

University of Technology, Sydney

Faculty of Engineering

Fault Location and Forewarning On Transmission Systems Using Travelling Wave Transients

Darren John Spoor

Thesis submitted in fulfilment of the requirement for the

Degree of Doctor of Philosophy in Engineering

September 2006

Statement of Authorship & Originality

I certify that this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been entirely written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgments

There are several people who have provided valuable guidance and support while I have researched this topic over the last few years.

Specifically, two people were instrumental in encouraging me to search for understanding in a formal research environment. Prof. Jianguo Zhu, the principal supervisor, from the University of Technology Sydney has always been supportive and ready to provide assistance at any time. All this for a student who took time to get married in 2004, changed positions within TransGrid several times, and recently changed employers. Given this extended commitment, he has regularly found time to guide and answer my questions.

This assistance was matched by Colin Parker who prompted me to fully engage this topic whilst working for TransGrid. Similarly, Don Geddey instilled a keen interest in computer based simulation and transient analysis and was always there to review and critique results.

Kevin Hinkley, Fred Rodrigues and Steve Jones all deserve recognition for guiding me towards travelling wave fault location and assist in its implementation on the TransGrid network. They also initially encouraged me to document my work in conference papers and in other formats.

I also must acknowledge Andrew Kingsmill for his friendship and assistance in organising high voltage tests and measurement of data from the high voltage network. Similarly, appreciation must go to Phillip Nichols, a student from the University of Sydney who spent a brief time at TransGrid on work experience. His assistance in the later stages of this research was very helpful.

Nevertheless, the final thanks must go to my wife, Rebecca Spoor, for coping with the many hours of work each night as this thesis progressed. She has also carefully spent much time reading this document.

This whole experience, whilst physically draining at times, has been an incredibly valuable experience. However, it could not have been completed without the efforts and assistance of all those acknowledged above.

Abstract

This thesis examines the main circuit modelling fundamentals and fault location techniques that may be applied to electricity transmission networks. Using a statistical comparison, it then investigates both impedance and travelling wave based fault location methods. This appears to be a novel comparison as no publications have been identified which draw conclusions on the accuracy of these fault location techniques. This work subsequently led TransGrid to install a new commercial travelling wave fault location system on the New South Wales 330kV transmission network.

Following the commissioning of this system, there was an ongoing process to store data that was being observed by the travelling wave recorders. This data was later cross-referenced to determine the fault location, and the waveform interpreted to identify the source of the travelling wave transient. However, this analysis has revealed that the theoretical accuracy of this travelling wave system was not as good as previously expected from publication.

The source of the degradation was tracked down and found to centre on the frequency response of the coupling transducers used by most conventional travelling wave recording hardware. These errors are not currently considered in publication but can result in several kilometres of uncertainty in a fault location calculation. Hence, it can be concluded that the use of conventional substation current transducers can introduce additional uncertainty into travelling wave fault location calculations.

The source and nature of this uncertainty has subsequently led to the development of a novel unsynchronised fault location algorithm based on the continuous wavelet transform. This new technique also uses an assessment of waveform polarity to distinguish between signals generated by solid or incipient line faults.

Several unusual events have also been observed which have led to a number of new developments in fault location and forewarning. These include specific requirements for impedance algorithms during unearthed inter-circuit faults on double circuit lines.

Similarly, this thesis presents the development of a new method to forewarn of faults within oil impregnated current transformers. This has been based on the high frequency transients observed by the travelling wave system prior to the failure of a 330kV current transformer.

This thesis also identifies significant potential for travelling wave techniques to forewarn of developing insulator faults on overhead circuits.

Table of Contents

Sta	tatement of Authorship & Originality	i
Ac	cknowledgments	ii
Ab	bstract	iii
Ta	able of Contents	v
Lis	ist of Illustrations	ir
Lie	ist of Tablas	#X
LIS		XV
INO	omenciature	XVI
1.	Introduction	1
2.	Literature Review	7
	2.1 Introduction	8
	2.2 Fault Location on Transmission Circuits	9
	2.3 Circuit Modelling Fundamentals	
	2.3.1 Fault Analysis and Sequence Techniques	11
	2.3.2 Steady State Transmission Circuit Models	12
	2.3.3 Travelling Waves and the Modal Domain	21
	2.4 Transient Simulation Software	31
	2.4.1 Calculation Methodology	31
	2.4.2 Lumped Transmission Line Models	34
	2.4.3 Distributed Transmission Line Models 2.4.4 Example Modal Calculations for Hypothetical Transmission Ci	urcuits 40
	2.5 Impedance Read Fault Location	10
	2.5 1 Single Ended Fault Location	40
	2.5.2 Double Ended Fault Location	52
	2.5.3 Impact of Fault and Power System Parameters	56
	2.6 Travelling Wave Fault Location	64
	2.6.1 Classical Travelling Wave Algorithms	65
	2.6.2 Documented Accuracy of Travelling Wave Implementations	71
	2.6.3 Signal Processing for Travelling Wave Methods	73
	2.7 Conclusion	85
3.	Comparative Analysis of Fault Location Algorithms	
	3.1 Introduction	
	3.2 Transmission Line and Fault Modelling	
	3.3 Sensitivity Analysis	90
	3.3.1 Impedance Based Algorithms	90
	3.3.2 Parameter Sensitivity in the Travelling Wave Algorithm	91

	3.4	Probabilistic Fault Location Analysis	94
	3.4.1	Fault Statistics	95
	3.4.2	Line Loading	95 06
	3.4.3	Source Impedance	90 97
	3.5	Results and Discussion	97
	351	The Distance Algorithm Based on Impedance Calculations	97
	3.5.2	The Distance Algorithm Based on Reactance Calculations	
	3.5.3	The Takagi Algorithm	99
	3.5.4	The Takagi Algorithm with Mutual Coupling Compensation	101
	3.5.5	The Synchronised Phasor Algorithm	101
	3.5.6	The Unsynchronised Phasor Algorithm	102
	3.5.7	The Unsynchronised Phasor Algorithm with Long Line Compensation	103
	3.5.8	The Type D Travelling Wave Algorithm	105
	3.6	Selection of Fault Location Technique	_ 106
	3.7	The Travelling Wave Fault Location System	_ 107
	3.8	Comparison with Experimental Data	_ 110
	3.9	Conclusion	_ 111
4.	Fault L	ocation and Protection for Inter-Circuit Faults	_ 113
	4.1	Introduction	114
	4.1.1	Background	114
	4.2	Inter-Circuit Faults	118
	4.2.1	Impedance-Based Distance Algorithm	119
	4.2.2	Distance Algorithm based on Observed Reactance	_ 119
	4.2.3	The Takagi Algorithm	120
	4.2.4	Takagi Algorithm with Mutual Coupling Compensation	_ 120
	4.2.5	Synchronised Phasors	$-\frac{121}{121}$
	4.2.6	Unsynchronised Phasors	$-\frac{121}{122}$
	4.2.7	Travening wave Fault Location	122
	4.3	Distance Protection and Inter-circuit Faults	_ 123
	4.3.1	Fault Detection	125
	4.3.2	Relay Impedance Characteristics	_ 126
	4.3.3	Protective Zones of Operation	126
	4.4	Distance Protection Schemes	_ 127
	4.4.1	Permissive Under-reach	128
	4.4.2	Permissive Over-reach	129
	4.4.3	Blocking Schemes	130
	4.4.4	Current Differential	_131
	4.5	Case Study Based on the Queensland to New South Wales Interconnector	_ 131
	4.5.1	Selection of Zone Settings	132
	4.5.2	Impedance Variations for Inter-Circuit Faults	_134
	4.5.3	Source Impedance Considerations	_138
	4.5.4	Line to Source Impedance Katio	-141
	4.3.3	Line Protection Implications	142

