NOVEL TREATMENT TECHNOLOGIES FOR ARSENIC REMOVAL FROM WATER

By Tien Vinh Nguyen

Submitted in fulfillment for the degree of Doctoral of Philosophy

Faculty of Engineering University of Technology, Sydney (UTS) Australia

2007

CERTIFICATE

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that the thesis has been written by me and that any help that I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

ACKNOWLEDGEMENTS

I wish to express my foremost and deepest thanks to my supervisor, Prof. S. Vigneswaran and co-supervisors, A. Prof. H. H. Ngo and Prof. A. Johnston for all their guidance and support during my study in Faculty of Engineering, University of Technology, Sydney (UTS). I am thankful for their valuable assistance, encouragement and support extended throughout my research, and timely completion of my dissertation.

I am also indebted to Prof. Viraraghavan, A. Prof. Khanh Hong Nguyen, and Prof. Choi for providing both facilities and resources during my experiments in: University of Regina, Canada; Institute of Environmental Technology, Vietnam; and Gwangju Institute of Science and Technology, Korea. Thanks to Mr. Damodar, Mr. Sushil, and staff in Institute of Environmental Technology, Vietnam for helping me in collecting and analysing samples in: Regina, Canada; Hanoi, Vietnam; and Gwangju, Korea.

I am thankful to Dr. Jaya Kandasamy for his assistance in mathematic modelling and thanks to David Hooper for his help to solve technical problems in the Environmental Engineering R&D Laboratory (EEDL), UTS.

I would like to give a very special gratitude to the Vietnamese Government (Ministry of Education and Training) for the support provided to me during my program. This research was funded by Australian Research Council Discovery Grant (DP0450037) and ARC International Linkage Grant (LX0345566). I would like to thank the Faculty of Engineering, UTS for the financial support during my last year of study.

I wish to acknowledge the help of all the students in our research group for their assistance in my study. Thank you to Wenshan, Hok, Chaudhary, Ramesh, Cuong, Paul, Laszlo, Nathaporn, Rong, Loan.

I would like also thank to Dr. Xian Tao for supplying adsorbent medium (surfactant modified zeolite – zero valent iron). Thanks to visiting students Florent, Shigeki, and Dr. Xian Tao for helping me in conducting experiment in the EEDL.

Special thanks to my wife, Nga Pham for her understanding, encouragement, caring and great assistance during my study. Thanks to my beloved daughter, Nga Nguyen, for her

patience and making us feel proud of her. Warm thank to my parents for their love and constant encouragement.

Finally, I really appreciate the assistance of my relatives and friends who have given heartfelt support over the period of long study journey.

TABLE OF CONTENTS

Certi	ficate	i
Ackr	nowled	gementsii
Table	e of co	ntentsiv
Nom	enclatı	ıreix
List o	of table	es xi
List (of figu	res xiii
Abst	ract	xvii
CHA	PTER	R1 INTRODUCTION
1.1	Intro	oduction
1.2	Obj	ectives
1.3	Stru	cture of the Study
CHA	PTEF	R 2 LITERATURE REVIEW
2.1	Hist	tory6
2.2	Sou	rces of arsenic
2.3	Prop	perties and toxicity of arsenic
2.4	Effe	ect of arsenic on human health
2.5	Star	ndards for arsenic in water11
2.6	Trea	atment technologies for arsenic removal12
2.0	5.1	Coagulation/Filtration
2.0	5.2	Ion exchange resins
2.0	5.3	Adsorption process

2.6.4	Iron/Manganese oxidation	16
2.6.5	Membrane technology	17
2.6.6	Photo oxidation	
2.6.7	Arsenic removal by adsorption on material containing iron	22
2.7 Pol	yurethane sponge	26
2.8 Dis	posal	
2.9 Ad	sorption modelling	
2.9.1	Adsorption kinetics and equilibrium	
2.9.2	Fixed bed adsorption columns	
2.10 Co	nclusion	

