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1 Introdu
tionIn the aftermath of the �nan
ial 
risis 2007-2009 the previous separation of mar-ket risk and 
redit risk has disappeared. Credit or default risks of trading partiesare no longer ignored, even for popular vanilla trades involving mainly marketrisk. The posting of 
ollateral has been widely adopted in derivative trades. This
hanges the pro�le of 
redit risk of a derivative and usually a�e
ts its pri
e. Creditvaluation adjustment (CVA) has be
ome the market standard. It yields the ex-pe
ted value of loss due to possible defaults. In Cesari, Aquilina, Charpillon,Filipovi�
, Lee & Manda (2009) an introdu
tion to CVA is given from a pra
ti-
al viewpoint. The book Biele
ki, Brigo & Patras (2011) presents several moretheoreti
ally oriented perspe
tives on 
redit risk in
luding CVA. The literatureon CVA is evolving rapidly: papers related to CVA in
lude Brigo & Chour-dakis (2009), Burgard & Kjaer (2011), Cr�epey (2011), Pallavi
ini, Perini & Brigo(2011), Tang, Wang & Zhou (2011), Wu (2012).In this paper, we dis
uss how to model 
redit risk under the ben
hmark approa
h.Firstly we introdu
e an aÆne 
redit risk model.We then show how to pri
e 
reditdefault swaps (CDSs) and introdu
e CVA as an extension of CDSs. In parti
-ular, our model 
an 
apture right-way - and wrong-way exposure. This means,we 
apture the dependen
e stru
ture of the default event and the value of thetransa
tion under 
onsideration. For simple 
ontra
ts, we provide 
losed-formsolutions. However, due to the fa
t that we allow for a dependen
e between thedefault event and the value of the transa
tion, 
losed-form solutions are diÆ
ultto obtain in general. Hen
e we 
on
lude this paper with a redu
ed form model,whi
h is more tra
table.Chapter 14 in Baldeaux & Platen (2013) follows 
losely the 
urrent paper, whi
haims to 
ontribute to the emerging literature by applying the ben
hmark approa
hto CVA using a tra
table model. The paper is organized as follows: Se
tion 2 setsa general framework for �nan
ial modeling by introdu
ing some key relationshipsof the ben
hmark approa
h due to Platen (2002), see Platen & Heath (2010).Se
tion 3 des
ribes an aÆne 
redit risk model along the lines of results in Filipovi�
(2009). Se
tion 4 dis
usses the pri
ing of CDSs under the ben
hmark approa
h.CVA is then studied in Se
tion 5. An example of CVA in a 
ommodity 
ontextis analyzed in Se
tion 6. Se
tion 7 presents a redu
ed form model, whi
h allowsto obtain various expli
it formulas.2 Comments on the Ben
hmark Approa
hWhen modeling and pri
ing in �nan
e there has been a strong emphasis in theoryand pra
ti
e on risk neutral modeling under an assumed equivalent risk neutralprobability measure. The existen
e of a risk neutral measure is a rather strongassumption, whi
h may not be realisti
 for longer term 
ontra
ts, as argued in2



Platen & Heath (2010). By using the num�eraire portfolio (NP) SÆ�t as num�eraireor ben
hmark, as suggested by Long (1990) and Platen (2002), one 
an model themarket dynami
s under the real world probability measure. The de�ning propertyof the NP guarantees for all nonnegative portfolios SÆ�t that their ben
hmarkedvalue ŜÆt = SÆtSÆ�tforms a supermartingale on the given �ltered probability spa
e (
;A;A; P ) withA = (At)t�0 satisfying the usual 
onditions. More pre
isely, one hasŜÆt � E � SÆsSÆ�s ����At�for all 0 � t � s < 1. It has been pointed out in Platen & Heath (2010)that one 
an avoid the 
lassi
al risk neutral assumptions and 
an 
onvenientlywork in a mu
h wider modeling work. Strong arbitrage in the sense of Platen &Bruti-Liberati (2010) and Platen & Heath (2010) is then automati
ally ex
luded.When aiming for the minimal possible pri
e for a repli
able, nonnegative ben
h-marked 
ontingent 
laim ĤT , whi
h matures at a bounded stopping time T , isAT -measurable and integrable su
h that E �ĤT jAT� < 1, it follows the realworld pri
ing formula V̂t = E �ĤT ����At� (1)for 0 � t � T < 1 for the ben
hmarked pri
e of the 
laim, see Platen & Heath(2010). This pri
e, when denominated in domesti
 
urren
y, is then obtained asVt = V̂tSÆ�t : (2)In Du & Platen (2012a) the 
on
ept of ben
hmarked risk minimization has beenproposed, whi
h derives the real world pri
ing formula (1) also for nonhedgeableben
hmarked 
ontingent 
laims. Under this 
on
ept the ben
hmarked pro�t andloss is minimized when hedging the 
laim. More pre
isely, it is orthogonal toben
hmarked traded wealth in the sense that the produ
t of the ben
hmarkedpro�t and loss with any ben
hmarked self-�nan
ing portfolio forms a lo
al mar-tingale.In CVA one fa
es the problem that traditionally one is used to pri
e 
ounterparty
redit exposure under an assumed risk neutral probability measure, but 
ru
ialinformation about the likelihood of default of 
ounterparties and their dependen-
ies is available under the real world probability measure. This paper suggeststo resolve this issue by 
onsidering the problem of CVA entirely under the realworld probability measure. This approa
h provides the advantage that one 
anemploy more realisti
 models and has not to make assumptions about a putativerisk neutral probability measure with respe
t to 
redit events. The paper will3



demonstrate this approa
h by employing an aÆne model whi
h permits for var-ious 
ontra
ts expli
it formulas, and yields for other quantities expressions that
an be easily evaluated via Monte Carlo methods.It is important to identify for the given market model the NP or a proxy of theNP. The NP is known to be the growth optimal portfolio of the given investmentuniverse, and maximizes expe
ted logarithmi
 utility, see Kelly (1956) and Platen& Heath (2010). In pra
ti
e, the NP 
an be approximated by a well diversi�edportfolio, as shown by diversi�
ation theorems in Platen & Heath (2010) andPlaten & Rendek (2012). A simple, readily available proxy for the NP is a welldiversi�ed market index or the MSCI World total return index.3 An AÆne Credit Risk ModelIn this se
tion, we aim to introdu
e a reasonably realisti
, yet tra
table modelfor 
redit risk. In parti
ular, our model allows for a sto
hasti
 interest rate, anda sto
hasti
 default intensity, both of whi
h are 
orrelated with the num�eraireportfolio (NP). We point out that our model satis�es the assumptions (D1) and(D2), in Filipovi�
 (2009), and hen
e we 
an employ the results presented in thisreferen
e. For further te
hni
al ba
kground, we refer the reader to this referen
e.We �x a probability spa
e (
;A; P ), where P denotes the real world probabilitymeasure. Next, we present a model for the evolution of �nan
ial information.We remark that in our model, only having a

