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the benchmark approach. Firstly we introduce an affine credit risk
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introduce credit valuation adjustment (CVA) as an extension of CDSs.
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default event and the value of the transaction under consideration. For
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1 Introduction

In the aftermath of the financial crisis 2007-2009 the previous separation of mar-
ket risk and credit risk has disappeared. Credit or default risks of trading parties
are no longer ignored, even for popular vanilla trades involving mainly market
risk. The posting of collateral has been widely adopted in derivative trades. This
changes the profile of credit risk of a derivative and usually affects its price. Credit
valuation adjustment (CVA) has become the market standard. It yields the ex-
pected value of loss due to possible defaults. In Cesari, Aquilina, Charpillon,
Filipovi¢, Lee & Manda (2009) an introduction to CVA is given from a practi-
cal viewpoint. The book Bielecki, Brigo & Patras (2011) presents several more
theoretically oriented perspectives on credit risk including CVA. The literature
on CVA is evolving rapidly: papers related to CVA include Brigo & Chour-
dakis (2009), Burgard & Kjaer (2011), Crépey (2011), Pallavicini, Perini & Brigo
(2011), Tang, Wang & Zhou (2011), Wu (2012).

In this paper, we discuss how to model credit risk under the benchmark approach.
Firstly we introduce an affine credit risk model.We then show how to price credit
default swaps (CDSs) and introduce CVA as an extension of CDSs. In partic-
ular, our model can capture right-way - and wrong-way exposure. This means,
we capture the dependence structure of the default event and the value of the
transaction under consideration. For simple contracts, we provide closed-form
solutions. However, due to the fact that we allow for a dependence between the
default event and the value of the transaction, closed-form solutions are difficult
to obtain in general. Hence we conclude this paper with a reduced form model,
which is more tractable.

Chapter 14 in Baldeaux & Platen (2013) follows closely the current paper, which
aims to contribute to the emerging literature by applying the benchmark approach
to CVA using a tractable model. The paper is organized as follows: Section 2 sets
a general framework for financial modeling by introducing some key relationships
of the benchmark approach due to Platen (2002), see Platen & Heath (2010).
Section 3 describes an affine credit risk model along the lines of results in Filipovi¢
(2009). Section 4 discusses the pricing of CDSs under the benchmark approach.
CVA is then studied in Section 5. An example of CVA in a commodity context
is analyzed in Section 6. Section 7 presents a reduced form model, which allows
to obtain various explicit formulas.

2 Comments on the Benchmark Approach

When modeling and pricing in finance there has been a strong emphasis in theory
and practice on risk neutral modeling under an assumed equivalent risk neutral
probability measure. The existence of a risk neutral measure is a rather strong
assumption, which may not be realistic for longer term contracts, as argued in
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Platen & Heath (2010). By using the numéraire portfolio (NP) S{* as numéraire
or benchmark, as suggested by Long (1990) and Platen (2002), one can model the
market dynamics under the real world probability measure. The defining property
of the NP guarantees for all nonnegative portfolios S2* that their benchmarked
value 5

s _ S|

t Sf*
forms a supermartingale on the given filtered probability space (2,4, A, P) with
A = (A;)i>o satisfying the usual conditions. More precisely, one has
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for all 0 < t < s < oo. It has been pointed out in Platen & Heath (2010)
that one can avoid the classical risk neutral assumptions and can conveniently
work in a much wider modeling work. Strong arbitrage in the sense of Platen &
Bruti-Liberati (2010) and Platen & Heath (2010) is then automatically excluded.
When aiming for the minimal possible price for a replicable, nonnegative bench-
marked contingent claim fIT, which matures at a bounded stopping time T, is

Ar-measurable and integrable such that E (I—:TT|AT> < o0, it follows the real

world pricing formula
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for 0 <t < T < oo for the benchmarked price of the claim, see Platen & Heath
(2010). This price, when denominated in domestic currency, is then obtained as

V, = VS0~ (2)

In Du & Platen (2012a) the concept of benchmarked risk minimization has been
proposed, which derives the real world pricing formula (1) also for nonhedgeable
benchmarked contingent claims. Under this concept the benchmarked profit and
loss is minimized when hedging the claim. More precisely, it is orthogonal to
benchmarked traded wealth in the sense that the product of the benchmarked
profit and loss with any benchmarked self-financing portfolio forms a local mar-
tingale.

In CVA one faces the problem that traditionally one is used to price counterparty
credit exposure under an assumed risk neutral probability measure, but crucial
information about the likelihood of default of counterparties and their dependen-
cies is available under the real world probability measure. This paper suggests
to resolve this issue by considering the problem of CVA entirely under the real
world probability measure. This approach provides the advantage that one can
employ more realistic models and has not to make assumptions about a putative
risk neutral probability measure with respect to credit events. The paper will



demonstrate this approach by employing an affine model which permits for var-
ious contracts explicit formulas, and yields for other quantities expressions that
can be easily evaluated via Monte Carlo methods.

It is important to identify for the given market model the NP or a proxy of the
NP. The NP is known to be the growth optimal portfolio of the given investment
universe, and maximizes expected logarithmic utility, see Kelly (1956) and Platen
& Heath (2010). In practice, the NP can be approximated by a well diversified
portfolio, as shown by diversification theorems in Platen & Heath (2010) and
Platen & Rendek (2012). A simple, readily available proxy for the NP is a well
diversified market index or the MSCI World total return index.

3 An Affine Credit Risk Model

In this section, we aim to introduce a reasonably realistic, yet tractable model
for credit risk. In particular, our model allows for a stochastic interest rate, and
a stochastic default intensity, both of which are correlated with the numéraire
portfolio (NP). We point out that our model satisfies the assumptions (D1) and
(D2), in Filipovié (2009), and hence we can employ the results presented in this
reference. For further technical background, we refer the reader to this reference.

