Adaptive Power Control for UMTS

Rachod Patachaianand

Supervisor: Dr Kumbesan Sandrasegaran

March 2007

A thesis submitted in part fulfillment of the degree of Master of Engineering by Research at The Faculty of Engineering University of Technology, Sydney

Certificate of Originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

Acknowledgement

Firstly, I would like to thank Dr. Kumbesan Sandrasegaran, my supervisor, for the great supports in both general and academic aspects he has given me throughout the years. During my first semester at UTS in Master of Engineering Studies in Autumn 2005, the first subject I had studied was 48048 Wireless Technologies delivered by him. I have gained a lot of knowledge from this subject. In the next semester, I enrolled in the UMTS subject created by him. The earliest version of UMTS programming was developed during this subject. The opportunity he gave me to be involved in a subject development for the 3G/UMTS subject during Summer 2005 provides me a great improvement in my knowledge in both MATLAB programming and UMTS networks. Our first publication was created as a result of the summer work. Later, in Spring 2006, he gave me an opportunity to be a tutor in the 3G/UMTS subject and let me develop a set of laboratory documents based on MATLAB. These activities led me to have much clearer ideas in MATLAB programming for simulating UMTS networks. The second and third papers were published as a result of these activities. Furthermore, during Summer 2006, he let me involved in the ICT Vocation Research Scholarship. An IET Electronic Letter was a result of the summer research. He spent a huge amount of time to review this thesis and gave me a lot of comments and suggestions to improve it. I respect him a lot and hope to do Ph.D. research with him in the near future.

I also would like to thank Dr. Tracy Tung who had given a lot of comments and suggestions on my research in every weekly meeting.

I would like to thank my friends Mo, Wu, Prashant, and Bill who reviewed drafts of my thesis.

Lastly, I would like to give grateful thank to my parents, Ampol and Sunee, who support and encourage me to achieve as high education as they can, and my sister Rasana who helps me while studying in Australia.

Table of Contents

	Abstract xi	i
Chap	oter 1 Introduction	
	1.1 Brief History of Cellular Systems	1
	1.2 WCDMA	2
	1.3 Power Control in UMTS	2
	1.4 Problem Statements and Research Objectives	5
	1.5 Thesis Outline	6
	1.6 Original Contributions	7
	1.7 List of Publications	8

Chapter 2 Backgrounds

2.1 UMTS Ar	chitecture 10
2.1.1	User Equipment 10
2.1.2	UMTS Terrestrial Radio Access Network 11
2.1.3	Core Network 12
2.2 WCDMA	12
2.3 WCDMA	Capacity14
2.4 WCDMA	Interference
2.5 Radio Pro	pagation Models
2.5.1	Path loss
2.5.2	Shadowing
2.5.3	Multipath Fading21
2.6 Radio Res	source Management
2.6.1	Admission Control
2.6.2	Congestion Control or Load Control
2.6.3	Handover Control
2.6.4	Power Control
2.6.4.1	Open-loop PC

	2.6.5	Packet Scheduling	33
2.7	Uplink Fr	ame Structure in UMTS	34
2.8	Summary		34

Chapter 3 Power Control in UMTS

3.1 Introduction			
3.2 UMTS Inner-Loop Power Control			
3.3 Characteristics of Received Signal with FSPC 40	3.3 Characte		
3.4 Power Control Error and Its Effects on System Performance 46	3.4 Power Co		
3.4.1 Effect of Power Control Error on BER Performance 47			
3.4.2 Effect of Power Control Error on the Interference Level 50	3.4.2		
3.4.3 Effect of Power Control Error on the System Capacity 52	3.4.3		
3.4.4 Effect of Power Control Error on SIR target setting 53	3.4.4		
3.5 Limitations in of Power Control in UMTS			
3.5.1 Limited Signalling Bandwidth	3.5.1 Limited		
3.5.2 Limited Stepsize	3.5.2		
3.5.3 Granular Noise	3.5.3		
3.5.4 Power Control Loop Delay 59	3.5.4		
3.5.5 SIR Estimation Error	3.5.5		
3.5.6 Errors in TPC Commands	3.5.6		
3.6 Effect of Fixed Stepsize on the Power Control Performance			
3.7Summary61			