ess to market information is notsuÆ
ient to de
ide whether or not default has o

urred or not. We now presentthis model, whi
h is a doubly sto
hasti
 intensity based model. We introdu
e a�ltration G = (Gt)t�0, satisfying the usual 
onditions and setG1 = � fGt ; t � 0g � A ;and a nonnegative G-progessively measurable pro
ess � = f�t ; t � 0g with theproperty Z t0 �sds <1 ; P � a:s: for all t � 0 :Next, we �x an exponential random variable � with intensity parameter 1, inde-pendent of G1, and we de�ne the random time� := inf �t : Z t0 �sds � ��assuming values in (0;1℄. From the independen
e property of � and G1, we havethat P (� > t j G1) = P �� > Z t0 �sdsjG1� = exp�� Z t0 �sds� : (3)4



Lastly, we 
ondition both sides in the pre
eding equation on Gt and obtainP (� > t j Gt) = exp�� Z t0 �sds� : (4)Equations (4) and (3) are 
onsistent with the assumptions (D1) and (D2) inFilipovi�
 (2009), whi
h are hen
e satis�ed in our model. Next, we setHt = 1f��tgandHt = � fHs ; s � tg and set At = Gt_Ht, the smallest �-algebra 
ontaining Gtand Ht. We remark that the in
lusion Gt � At is stri
t, having a

ess to Gt doesnot allow us to de
ide whether default has o

urred by t, i.e. the event f� � tgis not in
luded in Gt, so � is not a G-stopping time. We �nd this realisti
, sin
eit means that only by observing �nan
ial data su
h as sto
k pri
es and interestrates, one 
annot determine whether default has o

urred or not, as additional,non-�nan
ial fa
tors, 
an be assumed to be relevant to this de
ision too. Thefollowing lemma is Lemma 12.1 in Filipovi�
 (2009).Lemma 3.1 Let t � 0. Then for every A 2 At, there exists a B 2 Gt su
h thatA \ f� > tg = B \ f� > tg :We have the following 
orollary to Lemma 3.1, the proof of whi
h is analogousto the proof of Lemma 12.1 in Filipovi�
 (2009).Corollary 3.1 Let t � 0. Then for every A 2 At, there exists a B 2 Gt su
hthat A \ f� � tg = B \ f� � tg : (5)The �rst part of the following lemma is Lemma 12.2 in Filipovi�
 (2009), these
ond part of the next lemma forms part of Lemma 12.5 in Filipovi�
 (2009).Lemma 3.2 Let Y be a nonnegative random variable and � and � be as de�nedabove. ThenE �1f�>tgY ����At� = 1f�>tg exp�Z t0 �sds�E �1f�>tgY ����Gt� ;for all t � 0. If Y is also G1 measurable, then we haveE �1f��tgY ����At� = 1f��tgE �Y ����Gt� :
5



Proof: The �rst part of the lemma is proven in Filipovi�
 (2009), see the proofof Lemma 12.2. For the se
ond part, let A 2 At, and note that by Corollary3.1, there exists a B 2 Gt with property (5). We now use the de�nition of
onditional expe
tation, the fa
t that 1f��tg1A = 1f��tg1B, that Y 2 G1 andthat P (� � t j G1) = P (� � t j Gt), whi
h follows from equations (4) and (3):ZA 1f��tgY dP = ZB 1f��tgY dP= ZB E �1f��tgY ����Gt� dP= ZB E �E �1f��tgY ����G1� ����Gt� dP= ZB E �Y E �1f��tg ����G1� ����Gt� dP= ZB E �Y ����Gt�E �1f��tg ����Gt� dP= ZB E �1f��tgE �Y ����Gt� ����Gt� dP= ZB 1f��tgE �Y ����Gt� dP= ZA 1f��tgE �Y ����Gt� dP :Hen
e we haveE �1f��tgY ����At� = E �1f��tgE �Y ����Gt� ����At� = 1f��tgE �Y ����Gt� : �The following formula is useful, when 
onsidering 
laims whi
h are independentof default risk. It is an immediate 
orollary to Lemma 3.2.Corollary 3.2 Let Y be a nonnegative random variable whi
h is G1 measurable.Then E �Y ����At� = E �Y ����Gt� :We now present our spe
i�
 model, whi
h is based on aÆne pro
esses. Firstly,we de�ne the square-root pro
ess Y = fYt ; t � 0g, given bydYt = (1� �Yt)dt+pYtdW 1t ;where W 1 is a G-Brownian motion and we de�ne the deterministi
 time-
hange�t = �0 exp f�tg ;6



and we model the dis
ounted NP as�SÆ�t = �tYt :In this 
ontext, the time 
hange 
an be interpreted as follows. When expressingthe dis
ounted NP in units of the time 
hange, we obtain a pro
ess whi
h mean-reverts. In fa
t, it 
an be interpreted as mean-reverting around the time 
hange.We now des
ribe the short-rate using the sto
hasti
 pro
essrt = art + brZ1t + 
rf r(Yt) ; (6)where ar� is a nonnegative deterministi
 fun
tion of time and br and 
r are non-negative 
onstants and f r(x) = x or f r(x) = 1x . The pro
ess Z1 = fZ1t ; t � 0gis a square-root pro
ess given bydZ1t = �1(�1 � Z1t )dt+ �1pZ1t dW 2t ; (7)where �1; �1; �1 > 0 and 2�1�1 > (�1)2, where W 2 is an independent G- Brownianmotion. We now introdu
e the NP, whi
h is given bySÆ�t = Bt �SÆ�t ; (8)where Bt = expnR t0 rsdso. Finally, we introdu
e a model for the sto
hasti
intensity �t = a�t + b�Z1t + 
�f r(Yt) + d�Z2t ; (9)where �2; �2; �2 > 0, a�� is a nonnegative fun
tion of time. The 
onstants b�, 
�,and d� are nonnegative, and Z2 = fZ2t ; t � 0g is a square-root pro
ess:dZ2t = �2(�2 � Z2t )dt+ �2pZ2t dW 3t ;where 2�2�2 > (�2)2, and W 3 is an independent G-Brownian motion. We 
on-
lude that �; r; and SÆ� are dependent, as they share some of their respe
tivesto
hasti
 drivers. Clearly, a joint estimation of the triplet (Y; Z1; Z2) is 
halleng-ing and 
omputationally expensive. A 
omputationally more eÆ
ient method isthe following: one �rst estimates the pro
ess Y using data on �SÆ�, and subse-quently, keeping the parameters of Y �xed, Z1 from data on r. Lastly, keepingthe parameters of (Y; Z1) �xed, one estimates the parameters of Z2 from data on�. Of 
ourse, this approa
h will lead to a result that is not as satisfa
tory as onegenerated by jointly �tting (Y; Z1; Z2), but is 
omputationally more eÆ
ient.We 
on
lude this se
tion with presenting pri
ing formulas for some standard
laims, namely zero 
oupon bonds and European put options on the NP, wherethe latter 
an be interpreted as well diversi�ed market index. In Se
tion 5, wewill study these produ
ts in the presen
e of CVA. We remark that the aÆnenature of our model and Lapla
e transforms derived using Lie symmetry analysisallow us to obtain these option pri
ing formulas, see Baldeaux & Platen (2013).7