We fix a probability space (€2, A, P), where P denotes the real world probability
measure. Next, we present a model for the evolution of financial information.
We remark that in our model, only having access to market information is not
sufficient to decide whether or not default has occurred or not. We now present,
this model, which is a doubly stochastic intensity based model. We introduce a
filtration G = (G;),s,, satisfying the usual conditions and set

gooza{gtatZO}CAa

and a nonnegative G-progessively measurable process A = {\;, t > 0} with the
property
t
/ Agds < oo, P—a.s. forallt>0.
0

Next, we fix an exponential random variable ¢ with intensity parameter 1, inde-
pendent of G, and we define the random time

t
T = inf{t:/ Agds > qﬁ}
0

assuming values in (0, 0o]. From the independence property of ¢ and G, we have

that
P(T>t|goo):P<¢>>/t)\sds|goo> :exp{—/t)\sds}. (3)
0 0



Lastly, we condition both sides in the preceding equation on G; and obtain

P(T>t|gt):exp{—/0t)\sds}. (@)

Equations (4) and (3) are consistent with the assumptions (D1) and (D2) in
Filipovié¢ (2009), which are hence satisfied in our model. Next, we set

Hy = 1<y

and H; = 0 {Hy, s < t} and set A; = G;VH,, the smallest o-algebra containing G,
and H;. We remark that the inclusion G; C A, is strict, having access to G; does
not allow us to decide whether default has occurred by ¢, i.e. the event {7 < ¢}
is not included in G;, so 7 is not a G-stopping time. We find this realistic, since
it means that only by observing financial data such as stock prices and interest
rates, one cannot determine whether default has occurred or not, as additional,
non-financial factors, can be assumed to be relevant to this decision too. The
following lemma is Lemma 12.1 in Filipovié (2009).

Lemma 3.1 Lett > 0. Then for every A € Ay, there exists a B € G; such that

An{r>t}=Bn{r>t}.

We have the following corollary to Lemma 3.1, the proof of which is analogous
to the proof of Lemma 12.1 in Filipovi¢ (2009).

Corollary 3.1 Lett > 0. Then for every A € Ay, there exists a B € G; such
that
An{r<t}=Bn{r <t}. (5)

The first part of the following lemma is Lemma 12.2 in Filipovié¢ (2009), the
second part of the next lemma forms part of Lemma 12.5 in Filipovié¢ (2009).

Lemma 3.2 Let Y be a nonnegative random variable and \ and T be as defined
above. Then

t
E <1{T>t}Y ‘ At> = 1{r>y exp {/ /\st} E (1{r>t}Y ‘ gt) )
0

for allt > 0. If Y s also G, measurable, then we have

E (1{T<t}Y ‘ At) - l{TSt}E <Y ‘ Qt> .



Proof: The first part of the lemma is proven in Filipovié¢ (2009), see the proof
of Lemma 12.2. For the second part, let A € A;, and note that by Corollary
3.1, there exists a B € G, with property (5). We now use the definition of
conditional expectation, the fact that 1;,<;14 = 1;<p1p, that ¥ € G, and
that P(1 <t|Gw) = P(1 < t|G;), which follows from equations (4) and (3):

A B
B

= J 2 (2 (e o) o) or
B
B

- [ (Y ‘ gt> E (1{T<t} gt> aP
B

= J P (rem (v]ar) ar)or
B
B

5)

= / 1{7§t}E< ‘
A
Hence we have

E (1{T<t}Y At> = E <1{T<t}E <Y ‘ Qt> ‘At> - 1{T§t}E <Y ‘ Qt> .

Y
Y dP .

The following formula is useful, when considering claims which are independent
of default risk. It is an immediate corollary to Lemma 3.2.

Corollary 3.2 LetY be a nonnegative random variable which is G, measurable.

Then

(] - (r]a)
We now present our specific model, which is based on affine processes. Firstly,
we define the square-root process Y = {Y;, t > 0}, given by

dY; = (1 — nY,)dt + /Y, dW,,
where W1 is a G-Brownian motion and we define the deterministic time-change

ay = agexp {nt} ,
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and we model the discounted NP as
Sf* = O[t}/;g .

In this context, the time change can be interpreted as follows. When expressing
the discounted NP in units of the time change, we obtain a process which mean-
reverts. In fact, it can be interpreted as mean-reverting around the time change.
We now describe the short-rate using the stochastic process

re=a; + 6 Z + (V) (6)

where a” is a nonnegative deterministic function of time and 0" and ¢" are non-
negative constants and f"(z) = z or f"(x) = <. The process Z' = {Z},t > 0}
is a square-root process given by

dz} = k' (0" — Z)dt + o'/ Z}dW} , (7)

where k!, 01, 0! > 0 and 2k'0 > (0!)?, where W? is an independent G- Brownian
motion. We now introduce the NP, which is given by

Sf* = Btgf* ) (8)

where B; = exp {fot rsds}. Finally, we introduce a model for the stochastic

intensity
No=a} +0 7+ (YY) + 72 (9)

where x2,60%, 02 > 0, a is a nonnegative function of time. The constants b, ¢,
and d* are nonnegative, and Z2 = {Z2,t > 0} is a square-root process:

d72 = K2(02 — Z2)dt + o>/ Z2dW?

where 2x20> > (02)?, and W3 is an independent G-Brownian motion. We con-
clude that A, r, and S°" are dependent, as they share some of their respective
stochastic drivers. Clearly, a joint estimation of the triplet (Y, Z;, Z5) is challeng-
ing and computationally expensive. A computationally more efficient method is
the following: one first estimates the process Y using data on S%, and subse-
quently, keeping the parameters of YV fixed, Z; from data on r. Lastly, keeping
the parameters of (Y, 7Z;) fixed, one estimates the parameters of 7, from data on
A. Of course, this approach will lead to a result that is not as satisfactory as one
generated by jointly fitting (Y, Z;, Z5), but is computationally more efficient.

