
Exploring Machine Learning Methods to Automatically
Identify Students in Need of Assistance

Alireza Ahadi and Raymond Lister
University of Technology, Sydney

Australia
alireza.ahadi@uts.edu.au

raymond.lister@uts.edu.au

Heikki Haapala and Arto Vihavainen
Department of Computer Science

University of Helsinki
Finland

heikki.haapala@cs.helsinki.fi
arto.vihavainen@cs.helsinki.fi

ABSTRACT
Methods for automatically identifying students in need of
assistance have been studied for decades. Initially, the work
was based on somewhat static factors such as students’ edu-
cational background and results from various questionnaires,
while more recently, constantly accumulating data such as
progress with course assignments and behavior in lectures has
gained attention. We contribute to this work with results on
early detection of students in need of assistance, and provide
a starting point for using machine learning techniques on
naturally accumulating programming process data.

When combining source code snapshot data that is recorded
from students’ programming process with machine learning
methods, we are able to detect high- and low-performing
students with high accuracy already after the very first week
of an introductory programming course. Comparison of our
results to the prominent methods for predicting students’
performance using source code snapshot data is also provided.

This early information on students’ performance is benefi-
cial from multiple viewpoints. Instructors can target their
guidance to struggling students early on, and provide more
challenging assignments for high-performing students. More-
over, students that perform poorly in the introductory pro-
gramming course, but who nevertheless pass, can be moni-
tored more closely in their future studies.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education; H.2.8 [Database Applica-
tions]: Data mining

Keywords
introductory programming; source code snapshot analysis;
programming behavior; educational data mining; learning
analytics; novice programmers; detecting students in need of
assistance

.

1. INTRODUCTION
Every year, tens of thousands of students fail introductory

programming courses world-wide, and numerous students
pass their courses with substandard knowledge. As a con-
sequence, studies are retaken and postponed, careers are
reconsidered, and substantial capital is invested into student
counseling and support. World-wide, on average one third
of students fail their introductory programming course [4,
40]. Even when looking at statistics describing pass rates
after teaching interventions, as many as one quarter of the
students still fail the courses [38].

One of the challenges in organizing teaching interventions
is that any change is likely to also affect students for whom
the prevalent situation is more suitable. For example, if
a student is already at a stage where she could work on
more challenging projects on her own, mandatory excessively
structured learning activities that everyone needs to follow
may even be counterproductive for her [16, 31]. To provide
another example, while collaborative learning practices such
as pair programming [45] have been highlighted as efficient
teaching approaches for introductory programming [23, 38],
there are contexts in which students mostly work from a
distance and rarely attend an institution.

This diversity of institutions, students, and teaching ap-
proaches is the setting upon which our work builds. We
believe that the appropriate next step in teaching interven-
tions is the transition towards interventions that address
only those students that are in need of guidance, and work
towards that goal by analyzing methods for detecting such
students as early as possible. More specifically, in this work,
we explore methods for detecting high- and low-performing
students in an introductory programming course already
based on the performance during the very first week of the
course. Variants of the topic have been investigated previ-
ously, for example, by Jadud, who proposed an approach to
quantify students’ ability to solve errors using source code
snapshots [15], Ahadi et al., who measured students’ knowl-
edge using tests [1, 2], and Porter et al., who used in-class
clicker data as a lens into students’ performance [24, 25].

This work is organized as follows. First, in Section 2, we
provide an overview of the evolution of the field of under-
standing factors that contribute to students’ performance
in introductory programming. Then, in Sections 3 and 4
we outline our research questions and data in more detail,
as well as explain the methodology and outline the results.
The results are discussed in Section 5, and finally, Section 6
concludes the work and outlines future research questions.

2. BACKGROUND
In the article ”What best predicts computer proficiency” [9],

Evans and Simkin describe early advances into understand-
ing attributes that contribute to the ability of learning to
program. This ability, programming aptitude, is often defined
as the student’s ability to succeed in an introductory pro-
gramming course, and is measured through e.g. the course
grade or a finer-grained measure such as within-course point
accumulation. Before 1975, the research focused mainly on
demographic factors such as educational background and
scores from previous courses, while by the end of the 1970s,
the focus moved slowly to evaluating static tests that mea-
sure programming aptitude. This was followed by research
that started to investigate the effect of cognitive factors such
as abstraction ability and the ability to follow more complex
processes and algorithms [9]. Such research has continued
to this day by introducing factors related to study behavior,
learning styles and cognitive factors [42]. However, recently,
dynamically accumulating data from students’ learning pro-
cess has gained researchers’ attention [15, 25, 37, 41].

Overall, this stream of research has been motivated by
multiple viewpoints, which include identification of students
that have an aptitude for CS-related studies (e.g. [35]); study-
ing and identifying measures of programming aptitude as
well as combining them (e.g. [3, 5, 30, 43]); improvement
of education and the comparison of teaching methodologies
(e.g. [34, 36]); and identifying at-risk students and predicting
course outcomes (e.g. [15, 41]).

Next, we outline some of this work in more depth. We
begin by focusing on factors that do not change at all or
change very slowly, and continue towards dynamic factors
that change more rapidly and where new information may
be constantly accumulated.

2.1 Gender
Studies in past often investigated gender as one of the

factors that may explain programming aptitude – one of the
reasons may be that the field of computing is at times seen as
being dominated by males, and thus exhibits a male-oriented
culture. However, the results show no clear trend. For ex-
ample, in an analysis of introductory programming course
grade and gender, Werth found no significant correlation
(r = 0.080) [43]. In a similar study, Byrne and Lyons found
that female participants in introductory programming course
had a marginally higher point average than their male coun-
terparts, but the difference was not statistically significant [6].
The role of gender was also investigated by Ventura, who
studied the effect of gender by comparing students’ program-
ming assignment, exam, and overall course points, and found
no effect that could be explained by gender [36].