Regarding the zero 
oupon bond PT (t) with maturity T > 0 at time t 2 [0; T ℄,we have from the real world pri
ing formula (1) with (2)PT (t) = SÆ�t E � 1SÆ�T ����At�= SÆ�t E � 1SÆ�T ����Gt�= �t�T YtE � 1YT exp�� Z Tt arsds� br Z Tt Z1sds� 
r Z Tt f(Ys)ds� ����Gt�= �t�T Yt exp�� Z Tt arsds�E0�expn�
r R Tt f r(Ys)dsoYT ����Gt1AE �exp��br Z Tt Z1sds� ����Gt� :We remark that the expe
tationsE0�expn�
r R Tt f r(Ys)dsoYT ����Gt1Aand E �exp��br Z Tt Z1sds� ����Gt�
an be 
omputed using Propositions 7.3.8 and 7.3.9 in Baldeaux & Platen (2013),whi
h we re
all in Appendix A.Having introdu
ed zero 
oupon bonds, we now attend to swaps, in parti
ular,we 
onsider a �xed-for-
oating forward starting swap settled in arrears. We �x a�nite 
olle
tion of future dates Tj, j = 0; : : : ; n, T0 � 0, and Tj � Tj�1 =: Æj > 0,j = 1; : : : ; n. The 
oating rate L(Tj; Tj+1) re
eived at time Tj+1 is set at time Tjby referen
e to a zero 
oupon bond for the time period [Tj; Tj+1), in parti
ular,P�1Tj+1(Tj) = 1 + Æj+1L(Tj; Tj+1) : (10)The interest rate L(Tj; Tj+1) is the spot LIBOR that prevails at time Tj for theperiod of length Æj+1. A long position in a payer swap entitles the investor tore
eive 
oating payments in ex
hange for �xed payments, so the 
ash 
ow attime Tj is (L(Tj�1; Tj) � �)Æj. The dates T0; : : : ; Tn�1 are known as reset dates,whereas the dates T1; : : : ; Tn are known as settlement dates. The �rst reset dateT0 is known as the start date of the swap. We alert the reader to the fa
t thatthis is the 
onventional way of introdu
ing LIBOR rates, see Filipovi�
 (2009) forre
ent developments. For t � T0, the real world pri
ing formula (1) gives with(2) the following value for a swap:FS�;T0(t) := E nXj=1 SÆ�tSÆ�Tj (L(Tj�1; Tj)� �) Æj ����At! : (11)8



We now show how to rewrite the value of a swap as the di�eren
e of a zero 
ouponbond and a 
oupon bearing bond. From equation (11), we obtainFS�;T0(t) = nXj=1 E SÆ�tSÆ�Tj � 1PTj (Tj�1) � (1 + �Æj)� ����At! : (12)Fo
ussing on the 
omputation of a single term in this sum we obtainE SÆ�tSÆ�Tj � 1PTj (Tj�1) � (1 + �Æj)� ����At!= E SÆ�tSÆ�TjPTj (Tj�1) ����At!� (1 + �Æj)E SÆ�tSÆ�Tj ����At!= E SÆ�tSÆ�Tj�1 1PTj(Tj�1)E SÆ�Tj�1SÆ�Tj ����ATj�1! ����At!�(1 + �Æj)PTj (t)= PTj�1(t)� (1 + �Æj)PTj(t) : (13)Substituting equation (13) into (12), we obtainFS�;T0(t) = PT0(t)� nXj=1 
jPTj(t) ; (14)where 
j = �Æj, j = 1; : : : ; n� 1 and 
n = 1+�Æn. We remark that equation (14)is analogous to equation (13.2) in Musiela & Rutkowski (2005). In Se
tion 5, wewill show that in the presen
e of default risk, even a simple linear produ
t like aswap is, in fa
t, treated like an option on a swap, or a swaption, whi
h we nowintrodu
e.The owner of an option on the above des
ribed swap with strike rate � maturingat T = T0 has the right to enter at time T the underlying �xed-for-
oating forwardstarting swap settled in arrears. The real world pri
ing formula (1) yields with(2) the following pri
e for su
h a 
ontra
t:PS�;T0 := SÆ�t E (FS�;T0(T0))+SÆ�T0 ����At! : (15)We remark that, as dis
ussed in Se
tion 13.1.2 in Musiela & Rutkowski (2005),it seems diÆ
ult to develop 
losed form solutions for swaptions. However, aswe employ a tra
table model, we 
an easily pri
e swaptions via Monte Carlomethods: from equation (15), it is 
lear that in order to pri
e the swaption, weneed to have a

ess to the joint distributions of (YT ; R Tt f r(Ys)ds) 
onditional onYt, and (Z1T ; R Tt Z1sds) 
onditional on Z1t . These have been derived, for instan
e,in Se
tions 6.3 and 6.4 of Baldeaux & Platen (2013), whi
h means that we 
anpri
e swaptions using an exa
t Monte Carlo s
heme.9