Chapter 4 Adaptive Power Control in UMTS

4.1 Introduct	ion
4.2 Review of	f Adaptive Power Control Algorithms
4.2.1	Lee's Adaptive Step Size Power Control (LAPC)
4.2.2	Kim's Adaptive Step Size Power Control (KAPC)
4.2.3	3-bit Adaptive Step Size Power Control (3BAPC)
4.2.4	Blind Adaptive Closed-Loop Power Control (BA-CLPC) 67
4.2.5	Speed Adapted Closed-Loop Power Control (SA-CLPC) 68

4.2.6	Mobility Based Adaptive Closed-Loop PC (M-ACLPC)	59
4.3 Proposed	Adaptive Power Control Algorithm	70
4.4 Performa	ance of Proposed Adaptive Power Control (PAPC)	72
4.5 Performa	ance Comparison	32
4.5.1	Performance Comparison: Unknown Speed	33
4.5.2	Performance Comparison: Known Speed	36
4.5.3	Overall Performance Comparison) ()
4.6 Summary	y)3

Chapter 5 Adaptive Power Control in Presence of Loop Delays

UNIVERSITY OF

INOLOGY

SYDNEY

5.1 Introduc	tion	
5.2 Time Delay Compensation and Its Applications		
5.3 Performance Comparison in Presence of Known Loop Delays		
5.3.1	Performance Comparison in Presence of Known Loop Delays	
	and Unknown speeds 100	
5.3.2	Performance Comparison in Presence of Known Loop Delays	
	and Known Speeds102	
5.3.3	Performance Comparison in Presence of Known Loop Delays	
	for All Algorithms	
5.4 Performa	ance Comparison in Presence of Unknown Delays	
5.5 Partial T	ime Delay Compensation114	
5.5.1	Partial Time Delay Compensation Algorithm116	
5.5.2	Performance Comparison of PAPC with the Aid of PTDC 119	
5.6 Implementation of PAPC and PT-APC 121		
5.7 Summary	y	

Chapter 6 Consecutive Transmit Power Control Ratio Aided Speed Estimation for UMTS

6.1Introduction	123
6.2 Correlations between TPC and Maximum Doppler Frequency	124

6.3 Consecutive TPC Ratio		
6.4 CTR Aided Speed Estimation Based on Fixed Stepsize 129		
6.4.1 CTR Aided Speed Estimation Using Lookup Table 129		
6.4.2 R Aided Speed Estimation Using Mapping Equation		
6.5 CTR Aided Adaptive Power Control Algorithm		
6.6 CTR Aided Speed Estimation Based on Adaptive Stepsize 140		
6.7 Summary143		

Chapter 7 Conclusion

7.1 Conclusion	145
7.2 Major Contributions	147
7.3 Future Work	147

Reference	••••••				150
-----------	--------	--	--	--	-----

Figure 1.1 The near-far problem	3
Figure 1.2 The received signal pov	4
Figure 2.1 UMTS network	10
Figure 2.2 UMTS infrastructure ne	11
Figure 2.3 Spreading at the transm	13
Figure 2.4 Spreading and de-sprea	13
Figure 2.5 Noise rise as a function	17
Figure 2.6 Radio propagation mod	18
Figure 2.7 Multipath propagation	21
Figure 2.8 Multipath fading envelo	22
Figure 2.9 Channel gains in multir	23
Table 2.1 Time scale of the differe	25
Figure 2.10 UMTS admission cont	26
Figure 2.11 (a) Overload situation	26
Figure 2.12 Power control in UM7	29
Figure 2.13 Open-loop power cont	30
Figure 2.14 Outer-loop power con	31
Figure 2.15 Uplink inner-loop pov	32
Figure 2.16 UMTS uplink frame st	33
Figure 3.1 Power control in UMT5	39
Figure 3.2 (a) Fading gains of two	40
Figure 3.3 Fading gain and inverse	41
Figure 3.4 Normalised received SI	42
Figure 3.5 Tracking ability of UE:	43
Figure 3.6 Gradient of UE2 fading	44
Figure 3.7 Normalised received SI	45
Figure 3.8 Interference seen by UE	45
Figure 3.9 PCE as a function of us	47
20/06/07 Master of Engineering Th	viii