We conclude this section with presenting pricing formulas for some standard
claims, namely zero coupon bonds and European put options on the NP, where
the latter can be interpreted as well diversified market index. In Section 5, we
will study these products in the presence of CVA. We remark that the affine
nature of our model and Laplace transforms derived using Lie symmetry analysis
allow us to obtain these option pricing formulas, see Baldeaux & Platen (2013).



Regarding the zero coupon bond Pr(t) with maturity 7" > 0 at time ¢ € [0, 7],
we have from the real world pricing formula (1) with (2)

PT(t) = SS*E <L At>
= Sf*E <— gt)

o 1 T T T
= —LV,E <—exp{—/ agds—b’"/ Zslds—c’"/ f(Ys)ds} ‘Qt>
ar Yr ¢ t t
T T r
o T exp{—c [ f (Ys)ds}
= —Y,exp —/ a,ds v B G
t

Yr
T
E (exp{—br/ Z;ds} ‘gt> .
¢

We remark that the expectations

o (T e
exp{ c f;/Tf (Ys)ds} ‘gt

and

T
E<exp{—b’"/ Z;ds} ‘%)
t

can be computed using Propositions 7.3.8 and 7.3.9 in Baldeaux & Platen (2013),
which we recall in Appendix A.

Having introduced zero coupon bonds, we now attend to swaps, in particular,
we consider a fized-for-floating forward starting swap settled in arrears. We fix a
finite collection of future dates T}, j =0,...,n, Ty > 0, and T; — T;_4 =: 6; > 0,
j=1,...,n. The floating rate L(1},T};41) received at time Tj is set at time T}
by reference to a zero coupon bond for the time period [T}, Tj11), in particular,
Prt (Ty) =14 01 L(T}, Ta) (10)
The interest rate L(7},T;1) is the spot LIBOR that prevails at time 7} for the
period of length d,41. A long position in a payer swap entitles the investor to
receive floating payments in exchange for fixed payments, so the cash flow at
time T} is (L(T}_1,T};) — )d;. The dates Ty,...,T,,_; are known as reset dates,
whereas the dates T1,..., T, are known as settlement dates. The first reset date
Ty is known as the start date of the swap. We alert the reader to the fact that
this is the conventional way of introducing LIBOR rates, see Filipovié (2009) for
recent developments. For ¢t < Ty, the real world pricing formula (1) gives with
(2) the following value for a swap:
At> : (11)

n 55*
FSun(t)i= B (Z L (LT, T) — )

7=1 T]‘




We now show how to rewrite the value of a swap as the difference of a zero coupon
bond and a coupon bearing bond. From equation (11), we obtain

FSyny(t) = Z:;E (gg (ﬁm e 14;6]-)) ‘At) . (12)

Focussing on the computation of a single term in this sum we obtain

Sp- 1
" (S_% (PTj (Tj-1) e Iﬂsj)) ‘At>
- E (# ‘ At> — (14 k0,)E (% At)
ST;PTJ‘ (ijl) ST;

= B E|—2=|Ar_, | |A
(s%;l Py, () (s%; )

—(]_ + Héj)PTj (t)
— Py, (1) — (1+r0)Py (1) (13)

Substituting equation (13) into (12), we obtain

n

FSH,TO (t) = PTO (t) - Z CjPTj (t) ) (14)

=1

where ¢; = kdj, j=1,...,n—1 and ¢, = 1+ kd,,. We remark that equation (14)
is analogous to equation (13.2) in Musiela & Rutkowski (2005). In Section 5, we
will show that in the presence of default risk, even a simple linear product like a
swap is, in fact, treated like an option on a swap, or a swaption, which we now
introduce.

The owner of an option on the above described swap with strike rate x maturing
at T' = Ty has the right to enter at time 7" the underlying fixed-for-floating forward
starting swap settled in arrears. The real world pricing formula (1) yields with
(2) the following price for such a contract:

—+
s o=t ({200 1) 15

We remark that, as discussed in Section 13.1.2 in Musiela & Rutkowski (2005),
it seems difficult to develop closed form solutions for swaptions. However, as
we employ a tractable model, we can easily price swaptions via Monte Carlo
methods: from equation (15), it is clear that in order to price the swaption, we
need to have access to the joint distributions of (Y7, ftT f7(Y;)ds) conditional on
Y;, and (Z}, [ Z!ds) conditional on Z}. These have been derived, for instance,
in Sections 6.3 and 6.4 of Baldeaux & Platen (2013), which means that we can
price swaptions using an exact Monte Carlo scheme.
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For purposes of credit valuation adjustment (CVA), it is convenient to introduce
a forward start swaption: here the expiry date T of the swaption precedes the
initiation date Ty of the swap, i.e. T < Tj. The real world pricing formula (1)
associates the following value with this contract:

At> |

FS,. . (T))*
PSunr(t) = 8" E (&
We will return to forward start swaptions when discussing CVA.