For purposes of 
redit valuation adjustment (CVA), it is 
onvenient to introdu
ea forward start swaption: here the expiry date T of the swaption pre
edes theinitiation date T0 of the swap, i.e. T � T0. The real world pri
ing formula (1)asso
iates the following value with this 
ontra
t:PS�;T0;T (t) := SÆ�t E �(FS�;T0(T ))+SÆ�T ����At� :We will return to forward start swaptions when dis
ussing CVA.Finally, we show how to pri
e a European put option on the NP, where we employLemma 8.3.2 of Baldeaux & Platen (2013), see also Filipovi�
 (2009), and weexpli
itly emphasize the dependen
e on Z1t , Yt and St, whi
h will be relevantwhen dis
ussing CVA. From Corollary 3.2, we getpT;K(t; Z1t ; Yt; St) = SÆ�t E �(K � SÆ�T )+SÆ�T ����At�= SÆ�t E �(K � SÆ�T )+SÆ�T ����Gt�= KE �SÆ�tSÆ�T � SÆ�tK �+ ����Gt!= KE ��exp f� ln(Y (t; T ))g � ~K�+ ����Gt� ;where ~K = SÆ�tK , Y (t; T ) = SÆ�TSÆ�t . Hen
e from Lemma 8.3.2 in Baldeaux & Platen(2013), for w > 1 and { the imaginary unit, it followsSÆ�t E �(K � SÆ�T )+SÆ�T ����Gt�= K2� Z<E �exp f(w + {�) (� ln(Y (t; T )))g ����Gt� ~K�(w�1+{�)(w + {)(w � 1 + {�)d� :We now dis
uss the 
omputation of the above 
onditional expe
tationE �exp f(w + {�) (� ln(Y (t; T )))g ����Gt� :From equation (6), we haveE �exp f(w + {�) (� ln(Y (t; T )))g ����Gt�= E �exp��(w + {�)�Z Tt rsds+ ln��T�t �+ ln(YT )� ln(Yt)�� ����Gt�= exp��(w + {�) Z Tt arsds� (w + {�) ln��T�t ��Y (w+{)�t10



E �exp��(w + {�) Z Tt brZ1sds� ����Gt�E �exp��(w + {�) Z Tt 
rf 1(Ys)ds�Y �(w+{�)T ����Gt�=: f(�; Z1t ; Yt) :Here E �exp��(w + {�) Z Tt brZ1sds� ����Gt�and E �exp��(w + {�) Z Tt 
rf 1(Ys)ds�Y �(w+{�)T ����Gt�
an be 
omputed using Propositions 7.3.8 and 7.3.9 in Baldeaux & Platen (2013).Hen
e, we obtainpT;K(t; Z1t ; Yt; St) = K2�R< f(�; Z1t ; Yt) expn�(w + {�)�R Tt arsds+ ln(�T�t )�o ( ~K)�(w�1+{�)(w+{�)(w�1+{�)d� :The above formulas will be employed in Se
tion 5.4 Pri
ing Credit Default Swaps under theBen
hmark Approa
hWe now dis
uss how to pri
e CDSs. Firstly, we summarize a CDS transa
tion.Consider two parties: A, the prote
tion buyer, and B, the prote
tion seller. If athird party, say C, the referen
e 
ompany, defaults at a time � , where � is betweentwo �xed times Ta and Tb, B pays A a 
ertain �xed amount, say L. In ex
hangeA pays B 
oupons at a rate R at time points Ta+1; : : : ; Tb, or until default.Under the ben
hmark approa
h, the te
hniques from Filipovi�
 (2009) 
an be
ombined with Lapla
e transforms. Using the real world pri
ing formula, thevalue of this 
ontra
t to B at a time t < Ta is given byCDSt := SÆ�t E �1fTa<��TbgR� � T�(�)�1SÆ�� ����At�+SÆ�t bXi=a+1�iRE 1f�>TigSÆ�Ti ����At!�SÆ�t LE �1fTa<��TbgSÆ�� ����At� ;where Æi = Ti � Ti�1, and T�(�) is the �rst of the Ti's following � . The inter-pretation is 
lear, the �rst two terms represent payments from party A to party11



B, where the �rst term represents the amount a

rued between the last paymentbefore default, made at time T�(�)�1, and the default time � . The last term rep-resents the payment to be made by B in 
ase C defaults. Using the terminologyfrom Filipovi�
 (2009), the se
ond term is a zero re
overy zero 
oupon bond, apayment R is only made at Ti if default o

urs after Ti. The third term is apartial re
overy at default zero 
oupon bond with payment L, and so is the �rstterm, for whi
h the payment at default is (� � T�(�)�1)R.We �rstly value the zero re
overy zero 
oupon bond, where we use Lemma 3.2:P 0T (t) := SÆ�t E �1f�>TgSÆ�T ����At�= 1f�>tgSÆ�t exp�Z t0 �sds�E �1f�>TgSÆ�T ����Gt�= 1f�>tgSÆ�t exp�Z t0 �sds�E � 1SÆ�T E �1f�>Tg ����GT� ����Gt�= 1f�>tgSÆ�t exp�Z t0 �sds�E0�expn� R T0 �sdsoSÆ�T ����Gt1A= 1f�>tgSÆ�t E0�expn� R Tt �sdsoSÆ�T ����Gt1A= 1f�>tg �t�T E � YtYT exp�� Z Tt (rs + �s)ds� ����Gt� (16)= 1f�>tg �t�T YtE0�expn� R Tt asds� b R Tt Z1sds� d R Tt Z2sds� R Tt f(Ys)dsoYT ����Gt1A= 1f�>tg �t�T Yt exp�� Z Tt asds�E �exp��b Z Tt Z1sds� ����Gt� (17)E �exp��d Z Tt Z2sds� ����Gt�E0�expn� R Tt f(Ys)dsoYT ����Gt1A ; (18)where at = art+a�t , b = br+b�, d = d�, and f(x) = 
rf r(x)+
�f�(x). We point outthat from equation (16), one 
an 
on�rm the observation from Filipovi�
 (2009)that when pri
ing a zero re
overy zero 
oupon bond, as opposed to a zero 
ouponbond, one repla
es the short rate pro
ess by rt + �t, whi
h results in a lowerpri
e. Again, the expe
ted values in equations (17) and (18) 
an be 
omputedusing Propositions 7.3.8 and 7.3.9 in Baldeaux & Platen (2013).12



We now turn to the remaining two 
omponents of the 
redit default swap pri
ingformula. We remark that it suÆ
es to fo
us onSÆ�t E �� � T�(�)�1SÆ�� 1fTa<��Tbg ����At� :From Se
tion 12.3.3.3 in Filipovi�
 (2009) we re
all that the distribution of � ,
onditional on the event f� > tg for t � u, is given byP �t < � � u ����G1 _Ht�= 1f�>tg exp�Z t0 �sds�E �1ft<��ug ����G1�= 1f�>tg exp�Z t0 �sds��exp�� Z t0 �sds�� exp�� Z u0 �sds��= 1f�>tg�1� exp�� Z ut �sds�� ;whi
h is the regular G1 _ Ht-
onditional distribution of � given f� > tg. Formore details on regular 
onditional distributions the reader is referred to Se
tion4.1.4 in Filipovi�
 (2009). To obtain the density fun
tion, we di�erentiate withrespe
t to u to obtain 1f�>tg�u exp�� Z ut �sds� ; (19)for u � t. We now pri
e the partial re
overy at default bondP pT (t) := SÆ�t E �(� � T�(�)�1)SÆ�� 1fTa<��Tbg ����At� :Using equation (19) and the Fubini theorem, we 
omputeSÆ�t E �� � T�(�)�1SÆ�� 1fTa<��Tbg ����At�= SÆ�t E �f(�)1fTa<��TbgSÆ�� ����At�= E �E �f(�)�t�� exp�� Z �t rsds�1fTa<��Tbg YtY� ����G1 _ Ht� ����At�= 1f�>tgE �Z TbTa ~f(u) exp�� Z ut rsds��u exp�� Z ut �sds� YtYudu ����At�= 1f�>tg Z TbTa ~f(u)E �exp�� Z ut rsds��u exp�� Z ut �sds� YtYu ����At� du ;where f(x) = (x� T�(x)�1) and ~f(x) = �t�x f(x). From Corollary 3.2, we obtainE �exp�� Z ut rsds��u exp�� Z ut �sds� YtYu ����At� (20)13