Studies exist that suggest a referential connection between
programming aptitude and gender. For example, in a small
study (n = 11), Bergin and Reilly observed that female
students had statistically significant and strong correlations
(r = 0.72− 0.93) between an Irish high-school leaving certifi-
cate test and programming course scores [5] – an effect that
was not visible among male counterparts.

2.2 Academic Performance
The connection between students’ academic performance

and programming aptitude has been investigated in several
studies. For example, Werth analyzed the connection be-
tween the amount of tertiary education mathematics courses

and programming aptitude, but found no significant corre-
lation (r = −0.019; p > 0.1). She suggested that a large
amount of mathematics courses in tertiary education may
actually be an indicator of improving a weak mathemat-
ics background [43]. Other studies have found connections
between mathematics and introductory programming. For
example, Stein studied the connection between Calculus and
Discrete Mathematics and the grade from an introductory
programming course. The correlations, overall, were weak
(Calculus: r = 0.244; Discrete Math: r = 0.162) [34]. Wat-
son, Li and Goldwin did a similar study, and, similarly, found
no significant correlation between the Discrete Math and the
introductory programming grade (r = 0.06; p > 0.05). How-
ever, there was a mediocre albeit not statistically significant
effect between the Calculus course grade and programming
course points (r = 0.37; p = 0.06) [42].

In addition to mathematics, factors such as language per-
formance and overall grade averages have also been stud-
ied. For example, Leeper and Silver studied students’ En-
glish language scores and the score of the verbal part of the
SAT test. In their study, only the verbal SAT score had
a mediocre correlation with the introductory programming
course grade (r = 0.3777) [19]. Werth found no significant
correlation between secondary education grade average and
the grade achieved in an introductory programming course
(r = 0.074; p > 0.1), but she did find a weak correlation
between university-level grade average and the introductory
programming course grade (r = 0.252; p < 0.01) [43]. Sim-
ilarly, Watson et al. studied correlations between various
secondary education courses and course averages, but found
no statistically significant correlations [42].

2.3 Past Programming Experience
It is natural to assume that past programming experience

influences programming course scores, and thus, the con-
nection has been studied in a number of contexts, albeit
with contradictory results. Hagan and Markham found that
students with previous programming experience received con-
siderably higher course marks than the students with no
programming experience [10]. Wilson and Shrock utilized
five variables related to programming and computer use,
such as formal programming education, the use of internet,
and the amount of time spent on gaming. The combina-
tion of these variables had a significant correlation with
the midterm score in an introductory programming course
(r = 0.387; p < 0.01) [7]. Similarly, in 2004, Wiedenbeck et
al. reported on a study in which the number of ICT courses
taken by students, the number of programming courses taken,
the number of programming languages students had used,
the number of programs students had written, and the length
of those programs were combined into a single factor. The
combination had a weak but significant correlation with the
introductory programming score (r = 0.25; p < 0.05) [44].

While multiple studies indicate a positive correlation be-
tween past programming experience and introductory pro-
gramming course outcomes, somewhat contradictory results
also exist. For example, Bergin and Reilly found that stu-
dents with no previous programming experience had a margi-
nally higher mean overall score in an introductory program-
ming course, and found no statistically significant difference
between students with and without previous programming ex-
perience [5]. In another study, Watson et al. found that while
students with past programming experience had significantly

higher overall course points than those with no previous pro-
gramming experience [42], programming experience in years
had a weak but statistically insignificant negative correlation
with the course points (r = −0.20) [42].

2.4 Behavior in Lectures and Labs
Rodrigo et al. studied students’ observed behavior in

programming labs [26]. They studied students’ gestures,
outbursts, and other factors including collaboration with
other students, and sought to identify factors that are po-
tentially related to students’ success. In addition, they col-
lected source code snapshots from students’ programming
process. Six statistically significant factors (p < 0.05) that
had a mediocre correlation with an introductory program-
ming course midterm score were identified. Four of them
were related to students’ behaviors; confusion (r = −0.432),
boredom (r = −0.389), focus (r = 0.346), and discussion
about the programming environment (−0.316), while two
were related to snapshots. The number of consecutive snap-
shots with errors (r = −0.326) and compilation events in
which the student had worked on the same area in the source
code (r = −0.336) were both negatively correlated with the
midterm score [26].

Another angle at studying students behavior was recently
proposed by Porter et al. [25], who studied students’ re-
sponses to clicker questions in a peer instruction setting.
In their study, they identified that the percentage of cor-
rect clicker answers from the first three weeks of a course
was strongly correlated with overall course performance
(r = 0.61; p < 0.05).

2.5 Source Code Snapshots
In ”Methods and Tools for Exploring Novice Compiling

Behaviour” [15], Jadud presents a method to quantify a
student’s tendency to create and fix errors, which he called
the error quotient. In his study, the correlation between
the error quotient and the average score from programming
assignments was mediocre and statistically significant (r =
0.36; p = 0.012), while the correlation between the error
quotient and the grade from a course exam was high (r =
0.52; p = 0.0002) [15]. Rodrigo et al. used an alternative
version of Jadud’s error quotient, and found that in their
context the correlation between the error quotient and the
midterm score of an introductory programming course was
strong and statistically significant (r = −0.54; p < 0.001) [27].
In essence, this suggests that the less programming errors a
student makes, and the better she solves them, the higher
her midterm grade will tend to be [27].

Watson et al. also conducted a study using Jadud’s error
quotient, and found a significant correlation between the error
quotient and their programming course scores (r = 0.44) [41].
They proposed that the amount of time that students spend
on programming assignments should be taken into account,
and that one should consider the files that a student is editing
as a part of the error quotient calculation [41]. They proposed
an improvement to the error quotient called Watwin, and
found that with this improvement the correlation increased
from (r = 0.44) to (r = 0.51) [41]. They also noted that a
simple measure, the average amount of time that a student
spends on a programming error, is strongly correlated with
programming course scores (r = −0.53; p < 0.01).