	4.5	6 Uncoupled Line Topologies	144
	4.6	Conclusion	145
5.	Obse	rved Uncertainty with Travelling Wave Calculations	147
	5.1	Introduction	148
	5.2 5.2 5.2	Transient Propagation Time 1 Observed Distribution in the Signal Propagation Time 2 A Simple Comparison of Signal Processing Techniques	148 153 155
	5.3	Uncertainty in Synchronised Timing	158
	5.4 5.4 5.4	Filtering Imposed by Substation Transducers 1 Transfer Function Estimation 2 Experimental Methods to Measure Transducer Filtering	159 162 167
	5.5	Conclusion	183
6.	Simu	lating the Performance of Substation Transducers	185
	6.1	Introduction	186
	6.2	Substation Current Transformers	186
	6.3 6.3 6.3 6.3 6.3 6.3	Development of a Current Transformer Model 1 The Resistance of the Toroidal Core 2 The Leakage Inductance of the Toroidal Core 3 The Magnetising Characteristic of the Toroidal Core 4 The CT Bushing Capacitances 5 The CT Stray Capacitance 6 The Transformer Model	190 194 196 197 199 200 202
	6.4	Substation Secondary Cabling	202
	6.5	The Current Transformer Burden	208
	6.6	The Interposing CT and the Travelling Wave Recorder	209
	6.7	Equivalent Electrical Model	217
	6.8	Conclusion	219
7.	Unsy	nchronised Travelling Wave Fault Location	220
	7.1	Introduction	221
	7.2	Transducer Selection and Frequency Response	222
	7.3 7.3. 7.3. 7.3. 7.3. 7.3. 7.3. 7.3.	The Unsynchronised Travelling Wave Fault Location Algorithm 1 Discrete and Continuous Wavelet Applications 2 Simulated Solid and Incipient Faults 3 Observed Solid and Incipient Faults on the TransGrid Network 4 The proposed algorithm 5 High Impedance Faults 6 Accuracy of the Single Ended Algorithm	224 227 233 235 236 237
	7.4	Conclusion	240

8.	Forewarning Of Catastrophic Insulation Faults	241
	8.1 Introduction	
	8.1.1 The Failure of a 330kV Current Transformer	243
	8.1.2 Condition Monitoring Systems	248
	8.2 On-Line Techniques Used At Bayswater	250
	8.2.1 Radio Based Systems	250
	8.2.2 DDF and Insulation Resistance	252
	8.3 Observed High Frequency Transients	255
	8.3.1 Observed Travelling Wave Signals	256
	8.4 Partial Discharge Detection	258
	8.4.1 Partial Discharges	260
	8.5 Proposed Monitoring Technique	264
	8.5.1 Background Electrical Noise	265
	8.6 The On-Line Monitor	269
	8.7 Testing of the CT Monitor	272
	8.7.1 Testing With a Simulated Partial Discharge	273
	8.7.2 High Voltage Testing	277
	8.8 Conclusion	289
9.	Conclusions and Future Work	291
	9.1 Conclusions	292
	9.2 Future Work	293
10.	Appendices	297
A.1	List of publications based on thesis work	298
A.2	Parameter sensitivity of fault location algorithms	
A.3	Substation source impedance data	305
A.4	TransGrid 330kV network (2006)	306
A.5	Transfer function estimation	307
A.6	ATP input data cards	308
Refe	erences	353