Figure 3.10 BER performance of a single user in a single cell WCDMA	48
Figure 3.11 BER performance as a function of PCE	49
Figure 3.12 Total interference when users are pedestrian compared with the theory	51
Figure 3.13. The total interference and the theoretical interference	52
Figure 3.14 PDF of received SIR of two power control algorithm, PC1 and PC2	54
Figure 3.15 Power gains and the gradients	57
Figure 3.16 Granular noise	58
Figure 3.17 PCE versus stepsizes and user speeds	61
Figure 4.1 Blind Adaptive Closed-Loop Power Control flow chart [42]	68
Table 4.1 The optimal step size for each user speed	69
Table 4.2 Step size adaptation factor of M-ACLPC [45]	69
Figure 4.2 Proposed adaptive power control algorithm	71
Figure 4.3 Performance of PAPC compared with 1dB FSPC	72
Figure 4.4 Tracking performance of PAPC and 1dB FSPC at 5 km/h	73
Figure 4.5 Adaptive power control stepsize at UE speed of 5 km/h	75
Figure 4.6 Tracking performance of the proposed algorithm at 10 km/h	76
Figure 4.7 Adaptive stepsize at 10km/h	77
Figure 4.8 Tracking performance of PAPC and 1DB FSPC at 20 km/h	78
Figure 4.9 Received SIR comparison of PAPC and 1dB FSPC at 20 km/h	79
Figure 4.10 The dynamic stepsize adjustment of PAPC at 20 km/h	79
Figure 4.11 Tracking performance of PAPC at 40 km/h	81
Figure 4.12 Received SIR comparison of PAPC and 1dB FSPC at 20 km/h	81
Figure 4.13 The dynamic stepsize adjustment of PAPC at 40 km/h	82
Figure 4.14 Performance comparison in slow-speed environment, unknown speed	84
Figure 4.15 Performance comparison for entire range of speeds, unknown speed	85
Figure 4.16 Performance comparison in slow-speed environment, known speed	86
Figure 4.17 Performance comparison for entire range of speeds, known speed	87
Figure 4.18 Average of $\delta(t)$ of PAPC compared to the optimal fixed step	89
Figure 4.19 Performance comparison for slow speeds, all algorithms	90
Figure 4.20 Performance comparison for entire range of speeds, all algorithms	91
Table 4.3 Performance Score of five adaptive power control algorithms	92
Figure 4.21 Performance Score of five power control algorithms	92

Figure 5.1 Power control errors caused by additional loop delay	96
Figure 5.2 Adaptive power control with TDC	97
Figure 5.3 1dB fixed stepsize power control (FSPC) with and without TDC	98
Figure 5.4 Performance comparison for slow-speed users, unknown speed	100
Figure 5.5 Performance comparison for entire ranged of speeds, unknown speed	101
Figure 5.6 Performance of various fixed stepsize when TDC is applied, $T_d=2T_p$	103
Figure 5.7 The optimal stepsize for SA-CLPC in presence of delay and use of TDC	104
Figure 5.8 Performance comparison for slow-speed users, known speed	105
Figure 5.9 Performance comparison for entire ranged of speeds, known speed	106
Figure 5.10 Performance comparison when $T_d=2T_p$ with at TDC, slow-speed	107
Figure 5.11 Performance comparison when $T_d=2T_p$ with TDC, entire speed	107
Figure 5.12 Performance of PAPC, BA-CLPC, KAPC, and FSPC in the presence of	
unknown delay, $T_d = 2 T_p$	109
Figure 5.13 Performance of various fixed stepsize in the presence of unknown delays	S
$(T_d=2T_p)$	111
Figure 5.14 The optimal fixed stepsize in the presence of unknown delay, $T_d = 2 T_p$	111
Figure 5.15 Performance of PAPC, M-ACLPC, SA-CLPC, and SA-CLPC * in the	
presence of unknown delay, $T_d = 2 T_p$	112
Figure 5.16 Performance of all power control algorithms in the presence of unknown	1
delay, $T_d = 2 T_p$	113
Figure 5.17 Performance of FSPC and PAPC with and without TDC when $T_d = 1T_p$	115
Figure 5.18 Effect of γ on the performance of PAPC when $T_d = 1T_p$, 3-D	117
Figure 5.19 Effect of γ on the performance of PAPC when $T_d = 1T_p$, 2-D	117
Figure 5.20 Effect of γ on the performance of PAPC when $T_d = 2T_p$, 3-D	118
Figure 5.210 Effect of γ on the performance of PAPC when $T_d = 2T_p$, 2-D	119
Figure 5.22 Performance comparison of PT-APC, $T_d = 1T_p$	120
Figure 5.23 Performance comparison of PT-APC, $T_d = 2T_p$	121
Figure 6.1 Channel gains, user speed = 5 km/h	125
Figure 6.2 Channel gains, user speed = 30 km/h	126
Figure 6.3 CTR function with conventional inner loop power control	127
Figure 6.4 CTR as a function of PC step sizes and user speeds	128
Figure 6.5 CTR of 1dB FSPC and 3dB FSPC	129
Master of Engineering Thesis (Rachod Patachaianand)	v