Source code snapshots have been used to elicit information
in finer detail as well. For example, Piech et al. [22] stud-

ied students’ approaches to solving two programming tasks,
and found that students’ solution patterns are indicative
of course midterm scores. Programming patterns were also
studied by Hosseini et al., who identified students’ behaviors
within a programming course – some students were more
inclined to build their code step by step, while others started
from larger quantities of code, and reduced their code in
order to reach a solution [14]. Another approach recently
proposed by Yudelson et al. was to use fine-grained concepts
extracted from source code snapshots, and to model students’
understanding of these concepts as they proceed [46].

Next, we explore some of these methods for source code
snapshot analysis, as well as provide researchers with an
outline for performing such studies.

3. RESEARCH DESIGN
This study is driven by the question of identifying high-

and low-performing students as early as possible in a pro-
gramming course to provide better support for them. By
high- and low-performing students, we mean students in the
upper- and lower-half of course scores, and by early, we mean
after the very first week of the programming course. This
means that instructors could plan and provide additional
guidance to specifically selected students already during the
second week of the course.

For the task, we explore previously proposed methods for
predicting students’ performance from source code snapshots,
and evaluate a number of machine learning techniques that
have previously received little attention for the task at hand.

3.1 Research Questions
Our research questions for this study are as follows.

RQ1 Given our dataset, how do the methods proposed by
Jadud and Watson et al. perform for detecting high-
and low-performing students?

RQ2 Given our dataset, how do standard machine learn-
ing techniques perform for detecting high- and low-
performing students?

To answer the first question, we have implemented the
algorithms described in [15, 41], and evaluate their perfor-
mance on our data. For the second question, we first identify
relevant features from a single semester, then evaluate differ-
ent machine learning techniques to build a predictive model
using the extracted features to determine a top-performing
approach. Finally, the top-performing predictive model is
evaluated on a dataset from a separate semester to determine
cross-semester performance of the selected model.

3.2 Data
The data for the study comes from two semesters of an

introductory programming course organized at the University
of Helsinki. The course lasts six weeks, is taught in Java,
and uses a blended online textbook that covers variables,
basic I/O, methods, conditionals, loops, lists, arrays, ele-
mentary search algorithms and elementary objects. In the
programming course, the main focus is on working on prac-
tical programming assignments, accompanied by a weekly
two-hour lecture that covers the basics needed to get started
with the work. Support is available in open computer labs,
where teaching assistants and course instructors are available
some 20-30 hours each week (see [18] for details).

Although no socio-economic factors were available for this
study, the studied population is relatively homogenic, and

the educational system in the context is socially inclusive,
meaning that there is both a minimal underrepresentation
of students from low education background and a minimal
overrepresentation of students from high education back-
ground [21]. There are also no tuition fees, and students
receive student benefits such as direct funding from the state,
assuming that they progress in their degree work.

For the purposes of this study, students’ programming
process was recorded using Test My Code [39] that is used for
automatically assessing students’ work in the course. For each
student that consented to having their programming process
recorded, every key-press and related information such as
time and assignment details was stored. The students used
the same programming environment both from home and at
the university. Students were asked to provide information
on whether they had prior programming experience, and
access to information on students’ age, gender, grade average,
and major was given for the researchers for the purposes of
this study. In the studied context, major is selected before
enrollment, and in both semesters, over 50% of the students
had other subjects than computer science as their major –
for students with CS as a major, the studied course is the
first course that they take.

In the first semester (spring), a total of 86 students partic-
ipated in the study, and in the second semester (fall), a total
of 210 students participated in the study. Full fine-grained
key-log data is available only for the first semester, while for
the second semester, only higher level actions such as saves,
compilation events, run events and test events are available.

While attendance in the course activities is not mandatory,
50% of total course points comes from completing program-
ming assignments. The rest of the course points comes from
a written exam, where students answer both essay-type ques-
tions as well as programming questions. To pass the course,
the students have to receive at least half of the points from
the exam as well as half of the points from the programming
assignments, while the highest grade in the course can be
received by gathering over 90% of the course points.

4. METHODOLOGY AND RESULTS
The students were divided into groups based on their per-

formance in (1) an algorithmic programming question given
in the exam, (2) the overall course, and (3) a combination
of the two. The first division into groups is motivated by
students’ struggling with writing programs even at a later
phase of their studies [20], and has also been the focus in
related studies, such as the work by Porter et al. [25]. The
algorithmic programming question is a variant of the Rainfall
Problem [32], where students have to create a program that
reads numbers, possibly filters them, and prints attributes
such as the average of the accepted numbers. The second di-
vision into groups outlines the students’ overall performance,
and the third division combines the previous. Table 1 shows
student counts in these groups for the dataset that is used to
evaluate the algorithms in RQ1, and to train the predictive
model for RQ2.

4.1 Research Question 1
To answer the first research question, ”Given our dataset,

how do the methods proposed by Jadud and Watson et al.
perform for detecting high- and low-performing students?”,
we implemented these algorithm’s as they were described [15,
41]. Both algorithms use a set of successive compilation event

Table 1: Student counts for the studied population,
binned based on the predicted variable.

Target class Median or Above Below Median

Exam Question 47 39
Final Grade 48 38
Combined 43 43

pairings to quantify the students’ ability to fix syntactic errors
in the programs that they are writing. The main difference
between Jadud’s error quotient and the Watwin-algorithm
is that the Watwin-algorithm also considers the possibility
that students may be working on multiple files, where one
file has errors, and the other does not. Thus, changing from
one file to the other is not seen as if the user fixed the errors.
Moreover, the Watwin algorithm also takes into account the
amount of time that students spend on fixing errors.