List of Illustrations

Figure 2-1. Location of the propagation modes in transmission circuits 24 Figure 2-1. Andependent modes of propagation within cable circuits 24 Figure 2-1. Transient network analyser [17] 31 Figure 2-2. Example nodal network [17] 32 Figure 2-3. Simulated phase currents during an earth fault 10km from the observer 36 Figure 2-4. Variation of zero and positive sequence resistance with frequency [7, 17] 38 Figure 2-1. Variation of zero and positive sequence inductance with frequency [7, 17] 38 Figure 2-11. Cross-bonding configuration applied along hypothetical cable route 40 Figure 2-12. Hypothetical 330kV conductor arrangement 44 Figure 2-13. Single cand dual circuit configurations 60 Figure 2-15. Single and dual circuit configurations 61 Figure 2-16. Single ended Talagi algorithm 63 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-2.17. Travelling wave fault location - method B 67 Figure 2-2.17. Travelling wave fault location - method C 68 Figure 2-2.17. Travelling wave fault location - method C 68 Figure 2-2.17. Travelling wave fault location - method C 68 Figure 2-2.27. Travelling wave fault location - method C 68	Figure 2-1. Simple model of a multiphase transmission circuit	13
Figure 2-3. Independent modes of propagation within cable circuits 24 Figure 2-4. Transient network [17] 31 Figure 2-5. Example nodal network [17] 32 Figure 2-5. Simulated phase currents during an earth fault 100km from the observer 36 Figure 2-7. Simulated phase currents during an earth fault 100km from the observer 36 Figure 2-8. Variation of zero and positive sequence inductance with frequency [7, 17] 38 Figure 2-10. J. Marti's weighting function [17]. 39 Figure 2-11. Cross-bonding configuration applied along hypothetical cable route 40 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-14. Phosing techniques 60 Figure 2-15. Single and dual circuit configurations 61 Figure 2-16. Single ended Takagi algorithm 63 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-20. Travelling wave fault location - method A 66 Figure 2-21. Travelling wave fault location - method B 70 Figure 2-22. Travelling wave fault location - method C 68 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Travelling wave fault location - method B 70	Figure 2-2. Location of the propagation modes in transmission circuits	24
Figure 2-4. Transient network analyser [17] 31 Figure 2-5. Example nodal network [17] 32 Figure 2-6. Simulated phase currents during an earth fault 00km from the observer 36 Figure 2-6. Simulated phase currents during an earth fault 100km from the observer 36 Figure 2-8. Variation of zero and positive sequence inductance with frequency [7, 17] 38 Figure 2-10. J. Marti's weighting function [17]. 39 Figure 2-11. Cross-bonding configuration applied along hypothetical cable route 40 Figure 2-11. Simple fault location representation based on a double ended topology 53 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-17. Double ended Takagi algorithm 61 Figure 2-17. Double ended Takagi algorithm 63 Figure 2-17. Double ended Takagi algorithm 64 Figure 2-18. Travelling wave fault location - method B 67 Figure 2-20. Travelling wave fault location - method B 67 Figure 2-21. Travelling wave fault location - method B 70 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 70 Figure 2-24. Travelling wave fault location - method B 60 Figure 2-25. Treequency versus time characteristic of the windowed Fourie	Figure 2-3. Independent modes of propagation within cable circuits	24
Figure 2-5. Example nodal network [17] 32 Figure 2-6. Simulated phase currents during an earth fault 0km from the observer 36 Figure 2-7. Simulated phase currents during an earth fault 100km from the observer 36 Figure 2-8. Variation of zero and positive sequence inductance with frequency [7, 17] 38 Figure 2-10. J. Mart's weighting function [17]. 39 Figure 2-11. Cross-bonding configuration applied along hypothetical cable route 40 Figure 2-12. Hypothetical 300k7 conductor arrangement 44 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-14. Phasing techniques 60 Figure 2-15. Single ended takagi algorithm 61 Figure 2-16. Single ended takagi algorithm 64 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-20. Travelling wave fault location - method A 66 Figure 2-21. Travelling wave fault location - method B 67 Figure 2-22. Travelling wave fault location - method C 68 Figure 2-23. Travelling wave fault location - method C 68 Figure 2-24. Travelling wave fault location - method E 70 Figure 2-25. Travelling wave fault location - method E 70 Figure 2-26. Continu	Figure 2-4. Transient network analyser [17]	31
Figure 2-6. Simulated phase currents during an earth fault 00km from the observer	Figure 2-5. Example nodal network [17]	32
Figure 2-7. Simulated phase currents during an earth fault 100km from the observer 36 Figure 2-8. Variation of zero and positive sequence resistance with frequency [7, 17] 38 Figure 2-10. J. Marti's weighting function [7]. 39 Figure 2-11. J. Marti's weighting configuration applied along hypothetical cable route 40 Figure 2-12. Hypothetical 330kV conductor arrangement 44 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-14. Phasing techniques 60 Figure 2-15. Single ended takagi algorithm 61 Figure 2-16. Single ended takagi algorithm 64 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-17. Dravelling wave fault location - method B 67 Figure 2-20. Travelling wave fault location - method C 68 Figure 2-21. Travelling wave fault location - method C 68 Figure 2-23. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform 69 Figure 2-25. Continuous wavelet transform	Figure 2-6. Simulated phase currents during an earth fault 0km from the observer	36
Figure 2-8. Variation of zero and positive sequence resistance with frequency [7, 17] 38 Figure 2-10. J. Marti's weighing function [17]. 39 Figure 2-11. Cross-bonding configuration applied along hypothetical cable route 40 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-14. Phasing techniques 60 Figure 2-15. Single and and circuit configurations 61 Figure 2-16. Single ended Takagi algorithm 63 Figure 2-17. Double ended synchronised phasors algorithm 63 Figure 2-19. Travelling wave fault location - method A 66 Figure 2-19. Travelling wave fault location - method D 69 Figure 2-20. Travelling wave fault location - method D 69 Figure 2-21. Travelling wave fault location - method E 70 Figure 2-22. Travelling wave fault location - method E 70 Figure 2-23. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fo	Figure 2-7. Simulated phase currents during an earth fault 100km from the observer	36
Figure 2-9. Variation of zero and positive sequence inductance with frequency [7, 17] 38 Figure 2-10. J. Marti's weighting function [17]. 39 Figure 2-11. Cross-bonding configuration applied along hypothetical cable route 40 Figure 2-12. Hypothetical 330kV conductor arrangement 44 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-16. Single end dual circuit configurations 61 Figure 2-17. Double ended Takagi algorithm 63 Figure 2-18. Travelling wave fault location - method A 66 Figure 2-17. Travelling wave fault location - method B 67 Figure 2-20. Travelling wave fault location - method B 67 Figure 2-21. Travelling wave fault location - method C 68 Figure 2-23. Frequency versus time characteristic of the Vindowed Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficicins batained from	Figure 2-8. Variation of zero and positive sequence resistance with frequency [7, 17]	38
Figure 2-10. J. Mart's weighting function [17]. 39 Figure 2-11. Cross-bonding configuration applied along hypothetical cable route 40 Figure 2-12. Hypothetical 330kV conductor arrangement 44 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-14. Phasing techniques 60 Figure 2-15. Single ended Takagi algorithm 63 Figure 2-16. Nogle ended Takagi algorithm 64 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-18. Travelling wave fault location - method A 66 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-22. Travelling wave fault location - method D 69 Figure 2-23. Trequency versus time characteristic of the Vindowed Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applying the 'symlets2' wavelet to an observed circuit breaker transient 80 <	Figure 2-9. Variation of zero and positive sequence inductance with frequency [7, 17]	38
Figure 2-11. Cross-bonding configuration applied along hypothetical cable route 40 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-14. Phasing techniques 60 Figure 2-15. Single and dual circuit configurations 61 Figure 2-16. Single ended synchronised phasors algorithm 63 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-19. Travelling wave fault location - method B 67 Figure 2-20. Travelling wave fault location - method B 67 Figure 2-21. Travelling wave fault location - method C 68 Figure 2-23. Travelling wave fault location - method C 69 Figure 2-23. Travelling wave fault location - method E 70 Figure 2-24. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-27. 'Frequency versus time 'characteristic of the Wavelet Transform [54] 75 Figure 2-27. 'Frequency versus time 'characteristic of the Wavelet Transform [54] 80 Figure 2-27. 'Frequency versus time 'characteristic of the Wavelet Transform [54] 80 Figure 2-27. 'Frequency versus time 'characteristic of the Wavelet Transf	Figure 2-10. J. Marti's weighting function [17].	39
Figure 2-12. Hypothetical 330kV conductor arrangement 44 Figure 2-13. Simple fault location representation based on a double ended topology 53 Figure 2-14. Phasing techniques 60 Figure 2-15. Single and dual circuit configurations 61 Figure 2-16. Single ended Takagi algorithm 64 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-18. Travelling wave fault location - method A 66 Figure 2-20. Travelling wave fault location - method D 68 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process using a circuit breaker transform 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. Frequency versus time 'characteristic of the Wavelet Transform 81 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] <t< td=""><td>Figure 2-11. Cross-bonding configuration applied along hypothetical cable route</td><td>40</td></t<>	Figure 2-11. Cross-bonding configuration applied along hypothetical cable route	40
Figure 2-13 Simple fault location representation based on a double ended topology 53 Figure 2-15 Single ended dual circuit configurations 61 Figure 2-16 Single ended Takagi algorithm 63 Figure 2-17 Drable ended synchronised phasors algorithm 64 Figure 2-18 Travelling wave fault location - method A 66 Figure 2-19 Travelling wave fault location - method C 67 Figure 2-20 Travelling wave fault location - method C 68 Figure 2-21 Travelling wave fault location - method D 69 Figure 2-22 Travelling wave fault location - method D 69 Figure 2-23 Frequency versus time characteristic of the Fourier transform [54] 70 Figure 2-24 Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25 The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-27 Trequency versus time 'characteristic of the Wavelet Transform [54] 75 Figure 2-27 Frequency versus time 'characteristic of the Wavelet Transform [54] 80 Figure 2-28 One stage of the DWT filtering process using a circuit breaker transform	Figure 2-12. Hypothetical 330kV conductor arrangement	44
Figure 2-14. Phasing techniques 60 Figure 2-15. Single and dual circuit configurations 61 Figure 2-16. Single ended Takagi algorithm 63 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-18. Travelling wave fault location - method A 66 Figure 2-20. Travelling wave fault location - method C 68 Figure 2-21. Travelling wave fault location - method C 68 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-28. The scale shift and correlate process using a circuit breaker transform 81 Figure 2-29. The 'Duabenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-29. The 'Duabenchies2' wavelet function families 84 Figure 3-2. Simple dual circuit model 89 Figure 2-3. Frequency versus time characteristic of the	Figure 2-13. Simple fault location representation based on a double ended topology	53
Figure 2-15. Single and dual circuit configurations 61 Figure 2-16. Single ended Takagi algorithm 63 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-18. Travelling wave fault location - method A 66 Figure 2-19. Travelling wave fault location - method D 68 Figure 2-20. Travelling wave fault location - method D 69 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-22. Travelling wave fault location - method D 69 Figure 2-23. Travelling wave fault location - method D 69 Figure 2-24. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 2-31. Examples of some wavelet function families 84 Figure 2-32. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor le	Figure 2-14. Phasing techniques	60
Figure 2-16. Single ended Takagi algorithm 63 Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-18. Travelling wave fault location - method A 66 Figure 2-20. Travelling wave fault location - method C 68 Figure 2-21. Travelling wave fault location - method C 68 Figure 2-22. Travelling wave fault location - method D 69 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 70 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 81 Figure 2-28. Continuous wavelet transform coefficients obtained from applying the 'symlets2' 80 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 84 Figure 3-2. Simple dual circuit model	Figure 2-15. Single and dual circuit configurations	61
Figure 2-17. Double ended synchronised phasors algorithm 64 Figure 2-18. Travelling wave fault location - method A 66 Figure 2-10. Travelling wave fault location - method D 68 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-22. Travelling wave fault location - method D 70 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. Frequency versus time 'characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 3-1. Examples of some wavelet function families 84 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load	Figure 2-16. Single ended Takagi algorithm	63
Figure 2-18. Travelling wave fault location - method A 66 Figure 2-19. Travelling wave fault location - method B 67 Figure 2-20. Travelling wave fault location - method D 68 Figure 2-21. Travelling wave fault location - method E 70 Figure 2-22. Travelling wave fault location - method E 70 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. Trequency versus time 'characteristic of the Wavelet Transform 81 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 3-20. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 3-21. The electrical configuration of the Sydney West to Bayswater transmission line 84 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 <	Figure 2-17. Double ended synchronised phasors algorithm	64
Figure 2-19. Travelling wave fault location - method B 67 Figure 2-20. Travelling wave fault location - method C 68 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the Vindowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 3-11. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater transmission line 88 Figure 3-5. The impedance	Figure 2-18. Travelling wave fault location - method A	66