= E �u exp �� R ut (rs + �s)ds	YtYu ����Gt! : (21)Hen
e we 
on
lude thatP pT (t) = 1f�>tgYt Z Tt ~f(u)E �u exp �� R ut (rs + �s)ds	Yu ����Gt! du :We now dis
uss how to 
omputeE �u exp �� R ut (rs + �s)ds	Yu ����Gt! :Sin
e we haveexp�� Z ut (rs + �s)ds�= exp�� Z ut asds� b Z ut Z1sds� d Z ut Z2sds� Z ut f(Ys)ds�and �u = a�u + b�Z1u + 
�f�(Yu) + d�Z2u ;we haveE �exp�� Z ut asds� b Z ut Z1sds� d Z ut Z2s � Z ut f(Ys)ds� �uYu ����Gt�= exp�� Z ut asds��a�uE �exp��b Z ut Z1sds� ����Gt��E �exp��d Z ut Z2sds� ����Gt�E exp�� R ut f(Ys)ds	Yu ����Gt!+E �b�Z1u exp��b Z ut Z1sds� ����Gt�E �exp��d Z ut Z2sds� ����Gt��E exp�� R ut f(Ys)ds	Yu ����Gt!+E �exp��b Z ut Z1sds� jGt�E �d�Z2u exp��d Z ut Z2sds� ����Gt��E exp�� R ut f(Ys)ds	Yu ����Gt!+E �exp��b Z ut Z1sds� ����Gt�E �exp��d Z ut Z2sds� ����Gt��E 
�f 2(Yu) exp�� R ut f(Ys)ds	Yu ����Gt!! ;where all expe
tations 
an be 
omputed using Propositions 7.3.8 and 7.3.9 inBaldeaux & Platen (2013). We remark that the third term in the CDS valuationformula 
an be 
omputed as above, in this 
ase f(�) = 1.14



5 Credit Valuation Adjustment under theBen
hmark Approa
hIn this se
tion, we dis
uss the 
omputation of CVA, in the aÆne 
redit riskmodel introdu
ed in Se
tion 3. First, we introdu
e CVA as an extension of aCDS: assume two parties, A and C, have entered into a series of 
ontra
ts, theaggregate value of whi
h at time t is given by Vt. We take the point of view ofparty A, and say that Vt > 0 if the aggregate value of the 
ontra
ts at time t ispro�table to A, and Vt < 0 if the aggregate value of the 
ontra
ts is pro�table toC. For ease of exposition, we assume that party A 
annot default but C 
an, sowe dis
uss unilateral CVA, though of 
ourse bilateral CVA 
an also be dis
ussedunder the ben
hmark approa
h using the te
hniques introdu
ed in this paper.Party A now approa
hes another party, say B, for prote
tion on its portfolio Vwith C over the period [0; T ℄: in 
ase C defaults, B pays the value of the part ofthe portfolio that is not re
overed at the time of default, only if the value of theportfolio is positive to A, i.e. only if V� > 0, where � denotes the time of defaultof C. Hen
e the payment at default is(1�R)V +� ;where R is the re
overy rate and V +t := max(Vt; 0). Again, for ease of exposition,we assume that B 
annot default. Using the real world pri
ing formula, we obtainthe real world pri
e of this prote
tion asCV At := (1� R)SÆ�t E �V +�SÆ�� 1f�>Tg ����At� ; (22)for t � 0. It is 
ru
ial for CVA 
omputations, that right-way exposure and wrong-way exposure are taken into a

ount. This requires the modeling of a dependen
estru
ture between the portfolio pro
ess V and the time of default, � : under theben
hmark approa
h, the value of V depends on the num�eraire, whi
h is the NP,SÆ�, and hen
e its sto
hasti
 drivers, Y and Z1. However, � 
an in general alsobe expe
ted to depend on SÆ�: if the NP drops, whi
h a�e
ts the value of V , adefault of C 
an be more likely, or less likely, depending on the nature of 
ompanyC. In the next se
tion, we present an illustrative example in
luding 
ommodities.The exposure is 
alled right-way if the value of V is negatively related to the
redit quality of the 
ounter party and wrong-way is de�ned analogously, seeCesari, Aquilina, Charpillon, Filipovi�
, Lee & Manda (2009). Our spe
i�
ationof �, whi
h takes into a

ount Z1 and Y allows us to model this by 
hoosingf�(x) = x or f�(x) = 1x . We now 
onsider the valuation of some simple 
ontra
ts.We remark that for simpli
ity, we set R = 0 in the remainder of the paper.Firstly, we assume that Vt = SÆ�t and that A has bought prote
tion from B forthe period [0; T ℄, thenCV At = SÆ�t E �V +�SÆ�� 1ft<��Tg ����At�15



= SÆ�t P �t < � � T ����At�= SÆ�t E �1f�>tg � 1f�>Tg ����At�= 1f�>tgSÆ�t E �1� 1f�>tg1f�>Tg ����At� :Now, we haveE �1f�>tg1f�>Tg ����At� = 1f�>tg exp�Z t0 �sds�E �1f�>tg1f�>Tg ����Gt�= 1f�>tg exp�Z t0 �sds�E �E �1f�>Tg ����GT� ����Gt�= 1f�>tg exp�Z t0 �sds�E �exp�� Z T0 �sds� ����Gt�= 1f�>tgE �exp�� Z Tt �sds� ����Gt� ;where we used Lemma 3.2 with Y = 1f�>Tg and equation (4). Finally,CV At = 1f�>tgSÆ�t E �1� exp�� Z Tt �sds� ����Gt� ;and we 
ompute E �exp�� Z Tt �sds� ����Gt�as in Se
tion 4, sin
e �t is a fun
tion of aÆne pro
esses, and the relevant Lapla
etransforms are given in Propositions 7.3.8 and 7.3.9 of Baldeaux & Platen (2013).Now assume that Vt = PT (t), a zero 
oupon bond, whi
h we pri
ed in Se
tion 3.Again we 
onsider CV A over the period [0; T ℄CV At = SÆ�t E �V +�SÆ�� 1ft<��Tg ����At�= SÆ�t E �E � 1SÆ�T ����A�� 1ft<��Tg ����At�= SÆ�t E �1ft<��TgSÆ�T ����At�= 1f�>tg�SÆ�t E � 1SÆ�T ����At�� SÆ�t E �1f�>TgSÆ�T ����At��= 1f�>tg �PT (t)� P 0T (t)� ;so, 
onditional on the event f� > tg, we have represented CVA as the di�eren
ebetween a zero 
oupon bond and a zero re
overy zero 
oupon bond. We remindthe reader that the latter was pri
ed in Se
tion 4.16



