Equally important, the control method needs to be linked
to the biomechanics of human walk. In an initial study, we
simulated the admittance shaping control assisting a bipedal
walking model (section 5). Clearly, this model is a consid-
erable simplification of the dynamics of human walk and
omits certain aspects like ankle propulsion. However, it shows
the feasibility of generating stable gait cycles with the assis-
tive control, together with gait properties that are consistent
with the target frequency response of the leg.

We also plan to extend our control formulation to as-
sist the stance phase of walking. This is important because
propulsion of the body’s center of mass (CoM) takes place
mainly during this phase. Kuo (2002) compared between
powering a walking model via impulsive forces acting on the
ankles, and using hip torques. In principle, both approaches
are feasible, although hip actuation is about four times more
energetically costly. However, in the case of an exoskele-
ton, the energetic advantage of powering the ankles may be
offset by the attaching of distal masses to the legs for the
purposes of ankle actuation.

Inasmuch as positive acceleration feedback makes the
exoskeleton an energy source, our control approach can as-
sist the hips during stance as well. However, since the present
control is optimized for pendulum-like leg swing, a differ-
ent human body model needs to be used for the design of
the stance-phase control. At a minimum, the human body
should be modeled as a two-body system representing the
stance leg and the trunk coupled by the hip joint.
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A Target values for the dynamic response parameters of
the assisted leg: computation

From (14) we have

ωd
nh = Rωωnh (78)

We shall now define an intermediate target integral admittanceXh,DC(s)
that differs fromXh(s) only in the trailing coefficient of the denomi-
nator:

Xh,DC(s) =
1

Ihs2 + 2Ihζhωnhs+ Ihω
2

nh,DC

(79)

We chooseωnh,DC such thatXh,DC(s) meets the DC gain specifica-
tionRDC :

Xh,DC(0)

Xh(0)
=

ω2

nh

ω2

nh,DC

= RDC (80)

yielding

ωnh,DC = ωnh

√

R−1

DC
(81)

Because the target integral admittanceXd
h
(s) and the intermediate

targetXh,DC(s) have the same DC gains (although in general they
have different natural frequencies and different damping ratios), we
can write

Xd
h(0) = Xh,DC(0) or

1

Id
h
ωd 2

nh

=
1

Ihω
2

nh,DC

(82)

In (82) we substituteωd
nh

with (78) andωnh,DC with (81), thereby
obtaining the required value forId

h
:

Idh =
Ih

RDCR2
ω

(83)

In order to obtainζd
h

, we compute the values of the resonant peaks
for Xh(jω) using equation (12) andXd

h
(jω) using equation (13):

Mh =
1

2 Ih ω2

nh
ζh

√

1 − ζ2
h

for Xh(jω) (84)

and

Md
h =

1

2 Id
h
ωd 2

nh
ζd
h

√

1− ζd 2

h

for Xd
h(jω) (85)

Computing the ratioMd
h
/Mh and applying (83) yields

Md
h

Mh

=
RDCζh

√

1− ζ2
h

ζd
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1− ζd 2

h

(86)

Equating the left-hand side of (86) toRM (definition (15)) yields

ζdh

√

1− ζd 2

h
=
RDC

RM

ζh

√

1− ζ2
h

(87)

Now we define the right-hand side of (87) as

ρ =
RDC

RM

ζh

√

1− ζ2
h

(88)

yielding

ζd 4

h − ζd 2

h + ρ2 = 0 (89)

for which the solution that ensures the existence of a resonant peak is

ζdh =

√

1 −
√

1− 4ρ2

2
(90)
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B Pole placement solution for the feedback
compensator based on the properties of the
positive-feedback root locus

Given a target dominant polepd
h

, the phase ofLhecf (p
d
h
) is computed

as

Φ(σf , ωd,f , p
d
h) =

Nz
∑

i=1

ψi −

Np
∑

i=1

φi − φf − φf (91)

where

ψi = arctan

(

Im{pd
h
− zhec,i}

Re{pd
h
− zhec,i}

)

φi = arctan

(

Im{pd
h
− phec,i}

Re{pd
h
− phec,i}

)

φf = arctan

(

Im{pd
h
} − ωd,f

Re{pd
h
}+ σf

)

φf = arctan

(

Im{pd
h
}+ ωd,f

Re{pd
h
}+ σf

)

(92)

Here zhec,i are the zeros ofLhecf (s) and phec,i are the poles of
Lhecf (s) excepting those ats = −σf ± jωd,f . ThusNp = Nz =
4. A valid solution forσf andωd,f satisfiesΦ(σf , ωd,f , p

d
h
) = 0 for

positive feedback.
Given a solution forσf andωd,f , the loop gain (54) is computed

as

KL(σf , ωd,f , p
d
h) = −KL,f KL,f KL,hec (93)

where

KL,f = [(Re{pdh}+ σf )
2 + (Im{pdh} − ωd,f )

2]
1

2

KL,f = [(Re{pdh}+ σf )
2 + (Im{pdh}+ ωd,f )

2]
1

2

KL,hec =

Np
∏

i=1

[Re{pdh − phec,i}
2 + Im{pdh − phec,i}

2]
1

2

Nz
∏

i=1

[Re{pdh − zhec,i}
2 + Im{pdh − zhec,i}

2]
1

2

(94)

C Target values for the dynamic response parameters of
the assisted leg: computation

In the dynamic walker (DW) of Figure 16, described in Aguirre-Ollinger
(2014), a combination of adaptive frequency oscillator (AFO) and adap-
tive Fourier analysis (Petric et al, 2011) generates a cyclic phase signal
ϕ(t). We useϕ to generate bell-shaped torques on the hip joints in lieu
of hip muscle torques. The hip torque profiles for the stance and the
swing phases are given, respectively, by

τst(ϕ) =
τst,max

Kst

ϕ exp

(

1−
ϕ

Kst

)

τsw(ϕ) =
τsw,max

Ksw

ϕ exp

(

1−
ϕ

Ksw

)

(95)

The knee joint possesses torsional stiffnessκkn and dampingνkn.
The knee becomes locked when the leading leg reaches full extension

and is released again at toe-off. In order to ensure a stable gait, the
hip joint of the leading leg is stiffened during the intervalfrom knee-
lock to ground collision. The torsional stiffness and damping for this
interval are, respectively,κsw andνsw. The virtual springκsw has an
equilibrium defined by an inter-leg angleβ = βeq (Figure 16(b)).

The numerical parameters employed in the simulation of section 5
are given below.

– Multibody system:M = 19.62 kg,m = 15.38 kg,l2 = 0.4165
m, l3 = 0.4845 m, foot radius = 0.1 m

– Hip joint damping:bh = 2.194 Nms/rad
– Stance-phase hip torque:τst,max = 39.7 Nm,Kst = 0.5
– Swing-phase hip torque:τsw,max = 35.3 Nm,Ksw = 0.5
– Hip joint stiffness and damping at the end of the swing phase
κsw = 96 Nm/rad,νsw = 32 Nms/rad; equilibrium point:βeq =
0.6 rad

– Knee joint stiffness and damping:κkn = 8.43 Nm/rad,νkn =
0.966 Nms/rad
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