5.
St

Finally, we show how to price a European put option on the NP, where we employ
Lemma 8.3.2 of Baldeaux & Platen (2013), see also Filipovi¢ (2009), and we
explicitly emphasize the dependence on Z!, Y; and S;, which will be relevant
when discussing CVA. From Corollary 3.2, we get

. So)+
prxt 7t vios) = sPE (g )
* (K — 56*
= S'FE ( t>

(30 )

_ <<exp{—ln (1)}~ k)’

gt) )

5 5
where K = 2 V(t,T) = S% Hence from Lemma 8.3.2 in Baldeaux & Platen
(2013), for w > 1 and ¢ the 1maginary unit, it follows

_ Qo+
ST E (M Qt>
ST

- o [ (e Cueen |6)

Kf(wflJrM)
d\
(w+12)(w—1+ 1))

We now discuss the computation of the above conditional expectation

B (o {00+ ) (W6 T} [ )

From equation (6), we have

E (o (0 + ) (- (1)} | )

— (ot ([ e (2) s -m) o)

T
= exp {—(w + 1) / alds — (w +1A) In (—T> } y, (A
t a
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T
E (exp{—(w—i—z)\)/ b’"ZSlds} ‘Qt>
tT
B (exp{_(w+2)\)/ Crfl(y*s)dS}YT—(w-l-M) gt>
t
= f(\ZLY,).

E <exp {—(w + 1)) /tT b’"Zslds} ‘ Qt)

E(exp{—(w—l—l)\) /tTc"f (Y)ds}Y (weh) Qt>

can be computed using Propositions 7.3.8 and 7.3.9 in Baldeaux & Platen (2013).
Hence, we obtain

Here

and

K
pTK(t Ztanast) 2
m
(f()f(wflJrzA)

S f Oz v exp { = (w4 ) (7 ads +n(2)) B0t an

The above formulas will be employed in Section 5.

4 Pricing Credit Default Swaps under the
Benchmark Approach

We now discuss how to price CDSs. Firstly, we summarize a CDS transaction.
Consider two parties: A, the protection buyer, and B, the protection seller. If a
third party, say C, the reference company, defaults at a time 7, where 7 is between
two fixed times T, and T}, B pays A a certain fixed amount, say L. In exchange
A pays B coupons at a rate R at time points T, 1, ..., T}, or until default.

Under the benchmark approach, the techniques from Filipovié¢ (2009) can be
combined with Laplace transforms. Using the real world pricing formula, the
value of this contract to B at a time ¢t < T, is given by

At>

T —Thr—1
2

b
1o,
+55 Y aiRE( o ‘At>
T;

i=a+1

1ir,er
_Sf*LE< {TaS<6*§Tb} ‘At> :

where §; = T; — T;_y, and Tp( is the first of the 7;’s following 7. The inter-
pretation is clear, the first two terms represent payments from party A to party

CDS, = SIFE (1{Ta<T<Tb}R

11



B, where the first term represents the amount accrued between the last payment
before default, made at time Tjg(;)_;, and the default time 7. The last term rep-
resents the payment to be made by B in case C' defaults. Using the terminology
from Filipovi¢ (2009), the second term is a zero recovery zero coupon bond, a
payment R is only made at T; if default occurs after 7;. The third term is a
partial recovery at default zero coupon bond with payment L, and so is the first
term, for which the payment at default is (7 — Tz()_1) R.

We firstly value the zero recovery zero coupon bond, where we use Lemma 3.2:

1
PO(t) == Sf*E( =T 4,

1
= 1{T>t}S exp {/ )\Sds} E< {;’;T} gt>
1
= 1{T>t}St exp {/ )\sds} E <55 E (1{T>T} gT) ‘Qt>
0

s t exp {—fo )\sds
= 1{T>t}St* exp {/ )\st} E ‘ gt
0

5.
St

exp {— ftT )\sds}

=145, S"F 2 ‘ G
T
Y, T
= 1{T>t}—E <7; exp { /t (rs + As)dS} ‘ 9t> (16)
= 1{T>t}a—TYt
exp{—ftTasds—bf Zlds—dft Z2ds—ft ds}
Yr ‘ '

= Loy — Ytexp{ /tT asds}E <exp {—b/tT Z;ds} ‘gt> (17)
- (exp{—d/tT ngs} ‘Qt> - exp{—fif(ﬁ)ds} ‘Qt o

where a; = al+a}, b = b"+b*, d = d*, and f(z) = " f"(x)+c* f*(x). We point out
that from equation (16), one can confirm the observation from Filipovi¢ (2009)
that when pricing a zero recovery zero coupon bond, as opposed to a zero coupon
bond, one replaces the short rate process by r; + )y, which results in a lower
price. Again, the expected values in equations (17) and (18) can be computed
using Propositions 7.3.8 and 7.3.9 in Baldeaux & Platen (2013).
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We now turn to the remaining two components of the credit default swap pricing
formula. We remark that it suffices to focus on
7 — Tp(r)-1
SiE (TT 1er, <r<my) At) .
9

From Section 12.3.3.3 in Filipovi¢ (2009) we recall that the distribution of 7,
conditional on the event {7 > t} for ¢t < u, is given by
goo \ Ht)

t
= 1{7‘>t} €xXp {/ )‘sds} E (1{t<7§u} goo)
0
t t u
= 1y exp{/ )\Sds} <exp {—/ )\Sds} — exp{—/ )\sds}>
0 0 0
= 1y <1 —exp{—/ )\sds}> ,
t

which is the regular G, V H;-conditional distribution of 7 given {7 >t¢}. For
more details on regular conditional distributions the reader is referred to Section
4.1.4 in Filipovi¢ (2009). To obtain the density function, we differentiate with

respect to u to obtain
U
17> Au €Xp {—/ )\Sds} , (19)
t

for u > t. We now price the partial recovery at default bond

T —Tg(r—
Pp(t) == S{"E <%1{Ta<r<n} At) -
Using equation (19) and the Fubini theorem, we compute