Table 6.1 Mapping between CTR and user speeds	130
Figure 6.6 Speed estimation using lookup table	131
Figure 6.7 Relation between CTR and user speed via $f_{CTR}(\bullet)$	132
Figure 6.8 Approximation of CTR versus the actual CTR from simulation	133
Figure 6.9 Speed estimation using mapping equation	134
Figure 6.10 CTR aided adaptive power control	136
Figure 6.11 Performance of CAAP with different values of ε	137
Figure 6.12 Performance of CTR aided adaptive power control	138
Figure 6.13 Performance comparison of FSPC with reference to CAAP	139
Figure 6.14 CTR as a function of ε and user speeds	140
Figure 6.15 CAAP-CTR approximation	142
Figure 6.16 CAAP-CAP based speed estimation using mapping equation	143

Abstract

Inner-loop power control is one of the essential radio resource management functions of WCDMA systems. It aims to control the transmission power to ensure that the quality of service for each communication link is adequate and the interference in the system is minimised.

Inner-loop power control currently used in UMTS is a SIR-based fixed stepsize power control (FSPC) algorithm. Transmit Power Control (TPC) commands are sent to control transmission power. This kind of power control algorithm has many limitations such as its inability to track rapid changes in radio channel fading. Furthermore, it creates oscillation when the channel is stable. These limitations result in power control error (PCE) in the received signal. High PCE leads to several performance degradations such as more outage probability and an increase in the total interference.

In this thesis, new inner-loop power control algorithms are proposed to minimise PCE. One of the new algorithms utilises historical information of TPC commands to intelligently adjust the power control stepsize. The performance of the proposed algorithm is compared with adaptive power control algorithms proposed in the literature. The simulation results show that the proposed adaptive power control algorithm. Furthermore, it outperforms other adaptive power control algorithms in some scenarios.

The results from the simulations in this thesis show that delays in the power control feedback channel lead to performance degradations especially for adaptive power control algorithms. A new delay compensation technique named partial time delay compensation (PTDC) is proposed to mitigate the effect of delays. Simulations show that the performance in terms of PCE can be improved using this new compensation technique.

Knowledge of the maximum Doppler frequency, which is closely related to user speed, is invaluable for optimisation of radio networks in several aspects. It can be used to improve the performance of inner loop power control. A new parameter named Consecutive TPC ratio (CTR) is originally defined in this thesis. CTR has a correlation with the maximum Doppler frequency so that it can be used to estimate user speed. The simulation results show that with the use of 1dB FSPC, user speeds can be accurately estimated up to 45 km/h. A new adaptive power control algorithm, named CAAP, in which the stepsize is adjusted using CTR, is also proposed. The simulation result shows that CAAP can achieve similar performance as that of the adaptive power control algorithm in which the stepsize is adjusted based on perfect knowledge of the optimal fixed stepsize for every user speed. Furthermore, the performance of CTR aided speed estimation can be recursively improved with the use of CAAP.