Unlike the data used by Jadud and Watson et al., the data
recorded from standard programming environments do not
have explicit compilation events as the environments continu-
ously compile the code and highlight errors to developers. To
approximate these explicit compilation events for Jadud EQ
and Watwin algorithm, two options were evaluated: (1) use
only snapshots where students perform an action that does
not involve changing the code, i.e. run their code, test their
code, or submit the code to the assessment server (i.e. action
in Table 2), and (2) use only snapshot pairs between which
the students have taken at least a ten second pause from
programming (pause in Table 2). The value for the pause
was determined by evaluating the algorithms with 60, 30, 10
and 5 second pauses, after which the value which resulted
in the best average performance was selected. Our rationale
for the use of actions is that in such cases, the students want
explicit feedback from the system, while the rationale for
pauses is that the students have stopped to, for example,
debug their program. Option (2) is only available for the
first semester, as fine-grained key-log data is not available
for the second studied semester.

Pearson correlation coefficients between the predicted vari-
ables (Table 1) and Jadud’s error quotient and Watwin-score
are given in Table 2. The correlations are given as absolute
values, and are all low (r < 0.3).

Table 2: Pearson Correlation coefficients for be-
tween the Jadud’s error quotient, the Watwin-score,
and the predicted variables.

Variable Semester Jadud Watwin
action pause action pause

Exam Quest. First .15 .21 .25 .18
Second .20 - .09 -

Final Grade First .03 .08 .01 .13
Second .10 - .005 -

Combined First .02 .08 .01 .13
Second .12 - .01 -

4.2 Research Question 2
To answer the second research question, ”Given our dataset,

how do standard machine learning techniques perform for
detecting high- and low-performing students?”, the problem
was approached as a supervised learning task, where existing
data is used to infer a function that can be used to categorize
incoming data into groups [13].

First, features were extracted from the dataset. Then, to
avoid the use of irrelevant or redundant features, feature
selection was used to identify relevant features. Once a
relevant subset of features had been selected, we evaluated
a number of classifiers. Finally, when a classifier had been
selected from the evaluated classifiers, we tested the model
against a data set from a separate semester. Feature selection
and classifier evaluation was performed using the WEKA
Data Mining toolkit [11].

Feature Extraction

For the study, we extracted two types of attributes: (a) At-
tributes based on previously studied success factors, such as
previous academic performance (tertiary education) and past
programming experience; (b) programming assignment spe-
cific Source-code snapshot attributes that potentially reflect
students’ persistence and success with the course assignments.
For each assignment, the number of steps that a student took,
measured in key-presses and other actions, as well as the
maximum achieved correctness when measured by automated
tests was extracted. The Source-code snapshot attributes
were programmatically extracted from the programming pro-
cess data, which is recorded by Test My Code as students
are working on the assignments. An overview of the used
attributes is given in the Table 3. The datasets were also
normalized.

Table 3: Features extracted for the study
Features Type

Gender Categorical
Major Categorical
Grade Average Numerical
Age Numerical
Programming experience Binary
Maximum obtained correctness for
each programming assignment

Numerical [0− 1]

Amount of steps taken in each of
the programming assignment

Numerical [0−∞]

Feature Selection

After the feature extraction phase, there was a total of
53 features. To reduce the amount of overlapping features,
possible over fitting, and to potentially improve predictive
accuracy of the feature set, feature selection was performed.
We used correlation-based feature subset selection [12], where
individual predictive ability of each feature along with the
degree of redundancy between them was evaluated using
three methods; (1) genetic search, (2) best first method and
(3) greedy stepwise method. Results of the feature selection
phase are given in Table 4.

After this phase, the information gain of each feature was
measured to reveal features that had little or no predictive
value. Information gain, or Kullback-Leibler divergence [17],
is used to measure the amount of information that the feature
brings about a predicted value, assuming that they are the
only two existing variables, and is measured by the difference
of two probability distributions (in our case, e.g., the differ-
ence of the probability distributions of the exam question
results and grade average). After measuring information
gain for each of the features and predicted value, the low-
contributing features were removed. The features above the
line in Table 5 were retained in the training set.

Table 5: Information gain of the features. Features
below the line were excluded from further use.

Feature Exam question Grade Both

Grade Average 0.34 0.36 0.44
Correctness of a20 0.40 0.40 0.38
Steps for a23 0.44 0.32 0.29
Steps for a21 0.23 0.20 0.20
Steps for a22 0.22 0.16 0.19
Major 0.17 0.11 0.13
Steps for a17 0.27 0.15 0.12
Steps for a20 0.26 0.15 0.12
Steps for a18 0.14 0.15 0.12
Steps for a19 0.23 0.13 0.11
Age 0.11 - 0.11
Prog. Exp - 0.05 0.07
Gender 0.01 0.008 0.003

Classifier Evaluation

As is typical for studies that explore machine learning
methodologies, a number of classifiers were evaluated. In
our case, we evaluated three families of classifiers; Bayesian
classifiers, Rule-learners, and Decision tree -based classifiers,
and chose a total of nine classifiers from these three families.
All of these approaches are commonly used for classifying
students [28, 29]. The evaluation was performed using two
separate validation options: k-fold cross validation (with
k=10), and percentage split (2/3 of the dataset used for
training and 1/3 for testing). This means that during the
classifier training and evaluation phase, parts of the data
was hidden during the training, and was then used for the
evaluation. Table 6 presents the results for the classification
algorithms that were investigated in this study.

As can be seen in Table 6, the overall accuracy of decision
trees is higher than that of the other two classifier families.
Among decision trees, Random Forest has on average the
highest accuracy for all predictive variables with 86%, 90%
and 90% accuracy for predicting Exam question, Final Grade
and the combination of both. To show the predictive accuracy
in more detail, Table 7 shows the confusion matrix of the
Random Forest classifier when predicting the combination
of the Exam Question and Final grade, when using 10-fold
cross-validation on the training data set.