T = TB 7)—1
S E (753*( ) Lir, <r<my At)

F(T) 1, <r<m
—= Sg’“E( ;{S’g*< — b} At

P<t<7§u

)4

a T
= F <E <f(7')a—t exp {—/ T ds} 1{Ta<T<Tb}Y
T t
Y,

Ty _ u
— 1{T>t}E< f(u) exp{—/ rsds})\ exp{ )\ ds}? )
T, t
Ty u v,
= 1 E - ds ¢ Ay >\ ds b 2
Lirsty - f(u) (exp{ / rs S} exp{ s}Y )

where f(z) = (v — Tpy-1) and f(z) = 2 f(x). From Corollary 3.2, we obtain

(exp{/ }C} - [}

o~

S

o~

)



. (Au exp {— [(rs + \s)ds} Y,
- -

Qt> : (21)
Hence we conclude that

PE®) = 1o ) /tT F)E (Au exp {— [(rs + As)ds} Qt> s

Ya

We now discuss how to compute

5 ()\u exp {— ["(rs + A;)ds} ‘ Qt) ‘

Ya

Since we have

exp{—/ (rs—i-)\s)ds}

¢

= exp{—/ asds—b/ Zslds—d/ Zfds—/ f(Ys)ds}
¢ ¢ ¢ ¢

Ay = ap + 020+ Y, +d 22,

and

we have

<exp{ / ads—b/qulds—d/tqu—/tuf(Ys)ds})\? Qt>
— exp { a ds} ( AR <exp{—b/tquld8} ‘@)
. <e {_ mg} ‘g> (exp{_fim)dS} ‘g>
FE <b*z exp{ t Z;ds} ‘@) E (exp{—d/tu ngs} ‘Qt>
(

_I_

&

X

exp { — ft ds}‘ )

(
: o af)s(oael +f 5]

exp {— ft ds}‘ )

+E

&

X

ir(on{ o m}\@ (ofof 0} )
Aol

where all expectations can be computed using Propositions 7.3.8 and 7.3.9 in
Baldeaux & Platen (2013). We remark that the third term in the CDS valuation
formula can be computed as above, in this case f(7) = 1.
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5 Credit Valuation Adjustment under the
Benchmark Approach

In this section, we discuss the computation of CVA, in the affine credit risk
model introduced in Section 3. First, we introduce CVA as an extension of a
CDS: assume two parties, A and C, have entered into a series of contracts, the
aggregate value of which at time ¢ is given by V;. We take the point of view of
party A, and say that V; > 0 if the aggregate value of the contracts at time  is
profitable to A, and V; < 0 if the aggregate value of the contracts is profitable to
C. For ease of exposition, we assume that party A cannot default but C can, so
we discuss unilateral CVA, though of course bilateral CVA can also be discussed
under the benchmark approach using the techniques introduced in this paper.

Party A now approaches another party, say B, for protection on its portfolio V'
with C over the period [0,T]: in case C defaults, B pays the value of the part of
the portfolio that is not recovered at the time of default, only if the value of the
portfolio is positive to A, i.e. only if V. > 0, where 7 denotes the time of default
of C. Hence the payment at default is

(1 - R)VT+ )

where R is the recovery rate and V" := max(V},0). Again, for ease of exposition,
we assume that B cannot default. Using the real world pricing formula, we obtain
the real world price of this protection as

n

CVA = (1 — R)Sg*E (%1{T>T} At> , (22)
for ¢t > 0. It is crucial for CVA computations, that right-way exposure and wrong-
way exposure are taken into account. This requires the modeling of a dependence
structure between the portfolio process V' and the time of default, 7: under the
benchmark approach, the value of V' depends on the numéraire, which is the NP,
S% . and hence its stochastic drivers, Y and Z'. However, 7 can in general also
be expected to depend on S%: if the NP drops, which affects the value of V, a
default of C can be more likely, or less likely, depending on the nature of company
C. In the next section, we present an illustrative example including commodities.
The exposure is called right-way if the value of V' is negatively related to the
credit quality of the counter party and wrong-way is defined analogously, see
Cesari, Aquilina, Charpillon, Filipovi¢, Lee & Manda (2009). Our specification
of A\, which takes into account Z' and Y allows us to model this by choosing
fAx) =z or fA(z) = L. We now consider the valuation of some simple contracts.
We remark that for simplicity, we set R = 0 in the remainder of the paper.

Firstly, we assume that V; = S and that A has bought protection from B for
the period [0, T, then
A)

) V+
CVA, = S°E (S—Z*l{KTST}

15



= Sg*P<t<T§T‘At>

9

= 14-yS/E (1 — 1oy Ly

= S)'E (1{T>t} — 1oy

A).

-At) = 1{T>t}eXP{ >\ }E<1{T>t}1{T>T} gt>

= 1{rsgexp { )\ ds} E ( (1{T>T} gT) ‘ gt>
= 1{T>t}exp{ )\dS}E(G {— )\dS} ‘gt>
= 1{T>t}E (exp { / )\st} ‘ gt) )

t

where we used Lemma 3.2 with Y = 1.7y and equation (4). Finally,

T
CVA =145y S)"E (1 — exp {—/ Ast} ‘@) )
t
and we compute
T
E <exp{—/ )\Sds} gt>
t

as in Section 4, since ); is a function of affine processes, and the relevant Laplace
transforms are given in Propositions 7.3.8 and 7.3.9 of Baldeaux & Platen (2013).