Figure 2-20. Travelling wave fault location - method C 68 Figure 2-21. Travelling wave fault location - method D 69 Figure 2-22. Travelling wave fault location - method E 70 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 3-1. Examples of some wavelet function families 84 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 30kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a sin	Figure 2-19. Travelling wave fault location - method B	67
Figure 2-21. Travelling wave fault location - method D 69 Figure 2-22. Travelling wave fault location - method E 70 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. The 'symlets2' wavelet 81 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 2-31. Examples of some wavelet function families 84 Figure 3-4. Load duration on the Sydney West to Bayswater transmission line 89 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit line 96 Figure 3-7. The impedance algorithm applied to a double circuit line 99 Figure 3-7. The impedance algorithm applied to a double circuit line	Figure 2-20. Travelling wave fault location - method C	68
Figure 2-22. Travelling wave fault location - method E 70 Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. 'Frequency versus time 'characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 3-2.3. Examples of some wavelet function families 84 Figure 3-3. Examples of some wavelet function families 84 Figure 3-4. Load duration on the Sydney West to Bayswater transmission line 88 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The reactance algorithm applied to a single circuit 99 Figure 3-7. The impedance algorithm applied to a single circuit 99 Figure 3-7. The impedanc	Figure 2-21. Travelling wave fault location - method D	69
Figure 2-23. Frequency versus time characteristic of the Fourier transform [54] 75 Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-30. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 3-31. Examples of some wavelet function families 84 Figure 3-4. Load duration of the Sydney West to Bayswater transmission line 88 Figure 3-5. Distribution of the Sydney West to Bayswater 330kV circuit 96 Figure 3-6. The impedance algorithm applied to a single circuit line 99 Figure 3-7. The reactnee algorithm applied to a single circuit line 99 Figure 3-7. The impedance algorithm applied to a double circuit line 99 Figure 3-7. The impedance algorithm applied to a double circuit line 99 Figure 3-7. The impedance algorithm applied to a double circuit line	Figure 2-22. Travelling wave fault location - method E	70
Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54] 75 Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-30. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 3-1. Examples of some wavelet function families 84 Figure 3-2. Simple dual circuit model 89 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20°C 94 Figure 3-5. Distribution of fault resistance 96 Figure 3-7. The impedance algorithm applied to a single circuit 98 Figure 3-8. The reactance algorithm applied to a single circuit ine 99 Figure 3-7. The impedance algorithm applied to a single circuit ine 99 Figure 3-7. The impedance algorithm applied to a double circuit line 99 Figure 3-7. The impedance algorithm applied to a double circui	Figure 2-23. Frequency versus time characteristic of the Fourier transform [54]	75
Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' wavelet to an observed circuit breaker transient 80 Figure 2-27. Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-31. Examples of some wavelet function families 83 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The reactance algorithm applied to a double circuit line 99 Figure 3-7. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-8. The reactance al	Figure 2-24. Frequency versus time characteristic of the windowed Fourier transform [54]	75
applied to an observed circuit breaker transient 80 Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' 80 Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 2-31. Examples of some wavelet function families 84 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The reactance algorithm applied to a double circuit line 99 Figure 3-7. The impedance algorithm applied to a single circuit 96 Figure 3-7. The impedance algorithm applied to a double circuit line 97 Figure 3-7. The impedance algorithm applied t	Figure 2-25. The scale, shift and correlate process involved with the continuous wavelet transform	
Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2' 80 Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 3-1. Examples of some wavelet function families 84 Figure 3-2. Simple dual circuit model 89 Figure 3-2. Simple dual circuit model 89 Figure 3-4. Load duration on the Sydney West to Bayswater transmission line 88 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 99 Figure 3-8. The reactance algorithm applied to a double circuit line 90 Figure 3-5. Distribution of fault resistance 90 Figure 3-6. The impedance algorithm applied to a double circuit line 90 Figure 3-7. The impedance algorithm applied to a double circuit line 90 Figure 3-8. The reactance algorithm applied to a double circuit line 90	applied to an observed circuit breaker transient	80
wavelet to an observed circuit breaker transient 80 Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 3-3. Examples of some wavelet function families 84 Figure 3-4. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 99 Figure 3-7. The reactance algorithm applied to a double circuit line 99 Figure 3-7. The impedance algorithm applied to a double circuit line 90 Figure 3-9. The reactance algorithm applied to a double circuit line 90 Figure 3-9. The reactance algorithm applied to a double circuit line 100 Figure 3-10. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algo	Figure 2-26. Continuous wavelet transform coefficients obtained from applying the 'symlets2'	
Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform 81 Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets?' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 2-31. Examples of some wavelet function families 84 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 99 Figure 3-8. The reactance algorithm applied to a single circuit 99 Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-14. The unsynchronised phasor	wavelet to an observed circuit breaker transient	80
Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a 'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 2-31. Examples of some wavelet function families 84 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-8. The reactance algorithm applied to a double circuit line 99 Figure 3-9. The reactance algorithm applied to a double circuit line 100 Figure 3-10. The Takagi algorithm applied to a double circuit line 100 Figure 3-13. The synchronised phasor algorithm applied to a double circuit line 101 Figure 3-14. The Takagi algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor al	Figure 2-27. 'Frequency versus time' characteristic of the Wavelet Transform	81
'symlets2' wavelet 82 Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54] 83 Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 2-31. Examples of some wavelet function families 84 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 89 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-8. The reactance algorithm applied to a double circuit line 99 Figure 3-9. The reactance algorithm applied to a double circuit line 100 Figure 3-10. The Takagi algorithm applied to a double circuit line 100 Figure 3-13. The synchronised phasor algorithm applied to a double circuit line 101 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 </td <td>Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a</td> <td></td>	Figure 2-28. One stage of the DWT filtering process using a circuit breaker transient and a	
Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54]	'symlets2' wavelet	82
Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales 83 Figure 2-31. Examples of some wavelet function families 84 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-10. The Takagi algorithm applied to a double circuit line 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a double circuit line 102 Figure 3-16. The unsynchronised phasor algorithm applied to a double circ	Figure 2-29. The 'Daubenchies2' wavelet and the corresponding pseudo-frequency [54]	83
Figure 2-31. Examples of some wavelet function families 84 Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit line 98 Figure 3-7. The impedance algorithm applied to a single circuit line 98 Figure 3-9. The reactance algorithm applied to a single circuit line 99 Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-10. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to 103 Figure 3-16. The unsynchronised algorithm	Figure 2-30. Pseudo-frequencies of several common wavelets, at various scales	83
Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line 88 Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit line 98 Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-8. The reactance algorithm applied to a double circuit line 99 Figure 3-9. The reactance algorithm applied to a single circuit 90 Figure 3-10. The Takagi algorithm applied to a single circuit line 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm applied to a double circuit line 103 Figure 3-16. The unsynchronised algorithm applied to	Figure 2-31. Examples of some wavelet function families	84
Figure 3-2. Simple dual circuit model 89 Figure 3-3. Percentage increase in conductor length over span length at 20 °C 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a single circuit line 98 Figure 3-8. The reactance algorithm applied to a single circuit 99 Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-10. The Takagi algorithm applied to a double circuit line 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-15. The unsynchronised phasor algorithm applied to a double circuit line 102 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-16. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-17. The unsynchronised algorithm with compensation for line	Figure 3-1. The electrical configuration of the Sydney West to Bayswater transmission line	88
Figure 3-3. Percentage increase in conductor length over span length at 20 °C94 94 Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit96 96 Figure 3-5. Distribution of fault resistance96 96 Figure 3-6. The impedance algorithm applied to a single circuit98 98 Figure 3-7. The impedance algorithm applied to a double circuit line99 99 Figure 3-9. The reactance algorithm applied to a single circuit99 99 Figure 3-10. The Takagi algorithm applied to a single circuit line99 100 Figure 3-11. The Takagi algorithm applied to a double circuit line100 100 Figure 3-13. The synchronised phasor algorithm applied to a double circuit line102 101 Figure 3-15. The unsynchronised phasor algorithm applied to a double circuit line103 102 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line103 101 Figure 3-17. The unsynchronised phasor algorithm applied to a double circuit line103 102 Figure 3-17. The unsynchronised phasor algorithm applied to a double circuit line103 103 Figure 3-17. The unsynchronised phasor algorithm applied to a double circuit line103 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single c	Figure 3-2. Simple dual circuit model	89
Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit 96 Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-8. The reactance algorithm applied to a single circuit 99 Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-10. The Takagi algorithm applied to a single circuit 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to 104	Figure 3-3. Percentage increase in conductor length over span length at 20 $^{\circ}$ C	94
Figure 3-5. Distribution of fault resistance 96 Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-8. The reactance algorithm applied to a single circuit 99 Figure 3-9. The reactance algorithm applied to a single circuit line 99 Figure 3-10. The Takagi algorithm applied to a single circuit 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit 104	Figure 3-4. Load duration on the Sydney West to Bayswater 330kV circuit	96
Figure 3-6. The impedance algorithm applied to a single circuit 98 Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-8. The reactance algorithm applied to a single circuit 99 Figure 3-9. The reactance algorithm applied to a single circuit line 99 Figure 3-10. The Takagi algorithm applied to a single circuit 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit line 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit 104	Figure 3-5. Distribution of fault resistance	96
Figure 3-7. The impedance algorithm applied to a double circuit line 98 Figure 3-8. The reactance algorithm applied to a single circuit 99 Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-10. The Takagi algorithm applied to a single circuit 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit 104	Figure 3-6. The impedance algorithm applied to a single circuit	98
Figure 3-8. The reactance algorithm applied to a single circuit 99 Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-10. The Takagi algorithm applied to a single circuit 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit 104	Figure 3-7. The impedance algorithm applied to a double circuit line	98
Figure 3-9. The reactance algorithm applied to a double circuit line 99 Figure 3-10. The Takagi algorithm applied to a single circuit 100 Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to 104	Figure 3-8. The reactance algorithm applied to a single circuit	99
Figure 3-10. The Takagi algorithm applied to a single circuit	Figure 3-9. The reactance algorithm applied to a double circuit line	99
Figure 3-11. The Takagi algorithm applied to a double circuit line 100 Figure 3-12. The modified Takagi algorithm applied to a double circuit line 101 Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit 104	Figure 3-10. The Takagi algorithm applied to a single circuit	100
Figure 3-12. The modified Takagi algorithm applied to a double circuit line	Figure 3-11. The Takagi algorithm applied to a double circuit line	100
Figure 3-13. The synchronised phasor algorithm applied to a single circuit 102 Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit 104	Figure 3-12. The modified Takagi algorithm applied to a double circuit line	101
Figure 3-14. The synchronised phasor algorithm applied to a double circuit line 102 Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit 104	Figure 3-13. The synchronised phasor algorithm applied to a single circuit	102
Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit 103 Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit 104	Figure 3-14. The synchronised phasor algorithm applied to a double circuit line	102
Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line 103 Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to 103 a single circuit 104	Figure 3-15. The unsynchronised phasor algorithm applied to a single circuit	103
<i>Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to a single circuit</i> 104	Figure 3-16. The unsynchronised phasor algorithm applied to a double circuit line	103
a single circuit104	Figure 3-17. The unsynchronised algorithm with compensation for line capacitance when applied to	
	a single circuit	104