Next, we dis
uss the pri
ing of a European put option in the presen
e of 
oun-terparty risk. Re
all that standard European put options were pri
ed in Se
tion3. We use the density fun
tion from equation (19), the fa
t that 1f�>tg is At-measurable, and Corollary 3.2 to obtainCV At= SÆ�t E �V +�SÆ�� 1ft<��Tg ����At�= SÆ�t E �pT;K(�; Z1� ; Y� ; SÆ�� )SÆ�� 1ft<��Tg ����At�= SÆ�t E �(K � SÆ�T )+SÆ�T 1ft<��Tg ����At�= SÆ�t E �E �(K � SÆ�T )+SÆ�T 1ft<��Tg ����G1 _ Ht� ����At�= SÆ�t E �1f�>tg Z Tt (K � SÆ�T )+SÆ�T �u exp�� Z ut �sds� du ����At�= 1f�>tgSÆ�t Z Tt E �(K � SÆ�T )+SÆ�T �u exp�� Z ut �sds� ����Gt� du= 1f�>tgSÆ�t Z Tt E �SÆ�uSÆ�u E �(K � SÆ�T )+SÆ�T ����Au��u exp�� Z ut �sds� ����Gt� du= 1f�>tgSÆ�t Z Tt E �pT;K(u; Z1u; Yu; SÆ�u )SÆ�u �u exp�� Z ut �sds� ����Gt� du : (23)In general, it seems diÆ
ult to simplify the above expression further. Essentially,this is due to the fa
t that our model in
orporates wrong-way and right-wayexposure, i.e. we allow for dependen
e between � and SÆ�. Hen
e one wouldusually employ a Monte Carlo algorithm, see e.g. Cesari, Aquilina, Charpillon,Filipovi�
, Lee & Manda (2009). We remark that in Se
tion 6.3 in Baldeaux &Platen (2013), we derived the joint law of (R ut Ysds; Yu), 
onditional on Yt, and inSe
tion 6.4 in Baldeaux & Platen (2013), the joint law of (R ut dsYs ; Yu) 
onditionalon Yt, whi
h are useful in developing respe
tive Monte Carlo algorithms.We now dis
uss the pri
ing of swaps in the presen
e of 
ounterparty risk. InSe
tion 3, we presented the value of a swap as a linear 
ombination of zero 
ouponbonds. Hen
e, if market pri
es of zero 
oupon bonds are available, a model wouldnot be required to pri
e swaps in pra
ti
e. In the presen
e of 
ounterparty risk,this is di�erent, as we now show. We set Vt = FS�;T0(t), where FS�;T0(t) isde�ned in equation (11), so we 
onsider a swap with start date T0, and we fo
uson CVA for the period [0; T ℄ for T � T0. We haveCV At := SÆ�t E �V +�SÆ�� 1ft<��Tg ����At�17



= SÆ�t E �(FS�;T0(�))+SÆ�� 1ft<��Tg ����At� ; (24)hen
e the market pri
e of 
ounterparty risk asso
iated with a swap 
an be inter-preted as a forward start swaption with random expiry date � . Again, we use thedensity fun
tion from equation (19), the fa
t that 1f�>tg is At-measurable, andCorollary 3.2 to obtainSÆ�t E �(FS�;T0(�))+SÆ�� 1ft<��Tg ����At�= SÆ�t E �E �1ft<��Tg (FS�;T0(�))+SÆ�� ����G1 _ Ht� ����At� (25)= 1f�>tgSÆ�t E �Z Tt (FS�;T0(u))+SÆ�u �u exp�� Z ut �sds� du ����At�= 1f�>tgSÆ�t E �Z Tt (FS�;T0(u))+SÆ�u �u exp�� Z ut �sds� du ����Gt�= 1f�>tgSÆ�t Z Tt E �(FS�;T0(u))+SÆ�u �u exp�� Z ut �sds� ����Gt� du : (26)Hen
e, as for the European put, we need to resort to Monte Carlo methods to
ompute equation (26). This is due to the fa
t that a

ounting for right-way andwrong-way exposure makes it diÆ
ult to 
ompute CVA analyti
ally.6 CVA for CommoditiesWe now 
onsider 
ounterparty risk for 
ommodities. In parti
ular, we 
onsider the
ase where the 
ounterparty C is dire
tly a�e
ted by the value of the 
ommodityunderlying the transa
tion. For example, say the 
ounterparty C is an airline, inwhi
h 
ase it is 
lear that the 
ompany has a large exposure to the pri
e of oil and
ould be interested in trading forward 
ontra
ts on oil with 
ompany A, whi
his assumed to be default free. However, in 
ase the pri
e of oil rises, default of
ompany C be
omes more likely. Taking into a

ount right-way and wrong-wayexposure, it is important to re
ognize that the value of the 
ommodity impa
tsboth, the value of the transa
tion V , assumed to be a forward on oil, but also thetime of default � . We hen
e model this under the ben
hmark approa
h followingDu & Platen (2012b). In parti
ular, we use Si;Æ�t to denote the value of the NP attime t, denominated in units of the i-th se
urity. A general ex
hange pri
e, whi
h
ould be a number of units of 
urren
y i to be paid for one unit of 
urren
y j, ora number of units of 
urren
y i to be paid for one unit of 
ommodity j is thengiven by X i;jt = Si;Æ�tSj;Æ�t : (27)18