3.1	Intro	oduction	. 40
3.2	Exp	erimental materials	. 40
3.2.	1	Water	. 40
3.2.2	2	Standards and reagents	. 42
3.2.3	3	Adsorbents	. 43
3.2.4	4	Membranes	. 45
3.2.:	5	Titanium dioxide	. 49
3.3	Exp	erimental studies	. 49
3.3.	1	Batch kinetic studies	. 49
3.3.2	2	Batch equilibrium studies	. 50
3.3.	3	Column studies	. 50
3.3.4	4	Tray study with IOCSp	. 54
3.3.5	5	Photocatalytic set-up	. 55
3.3.0	6	Crossflow membrane set-up	. 56

3.4	Ana	alytical methods	57
3.4	.1	Arsenic analysis	57
3.4	.2	Iron content and surface area	58
CHA	PTEI	R 4 ARSENIC REMOVAL BY IRON OXIDE COATED SPON	GE.59
4.1	Intr	oduction	59
4.2	Cap	pacity of uncoated sponge in removing arsenic	59
4.3	Opt	imisation of preparation conditions of iron oxide coated sponge	60
4.3	8.1	Effect of pH on coating	60
4.3	8.2	Effect of contact time (t ₁) and coating temperature (T)	61
4.3	8.3	Effect of drying time (t ₂)	61
4.4	Pro	perties of the adsorbent	62
4.5	Rer	noval mechanism of arsenic	63
4.6	Bat	ch adsorption experiments	64
4.6	5.1	Effect of pH	64
4.6	5.2	Adsorption kinetics	64
4.6	5.3	Equilibrium adsorption experiments	69
4.7	Fiel	ld emission scanning electron microscopy (FE-SEM) results	73
4.8	IOC	CSp column experiments	76
4.8	3.1	Synthetic water	76
4.8	3.2	Groundwater	81
4.8.3 Mathematical modelling of IOCSp filter		Mathematical modelling of IOCSp filter	84
4.9	IOC	CSp tray experiments	90
4.10	Cor	nparison of IOCSp with other adsorbent materials	94
4.11	Cor	nclusions	95

CHAP	TER 5ARSENIC REMOVAL BY IRON OXIDE COATED SAND 2	
	AND SURFACTANT MODIFIED ZEOLITE/ZERO VALEN' IRON	Г . 97
5.1	Introduction	. 97
5.2	Arsenic removal by iron oxide coated sand 2	. 98
5.2.1	Properties of the adsorbent	. 98
5.2.2	Batch kinetic studies	. 98
5.2.3	Adsorption equilibrium experiments	103
5.2.4	Column studies	106
5.3	Arsenic removal by surfactant modified zeolite – zero valent iron medium	108
5.3.1	Adsorption kinetics	108
5.3.2	2 Adsorption equilibrium experiments	111
5.3.3	8 Column experiments	114
5.3.4	Mathematical modelling of SMZ/ZVI column	115
5.4	Conclusions	119

6.1 Ars	senic removal by photocatalysis	120
6.1.1	Introduction	120
6.1.2	Effect of TiO ₂ concentration on oxidation of As(III) into As(V)	121
6.1.3	Adsorption of As(III) and As(V) onto TiO ₂	124
6.1.4	Effect of nanoscale zero valent iron on arsenite removal by	
	photocatalysis	126
6.2 Ars	senic removal by membrane	128
6.2.1	Introduction	128

6.2.2	Effect of applied pressure on the membrane filtration 128
6.2.3	Effect of pH 129
6.2.4	Effect of nanoscale zero valent iron130
6.3 Cor	iclusions134
6.3.1	Photocatalysis134
6.3.2	Membrane hybrid system134
CHAPTER	R 7 CONCLUSIONS AND RECOMMENDATIONS 135
7.1 Cor	nclusions
7.1.1	Iron oxide coated sponge (IOCSp) for arsenic removal in water treatment
7.1.2	Performance of iron oxide coated sand (IOCS-2) and surfactant modified
	zeolite – zero valent iron (SMZ/ZVI) in arsenic removal
7.1.3	Hybrid systems of photocatalysis and membrane filtration with nanoscale
	zero valent iron (nZVI)137
7.2 Rec	commendations
REFEREN	NCES
APPENDI	X A. SIMPLE DESIGN FOR REMOVING ARSENIC FROM WATER . 158