Figure 3-18. The unsynchronised algorithm with compensation for line capacitance when applied to	
a double circuit line	104
Figure 3-19. Calibrated travelling wave algorithm	_105
Figure 3-20. 2.5% error in the line length or modal velocity	_106
Figure 3-21. The Hathaway (TWS) monitoring station	_108
Figure 3-22. Installation of the Hathaway (TWS) monitoring station	_109
Figure 3-23. The distributed travelling wave fault location system	_109
Figure 4-1. Sydney South Substation and its 330kV feeders (Refer to Appendix 3)	115
Figure 4-2. The bushfire traversing the mountains (as seen from Sydney South substation) moments	
before the phase-to-phase inter-circuit fault occurred	_117
Figure 4-3. Phase configuration for the inter-circuit fault simulation	118
Figure 4-4. Error distribution for the basic distance algorithm applied to an inter-circuit fault	119
Figure 4-5. Error distribution for the reactive distance algorithm when applied to an inter-circuit	
fault	119
Figure 4-6. Error distribution for the Takagi algorithm when applied to an inter-circuit fault	120
Figure 4-7. Error distribution for the modified Takagi algorithm when applied to an inter-circuit	
fault	120
Figure 4-8. Error distribution for the synchronised algorithm when applied to an inter-circuit fault	121
Figure 4-9. Error distribution for the unsynchronised algorithm applied to an inter-circuit fault	122
Figure 4-10 The compensated unsynchronised algorithm when applied to an inter-circuit fault	122
Figure 4-11 The travelling wave algorithm when applied to an inter-circuit fault	123
Figure 4-12 Protection zone grading of mho distance elements	127
Figure 4-13 The nermissive under-reach distance zones and the required communication	/
acceleration between the protection relays	128
Figure 4-14 The permissive over-reach distance zones and the required communication	
acceleration between the protection relays	120
Figure 4-15 The blocking scheme distance zones and the required communication acceleration	
hatwaan the protection relays	130
Figure 4.16 Phase element impedance plot for an un transposed line	-130
Figure 4-10. Frase element impedance plot for an un-transposed line	
rigure 4-17. Onder-reaching effect associated with inter-circuit juits on transmission times	125
Figure 4.18 Earth alement impedance plot for an up transposed line	-135
Figure 4-10. Earth element impedance plot for a transposed line	$-\frac{130}{126}$
Figure 4-19. Frase element impedance plot for a transposed line	
Figure 4-20. Earline tement impedance plot for a transposed time	$-\frac{13}{120}$
Figure 4-21. Consideration of earth impedance loci	_130
Figure 4-22. Impedances observed by phase elements for source impedance ratios of 1:1 and 2:1	$-\frac{130}{120}$
Figure 4-23. Impedance loci observed from the weaker source terminal	_139
Figure 4-24. Impedance loci observed from the stronger source terminal	_139
Figure 4-25. Earth element impedance plot for a mho relay with a 100% forward reach	$_{-}^{140}$
Figure 4-26. Maximum phase element under-reach observed for variations in the source impedance	
ratio	-140
Figure 4-27. Phase element impedance for a 1:1 SR with a variation in the line impedance	_141
Figure 4-28. Earth element for a 1:1 SR with a variation in the line impedance	$_{142}$
Figure 4-29. Sections of the line which are blind to inter-circuit faults, or suffer a loss of distance	
margin when protected with permissive under-reaching schemes	_143
Figure 4-30. Sections of the line which suffer a loss of distance margin to inter-circuit faults when	
protected with permissive over-reaching schemes	_144
Figure 4-31. Under-reach experienced by a hypothetically uncoupled circuit	_145
Figure 4-32. Partially uncoupled dual circuit topology	_145
Figure 5-1. High frequency circuit breaker transient observed at Sydney West	_149
Figure 5-2. High frequency circuit breaker transient observed at Bayswater	_149
Figure 5-3. High frequency earth fault transient observed at Sydney West	_150
Figure 5-4. High frequency earth fault transient observed at Bayswater	150
Figure 5-5. Fault transient observed on each phase during a phase to earth fault (5 th January 2002)	151
Figure 5-6. Modal analysis of the phase to earth fault (5th January 2002)	151