In this se
tion, 
urren
y i would be the domesti
 
urren
y and 
ommodity jthe 
ommodity of interest, so j 
ould 
orrespond to oil and i to US dollars.In parti
ular, we note that if Si;Æ�t appre
iates or Sj;Æ�t depre
iates, then X i;jtappre
iates, so more units of 
urren
y i, say US dollars, have to be paid forone unit of the 
ommodity. We re
all the minimal market model (MMM) asapplied in Du & Platen (2012b). Though parsimonious, the model is tra
tableand in parti
ular allows us to in
orporate right-way and wrong-way exposure. Inparti
ular, we set Sk;Æ�t = Bkt Y kt Akt ; (28)where k 2 fi; jg and wheredY kt = �k(1� Y kt )dt+q�kY kt dW kt ;k 2 fi; jg, whereW i andW j are independent G-Brownian motions. Furthermore,Akt = Ak0 exp ��kt	 ;and Bkt = exp�Z t0 rksds� :Again, we remark that when dis
ounting Sk;Æ� and res
aling it using Ak, we ob-tain a mean-reverting pro
ess, Y k. When 
onsidering a 
urren
y, say i, ri =frit ; t � 0g is interpreted as a short rate pro
ess, and for 
ommodities rj =�rjt ; t � 0	 
an be interpreted as the 
onvenien
e yield pro
ess. Following Du &Platen (2012b), we set rit = ai + biiY it + bijY jt ;rjt = aj + bjiY it + bjjY jt ;where ai; aj; bii; bji; bij; bjj are nonnegative 
onstants, and bij 
orresponds to thesensitivity of the short rate ri to 
hanges in Y j. In parti
ular, we note that Si;Æ�and Sj;Æ� are dependent, as they share 
ommon drivers. We are now in a positionto pri
e a standard forward 
ontra
t, and re
all the relevant result from Du &Platen (2012b). Re
all that at initiation time t, the forward pri
e F i;j;Tt of oneunit of 
ommodity j to be delivered at time T , denominated in 
urren
y i, is
hosen so that the forward has no value. Using the real world pri
ing formula(1), we 
hose F i;j;Tt so thatE (X i;jT � F i;j;Tt )Si;Æ�T ����At! = 0 : (29)Solving equation (29) for F i;j;Tt produ
es Theorem 3.1 from Du & Platen (2012b),whi
h we now present. 19



Theorem 6.1 The real world pri
e at in
eption time t 2 [0; T ℄ in units of the i-th 
urren
y, for one unit of the j-th 
ommodity to be delivered at time T 2 [0;1)equals F i;j;Tt = X i;jt P jT (t)P iT (t) :We point out that P iT (t) 
orresponds to a zero 
oupon bond in 
urren
y i, whereasP jT (t) is the time t value of the delivery of one unit of the j-th 
ommodity atmaturity T , denominated in units of the 
ommodity j itself. Furthermore, weneed to know the value of the forward initiated at time t0, at an intermediatetime, say t 2 [t0; T ℄. The relevant formula is given in Theorem 3.2 in Du & Platen(2012b), whi
h we now re
all.Theorem 6.2 The real world value U i;j;t0;Tt of a forward 
ontra
t at time t forone unit of the jth 
ommodity with initiation time t0 and maturity date T equalsU i;j;t0;Tt = P iT (t)(F i;j;Tt � F i;j;Tt0 ) ;when denominated in units of the i-th 
urren
y, t0 2 [0; T ℄, t 2 [t0; T ℄, T 2 [0;1).We remark that for the model introdu
ed in this se
tion, we 
an derive 
losed-form solutions for forward pri
es and the value of forward 
ontra
ts the way wedid in Se
tion 3.Now we want to return to our 
ounterparty risk example. As we had dis
ussedbefore, the airline is more likely to default if the pri
e of the 
ommodity in
reases.Hen
e we propose the following model: we introdu
e an additional square-rootpro
ess dZt = �(� � Zt)dt+ �pZtdW kt ;where W k is a G-Brownian motion independent of W i and W j. The defaultintensity � is modeled as follows:�t = a�t + b�Y it + 
� 1Y jt + d�Zt ; (30)where b�; 
�; d� are nonnegative 
onstants and a�� is a nonnegative fun
tion. Inparti
ular, we note that if the main driver of Si;Æ�, whi
h is Y i, in
reases, thenX i;jtand �t in
rease, i.e. default be
omes more likely as the pri
e of the 
ommodityin
reases. Likewise, as the main driver of Sj;Æ�t , whi
h is Y jt , de
reases, thenX i;jt and �t in
rease, i.e. default be
omes more likely. We now 
onsider CV Afor Vt = U i;j;t0;Tt over the period [0; T ℄. We employ the density fun
tion fromequation (19), the fa
t that 1f�>tg is At-measurable, and Corollary 3.2 to obtainCV At= Si;Æ�t E � V +�Si;Æ�� 1ft<��Tg ����At�20



= 1f�>tgSi;Æ�t E �Z Tt (U i;j;t0;Tu )+Si;Æ�u �u exp�� Z ut �sds� du ����At�= 1f�>tgSi;Æ�t Z Tt E �(U i;j;t0;Tu )+Si;Æ�u �u exp�� Z ut �sds� ����Gt� du : (31)Again, one needs to resort to Monte Carlo methods to 
ompute (31), due to thefa
t that our model takes into a

ount right-way and wrong-way exposure. Wepoint out that pri
es of 
all and put options on futures on 
ommodities werederived in Du & Platen (2012b), whi
h 
an be used to redu
e the 
ost of MonteCarlo simulation.7 A Redu
ed-Form ModelThe aÆne 
redit risk model presented in Se
tion 3 is able to in
orporate right-way and wrong-way exposure, and should hen
e be useful when performing CVA
omputations. However, as we noti
ed for many produ
ts, Monte Carlo algo-rithms need to be employed when performing 
omputations. Though from e.g.Cesari, Aquilina, Charpillon, Filipovi�
, Lee & Manda (2009) this should be ex-pe
ted, we aim to produ
e a redu
ed form model in this se
tion, whi
h is moretra
table. The model assumes independen
e between default risk and �nan
ialrisk. Though not ne
essarily satis�ed for all transa
tions relevant to pra
ti
e, thisis a very tra
table model and may help to provide reasonable CVA for important
ases.We hen
e modify the model from Se
tion 3 as follows: �rstly, we model SÆ� usingthe MMM, see Platen & Heath (2010), we setdYt = (1� �Yt)dt+pYtdWt ;where W is a G-Brownian motion and we set�t = �0 exp f�tg :A 
onstant interest rate r � 0 is employed for simpli
ity, so we haveBt = exp frtg :Next, we set �t = � > 0, i.e. we employ a 
onstant default intensity. Theassumptions of Se
tion 12.3 in Filipovi�
 (2009) are satis�ed and we haveP (� > t j G1) = P (� > t j Gt) = exp f��tgand P (t < � � u j G1 _Ht) = 1f�>tg (1� exp f��(u� t)g) ;21