Table 7: Confusion matrix of Random Forest on pre-
dicting whether students are equal-to-or-above or
below the median score on the combination of exam
question and final grade

Predicted above Predicted below
Actual above 38 5
Actual below 3 40

Thus, we selected the Random Forest as the classifier that
is used to evaluate students’ performance. More detailed
evaluation of the performance of the Random Forest classi-
fier is given in Table 8. The F1-Measure, which represents
the balanced precision-recall, shows that Random Forest
provides a strong result in this prediction task. Moreover,
the Receiver operating characteristic value (ROC) suggests
that the classifier still performs well when the classification
threshold is changed from the median, i.e. if we would rather

Table 4: Features selected during feature selection. The left-hand side describes the feature selection method,
and the columns describe the features selected for the different predictive variables. Steps denotes the number
of recorded events for a student on a specific programming assignment. Correctness denotes the percentage of
tests passed by a student on a specific programming assignment.

Method Exam question Final Grade Both

Best First Age; Grade Average; Steps for
a17, a21, and a23

Grade Average; Steps for a21
and a23; Correctness for a23

Grade Average; Steps for a21
and a23; Correctness for a20

Genetic Search Age; Grade Average; Steps for
e17, e19, e20, e21, and e23; Cor-
rectness for e2, e6, e11, and e12

Grade Average; Steps for e20,
e21, and e23; Correctness for e23

Grade Average; Steps for e21,
and e23; Correctness for e20

Greedy Stepwise Age; Grade Average; Steps for
e17, e21, and e23

Grade Average; Steps for e21
and e23; Correctness for e23

Grade Average; Steps for e21
and e23; Correctness for e20

Table 6: Classifier accuracy when performing evaluation of the classifiers on the training set from a single
semester. The highest accuracies are marked with bold. Exam question is shown as Q in the Table.

Classifier Family 10-fold cross-validation accuracy percentage split accuracy
Q Final grade Q + Final grade Q Final grade Q + Final grade

Naive Bayes Bayesian 80% 80% 77% 86% 86% 86%
Bayesian Network Bayesian 81% 77% 76% 82% 76% 72%
Decision Table Rule Learner 78% 73% 84% 86% 76% 90%
Conjuctive Rule Rule Learner 73% 80% 83% 72% 86% 90%
PART Rule Learner 85% 79% 93% 90% 76% 82%
ADTree Decision Tree 80% 85% 86% 90% 83% 83%
J48 Decision Tree 83% 82% 93% 93% 89% 83%
Random Forest Decision Tree 86% 90% 90% 90% 90% 93%
Decision Stump Decision Tree 73% 76% 84% 83% 90% 90%

seek to identify the lowest performing quartile of students,
and the Matthews correlation coefficient (MCC) shows a high
correlation (r = 0.71− 0.81) between the classifier and the
predicted values.

Evaluation on a Separate Semester

As the data that is produced within educational settings
varies between semesters, due to variations in student co-
horts and course changes, the generalizability of the model
needs to be evaluated using data from a separate semester.
Accordingly, we evaluated the Random Forest -classifier (i.e.
our best performing classifier from above) on data from a
separate semester with n = 210 students. We found that the
Random Forest -classifier was able to categorize students on
the Exam Question, the Final Grade, and the combination of
both with the accuracy of 80%, 73%, and 71% respectively,
when the training of the model was performed on the data
from the first semester with n = 86 students.

5. DISCUSSION

5.1 Research Question 1
To answer research question one, ”Given our dataset, how

do the methods proposed by Jadud and Watson et al. per-
form for detecting high- and low-performing students?”, the
performance of the approaches differs from the studies in
which the algorithms have traditionally been evaluated. Next,
we discuss factors which may explain this result.

First, we use data from a considerably shorter period
than Jadud and Watson et al. use in their studies. The
first results in the article by Watson et al. [41] are given
after three weeks into the course, and at that time, the
correlation coefficients are near 0.3 for both Watwin-score

and Jadud’s error quotient – marginally better than our
results. Moreover, in Watson et al.’s work, the analysis
is performed against overall coursework mark, that is, the
overall score from programming assignments [41], and not
against the performance in a written exam.

Second, the programming environment used in the studies
by Jadud and Watson et al. expects the student to take
an extra step for her to receive information on whether her
code compiles or not, while such a step is not necessary in
current programming environments. It is possible that such
a feature stimulates specific working behavior, which in turn
may have contributed to previously observed outcomes.

A third factor is related to the quantity and type of the
programming assignments. In the context of our study, the
students work on a relatively large number of programming
assignments during the very first week. Many of the assign-
ments are relatively straightforward, and have been designed
to help students gain confidence. This means that it is
possible that the predictive approaches that are based on
students’ programming errors may also be dependent on the
programming assignments being non-trivial for the students,
which is not always the case in the studied context. These
details from the contexts of Jadud and Watwin are not at
our disposal.

Finally, the fourth factor is the guidance that students
receive during the course. For example, in the context of
Watson et al. [41], the students have specific and limited
lab hours during which they can receive support on the
programming assignments, while in the context that we
studied, the labs are open most of the time, and anyone can
attend. It is also possible that the type of guidance provided
in labs differs.

Table 8: Statistical measures for the Random Forest -classifier when predicting the considered target variables.
TPR stands for True Positive Rate, FPR stands for False Positive Rate, ROC stands for Receiver Operating
Characteristic, and MCC stands for Matthews Correlation Coefficient.

Class TPR FPR Precision Recall F1-Measure ROC MCC

Exam question 0.86 0.14 0.86 0.86 0.86 0.92 0.71
Final grade 0.89 0.10 0.89 0.89 0.89 0.92 0.78
Exam question & Final grade 0.90 0.09 0.90 0.90 0.90 0.95 0.81

5.2 Research Question 2
To answer research question two, ”Given our dataset, how

do standard machine learning techniques perform for detect-
ing high- and low-performing students?”, we both described
the workflow of creating and evaluating machine learning
algorithms as well as outlined the results. The process starts
with feature extraction, continues with feature selection that
is followed by classifier evaluation, and finally concludes with
evaluation with a separate data set – in our study, from
a separate semester. While the performance of the classi-
fier was high when evaluating the approach within a single
semester, ranging from 86% to 90% accuracy with 10-fold
cross-validation, the performance was lower (ranging from
71% to 80%) when the predictive model was evaluated on
data from a separate semester.