Now, we have

E <1{T>t}1{T>T}

Now assume that V; = Pr(t), a zero coupon bond, which we priced in Section 3.
Again we consider CV A over the period [0, T]

V-
CVA = 55* <S5 1{t<r<T} At)
- SJ*E (1{t<T<T}

= ¢

= S'E (E (ié
Sy

AT) 1{t<T§T} At)
5 At)
T
1
= 1y <Sf*E (s At> - E< {S;T}
T

14))
= Ly (Pr(t) - PX(Y))

so, conditional on the event {7 > t}, we have represented CVA as the difference
between a zero coupon bond and a zero recovery zero coupon bond. We remind
the reader that the latter was priced in Section 4.
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Next, we discuss the pricing of a European put option in the presence of coun-
terparty risk. Recall that standard European put options were priced in Section
3. We use the density function from equation (19), the fact that 1y, is A;-
measurable, and Corollary 3.2 to obtain

CV A,
S +
=S}*F (SZ Litcr<my At)
T, 2 Y,, S
= SE*E' (pT, ( SJ* )]—{t<7—<T} A )
K — Sk)*
=S)'E <( 5 ) lycr<ry At)
T
K — S5
= Sf*E (E <(57)1{t<T<T} G V Ht) ‘At>
T

Ox U
= Sf*E (1{T>t}/ (1(5765))\ exp{ / )\sds} du At>
t t
T O U
= 1{r>t}5’g* E (%)\ eXp{ / )\Sds} ‘Qt> du
t t

0 K — 0%\ 4 u
= 1{r>t}55* E (?g <(575T) Au) Ay €XP {_/ )\sds} ‘gt> du
t T ¢

T 7Y, S5 u
_ 1{T>t}sf*/t E(pT’K(“’ T ))\uexp{—/t )\Sds} ‘gt> du.  (23)

In general, it seems difficult to simplify the above expression further. Essentially,
this is due to the fact that our model incorporates wrong-way and right-way
exposure, i.e. we allow for dependence between 7 and S%. Hence one would
usually employ a Monte Carlo algorithm, see e.g. Cesari, Aquilina, Charpillon,
Filipovié, Lee & Manda (2009). We remark that in Section 6.3 in Baldeaux &
Platen (2013), we derived the joint law of (" Ysds, Y,), conditional on Y}, and in
Section 6.4 in Baldeaux & Platen (2013), the joint law of ([ 45 'Y,,) conditional

A
on Y}, which are useful in developing respective Monte Carlo algorlthms.

We now discuss the pricing of swaps in the presence of counterparty risk. In
Section 3, we presented the value of a swap as a linear combination of zero coupon
bonds. Hence, if market prices of zero coupon bonds are available, a model would
not be required to price swaps in practice. In the presence of counterparty risk,
this is different, as we now show. We set V; = FS, r,(t), where F'S, 1 (t) is
defined in equation (11), so we consider a swap with start date Tp, and we focus
on CVA for the period [0, 7] for T' < Ty. We have

“)

v
CVA = 55* (SJ litcr<my
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FSem(m)*t
_ SE*E (( ;:;*( )) 1{t<T§T}

At> ; (24)

hence the market price of counterparty risk associated with a swap can be inter-
preted as a forward start swaption with random expiry date 7. Again, we use the
density function from equation (19), the fact that 1,4 is A;-measurable, and
Corollary 3.2 to obtain

A)

+
i B ((FSR,TO (7))
FSum(r)*
=S)'E <E <1{t<T§T} (FSem(r)”

S‘S* 1 {t<T§T}
56*

% ’Ht> ‘ At> (25)

r +

=14y SE </ WAW@{ )\ds}d )
t u
T (FS,m(u)*

=145y SHE </ (S#)\ exp{ ") ds}du gt>

= 125> / < anﬁ*( D7), exp{—/t )\sds} ‘@) du.  (26)

Hence, as for the European put, we need to resort to Monte Carlo methods to
compute equation (26). This is due to the fact that accounting for right-way and
wrong-way exposure makes it difficult to compute CVA analytically.

6 CVA for Commodities

We now consider counterparty risk for commodities. In particular, we consider the
case where the counterparty C is directly affected by the value of the commodity
underlying the transaction. For example, say the counterparty C is an airline, in
which case it is clear that the company has a large exposure to the price of oil and
could be interested in trading forward contracts on oil with company A, which
is assumed to be default free. However, in case the price of oil rises, default of
company C becomes more likely. Taking into account right-way and wrong-way
exposure, it is important to recognize that the value of the commodity impacts
both, the value of the transaction V', assumed to be a forward on oil, but also the
time of default 7. We hence model this under the benchmark approach following
Du & Platen (2012b). In particular, we use S;"** to denote the value of the NP at
time ¢, denominated in units of the i-th security. A general exchange price, which
could be a number of units of currency 7 to be paid for one unit of currency j, or
a number of units of currency i to be paid for one unit of commodity j is then
given by .

gi-

Sg,é* :

b
O =

(27)
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In this section, currency ¢ would be the domestic currency and commodity j
the commodity of interest, so j could correspond to oil and ¢ to US dollars.
In particular, we note that if SZ"S* appreciates or S{"S* depreciates, then Xf’j
appreciates, so more units of currency i, say US dollars, have to be paid for
one unit of the commodity. We recall the minimal market model (MMM) as
applied in Du & Platen (2012b). Though parsimonious, the model is tractable
and in particular allows us to incorporate right-way and wrong-way exposure. In
particular, we set