so the 
onditional density of � given � > t is exponential with parameter �, i.e.1f�>tg� exp f��(u� t)g : (32)This fa
ilitates 
omputations greatly, as we now demonstrate.Assume that Vt � 0 ; 8 t 2 [0; T ℄, and that the portfolio V does not generateany 
ash 
ows on the interval [0; T ℄. Furthermore, we assume that VSÆ� forms an(A; P )-martingale,CV At = SÆ�t E �V +�S� 1ft<��Tg ����At�= SÆ�t E �E �V +�S� 1ft<��Tg ����G1 _ Ht� ����At�= 1f�>tgSÆ�t E �Z Tt V +uSÆ�u � exp f��(u� t)g du ����At�= 1f�>tgSÆ�t Z Tt E �V +uSÆ�u ����At�� exp f��(u� t)g du :Sin
e V +t = Vt, one 
an 
omputeSÆ�t E �V +uSÆ�u ����At� = SÆ�t E � VuSÆ�u ����At�= SÆ�t E �E � VTSÆ�T ����Au�At�= SÆ�t E � VTSÆ�T ����At�= Vt :Hen
e we get CV At = 1f�>tgVt (1� exp f��(T � t)g) : (33)We point out that equation (33) 
an be used e.g. to deal with zero 
oupon bonds,European 
all options and swaptions, but not, for example, to deal with swaps,as the latter 
an assume negative values. We do, however, re
all our previousobservation that there exists a 
lose link with forward start swaptions, whi
h wenow exploit. Set Vt = FS�;T0(t) and 
onsider CV A over the period [0; T ℄, whereT � T0, then using the density in equation (32) we obtainCV At = SÆ�t E �V +�SÆ�� 1ft<��Tg ����At�= SÆ�t E �E �V +�SÆ�� 1ft<��Tg ����G1 _Ht� ����At�= 1f�>tgSÆ�t E �Z Tt V +uSÆ�u � exp f��(u� t)g du ����At�22



= 1f�>tg Z Tt SÆ�t E �V +uSÆ�u ����At�� exp f��(u� t)g du= 1f�>tg Z Tt SÆ�t E �(FS�;T0(u))+SÆ�u ����At�� exp f��(u� t)g du= 1f�>tg Z Tt PS�;T0;u(t)� exp f��(u� t)g du :We remark that under the minimal market model (MMM), see Platen & Heath(2010) or Baldeaux & Platen (2013), the value of a forward start swaptionamounts to the 
omputation of a one-dimensional integral. From Se
tion 3, were
all PS�;T0;T (t) = SÆ�t E �(FS�;T0(T ))+SÆ�T ����At�= SÆ�t E (PT0(T )�Pnj=1 
jPTj (T ))+SÆ�T ����At! :For the redu
ed form model, �SÆ�t = SÆ�tBt is a time-
hanged squared Bessel pro
essof dimension four, the transition density of whi
h is known in 
losed-form, seePlaten & Heath (2010):p4('(t); x;'(T ); y)= 12('(T )� '(t)) �yx� 12 exp�� x+ y2('(T )� '(t))� I1� px y'(T )� '(t)�with '(t) = �04 (exp f�tg � 1). Furthermore, it 
an be shown thatPT (t) = exp f�r(T � t)g�1� exp�� �SÆ�t2('(T )� '(t))�� ;see e.g. Platen & Heath (2010). We de�nef(t; T; y) = exp f�r(T � t)g�1� exp�� y2('(T )� '(t))�� :Hen
e we getPS�;T0;T (t) = �SÆ�t exp f�r(T � t)gZ 10 (f(T; T0; y)�Pnj=1 
jf(T; Tj; y))y p4('(t); �SÆ�t ; '(T ); y)dy ;and regarding CVA, we obtainCV At= 1f�>tg �SÆ�t Z Tt Z 10 exp f�(r + �)(u� t)g23
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Figure 1: CVA of a swap for di�erent values of ��(f(u; T0; y)�Pnj=1 
jf(u; Tj; y))+y p4('(t); �SÆ�t ; '(u); y)�dydu :Hen
e the CVA asso
iated with a swap 
an be expressed in terms of a two-dimensional integral, whi
h 
an be evaluated using Monte Carlo methods. Wenow illustrate this using the following example, where we 
hoose the following setof parameters for the NP:S = 2:3; r = 0:01; �0 = 10:0483; � = 0:0528 :Furthermore, we 
hoose T = 2, n = 3 and T0 = 2, T1 = 3, T2 = 4, T3 = 5and 
 = 0:2. For � = 0:05; 0:1; 0:15; 0:2; 0:25; 0:3 we obtain the values 0:0440,0:0838, 0:1196, 0:1521, 0:1815, 0:2081, see Figure 1. The value of the swap attime t = 0 with no probability of default is 0:4703. We have shown that CVA
an be made mu
h better a

essible to Monte Carlo methods by employing highlytra
table aÆne models. For e
onomi
 and other reasons one has often rather 
learviews on real world default intensities and dependen
ies. By using the ben
hmarkapproa
h this is suÆ
ient and the models be
ome also more realisti
 in the longrun. Most importantly, one has not to make questionable assumptions, e.g. about"risk neutral" default intensities and "risk neutral" dependen
ies.A Lapla
e Transforms for Square-RootPro
essesThe following results are based on Lennox (2011) and are 
ontained in Baldeaux& Platen (2013) as Propositions 7.3.8 and 7.3.9. Consider a square-root pro
essX = fXt ; t � 0g, wheredXt = (a� bXt)dt+p2�XtdWt (34)24



with X0 = x > 0.Proposition A.1 Assume that X = fXt ; t � 0g is given by (34) and that 2a� �2. Let � = 1 +m� � + �2 , m = 12 � a� � 1�, and � = 1�p(a� �)2 + 4��. Then ifm > �� �2 � 1,E �exp��� Z t0 dsXs�X��t �= 12�xm exp�� bx� (ebt � 1) + bmt�� b expfbtg(ebt � 1)���m+�� �2 b2x�2 sinh2( bt2 )!�=2 �(�)�(1 + �) 1F1��; 1 + �; bx� (ebt � 1)� :Finally, we present Proposition 2.0.42 from Lennox (2011).Proposition A.2 Assume that X = fXt ; t � 0g is given by equation (34) andthat 2a� � 2. De�ne A = b2 + 4��, m = 1�p(a� �)2 + 4��, � = pAx� sinh(pAt2 ) , andk = pA+b tanh(pAt2 )2� tanh(pAt2 ) . Then if a > (2�� 3)�, for � > 0, � � 0,E �X��t exp��� Z t0 dsXs � � Z t0 Xsds��= pAx 12� a2�2� sinh(pAt2 ) ��2�m exp(b(x + at)�pAx 
oth(pAt2 )2� ) k�(1+ a2�+ 12+m2 ��)�(1 + a2� + 12 + m2 � �)�(1 +m) 1F1�1� � + a2� + 12 + m2 ; 1 +m; �24k� :Referen
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