When extracting and selecting the most important fea-
tures, it was observed that most a priori features such as past
programming experience, age, and gender made relatively
little contribution to the predicted values. This is in line
with previous research, which was discussed in Section 2.
The information provided by a priori features was lower than
that of the performance in the actual programming assign-
ments. The most important features were students’ grade
average, the maximum percentage of automated tests that
a student’s solution to a specific programming assignment
reached, number of steps that students took in a number of
programming assignments, and the students’ major. Note
that for the students who have CS as their major, no grade
average was available as the programming course was the
very first course that they took – tree-based models handle
this well.

5.3 Analysis of Programming Assignments
The feature selection process selected a number of program-

ming assignments as important for the predictive process.
All of the programming assignments were from the later part
of the week – assignments 17 to 23 were selected, out of
a total of 24 assignments in the first week. In all of these
programming assignments from the first week, students were
given a class that had an empty main-method. In the as-
signments leading to assignment 17, students had practiced
producing different kinds of outputs, the use of variables
such as int and String, reading input from the keyboard,
simple comparisons with if and if-else structures, and
combinations of these. Instructions for assignments 17 to
23 are given in Table 9. In addition to what is shown in
the table, students had one or two examples of the program
output. Also, assignment 23 had an API description of the
visualization library.

As with assignments 1-16, assignments 17 and onwards
introduce new concepts step-by-step. For example, in as-
signment 17, the students practice the use of an else if

structure for the first time, and in assignment 18, the stu-

Table 9: Programming assignments that were high-
lighted during the feature selection process. Exam-
ples of input/output were also given to students.

assignment instructions

17 Write a program that reads in two numbers from the
user, and prints the larger of them. If the numbers are
equal, the program should output ”they are equal.”

18 Write a program that reads in a number between 0 and
60, and transforms it to a grade using the following
rules: 0-35 should be F, 36-40 D, 41-45 C, 46-50 B, and
51-60 A.

19 Write a program that reads in a number and checks
that it is a valid age [0-120]. If the number is within
the range, the program should output ”OK!”, otherwise
the program should output ”Impossible!”.

20 Write a program that reads an username and a pass-
word, and compares them to user credentials that are
given with the assignment. The program should print
”correct”, if the credentials are correct, otherwise, ”false”.

21 Write a program that reads in a number, and determines
whether it is a leap year or not.

22 Write a program that continuously asks for a password
until the user types in the right password.

23 Write a program that continuously reads in numbers,
if the numbers are between [-30, 40], they are to be
added to a plot (a ready library given). The program
execution should never end.

dents are expected to use multiple else if statements. In
assignment 19, the students are practicing the same concepts
as in assignment 18, but with a different task and a smaller
number of cases that need to be taken into account. As-
signment 20 is the first assignment in which the students
compare String variables. Assignments 21 is more algorith-
mic in nature than earlier assignments. Finally, assignments
22 and 23 are programs that require the student to use a
loop for the first time. These are concepts that are known
not to be easy in other contexts as well (see e.g. [8]).

It is somewhat surprising that assignment 20 was the only
assignment for which the student’s maximum achieved cor-
rectness, i.e. the percentage of tests passed, was highlighted
as an important feature. Upon further analysis, as the stu-
dents were accustomed to comparing numbers, many had
initially challenges with comparing strings and the use of the
equals method, which was needed in the assignment. Most
of the students eventually did tackle this, and some of those
that did not seemed to be confused with comparing multiple
strings at the same time; even if not completing the assign-
ment, students eventually moved forward. At the same time,
a persistent student could work through the assignments with
the support from the programming environment and course
staff, given that she would not start too late, which likely also
explains parts of the correctness not being important. From

the viewpoint of a material designer, the first finding could
imply that it might be beneficial to consider an assignment
with simpler string comparisons at first, e.g. by comparing
just a single string, instead of the first assignment being one
where two strings are compared at the same time. However,
this was no longer an issue in assignment 22, where the
students combined the same behavior with a loop construct.

Overall, when considering the number of steps that the
students took to reach a solution, the students in the high-
performing group took more steps on average than the stu-
dents in the low-performing group. While initially one would
assume that this would be explained simply by the low-
performing students not attempting the assignments, this
was not the case. It simply seems that the students in the
high-performing group, when generalized, tried out more
than a single approach and were not always content with
simply reaching a working solution. Such behavior was also
encouraged by the course staff.

5.4 Misclassified Students
We also performed an analysis of the students who were

misclassified, i.e. students who were classified into another
category than that to which they belonged. When consider-
ing the students who were classified as high-performing but
belonged to the low-performing group, a number of them
had adopted a work behavior where they diligently worked
through the assignments by battling their way through the
automatic tests. This is likely due to a result that has been
previously pointed out by Spacco, i.e., if students are given
full test results, they may adopt the habit of ”programming
by ’Brownian motion’, where students make a series of small,
seemingly random changes to the code in the hopes of making
their program pass the next test case” [33] – currently, the
programming environment used does not provide ways to
battle this behavior.

Similarly, when considering the students who were classi-
fied as low-performing, but were high-performing, some of
them used copy-paste in a quantity that had the classifier
consider them as students who did not explore the solutions
at length. Note that this does not mean that these students
were plagiarizing their solutions from others, but seemed to
extensively utilize their solutions from previous assignments.

5.5 Practical Implications
Our work implies that one can differentiate between the

high- and low-performing students in a programming class
already based on the performance of a single week with a
relatively high accuracy. This means that instructors may,
potentially, provide targeted interventions already during
the second week. Practices such as additional rehearsals
could be introduced for low-performing students, while high-
performing students may benefit from additional challenges.