S = BEYFAL, (28)

where k € {i,j} and where
dY}F = €1 = VF)dt + \[¢Fy W,

k € {i,j}, where W and W/ are independent G-Brownian motions. Furthermore,

A} = Afexp {€t}

¢
BY :exp{/ rfds} .
0

Again, we remark that when discounting S*%+ and rescaling it using A*, we ob-
tain a mean-reverting process, Y*. When considering a currency, say i, r* =
{rt t >0} is interpreted as a short rate process, and for commodities r/ =
{r{ , > 0} can be interpreted as the convenience yield process. Following Du &
Platen (2012b), we set

and

ro= a4 b+ 09Y

rl = o + VY] + Y]

where a’,a’, b, b7 b I are nonnegative constants, and b” corresponds to the
sensitivity of the short rate 7' to changes in Y7/. In particular, we note that S%%
and S7% are dependent, as they share common drivers. We are now in a position
to price a standard forward contract, and recall the relevant result from Du &
Platen (2012b). Recall that at initiation time ¢, the forward price F/”"" of one
unit of commodity j to be delivered at time 7', denominated in currency i, is
chosen so that the forward has no value. Using the real world pricing formula
(1), we chose F/”" so that

ij _ gindT
E(M‘At> =0. (29)

1,0
57

Solving equation (29) for F}”'" produces Theorem 3.1 from Du & Platen (2012b),
which we now present.
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Theorem 6.1 The real world price at inception time t € [0, T] in units of the i-
th currency, for one unit of the j-th commodity to be delivered at time T € [0, 00)
equals '
it = i D r(t)
Pr(t)

We point out that Pi(t) corresponds to a zero coupon bond in currency i, whereas
PIL(t) is the time ¢ value of the delivery of one unit of the j-th commodity at
maturity 7T, denominated in units of the commodity j itself. Furthermore, we
need to know the value of the forward initiated at time ¢y, at an intermediate
time, say t € [ty, T]. The relevant formula is given in Theorem 3.2 in Du & Platen
(2012b), which we now recall.

Theorem 6.2 The real world value Uf’j’tO’T of a forward contract at time t for
one unit of the jth commodity with initiation time to and maturity date T equals

Uit = PHORT - ),

when denominated in units of the i-th currency, to € [0,T], t € [to, T], T € [0, 00).

We remark that for the model introduced in this section, we can derive closed-
form solutions for forward prices and the value of forward contracts the way we
did in Section 3.

Now we want to return to our counterparty risk example. As we had discussed
before, the airline is more likely to default if the price of the commodity increases.
Hence we propose the following model: we introduce an additional square-root
process

dZ; = k(0 — Z)dt + o/ Z, dW}

where W* is a G-Brownian motion independent of W and W/. The default
intensity A is modeled as follows:

A\ = a) +0Y) + ALy 7z, (30)
Y't]

where b*, ¢, d* are nonnegative constants and @ is a nonnegative function. In
particular, we note that if the main driver of S+ which is Y7, increases, then X~
and \; increase, i.e. default becomes more likely as the price of the commodity
increases. Likewise, as the main driver of Sg"s*, which is Y/, decreases, then
X;”? and )\, increase, i.e. default becomes more likely. We now consider CV A
for V;, = U" over the period [0,7]. We employ the density function from
equation (19), the fact that 1,., is A;-measurable, and Corollary 3.2 to obtain

9

CV A,

i v
= St’(;*E (Si,é* 1{t<7—§T}

T
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, T (1isisto, T+ u
= 1{T>t}SZ’J*E (/ (UST))\U exp {—/ )\sds} du At>
t v t
. T i,jsto, T\ + u
= 1{T>t}SZ’5* E (M)\u exp {—/ )\sds} ‘Qt> du . (31)
t t

.,5*
S

Again, one needs to resort to Monte Carlo methods to compute (31), due to the
fact that our model takes into account right-way and wrong-way exposure. We
point out that prices of call and put options on futures on commodities were
derived in Du & Platen (2012b), which can be used to reduce the cost of Monte
Carlo simulation.

7 A Reduced-Form Model

The affine credit risk model presented in Section 3 is able to incorporate right-
way and wrong-way exposure, and should hence be useful when performing CVA
computations. However, as we noticed for many products, Monte Carlo algo-
rithms need to be employed when performing computations. Though from e.g.
Cesari, Aquilina, Charpillon, Filipovi¢, Lee & Manda (2009) this should be ex-
pected, we aim to produce a reduced form model in this section, which is more
tractable. The model assumes independence between default risk and financial
risk. Though not necessarily satisfied for all transactions relevant to practice, this
is a very tractable model and may help to provide reasonable CVA for important
cases.

We hence modify the model from Section 3 as follows: firstly, we model S% using
the MMM, see Platen & Heath (2010), we set

dY, = (1 — nYy)dt + /YidW;,
where W is a G-Brownian motion and we set
ay = agexp {nt} .
A constant interest rate r > 0 is employed for simplicity, so we have
B, = exp {rt} .

Next, we set Ay = A > 0, i.e. we employ a constant default intensity. The
assumptions of Section 12.3 in Filipovié¢ (2009) are satisfied and we have

P(T >1|Gx) = P(T > t]Gy) = exp {—At}
and

Pt <7 <u|GuVH) =1psny (1 —exp{-Au—1)}),
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so the conditional density of 7 given 7 > ¢ is exponential with parameter A, i.e.
LirspAexp {=A(u—1)} . (32)

This facilitates computations greatly, as we now demonstrate.

Assume that V; > 0, V¢ € [0,7], and that the portfolio V' does not generate
any cash flows on the interval [0, T]. Furthermore, we assume that gz forms an

(A, P)-martingale,
v
SE < 5 Licr<t) A)

V-i—
SS*E <E < S 1{t<T<T}

CV A,

Goo V Ht) ‘ At)

T '+
= 14,-ySE < 5 - Nexp{—\u—1t)}du )
t
o [T (Y
11y Sy E <S—’; At> Aexp {—A(u—t)} du.
t u

Since V;* =V}, one can compute

V+ v,

»

= 5&E<X% AO
ST*
= V.