APPENDIX B	. EXPERIMENTAL DATA	164

NOMENCLATURE

b	: constant related to the binding energy of adsorption (L/mg)
BV	: bed volume
С	: solute arsenic concentration (mg/L)
C _b	: desired concentration of adsorbate at breakthrough (mg/L)
C _e	: equilibrium concentration (mg/L)
C _{ef}	: effluent adsorbate concentration (mg/L)
C _{if}	: influent adsorbate concentration (mg/L)
Co	: initial arsenic concentration (mg/L)
d	: depth of adsorbent's bed (m)
D_x	: dispersion coefficient in x direction (m^2/s)
EBCT	: empty bed contact time
IOCS-2	: Iron oxide coated sand 2
IOCSp	: Iron oxide coated sponge
k_1	: rate constant of BDST model (L/mg.h)
K _d	: linear equilibrium partitioning coefficient (L/mg)
k _F	: Freudlich constant indicative of the adsorption capacity
k _H	: Ho rate constant for adsorption (g/mg.min)
k _N	: mass transfer loss coefficient (1/s)
k _T	: Thomas rate constant (L/min.mg)
m	: amount of adsorbent (g)
n	: experimental constant indicative of the adsorption intensity
n _T	: effective porosity (dimensionless)

NZVI	: nanoscale zero valent iron
ps	: solid density of the particles (mg/L)
q _t	: amount of adsorbate at any time t, (mg/g)
q _e	: amount of adsorbate at equilibrium (mg/g)
q _m	: saturated maximum adsorption capacity (mg/g)
Q_{ν}	: volumetric flow rate (L/min)
r	: correlation coefficient
S	: amount sorbed onto porous medium (mg/mg)
SMZ/ZVI	: surfactant modified zeolite – zero valent iron
t	: service time of column (h)
Т	: temperature
u _x	: velocity of water (m/s)
V	: throughput volume (L)
w _a	: mass of arsenic adsorbed after time t (mg)
w_a^0	: maximum adsorption capacity of filter (mg)
α	: dispersivity (m)

LIST OF TABLES

Table 1.1: Characteristics of arsenic removal technologies.	2
Table 2.1: The national standards for arsenic in drinking water	11
Table 2.2: Arsenic removal by UF at pilot scale; NF membranes; and RO at	
bench scale	19
Table 2.3: Characteristics of polyurethane sponge	28
Table 2.4: Chemical properties of polyurethane	29
Table 3.1: Water quality parameters	41
Table 3.2: Skin-layer functional groups of NTR729HF membrane	46
Table 3.3: Specification of NTR729HF membrane obtained from the	
manufacturer	46
Table 3.4: Specification of PVA membrane obtained from the manufacturer	47
Table 3.5: Characteristics of P25 Degussa photocatalytic TiO ₂	49
Table 4.1: Effect of IOCSp prepared at different pH in adsorbing arsenic	60
Table 4.2: Effect of IOCSp prepared at different contact times in adsorbing	
arsenic	61
Table 4.3: Effect of IOCSp prepared at different drying time in adsorbing	
arsenic	62
Table 4.4: Kinetics adsorption parameters of Ho model for IOCSp	
adsorption	68
Table 4.5: Isotherm equations for arsenic removal using IOCSp	70
Table 4.6: Comparison of arsenic adsorption capacity of IOCSp with other	
adsorbents	72
Table 4.7: Filter columns and operational conditions	84
Table 4.8: Parameters of Thomas model	85