The results also indicate that students’ programming be-
havior during the class is more important than background
variables such as age, gender, or past programming experi-
ence, which is in line with previous studies. Moreover, in
the studied context, the correctness of the students’ solu-
tions was not as important as the effort. That is, students
who simply pushed towards a solution did not benefit from
the programming tasks as much as the students who did
additional experiments. It is plausible that such information
on students’ behavior can also be used to guide students
towards more productive learning strategies.

5.6 Limitations of work
Predictive models are generalizations over a dataset gath-

ered during a single or a number of semesters, and should
always be validated using an additional dataset. As is evident
in our case, the new dataset, when gathered within the same
context but during a different semester, had different results
than those from the initial evaluation. At the same time, the
comparison was strict as we compared the performance of
a model built on data from a spring semester against data
from a fall semester. This effectively demonstrates that if
the teaching approach, materials, or other related variables
change, the performance of the predictive model may also
change. That is, the predictive model is tuned to a specific
context and dataset, and thus, it should be adjusted if the
context changes.

Naturally, while the machine learning approach described
in this article generalizes to other contexts, one should not
assume that the same features would be the best features in
other contexts as well. That is, the process should be started
from the first step, i.e. extracting features, and followed
as described in this article. That is, the predictive model
that works on our data set would likely be different from a
predictive model from other data sets – how different is a
question that is left for future work. This is likely similar for
all related studies.

6. CONCLUSIONS AND FUTURE WORK
In this work, we explored methods for early identification of

students to guide from naturally accumulating programming
process data. Such information can be useful for instructors
and course designers, and can be used to create targeted
interventions and to adjust materials accordingly. For exam-
ple, the students who are performing well in the course may
benefit from additional, more challenging tasks, while the
students who are performing poorly are likely to benefit from
rehearsal tasks as well as other activities that are typically
used to help at-risk students.

The three main contributions of this article are as fol-
lows: (1) Analysis of the performance of existing source
code snapshot-based methods for identifying high- and low-
performing students in a new context; (2) Exploration of
machine learning techniques for identifying high- and low-
performing students; and (3) Analysis of cross-semester per-
formance of the predictive models.

When analyzing the performance of the methods proposed
by Jadud and Watson et al., we observed that the approaches
had relatively poor performance on the data at our disposal.
When exploring the performance of the machine learning tech-
niques, the within-dataset performance was higher than that
of the cross-semester performance, which was measured based
on the predictive performance during a separate semester.
This is explainable by the natural variance between semesters
and student populations. Even so, with the cross-semester
accuracy that ranges between 70% and 80%, reaching many
of the right students is possible.

As a part of our future work, we are tuning the predictive
models using additional data, seeking to further understand
the students’ behavior by delving deeper into their program-
ming process, and conducting interviews that hopefully will
shed further light on students’ working practices as well as
to those students who were misclassified. We are also per-
forming targeted interventions within the studied context.

7. REFERENCES
[1] A. Ahadi and R. Lister. Geek genes, prior knowledge,

stumbling points and learning edge momentum: Parts
of the one elephant? In Proceedings of the Ninth
Annual International ACM Conference on
International Computing Education Research, ICER
’13, pages 123–128, New York, NY, USA, 2013. ACM.

[2] A. Ahadi, R. Lister, and D. Teague. Falling behind
early and staying behind when learning to program. In
Proceedings of the 25th Psychology of Programming
Conference, PPIG ’14, 2014.

[3] J. Bennedsen and M. E. Caspersen. Abstraction ability
as an indicator of success for learning object-oriented
programming? ACM SIGCSE Bulletin, 38(2):39–43,
2006.

[4] J. Bennedsen and M. E. Caspersen. Failure rates in
introductory programming. ACM SIGCSE Bulletin,
39(2):32–36, 2007.

[5] S. Bergin and R. Reilly. Programming: factors that
influence success. ACM SIGCSE Bulletin,
37(1):411–415, 2005.

[6] P. Byrne and G. Lyons. The effect of student attributes
on success in programming. In ACM SIGCSE Bulletin,
volume 33, pages 49–52. ACM, 2001.

[7] B. Cantwell Wilson and S. Shrock. Contributing to
success in an introductory computer science course: a
study of twelve factors. In ACM SIGCSE Bulletin,
volume 33, pages 184–188. ACM, 2001.

[8] Y. Cherenkova, D. Zingaro, and A. Petersen.
Identifying challenging CS1 concepts in a large problem
dataset. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE
’14, pages 695–700, New York, NY, USA, 2014. ACM.

[9] G. E. Evans and M. G. Simkin. What best predicts
computer proficiency? Communications of the ACM,
32(11):1322–1327, 1989.

[10] D. Hagan and S. Markham. Does it help to have some
programming experience before beginning a computing
degree program? ACM SIGCSE Bulletin, 32(3):25–28,
2000.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The WEKA data
mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[12] M. A. Hall. Correlation-based feature selection for
machine learning. PhD thesis, The University of
Waikato, 1999.

[13] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie,
J. Friedman, and R. Tibshirani. The elements of
statistical learning, volume 2. Springer, 2009.

[14] R. Hosseini, A. Vihavainen, and P. Brusilovsky.
Exploring problem solving paths in a Java
programming course. In Proceedings of the 25th
Workshop of the Psychology of Programming Interest
Group, 2014.

[15] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the second
international workshop on Computing education
research, pages 73–84. ACM, 2006.

[16] H. Jang, J. Reeve, and E. L. Deci. Engaging students
in learning activities: It is not autonomy support or
structure but autonomy support and structure. Journal

of Educational Psychology, 102(3):588, 2010.

[17] S. Kullback and R. A. Leibler. On information and
sufficiency. Ann. Math. Statist., 22(1):79–86, 03 1951.

[18] J. Kurhila and A. Vihavainen. Management, structures
and tools to scale up personal advising in large
programming courses. In Proceedings of the 2011
Conference on Information Technology Education,
SIGITE ’11, pages 3–8, New York, NY, USA, 2011.
ACM.