Figure 5-7. A circuit breaker operation observed at Munmorah on 23 line (13 th November 2001)	152
Figure 5-8. An A phase to earth fault observed at Sydney West on 32 line (14 th November 2001)	153
Figure 5-9. Calculated signal propagation travelling times from 38 circuit breaker operations	154
Figure 5-10, correlation between travel time and time of day	155
Figure 5-11. correlation between travel time and current prior to the event	155
Figure 5-12. A fault detected at Sydney West on the line to Bayswater (3rd December 2001)	157
Figure 5-13 Application of the continuous wavelet transform using a variety of wavelet functions	158
Figure 5-14 Average spectra of 38 CB signals seen respectively at Sydney West and Bayswater	160
Figure 5-15 Average spectra of 9 phase to phase signals seen at Sydney West and Bayswater	
Figure 5-16 Average spectra of 4 earth fault signals observed at Sydney West and Bayswater	160
Figure 5-17 Average spectra of one lightning transient observed respectively at Sydney West and	
Ravswater	161
Figure 5-18 Travelling wave transients observed on the ScottishPower transmission system [21]	-162
Figure 5-19. CR Transient at Sydney West with the matched transfer function response	164
Figure 5-20 A note zero man of the circuit breaker transients observed at Sydney West	165
Figure 5-20. A pole zero map of the circuit breaker transients observed at Byuney rest	
Figure 5-21. A pole zero map of the circuit of easer it distents observed at Dayswater	
Figure 5-22. Travelling wave full tocation error distribution using pole tocations from Table 5-2	
Figure 5-25. Traventing wave trigger delay using the pole locations from Table 5-2	$-\frac{107}{167}$
Figure 5-24. Frolection secondary caoling used respectively at Bayswater and Sydney west	
Figure 5-25. Installation of the travelling wave recorder in the switchyara	$-\frac{100}{160}$
Figure 5-20. Time domain signal and spectra recorded di the base of the current transformer	
Figure 5-27. Time domain signal and spectra recorded in the substation control room	$-\frac{170}{170}$
Figure 5-28. A circuit breaker transient observed in the substation switchyard	$-\frac{170}{170}$
Figure 5-29. A circuit breaker transient observed in the substation control room	$-\frac{170}{172}$
Figure 5-30. Time domain signal and spectra recorded in the substation switchyard	$-\frac{1/2}{172}$
Figure 5-31. Time domain signal and spectra recorded in the substation control room	-1/2
Figure 5-32. Modal domain signal and FFT spectral coefficients observed in the switchyard	
Figure 5-33. Modal domain signal and FFT coefficients observed in the substation control room	
Figure 5-34. Transfer function estimation using the A-C aerial mode (0-300kHz)	174
Figure 5-35. Transfer function estimation using the A-B aerial mode (0-300kHz)	175
Figure 5-36. Transfer function estimation using the B-C aerial mode (0-300kHz)	175
Figure 5-37. Time domain signal and spectra recorded in the Sydney West switchyard	176
Figure 5-38. Time domain signal and spectra recorded in the substation control room	177
Figure 5-39. Modal domain signal and FFT coefficients observed in the switchyard	177
Figure 5-40. Modal domain signal and FFT coefficients observed in the substation control room	178
Figure 5-41. Transfer function estimation using the A-C aerial mode (0-300kHz)	179
Figure 5-42. Transfer function estimation using the A-B aerial mode (0-300kHz)	179
Figure 5-43. Transfer function estimation using the B-C aerial mode (0-300kHz)	180
Figure 5-44. Time domain signal and spectra recorded in the Sydney West scontrol room	181
Figure 5-45. Time domain signal and spectra recorded in the Bayswater substation control room	181
Figure 5-46. Comparison of step responses in the modal domain	182
Figure 6-1. Sectionalised view of a dead tank 'hair-pin' and a live head CT assembly [79, 80]	187
Figure 6-2. HV equivalent circuit of a high voltage current transformer	188
Figure 6-3. High frequency electrical model of a transformer winding [83]	190
Figure 6-4. High frequency model of a two-winding transformer	191
Figure 6-5. High frequency equivalent model referred to the high frequency side	191
Figure 6-6. High frequency model of a 'hair-pin' current transformer	192
Figure 6-7. Dismantled 330kV CT at Eraring	193
Figure 6-8 Nameplate from the dismantled current transformer	193
Figure 6-9. DC resistance measurement	194
Figure 6-10 Tests being conducted in the UTS laboratory	194
Figure 6-11 Depiction of the current density within close conductors while carrying high frequency	
current in the same direction	106
Figure 6-12 Magnetising characteristic of the CT line protection core	
Figure 6-13 Simulated 4 phase to earth fault at 40km on a 100km line	100
. Om e e ve. omnunea n phase to carmjunt at tonn on a roomt the	//