Table 4.9: Comparison of the theoretical service times from the Thomas	
approach with the experimental time	86
Table 4.10: Parameters of Nikolaidis modified model	88
Table 4.11: Comparison of the theoretical service times from the Nikolaidis	
modified model with the experimental time	90
Table 4.12: Tray operational conditions	91
Table 4.13: Comparison of the efficiencies of IOCSp and SMZ/ZVI	
columns for removing arsenic up to value 50 μ g/L	94
Table 4.14: Comparison of arsenic removal efficiencies by IOCSp and	
IOCS-2	95
Table 5.1: Kinetics adsorption parameters of Ho model for IOCS-2	
adsorption	101
Table 5.2: Isotherm equations for arsenic removal using IOCS-2	104
Table 5.3: Kinetics adsorption parameters of Ho model for SMZ/ZVI	
adsorption	109
Table 5.4: Isotherm equations for arsenic removal using SMZ/ZVI	112
Table 5.5: Parameters of Nikolaidis modified model	117
Table 6.1: Comparison of removal efficiency of hybrid system MF-nZVI	
with MF	133
Table 6.2: Comparison of removal efficiency of hybrid system NF-nZVI	
with NF	133

LIST OF FIGURES

Figure 2.1: pE-pH diagram for the As-H ₂ O system at 25°C.	8
Figure 2.2: Scanning electron microscope (SEM) photo of commercial rigid PU foam with density 38 kg/m ³	27
Figure 3.1: Procedure of coating of the sponge with iron oxide	43
Figure 3.2: SEM images of membranes	48
Figure 3.3: Schematic of the column setup	51
Figure 3.4: Schematic of the IOCSp tray experiments	55
Figure 3.5: Schematic of the photocatalytic reactor	56
Figure 3.6: Schematic of the cross-flow unit	57
Figure 4.1: Removal efficiency of arsenic as a function of pH	64
Figure 4.2: Removal efficiency of As(III) as a function of adsorption time	65
Figure 4.3: Removal efficiency of As(V) as a function of adsorption time	66
Figure 4.4: Prediction of adsorption kinetics of IOCSp with As(III) by the Ho model	67
Figure 4.5: Prediction of adsorption kinetics of IOCSp with As(V) by the Ho model	67
Figure 4.6: Prediction of equilibrium adsorption of As(III) by different adsorption models	71
Figure 4.7: Prediction of equilibrium adsorption of As(V) by different adsorption models	71
Figure 4.8: SEM of IOCSp before and after adsorption with arsenic	74
Figure 4.9: Removal of arsenate from synthetic water by IOCSp column (short term)	77
Figure 4.10: Effect of filtration rate on As(V) removal by IOCSp column	78

Figure 4.11: Removal of As from synthetic water by IOCSp column (long term)	79
Figure 4.12: Removal of As(III) from synthetic water by regenerated IOCSp column	80
Figure 4.13: Removal of As(V) from synthetic water by regenerated IOCSp column	81
Figure 4.14: Effect of weight of IOCSp on As removal	82
Figure 4.15: Effect of size of IOCSp on As removal	83
Figure 4.16: Experimental and simulated As(III) profiles by the Thomas model in the IOCSp column studies	85
Figure 4.17: Experimental and simulated As(V) profiles by the Thomas model in the IOCSp column studies	86
Figure 4.18: Experimental and simulated As(III) values by the Nikolaidis modified model in the IOCSp column studies	89
Figure 4.19: Experimental and simulated As(V) values by the Nikolaidis modified model in the IOCSp column studies	89
Figure 4.20: Removal of As(III) by IOCSp tray, cycle 1	92
Figure 4.21: Removal of As(III) by IOCSp tray, cycle 2	92
Figure 4.22: Removal of As(V) by IOCSp tray, cycle 1	93
Figure 4.23: Removal of As(V) by IOCSp tray, cycle 2	93
Figure 5.1: Removal efficiency of As(III) as a function of adsorption time	100
Figure 5.2: Removal efficiency of As(V) as a function of adsorption time	100
Figure 5.3: Prediction of adsorption kinetics of IOCS-2 with As(III) by Ho model	102
Figure 5.4: Prediction of adsorption kinetics of IOCS-2 with As(V) by Ho model	102
Figure 5.5: Prediction of equilibrium adsorption of As(III) by different adsorption models	105