Hence we get
CVAt = 1{T>t}w (1 — exp {—)\(T — t)}) . (33)

We point out that equation (33) can be used e.g. to deal with zero coupon bonds,
European call options and swaptions, but not, for example, to deal with swaps,
as the latter can assume negative values. We do, however, recall our previous
observation that there exists a close link with forward start swaptions, which we
now exploit. Set V; = F'S, 1, (t) and consider CV' A over the period [0, T, where
T < Ty, then using the density in equation (32) we obtain

4)
o) [4)

5 Ve
Sy B (E (55 Litcr<my

5 Tv+
= 14y S)E (/ 5i- —2Xexp {—Au—1t)}du
t

V+
CVAt = 56* (5,5 1{t<T<T}

“)
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T
v
= 1{T>t}/ SiE (5—5
t

u

T +
= 1{T>t}/ S E (%‘AO Nexp {-A(u — 1)} du
13 u

At> Aexp {—A(u—t)} du

T
— 1 / PSemu(t)exp {=A(u — )} du.
t

We remark that under the minimal market model (MMM), see Platen & Heath

(2010) or Baldeaux & Platen (2013), the value of a forward start swaption

amounts to the computation of a one-dimensional integral. From Section 3, we
(FSwmy (T))"

recall
A
S%* t>
At) .

_ g ((PTO (T) = Y7 &P (T)*
t
For the reduced form model, S?* = il is a time-changed squared Bessel process

PS.qr(t) = 5,?*E<

s
ST
By

of dimension four, the transition density of which is known in closed-form, see
Platen & Heath (2010):

p4((p(t), T, @(T)v y)

B 1 3 T+ VTV
= 2(p(T) - 2(1) (5)" e {‘2«0@) —ysooe))} h (@(T) - s0(7f)>

with o(t) = % (exp {nt} — 1). Furthermore, it can be shown that

Pr(t) = exp {—r(T — t)} (1 —eXp {_2(¢(T‘)§f: o(t)) }> ’

see e.g. Platen & Heath (2010). We define

1650 = tortr =0 (1o {5 )

Hence we get
PSymyr(t) = S} exp {—r(T — 1)}

/°° (f(T,To,y) = 325, ¢ f(T, T}, y))
0 y

p4(90(t)? ‘gf*a @(T)a y)dy,

and regarding CVA, we obtain
CV A,

= S [ [T (-0
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Figure 1: CVA of a swap for different values of A

% (f(U,To, y) - Z?:l C]'f(u’T’ﬁ y))+

y p4(<p(t),gf*,<p(U),y))\dydu

Hence the CVA associated with a swap can be expressed in terms of a two-
dimensional integral, which can be evaluated using Monte Carlo methods. We
now illustrate this using the following example, where we choose the following set
of parameters for the NP:

S =2.3,7r=0.01, 09 = 10.0483,7 = 0.0528..

Furthermore, we choose T" =2, n =3 and Ty = 2, 71 = 3, 1T, = 4,13 = 5
and ¢ = 0.2. For A = 0.05,0.1,0.15,0.2,0.25,0.3 we obtain the values 0.0440,
0.0838, 0.1196, 0.1521, 0.1815, 0.2081, see Figure 1. The value of the swap at
time t = 0 with no probability of default is 0.4703. We have shown that CVA
can be made much better accessible to Monte Carlo methods by employing highly
tractable affine models. For economic and other reasons one has often rather clear
views on real world default intensities and dependencies. By using the benchmark
approach this is sufficient and the models become also more realistic in the long
run. Most importantly, one has not to make questionable assumptions, e.g. about
"risk neutral” default intensities and ”risk neutral” dependencies.

A Laplace Transforms for Square-Root
Processes

The following results are based on Lennox (2011) and are contained in Baldeaux
& Platen (2013) as Propositions 7.3.8 and 7.3.9. Consider a square-root process
X ={X;, t >0}, where

dXt = (a — bXt)dt + 20'Xtth (34)

24



with Xg =2 > 0.

Proposition A.1 Assume that X = {X;, t > 0} is given by (34) and that 2 >

2. Letﬂ—1+m—a+—,m—§(§—1),andu—1\/ )2 +4po. Thenzf
m>a—3—1,

b ds
E exp{—u/ —}X_O‘>
( 0 Xs !
1 bx bexp{bt}\ T2
= ugm &P {_a @ —1) bmt} ((ebt - 1)0)

v/2
b’r r'(B) bx
(02 sinh%%)) I'(1+wv) 1 <6’ L+, o (ebt — 1)) '

Finally, we present Proposition 2.0.42 from Lennox (2011).

Proposition A.2 Assume that X = {X;, t > 0} is given by equation (34) and

2a _ _ 1 _ VAzx
that =* > 2. Define A = b + 4po, m = ;\/(a—a)2+4al/, B = e () and
_ VAtbtanh(YAY)

o 20tanh(@) - Then Zfa > (20[ - 3)0’ fOT' n > 0; v > 0,

¢
E(Xt_o‘exp{— %—u/ Xsds}>
0

B \/Z:cﬁz“g) <B>mexp{ b(x + at) — \/_:ccoth( )}k—(l—l—%-i—%—l—%—a)

20 sinh(¥AL) \ 2 20
F(1+2—+§+%—CY) 1 62
o Fil1l—a+— =1
L1+ m) O‘+2 +2+2 LRET
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