[19] R. Leeper and J. Silver. Predicting success in a first
programming course. In ACM SIGCSE Bulletin,
volume 14, pages 147–150. ACM, 1982.

[20] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, C. Laxer, L. Thomas,
I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of programming
skills of first-year CS students. SIGCSE Bull.,
33(4):125–180, Dec. 2001.

[21] D. Orr, C. Gwosć, and N. Netz. Social and economic
conditions of student life in Europe: synopsis of
indicators; final report; Eurostudent IV 2008-2011. W.
Bertelsmann Verlag, 2011.

[22] C. Piech, M. Sahami, D. Koller, S. Cooper, and
P. Blikstein. Modeling how students learn to program.
In Proceedings of the 43rd ACM Technical Symposium
on Computer Science Education, SIGCSE ’12, pages
153–160, New York, NY, USA, 2012. ACM.

[23] L. Porter, M. Guzdial, C. McDowell, and B. Simon.
Success in introductory programming: What works?
Communications of the ACM, 56(8):34–36, 2013.

[24] L. Porter and D. Zingaro. Importance of early
performance in CS1: Two conflicting assessment stories.
In Proceedings of the 45th ACM Technical Symposium
on Computer Science Education, SIGCSE ’14, pages
295–300, New York, NY, USA, 2014. ACM.

[25] L. Porter, D. Zingaro, and R. Lister. Predicting student
success using fine grain clicker data. In Proceedings of
the tenth annual conference on International computing
education research, pages 51–58. ACM, 2014.

[26] M. M. T. Rodrigo, R. S. Baker, M. C. Jadud, A. C. M.
Amarra, T. Dy, M. B. V. Espejo-Lahoz, S. A. L. Lim,
S. A. Pascua, J. O. Sugay, and E. S. Tabanao. Affective
and behavioral predictors of novice programmer
achievement. ACM SIGCSE Bulletin, 41(3):156–160,
2009.

[27] M. M. T. Rodrigo, E. Tabanao, M. B. E. Lahoz, and
M. C. Jadud. Analyzing online protocols to
characterize novice Java programmers. Philippine
Journal of Science, 138(2):177–190, 2009.

[28] C. Romero and S. Ventura. Educational data mining: a
review of the state of the art. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 40(6):601–618, 2010.

[29] C. Romero, S. Ventura, P. G. Espejo, and C. Hervás.
Data mining algorithms to classify students.
Educational Data Mining 2008.

[30] N. Rountree, J. Rountree, A. Robins, and R. Hannah.
Interacting factors that predict success and failure in a
CS1 course. In ACM SIGCSE Bulletin, volume 36,
pages 101–104. ACM, 2004.

[31] E. Sierens, M. Vansteenkiste, L. Goossens, B. Soenens,
and F. Dochy. The synergistic relationship of perceived

autonomy support and structure in the prediction of
self-regulated learning. British Journal of Educational
Psychology, 79(1):57–68, 2009.

[32] E. Soloway. Learning to program = learning to
construct mechanisms and explanations. Commun.
ACM, 29(9):850–858, Sept. 1986.

[33] J. Spacco. Marmoset: a programming project
assignment framework to improve the feedback cycle for
students, faculty and researchers. PhD thesis, 2006.

[34] M. V. Stein. Mathematical preparation as a basis for
success in CS-II. Journal of Computing Sciences in
Colleges, 17(4):28–38, 2002.

[35] M. Tukiainen and E. Mönkkönen. Programming
aptitude testing as a prediction of learning to program.
In Proc. 14th Workshop of the Psychology of
Programming Interest Group, pages 45–57, 2002.

[36] P. R. Ventura Jr. Identifying predictors of success for
an objects-first CS1. 2005.

[37] A. Vihavainen. Predicting students’ performance in an
introductory programming course using data from
students’ own programming process. In Advanced
Learning Technologies (ICALT), 2013 IEEE 13th
International Conference on. IEEE, 2013.

[38] A. Vihavainen, J. Airaksinen, and C. Watson. A
systematic review of approaches for teaching
introductory programming and their influence on
success. In Proceedings of the Tenth Annual Conference
on International Computing Education Research, ICER
’14, pages 19–26, New York, NY, USA, 2014. ACM.

[39] A. Vihavainen, T. Vikberg, M. Luukkainen, and
M. Pärtel. Scaffolding students’ learning using Test My
Code. In Proceedings of the 18th ACM conference on
Innovation and technology in computer science

education, pages 117–122. ACM, 2013.

[40] C. Watson and F. W. Li. Failure rates in introductory
programming revisited. In Proceedings of the 2014
conference on Innovation & technology in computer
science education, pages 39–44. ACM, 2014.

[41] C. Watson, F. W. Li, and J. L. Godwin. Predicting
performance in an introductory programming course by
logging and analyzing student programming behavior.
In Advanced Learning Technologies (ICALT), 2013
IEEE 13th International Conference on, pages 319–323.
IEEE, 2013.

[42] C. Watson, F. W. Li, and J. L. Godwin. No tests
required: comparing traditional and dynamic predictors
of programming success. In Proceedings of the 45th
ACM technical symposium on Computer science
education, pages 469–474. ACM, 2014.

[43] L. H. Werth. Predicting student performance in a
beginning computer science class, volume 18. ACM,
1986.

[44] S. Wiedenbeck, D. Labelle, and V. N. Kain. Factors
affecting course outcomes in introductory programming.
In 16th Annual Workshop of the Psychology of
Programming Interest Group, pages 97–109, 2004.

[45] L. Williams, C. McDowell, N. Nagappan, J. Fernald,
and L. Werner. Building pair programming knowledge
through a family of experiments. In Proc. Empirical
Software Engineering, pages 143–152. IEEE.

[46] M. Yudelson, R. Hosseini, A. Vihavainen, and
P. Brusilovsky. Investigating automated student
modeling in a Java MOOC. In Proceedings of The
Seventh International Conference on Educational Data
Mining 2014, 2014.