Figure 5.6: Prediction of equilibrium adsorption of As(V) by different adsorption models	105
Figure 5.7: Removal of arsenic from synthetic water by IOCS-2 column	107
Figure 5.8: Removal efficiency of arsenic as a function of adsorption time	109
Figure 5.9: Prediction of adsorption kinetics of SMZ/ZVI with As(III) by the Ho model	110
Figure 5.10: Prediction of adsorption kinetics of SMZ/ZVI with As(V) by the Ho model	110
Figure 5.11: Prediction of equilibrium adsorption of As(III) by different adsorption models	113
Figure 5.12: Prediction of equilibrium adsorption of As(V) by different adsorption models	113
Figure 5.13: Removal efficiency of As(III) and As(V) from synthetic water by SMZ/ZVI column	115
Figure 5.14: Experimental and simulated As(III) profiles by the Thomas model in the SMZ/ZVI column studies	116
Figure 5.15: Experimental and simulated As(V) profiles by the Thomas model in the SMZ/ZVI column studies	116
Figure 5.16: Experimental and simulated As(III) values by the Nikolaidis modified model in the SMZ/ZVI column studies	118
Figure 5.17: Experimental and simulated As(V) values by the Nikolaidis modified model in the SMZ/ZVI column studies	118
Figure 6.1: Arsenic removal efficiency by photocatalysis with TiO_2	122
Figure 6.2: Relative concentrations of As(V) and As(III) in the arsenic solution as a function of UV irradiation time	124
Figure 6.3: Percentage of arsenic adsorbed on the TiO ₂ surface	125
Figure 6.4: Comparison of percentage of As(III) and As(V) adsorbed on TiO_0 surface	126

Figure 6.5: Arsenic removal efficiency by photocatalysis with TiO ₂ with	
addition of nZVI	127
Figure 6.6: Effect of pressure on arsenic removal by NF	129
Figure 6.7: Effect of pH on arsenic removal by NF	130
Figure 6.8: Arsenic removal efficiency by microfiltration (MF)	. 131
Figure 6.9: Arsenic removal efficiency by nanofiltration (NF)	132

ABSTRACT

Arsenic is a toxic semi-metallic element that can be fatal to human health. It can have a significant adverse impact on the environment. Arsenic pollution in water has been found in many parts of the world, especially in developing countries such as Bangladesh, India, Nepal, and Vietnam. It is also detected in some areas of Australia. In rural area of Victoria, arsenic concentrations of up to 8 μ g/L and 220 μ g/L in groundwater and surface water have been reported. The arsenic contamination in water forced the water and health authorities to introduce stringent standards for arsenic levels in drinking water. World Health Organization (WHO) has recommended the arsenic level in drinking water to the stricter level to be 10 μ g/L instead of 50 μ g/L (since 1993). The U.S. Environmental Protection Agency (EPA) has lowered the maximum contaminant level (MCL) of arsenic from 50 μ g/L to 10 μ g/L. Rigorous criteria of arsenic level have been enforcing water authorities to identify and put into practice suitable and cost-effective arsenic removal technologies.