Figure 6-14. Capacitance of individual foil lavers from a 330kV 'hair-pin' CT	200
Figure 6-15. Measurement of the stay capacitance using the step response approach	201
Figure 6-16. General arrangement of cabling within the bay marshalling kiosk	203
Figure 6-17. Cable cross sections (4 core 7/0.029" and 19 core 7/0.029" respectively)	203
Figure 6-18 Calculated resistance at various frequencies	206
Figure 6-19 Calculated inductance at various frequencies	206
Figure 6-20 Calculated canacitance at various frequencies	207
Figure 6-21. The application of a terminating short circuit	$-\frac{207}{207}$
Figure 6-22 Driving point impedance of the secondary calling	$-\frac{207}{208}$
Figure 6-22. The application of a relay burden	200
Figure 6-22. The application of a relay barden	_207
hurden	200
Figure 6-25 The Hathaway internosing current transformer	$-\frac{20}{210}$
Figure 6-26. Magnetic flux generated within the internosing transformer	$-\frac{210}{210}$
Figure 6-20. Mugnetic flux generated within the therposing iransformer	210
Figure 6-27. Experimental setup to determine the frequency response of the interposing C1	$-\frac{213}{213}$
Figure 6-20. The configuration of the Hathaway CT measurement scheme [21]	$-\frac{213}{214}$
Figure 6-29. The configuration of the Hutnaway C1 medsurement scheme [21]	$-\frac{214}{215}$
Figure 6-30. Experimental setup in the sydney west 550kV substation control room	_215
Figure 6-31. High frequency transient observed by the digital oscilloscope	-213
Figure 6-32. High frequency transient observed by the travelling wave recorder	_210
Figure 6-33. Simulated travelling wave transients for an A phase circuit breaker operation at	217
Bayswater 330kV substation	-217
Figure 6-34. Simulated circuit breaker transient signal for an A phase breaker pole operation.	_218
Figure 6-35. Circuit breaker transient recorded by the travelling wave recorder for an A phase pole	
is operation at Bayswater.	_219
Figure 7-1. Calculated pseudo-frequency at various scales for the sym2 wavelet with a sampling rate	
of 1.25MHz	_223
Figure 7-2. Frequency response of current transformer, secondary cabling and relay burden	
compared to various CWT scales and DWT levels	_224
Figure 7-3. DWT coefficients for a simulated incipient fault at 71.6km	225
Figure 7-4. DWT coefficients for an observed incipient fault at 71.6km	_226
Figure 7-5. CWT coefficients for the simulated incipient fault at 71.6km	226
Figure 7-6. CWT coefficients for the observed incipient fault at 71.6km	_227
Figure 7-7. Lattice diagram for a solid and incipient fault, respectively	228
Figure 7-8. Simulated CWT coefficients for an A phase to earth faults on a 100km circuit	229
Figure 7-9. Simulated solid A phase to earth fault at 56.7km on a 188.5km line	_230
Figure 7-10. Simulated incipient lightning strike at 56.7km on a 188.5km line	231
Figure 7-11. CWT ² for a simulated solid fault at 56km	_231
Figure 7-12. CWT ² for a simulated incipient fault at 56km	231
Figure 7-13. CWT ^[2] Reflection distributions for simulated incipient and solid faults	232
Figure 7-14. $CWT^{ 2 }$ for a simulated solid fault at 56km	233
Figure 7-15. $CWT^{ 2 }$ for a simulated incipient fault at 56km	233
Figure 7-16. Observed solid fault at 49km on the Sydney West to Bayswater circuit	234
Figure 7-17. Observed incipient fault at 72km on the Sydney West to Bayswater circuit	234
Figure 7-18. CWT ⁽²⁾ for an observed solid fault at 49km	235
Figure 7-19. $CWT^{(2)}$ for an observed incipient fault at $72km$	235
Figure 7-20. High impedance fault located 63.6km from the monitored busbar	236
Figure 7-21. Distribution in transient travelling times	237
<i>Figure 7-22. CWT</i> ^[2] <i>contour peaks for several observed incinient faults</i>	239
Figure 7-23 CWT ^[2] contour peaks for several observed solid faults	239
Figure 8-1 The Wellington 72 line reactor circuit breaker shortly after the failure in 1008	2.43
Figure 8-2 Bayswater power station	244
Figure 8-3 132kV voltage and frequency observed at Sydney West following the initial fault	244
Figure 8-4 The Rayswater husbar configuration and the associated switchward	245
Figure 8-5 First fault and trin observed by the Recentville fault recorder (21.41.45)	245
i gui co s. i instruuti unu inpouser veu oy me negemiville juuli recoruer (21.41.45)	245

Figure 8-6	Auto-reclose and trip observed by the Regentville fault recorder (21:41:59)	246
Figure 8-7	Second auto reclose observed by the Regentville fault recorder (21.42:01)	247
Figure 8-8	Phase fault observed by the Regentville fault recorder (21:43:44)	247
Figure 8-9	220kV hushing with a 'caplink' installed and the insulation from a failed 400kV	
h	shing [110]	249
Figure 8-10	Radio based condition monitoring data recorded at Kemps Creek on the 9/6/1999	251
Figure 8-11	Results of a sensitivity test conducted at the TransGrid line training school	251
Figure 8-12	Canacitive transducer placed across the DLA test tap on a current transformer	253
Figure 8-13	DIA and laakaga current magnuments recorded on the 15 th November 2003	253
Figure 8-11.	Lackage currents within the line 34 (Liddell) hus coupler CT	251
Figure 8-14.	Leakage currents within the line 34 (Lidden) bus coupler CT	254
Figure 8-15.	Leakage currents within the line 31 (Regenivitie) bus coupler C1	255
Figure 8-10.	Concerned I growt of the Berger aton multiclaused showing the summated automated and former.	_255
Figure o-17.	General layoul of the Bayswater switchyara showing the summated current transformer	256
Cli Figure 9-19	The initial CT failure regulting in an 4 phase to earth fault	250
Figure 8-18.	The initial CT failure resulting in an A phase to earth fault	$-\frac{237}{257}$
Figure 8-19.	The reclose operation of the line breaker poles, and the resulting A phase to earth jauli	_237
Figure 8-20.	The reclose operation of the coupler circuit breaker poles, and the A phase to earth	250
	ull	_238
Figure 8-21.	The resulting B to C phase fault	_258
Figure 8-22.	High frequency signals recorded prior to the failure	_239
Figure 8-23.	Signal spectra observed at Bayswater during the CT failure and for a prior fault	_200
Figure 8-24.	Test circuit for measurement across the tap of a bushing [113]	262
Figure 8-25.	Example PD voltage signal for a narrow-band measuring device with a bandwidth of	
10	kHz and a mid-band frequency of 75kHz [113].	_263
<i>Figure 8-26.</i>	Proposed application of time thresholds T_1 and T_2	_264
Figure 8-27.	Typical pulse train observed during disconnect switch operation [120]	_265
<i>Figure</i> 8-28.	The TiePie Handyscope HS3 and the experimental setup	_266
Figure 8-29.	Observed noise using a 1MHz sampling rate and a 13.1ms window	267
Figure 8-30.	Observed noise using a 5MHz sampling rate and a 2.6ms window	267
Figure 8-31.	A short-duration transient observed on the CT secondary circuit	268
<i>Figure</i> 8-32.	A longer duration transient observed on the CT secondary circuit	268
Figure 8-33.	Prototype of the on-line monitor	269
Figure 8-34.	Simulated frequency response of the filter using a 100mV variable frequency source	_270
Figure 8-35.	The schematic of the detection circuit	271
Figure 8-36.	Circuit to simulate the discharge transient observed at Bayswater	_273
Figure 8-37.	PSPICE simulation of the test circuit	_ 274
Figure 8-38.	Observed signal created by the test circuit for an arbitrary signal magnitude and	
fre	equency	275
Figure 8-39.	Signals measured at the input to the LM393 comparator	276
Figure 8-40.	Output voltage from the LM393 comparator with a pulse repetition frequency of 1.7kHz	276
Figure 8-41.	Connell Wagner's high voltage test laboratory	278
Figure 8-42.	The 132kV current transformer obtained from Armidale 330kV switchyard	279
Figure 8-43.	Connection to the CT secondary terminals	280
Figure 8-44.	A dummy load equivalent of substation secondary cabling, calculated at 100kHz	281
<i>Figure</i> 8-45.	The dummy load used in the experiment	
<i>Figure</i> 8-46.	A Dummy Load equivalent of substation secondary cabling, calculated at 100kHz	282
Figure 8-47.	Amplified background noise recorded by the digital oscilloscope	283
Figure 8-48	The DLA test terminal located on the main tank of the current transformer	284
Figure 8-49	Signals observed by the digital oscilloscope at a primary voltage of around 10kV	284
Figure 8-50	Incornorating a high voltage snark gap in the experimental setun	285
Figure 8-51	Escalation of discharges following the breakdown of insulation	286
Figure 8_57	Discharges observed over a 25ms window	287
Figure & 52	Discharges observed at a slightly higher test voltage	- 207
Figure 8-54	Partial discharge measurements taken during the test	20/
Figure & 55	Partial discharge measurements taken during the test	200
rigure 0-JJ.	i artial alsonarge measurements taken auring the test	200

Figure 9-1. An example overhead insulator string [126]	294
Figure 9-2. Propagation on high voltage transmission lines [126]	294
Figure 9-3. Voltages observed at the busbar	295
Figure 9-4. Charging currents observed at the busbar	295
Figure 9-5. A phase charging current observed at the busbar	296
Figure 9-6. Scale 1 Discrete wavelet transform using the 'Sym2' wavelet function	296
Figure 10-1. Phase to earth faults applied to the synchronised phasor algorithm	300
Figure 10-2. Phase to earth faults applied to the unsynchronised phasor algorithm	301
Figure 10-3. Phase to earth faults applied to the basic impedance algorithm	302
Figure 10-4. Phase to phase faults applied to the basic impedance algorithm	302
Figure 10-5. Phase to earth faults applied to the basic reactance algorithm	303
Figure 10-6. Phase to phase faults applied to the basic reactance algorithm	303
Figure 10-7. Phase to earth faults applied to the Takagi algorithm	304
Figure 10-8. Phase to phase faults applied to the Takagi algorithm	304

List of Tables

Table 2-1.	Fault location methods	9
Table 2-2.	Microprocessor based fault location methods	10
Table 2-3.	Transposed and untransposed single circuit phase impedances	61
Table 2-4.	Phasing and transposition of dual circuits	61
Table 3-1.	Example soil resistivity for various soil conditions	88
<i>Table 3-2</i> .	Algorithms considered in the statistical analysis	89
Table 3-3.	Fault statistics [67]	95
Table 3-4.	Assumed fault type probabilities	95
Table 3-5.	Issues associated with algorithm selection	110
<i>Table 3-6</i> .	Accuracy of several algorithms for faults on the Sydney West to Bayswater 330kV circuit	
	where the fault location is known	111
Table 4-1.	Impedances observed from Sydney South on lines 76 (Wallerawang) and 12 (Dapto)	117
Table 4-2.	Positive sequence loop impedances for the Queensland to New South Wales	
	Interconnector	132
Table 4-3.	Observed impedance for a remote busbar fault with both lines in service	133
Table 4-4.	<i>Observed impedance for a remote busbar fault with one line out of service</i>	133
Table 4-5.	Observed impedance for a remote busbar fault with one line out of service and earthed	
	for maintenance	133
Table 5-1.	Techniques of trigger delay compensation	156
Table 5-2.	Dominant pole locations	166
Table 6-1.	DC Resistance of the CT windings	195
Table 6-2.	Electrical parameters for the transformer model	202
Table 6-3.	Electrical characteristics of the 4-core cabling	204
Table 6-4.	Loads applied to the line protection core	208
Table 10-1	. Source impedances used for the statistical comparison	305

Nomenclature

а	discrete wavelet scaling constant
a_0	continuous wavelet scaling constant
a(t)	weighting function (J. Marti distributed parameter modelling)
$A(\omega)$	propagation factor
ACSR	aluminium conductor, steel reinforced
ADC	analogue to digital converter
ATP	alternative transients program
Ь	wavelet transformation constant
С	capacitance, F
C _T	Clarke transformation matrix
C'	capacitance per unit length, Fm ⁻¹
CT	current transformer
CVT	capacitive voltage transformer
CWT	continuous wavelet transform
DFT	discrete Fourier transform
DFR	digital fault recorder
DWT	discrete wavelet transform
DDF	dielectric dissipation factor
DLA	dielectric loss angle
\mathcal{E}_0	permittivity of free space, 8.85x10 ⁻¹² Fm ⁻¹
\mathcal{E}_R	relative permittivity
e, exp	base of natural logarithms
E	magnetising voltage, V
EMTP	electromagnetic transients program
EST	eastern standard time
FFT	fast Fourier transform
f	frequency
F	magneto-motive force
F _T	Fortescue transformation matrix
G	nodal conductance matrix
GE	General Electric Co.
GPS	global positioning system

h	height, m	
HV	high voltage	
Ι	current, A	
IEEE	Institute of Electrical and Electronics Engineers	
Im	operator; imaginary component of a complex parameter	
j	$\sqrt{-1}$	
k	an integer	
K _T	Karenbauer transformation matrix	
l	line length, m	
L	inductance, H	
L'	inductance per unit length, Hm ⁻¹	
l_C	span length, m	
ln	natural logarithm	
т	fault location	
п	an integer	
M	mutual coupling	
MCBL	minimum calculated breaking load	
Ν	an integer, number of turns in a winding	
Р	per unit length potential matrix	
PD	partial discharge	
PVC	poly vinyl chloride	
q_m	conductor charge	
q	an integer	
\mathcal{Q}	charge, coulomb	
r	radius, m	
Re	operator; real component of a complex parameter	
RCF	residual compensation factor	
SCADA	system control and data acquisition	
SC/GZ	steel conductor, zinc galvanised	
SIR	source impedance ratio	
SR	source ratio	
STFT	short time Fourier transform	
<i>t</i> , <i>T</i>	time, s	
Т	modal transformation matrix	

T_C	conductor tension
ΔT	time step or relative change in time, s
T_S	sampling period, s
μ_0	permeability of free space, $4\pi x 10^{-7} \text{ N.A}^{-2}$ (or Wb A ⁻¹ m ⁻¹ , Hm ⁻¹)
μ_R	relative permeability
V	voltage, V
ν	modal velocity
V_m	conductor potential
WC	conductor weight per meter
W	window function
$\Delta \omega$	uncertainty in angular frequency
WDFT	windowed discrete Fourier transform
x	position, displacement
x(t)	a signal
Δx	incremental section of line
X	reactance, Ω
X/R	ratio of source reactance to resistance
XLPE	cross-linked polyethylene
Y	shunt admittance, siemens
Ζ	series impedance, Ω
Z_0	surge impedance, Ω
Greek	
α	1e ^{j120}
δ	synchronising angle
ϕ	flux linkage, Tm ⁻² (or webers)
γ	propagation constant, m ⁻¹
λ	matrix of eigenvalues
π	pi
ρ	Earth resistivity, Ω m
τ	time delay, s
ω	radians per second
Ψ	wavelet function

Subscripts

A	phase A (red phase)
В	phase B (white phase)
С	phase C (blue phase)
AA	self interaction on the A phase
BB	self interaction on the B phase
CC	self interaction on the C phase
AB	interaction between A and B phases
BC	interaction between B and C phases
CA	interaction between C and A phases
D	discharge
E	earth
E	excitation
E_A	cable sheath on the A phase
E_B	cable sheath on the B phase
E_C	cable sheath on the C phase
f	fault
L	line
М	mutual
R	remote busbar
S	series
X	phase X on a coupled circuit
Y	phase Y on a coupled circuit
Ζ	phase Z on a coupled circuit
0, 00	zero sequence
1, 11	positive sequence
2, 22	negative sequence

Symbols which are not defined above will be specified in the text.