The main objectives of the research described in this thesis were to develop and assess the potential and effectiveness of a new adsorbent medium namely iron oxide coated sponge (IOCSp) in removing arsenite [As(III)] and arsenate [As(V)] to an acceptable level in drinking water supplies. Arsenite [As(III)] and arsenate [As(V)] are the two predominant arsenic species found in groundwater. Regeneration of the exhausted IOCSp was also investigated. In addition, two other adsorbents: iron oxide coated sand 2 (IOCS-2), and surfactant modified zeolite – zero valent iron (SMZ/ZVI) were evaluated and their efficiency were compared with that of IOCSp. Effectiveness of membrane and photocatalysis hybrid systems in removing arsenic was studied. In this study, tap water (Sydney, Australia and Regina, Saskatchewan, Canada) spiked with predetermined amounts of As(III) and As(V) was used in the batch, tray and column studies. Raw water containing arsenic from Kelliher, Saskatchewan and Van Phuc Village, Hanoi, Vietnam were also investigated in the study.

The research described below investigated optimised conditions for coating iron oxide on sponge by different coating conditions. Optimum conditions for coating the sponge with iron oxide were as follow: (i) pH value of coating condition of 4 (ii) time of contact between iron oxide and the sponge during coating of 10 hours; (iii) coating temperature of 110°C; and (iv) time of drying of sponge after the coating of 20 hours. The maximum adsorption capacities of IOCSp for As(III) and As(V) estimated by Langmuir, and Sips models were up to 4.18 and 4.6 mg/g of IOCSp, respectively. More than 92.4% of both As(III) and As(V) was removed after a contact period of 9 hours with the IOCSp (based on batch studies). The IOCSp adsorption equilibrium results with synthetic water fitted reasonably well with Freundlich, Langmuir, and Sips isotherms, indicating favourable adsorption.

The performance of the IOCSp column was experimentally evaluated with synthetic water spiked with arsenic. The results showed that the IOCSp column could maintain high arsenic removal efficiency even after a long filtration time without any need for regeneration. For example, a filter packed even with very small amount of 25 g IOCSp maintained a consistent arsenic removal efficiency of 95% from synthetic water containing arsenic concentration of as high as 1,000 μ g/L. This produced a throughput volume of 153 and 178 L of water containing As(III) and As(V) respectively before any need for regeneration or disposal of IOCSp. A relatively small amount of IOCSp (8 g) could treat 42 – 63 L of arsenic contaminated groundwater (56 – 156 μ g/L) in Kelliher (Canada) and in Hanoi (Vietnam) to a level of less than 20 μ g/L. Studies showed that As(V) removal was better compared with As(III) removal.

The results showed that the performance of IOCSp was superior to than that of iron oxide coated sand (IOCS-2) and surfactant modified zeolite – zero valent iron (SMZ/ZVI) in terms of weight of media. The IOCSp, once exhausted, can be regenerated with a small amount of sodium hydroxide 0.3M. The regenerated IOCSp did not have any significant decrease in removal effectiveness as compared to the fresh IOCSp.

Photooxidation experimental results also showed that photooxidation of As(III) to As(V) with titanium dioxide (TiO₂) as photocatalyst is possible within minutes. Further, TiO₂ can also adsorb both As(III) and As(V) on its surface. Thus, the photocatalysis reaction with TiO₂ can reduce about 98% of arsenite from water containing 500 μ g/L of arsenite. By adding nanoscale zero valent iron (nZVI) of 0.05 g/L in the photo reactor, arsenic removal can be significantly enhanced to a value less than 10 μ g/L. The amount of TiO₂ used in this photocatalysis hybrid system was only 20% of normal photocatalysis operation.

Removal of arsenic by a membrane is highly dependent on the species of arsenic and the properties of membranes. About 57% of As(III) and 81% of As(V) removal from 500 μ g/L arsenic solution could be achieved by nanofiltration (NF) of 700 molecular weight cutoff. This removal efficiency could be increased to more than 95% by an inline addition of 0.2 g/L of nZVI. This method is suitable when high quality effluent is required.

In summary, the study demonstrated conclusively that iron oxide coated sponge is an excellent media for reducing arsenic. IOCSp filter can be used as an effective and economical treatment system in removing arsenic from contaminated groundwater. The merits of the IOCSp filter process are the consistent removal efficiency, long life cycle, and simplicity in operation, regeneration and disposal.